1
|
Yang G, Yang Y, Song Z, Chen L, Liu F, Li Y, Jiang S, Xue S, Pei J, Wu Y, He Y, Chu B, Wu H. Spliceosomal GTPase Eftud2 deficiency-triggered ferroptosis leads to Purkinje cell degeneration. Neuron 2024; 112:3452-3469.e9. [PMID: 39153477 DOI: 10.1016/j.neuron.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Spliceosomal GTPase elongation factor Tu GTP binding domain containing 2 (EFTUD2) is a causative gene for mandibulofacial dysostosis with microcephaly (MFDM) syndrome comprising cerebellar hypoplasia and motor dysfunction. How EFTUD2 deficiency contributes to these symptoms remains elusive. Here, we demonstrate that specific ablation of Eftud2 in cerebellar Purkinje cells (PCs) in mice results in severe ferroptosis, PC degeneration, dyskinesia, and cerebellar atrophy, which recapitulates phenotypes observed in patients with MFDM. Mechanistically, Eftud2 promotes Scd1 and Gch1 expression, upregulates monounsaturated fatty acid phospholipids, and enhances antioxidant activity, thereby suppressing PC ferroptosis. Importantly, we identified transcription factor Atf4 as a downstream target to regulate anti-ferroptosis effects in PCs in a p53-independent manner. Inhibiting ferroptosis efficiently rescued cerebellar deficits in Eftud2 cKO mice. Our data reveal an important role of Eftud2 in maintaining PC survival, showing that pharmacologically or genetically inhibiting ferroptosis may be a promising therapeutic strategy for EFTUD2 deficiency-induced disorders.
Collapse
Affiliation(s)
- Guochao Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China
| | - Yinghong Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China
| | - Zhihong Song
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Saisai Xue
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jie Pei
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China.
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China; Chinese Institute for Brain Research, 102206 Beijing, China.
| |
Collapse
|
2
|
Beauchamp MC, Jerome-Majewska LA. A protective role for EFTUD2 in the brain. Neuron 2024; 112:3378-3380. [PMID: 39447540 DOI: 10.1016/j.neuron.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
In this issue of Neuron, Yang et al.1 report MFDM-like phenotypes in mice with deletion of Eftud2 in their Purkinje cells (PCs), namely cerebellar atrophy alongside motor and social deficits, similar to phenotypes observed in MFDM patients. The absence of Eftud2 caused mis-splicing of Atf4, reduced Scd1 and Gch1, and promoted ferroptosis-regulated PC death.
Collapse
Affiliation(s)
- Marie-Claude Beauchamp
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada
| | - Loydie A Jerome-Majewska
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada; Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
3
|
Kumar S, Bareke E, Lee J, Carlson E, Merkuri F, Schwager EE, Maglio S, Fish JL, Majewski J, Jerome-Majewska LA. Etiology of craniofacial and cardiac malformations in a mouse model of SF3B4-related syndromes. Proc Natl Acad Sci U S A 2024; 121:e2405523121. [PMID: 39292749 PMCID: PMC11441570 DOI: 10.1073/pnas.2405523121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/26/2024] [Indexed: 09/20/2024] Open
Abstract
Pathogenic variants in SF3B4, a component of the U2 snRNP complex important for branchpoint sequence recognition and splicing, are responsible for the acrofacial disorders Nager and Rodriguez Syndrome, also known as SF3B4-related syndromes. Patients exhibit malformations in the head, face, limbs, vertebrae as well as the heart. To uncover the etiology of craniofacial malformations found in SF3B4-related syndromes, mutant mouse lines with homozygous deletion of Sf3b4 in neural crest cells (NCC) were generated. Like in human patients, these embryos had craniofacial and cardiac malformations with variable expressivity and penetrance. The severity and survival of Sf3b4 NCC mutants was modified by the level of Sf3b4 in neighboring non-NCC. RNA sequencing analysis of heads of embryos prior to morphological abnormalities revealed significant changes in expression of genes forming the NCC regulatory network, as well as an increase in exon skipping. Additionally, several key histone modifiers involved in craniofacial and cardiac development showed increased exon skipping. Increased exon skipping was also associated with use of a more proximal branch point, as well as an enrichment in thymidine bases in the 50 bp around the branch points. We propose that decrease in Sf3b4 causes changes in the expression and splicing of transcripts required for proper craniofacial and cardiac development, leading to abnormalities.
Collapse
Affiliation(s)
- Shruti Kumar
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
| | - Jimmy Lee
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QCH3A 0G1, Canada
| | - Emma Carlson
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
| | - Fjodor Merkuri
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA01854
| | - Evelyn E. Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA01854
| | - Steven Maglio
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA01854
| | - Jennifer L. Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA01854
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
| | - Loydie A. Jerome-Majewska
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QCH3A 2B2, Canada
- Department of Pediatrics, McGill University, Montreal, QCH4A 3J1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre at Glen Site, Montreal, QCH4A 3J1, Canada
| |
Collapse
|
4
|
Bertazzon M, Hurtado-Pico A, Plaza-Sirvent C, Schuster M, Preußner M, Kuropka B, Liu F, Kirsten AZA, Schmitt XJ, König B, Álvaro-Benito M, Abualrous ET, Albert GI, Kliche S, Heyd F, Schmitz I, Freund C. The nuclear GYF protein CD2BP2/U5-52K is required for T cell homeostasis. Front Immunol 2024; 15:1415839. [PMID: 39308865 PMCID: PMC11412891 DOI: 10.3389/fimmu.2024.1415839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 09/25/2024] Open
Abstract
The question whether interference with the ubiquitous splicing machinery can lead to cell-type specific perturbation of cellular function is addressed here by T cell specific ablation of the general U5 snRNP assembly factor CD2BP2/U5-52K. This protein defines the family of nuclear GYF domain containing proteins that are ubiquitously expressed in eukaryotes with essential functions ascribed to early embryogenesis and organ function. Abrogating CD2BP2/U5-52K in T cells, allows us to delineate the consequences of splicing machinery interferences for T cell development and function. Increased T cell lymphopenia and T cell death are observed upon depletion of CD2BP2/U5-52K. A substantial increase in exon skipping coincides with the observed defect in the proliferation/differentiation balance in the absence of CD2BP2/U5-52K. Prominently, skipping of exon 7 in Mdm4 is observed, coinciding with upregulation of pro-apoptotic gene expression profiles upon CD2BP2/U5-52K depletion. Furthermore, we observe enhanced sensitivity of naïve T cells compared to memory T cells to changes in CD2BP2/U5-52K levels, indicating that depletion of this general splicing factor leads to modulation of T cell homeostasis. Given the recent structural characterization of the U5 snRNP and the crosslinking mass spectrometry data given here, design of inhibitors of the U5 snRNP conceivably offers new ways to manipulate T cell function in settings of disease.
Collapse
Affiliation(s)
- Miriam Bertazzon
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Almudena Hurtado-Pico
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Marc Schuster
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marco Preußner
- Department of Chemistry and Biochemistry, RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Benno Kuropka
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Fan Liu
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Xiao Jakob Schmitt
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Benjamin König
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Miguel Álvaro-Benito
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
- School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute, Madrid, Spain
| | - Esam T. Abualrous
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
- Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Gesa I. Albert
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation GCI3, Otto-von-Guericke-University, Magdeburg, Germany
| | - Florian Heyd
- Department of Chemistry and Biochemistry, RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ingo Schmitz
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Christian Freund
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Lyulcheva-Bennett E, Kershaw C, Baker E, Gillies S, McCarthy E, Higgs J, Canham N, Hennigan D, Parks C, Bennett D. Dual diagnosis of achondroplasia and mandibulofacial dysostosis with microcephaly. BMC Med Genomics 2024; 17:226. [PMID: 39243045 PMCID: PMC11378366 DOI: 10.1186/s12920-024-01999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Achondroplasia and mandibulofacial dysostosis with microcephaly (MFDM) are rare monogenic, dominant disorders, caused by gain-of-function fibroblast growth factor receptor 3 (FGFR3) gene variants and loss-of-function elongation factor Tu GTP binding domain-containing 2 (EFTUD2) gene variants, respectively. The coexistence of two distinct Mendelian disorders in a single individual is uncommon and challenges the traditional paradigm of a single genetic disorder explaining a patient's symptoms, opening new avenues for diagnosis and management. CASE PRESENTATION We present a case of a female patient initially diagnosed with achondroplasia due to a maternally inherited pathogenic FGFR3 variant. She was referred to our genetic department due to her unusually small head circumference and short stature, which were both significantly below the expected range for achondroplasia. Additional features included distinctive facial characteristics, significant speech delay, conductive hearing loss, and epilepsy. Given the complexity of her phenotype, she was recruited to the DDD (Deciphering Developmental Disorders) study and the 100,000 Genomes project for further investigation. Subsequent identification of a complex EFTUD2 intragenic rearrangement confirmed an additional diagnosis of mandibulofacial dysostosis with microcephaly (MFDM). CONCLUSION This report presents the first case of a dual molecular diagnosis of achondroplasia and mandibulofacial dysostosis with microcephaly in the same patient. This case underscores the complexity of genetic diagnoses and the potential for coexistence of multiple genetic syndromes in a single patient. This case expands our understanding of the molecular basis of dual Mendelian disorders and highlights the importance of considering the possibility of dual molecular diagnoses in patients with phenotypic features that are not fully accounted for by their primary diagnosis.
Collapse
Affiliation(s)
- Ekaterina Lyulcheva-Bennett
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, L8 7SS, UK.
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Christopher Kershaw
- North West Genomic Laboratory Hub, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Eleanor Baker
- North West Genomic Laboratory Hub, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Stuart Gillies
- North West Genomic Laboratory Hub, Liverpool Women's Hospital, Liverpool, L8 7SS, UK
| | - Emma McCarthy
- North West Genomic Laboratory Hub, Liverpool Women's Hospital, Liverpool, L8 7SS, UK
| | - Jenny Higgs
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, L8 7SS, UK
| | - Natalie Canham
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, L8 7SS, UK
| | - Dawn Hennigan
- Department of Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool, L14 5AB, UK
| | - Chris Parks
- Department of Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool, L14 5AB, UK
| | - Daimark Bennett
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK.
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK.
| |
Collapse
|
6
|
Griffin C, Saint-Jeannet JP. Human stem cell model of neural crest cell differentiation reveals a requirement of SF3B4 in survival, maintenance, and differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577202. [PMID: 38328054 PMCID: PMC10849718 DOI: 10.1101/2024.01.25.577202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
In vitro modeling is a powerful approach to investigate the pathomechanisms driving human congenital conditions. Here we use human embryonic stem cells (hESCs) to model Nager and Rodriguez syndromes, two craniofacial conditions characterized by hypoplastic neural crest-derived craniofacial bones, caused by pathogenic variants of SF3B4, a core component of the spliceosome. We observed that siRNA-mediated knockdown of SF3B4 interferes with the production of hESC-derived neural crest cells, as seen by a marked reduction in neural crest gene expression. This phenotype is associated with an increase in neural crest cell apoptosis and premature neuronal differentiation. Altogether these results point at a role of SF3B4 in neural crest cell survival, maintenance, and differentiation. We propose that the dysregulation of these processes may contribute to Nager/Rodriguez syndrome associated craniofacial defects.
Collapse
Affiliation(s)
- Casey Griffin
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
| | | |
Collapse
|
7
|
Ulhaq ZS, Soraya GV, Istifiani LA, Pamungkas SA, Arisanti D, Dini B, Astari LF, Hasan YTN, Ayudianti P, Kusuma MAS, Shodry S, Herawangsa S, Nurputra DK, Idaiani S, Tse WKF. A Brief Analysis on Clinical Severity of Mandibulofacial Dysostosis Guion-Almeida Type. Cleft Palate Craniofac J 2024; 61:688-696. [PMID: 36317361 DOI: 10.1177/10556656221136177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Genetic variants in EFTUD2 were proven to influence variable phenotypic expressivity in mandibulofacial dysostosis Guion-Almeida type (MFDGA) or mandibulofacial dysostosis with microcephaly (MFDM). Yet, the association between the severity of clinical findings with variants within the EFTUD2 gene has not been established. Thus, we aim to elucidate a possible genotype-phenotype correlation in MFDM. METHODS Forty articles comprising 156 patients were evaluated. The genotype-phenotype correlation was analyzed using a chi-square or Fisher's exact test. RESULTS The proportion of patients with MFDM was higher in Caucasian relative to Asian populations. Although, in general, there was no apparent genotype-phenotype correlation in patients with MFDM, Asians tended to have more severe clinical manifestations than Caucasians. In addition, cardiac abnormality presented in patients with intronic variants located in canonical splice sites was a predisposing factor in affecting MFDM severity. CONCLUSION Altogether, this article provides the pathogenic variants observed in EFTUD2 and possible genotype-phenotype relationships in this disease.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Kyushu University, Faculty of Agriculture, Fukuoka, Fukuoka, Japan
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim State Islamic University, Malang, East Java, Indonesia
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Lola Ayu Istifiani
- Department of Nutrition, Faculty of Health Sciences, Brawijaya University, Malang, East Java, Indonesia
| | | | - Ditya Arisanti
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Badariyatud Dini
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Lina Fitria Astari
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Yuliono Trika Nur Hasan
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Prida Ayudianti
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Muhammad A'raaf Sirojan Kusuma
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - Syifaus Shodry
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - Sarah Herawangsa
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - Dian Kesumapramudya Nurputra
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Sri Idaiani
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Kyushu University, Faculty of Agriculture, Fukuoka, Fukuoka, Japan
| |
Collapse
|
8
|
Chen Y, Yang R, Chen X, Lin N, Li C, Fu Y, He A, Wang Y, Zhang T, Ma J. Atypical mandibulofacial dysostosis with microcephaly diagnosed through the identification of a novel pathogenic mutation in EFTUD2. Mol Genet Genomic Med 2024; 12:e2426. [PMID: 38562046 PMCID: PMC10985408 DOI: 10.1002/mgg3.2426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Mandibulofacial dysostosis with microcephaly (MFDM, OMIM# 610536) is a rare monogenic disease that is caused by a mutation in the elongation factor Tu GTP binding domain containing 2 gene (EFTUD2, OMIM* 603892). It is characterized by mandibulofacial dysplasia, microcephaly, malformed ears, cleft palate, growth and intellectual disability. MFDM can be easily misdiagnosed due to its phenotypic overlap with other craniofacial dysostosis syndromes. The clinical presentation of MFDM is highly variable among patients. METHODS A patient with craniofacial anomalies was enrolled and evaluated by a multidisciplinary team. To make a definitive diagnosis, whole-exome sequencing was performed, followed by validation by Sanger sequencing. RESULTS The patient presented with extensive facial bone dysostosis, upward slanting palpebral fissures, outer and middle ear malformation, a previously unreported orbit anomaly, and spina bifida occulta. A novel, pathogenic insertion mutation (c.215_216insT: p.Tyr73Valfs*4) in EFTUD2 was identified as the likely cause of the disease. CONCLUSIONS We diagnosed this atypical case of MFDM by the detection of a novel pathogenetic mutation in EFTUD2. We also observed previously unreported features. These findings enrich both the genotypic and phenotypic spectrum of MFDM.
Collapse
Affiliation(s)
- Ying Chen
- Department of Facial Plastic and Reconstructive SurgeryEye & ENT Hospital of Fudan UniversityShanghaiChina
- ENT InstituteEye & ENT Hospital of Fudan UniversityShanghaiChina
| | - Run Yang
- Department of Facial Plastic and Reconstructive SurgeryEye & ENT Hospital of Fudan UniversityShanghaiChina
- ENT InstituteEye & ENT Hospital of Fudan UniversityShanghaiChina
| | - Xin Chen
- Department of Facial Plastic and Reconstructive SurgeryEye & ENT Hospital of Fudan UniversityShanghaiChina
- ENT InstituteEye & ENT Hospital of Fudan UniversityShanghaiChina
| | - Naier Lin
- Department of RadiologyEye & ENT Hospital of Fudan UniversityShanghaiChina
| | - Chenlong Li
- Department of Facial Plastic and Reconstructive SurgeryEye & ENT Hospital of Fudan UniversityShanghaiChina
- ENT InstituteEye & ENT Hospital of Fudan UniversityShanghaiChina
| | - Yaoyao Fu
- Department of Facial Plastic and Reconstructive SurgeryEye & ENT Hospital of Fudan UniversityShanghaiChina
- ENT InstituteEye & ENT Hospital of Fudan UniversityShanghaiChina
| | - Aijuan He
- Department of Facial Plastic and Reconstructive SurgeryEye & ENT Hospital of Fudan UniversityShanghaiChina
- ENT InstituteEye & ENT Hospital of Fudan UniversityShanghaiChina
| | - Yimin Wang
- GeneMind Biosciences Company LimitedShenzhenChina
| | - Tianyu Zhang
- Department of Facial Plastic and Reconstructive SurgeryEye & ENT Hospital of Fudan UniversityShanghaiChina
- ENT InstituteEye & ENT Hospital of Fudan UniversityShanghaiChina
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghaiChina
| | - Jing Ma
- Department of Facial Plastic and Reconstructive SurgeryEye & ENT Hospital of Fudan UniversityShanghaiChina
- ENT InstituteEye & ENT Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
9
|
Griffin C, Coppenrath K, Khan D, Lin Z, Horb M, Saint-Jeannet JP. Sf3b4 mutation in Xenopus tropicalis causes RNA splicing defects followed by massive gene dysregulation that disrupt cranial neural crest development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578190. [PMID: 38352410 PMCID: PMC10862923 DOI: 10.1101/2024.01.31.578190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Nager syndrome is a rare craniofacial and limb disorder characterized by midface retrusion, micrognathia, absent thumbs, and radial hypoplasia. This disorder results from haploinsufficiency of SF3B4 (splicing factor 3b, subunit 4) a component of the pre-mRNA spliceosomal machinery. The spliceosome is a complex of RNA and proteins that function together to remove introns and join exons from transcribed pre-mRNA. While the spliceosome is present and functions in all cells of the body, most spliceosomopathies - including Nager syndrome - are cell/tissue-specific in their pathology. In Nager syndrome patients, it is the neural crest (NC)-derived craniofacial skeletal structures that are primarily affected. To understand the pathomechanism underlying this condition, we generated a Xenopus tropicalis sf3b4 mutant line using the CRISPR/Cas9 gene editing technology. Here we describe the sf3b4 mutant phenotype at neurula, tail bud, and tadpole stages, and performed temporal RNA-sequencing analysis to characterize the splicing events and transcriptional changes underlying this phenotype. Our data show that while loss of one copy of sf3b4 is largely inconsequential in Xenopus tropicalis, homozygous deletion of sf3b4 causes major splicing defects and massive gene dysregulation, which disrupt cranial NC cell migration and survival, thereby pointing at an essential role of Sf3b4 in craniofacial development.
Collapse
Affiliation(s)
- Casey Griffin
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
| | - Kelsey Coppenrath
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Doha Khan
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
| | - Ziyan Lin
- Applied Bioinformatics Laboratory, NYU Grossman School of Medicine, New York, NY, USA
| | - Marko Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | | |
Collapse
|
10
|
Varineau JE, Calo E. A common cellular response to broad splicing perturbations is characterized by metabolic transcript downregulation driven by the Mdm2-p53 axis. Dis Model Mech 2024; 17:dmm050356. [PMID: 38426258 PMCID: PMC10924232 DOI: 10.1242/dmm.050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Disruptions in core cellular processes elicit stress responses that drive cell-state changes leading to organismal phenotypes. Perturbations in the splicing machinery cause widespread mis-splicing, resulting in p53-dependent cell-state changes that give rise to cell-type-specific phenotypes and disease. However, a unified framework for how cells respond to splicing perturbations, and how this response manifests itself in nuanced disease phenotypes, has yet to be established. Here, we show that a p53-stabilizing Mdm2 alternative splicing event and the resulting widespread downregulation of metabolic transcripts are common events that arise in response to various splicing perturbations in both cellular and organismal models. Together, our results classify a common cellular response to splicing perturbations, put forth a new mechanism behind the cell-type-specific phenotypes that arise when splicing is broadly disrupted, and lend insight into the pleiotropic nature of the effects of p53 stabilization in disease.
Collapse
Affiliation(s)
- Jade E. Varineau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Melnik BC. Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment. Cells 2023; 12:2600. [PMID: 37998335 PMCID: PMC10670572 DOI: 10.3390/cells12222600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin's mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western diet (hyperglycemic carbohydrates and milk/dairy products) also co-stimulates AKT/mTORC1 signaling. The AKT-mediated phosphorylation of nuclear FoxO1 and FoxO3 results in their extrusion into the cytoplasm, a critical switch which enhances the transactivation of lipogenic and proinflammatory transcription factors, including androgen receptor (AR), sterol regulatory element-binding transcription factor 1 (SREBF1), peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 3 (STAT3), but reduces the FoxO1-dependent expression of GATA binding protein 6 (GATA6), the key transcription factor for infundibular keratinocyte homeostasis. The AKT-mediated phosphorylation of the p53-binding protein MDM2 promotes the degradation of p53. In contrast, isotretinoin enhances the expression of p53, FoxO1 and FoxO3 in the sebaceous glands of acne patients. The overexpression of these proapoptotic transcription factors explains isotretinoin's desirable sebum-suppressive effect via the induction of sebocyte apoptosis and the depletion of BLIMP1(+) sebocyte progenitor cells; it also explains its adverse effects, including teratogenicity (neural crest cell apoptosis), a reduced ovarian reserve (granulosa cell apoptosis), the risk of depression (the apoptosis of hypothalamic neurons), VLDL hyperlipidemia, intracranial hypertension and dry skin.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
12
|
Harms FL, Dingemans AJM, Hempel M, Pfundt R, Bierhals T, Casar C, Müller C, Niermeijer JMF, Fischer J, Jahn A, Hübner C, Majore S, Agolini E, Novelli A, van der Smagt J, Ernst R, van Binsbergen E, Mancini GMS, van Slegtenhorst M, Barakat TS, Wakeling EL, Kamath A, Downie L, Pais L, White SM, de Vries BBA, Kutsche K. De novo PHF5A variants are associated with craniofacial abnormalities, developmental delay, and hypospadias. Genet Med 2023; 25:100927. [PMID: 37422718 DOI: 10.1016/j.gim.2023.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Casar
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Müller
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan Fischer
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Arne Jahn
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Christoph Hübner
- Department of Neuropaediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Silvia Majore
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Jasper van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Robert Ernst
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Emma L Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Arveen Kamath
- All Wales Medical Genomics Service/ Pennaeth Labordy Genomeg Cymru Gyfan, University Hospital of Wales, Heath Park, Cardiff, United Kingdom
| | - Lilian Downie
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, VIC; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Susan M White
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, VIC; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Tsai CY, Chen PH, Chen AL, Wang TSA. Spatiotemporal Investigation of Intercellular Heterogeneity via Multiple Photocaged Probes. Chemistry 2023; 29:e202301067. [PMID: 37382047 DOI: 10.1002/chem.202301067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Intercellular heterogeneity occurs widely under both normal physiological environments and abnormal disease-causing conditions. Several attempts to couple spatiotemporal information to cell states in a microenvironment were performed to decipher the cause and effect of heterogeneity. Furthermore, spatiotemporal manipulation can be achieved with the use of photocaged/photoactivatable molecules. Here, we provide a platform to spatiotemporally analyze differential protein expression in neighboring cells by multiple photocaged probes coupled with homemade photomasks. We successfully established intercellular heterogeneity (photoactivable ROS trigger) and mapped the targets (directly ROS-affected cells) and bystanders (surrounding cells), which were further characterized by total proteomic and cysteinomic analysis. Different protein profiles were shown between bystanders and target cells in both total proteome and cysteinome. Our strategy should expand the toolkit of spatiotemporal mapping for elucidating intercellular heterogeneity.
Collapse
Affiliation(s)
- Chun-Yi Tsai
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Po-Hsun Chen
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Ai-Lin Chen
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Tsung-Shing Andrew Wang
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| |
Collapse
|
14
|
Hu P, Li Y, Zhang W, Liu R, Peng L, Xu R, Cai J, Yuan H, Feng T, Tian A, Yue M, Li J, Li W, Zhu C. The Spliceosome Factor EFTUD2 Promotes IFN Anti-HBV Effect through mRNA Splicing. Mediators Inflamm 2023; 2023:2546278. [PMID: 37396299 PMCID: PMC10313468 DOI: 10.1155/2023/2546278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/19/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Methods Using a CRISPR/Cas9 gene-editing system, EFTUD2 single allele knockout HepG2.2.15 cells were constructed. Subsequently, the HBV biomarkers in EFTUD2+/- HepG2.2.15 cells and wild-type (WT) cells with or without IFN-α treatment were detected. And the EFTUD2-regulated genes were then identified using mRNA sequence. Selected gene mRNA variants and their proteins were examined by qRT-PCR and Western blotting. To confirm the effects of EFTUD2 on HBV replication and IFN-stimulated gene (ISG) expression, a rescue experiment in EFTUD2+/- HepG2.2.15 cells was performed by EFTUD2 overexpression. Results IFN-induced anti-HBV activity was found to be restricted in EFTUD2+/- HepG2.2.15 cells. The mRNA sequence showed that EFTUD2 could regulate classical IFN and virus response genes. Mechanistically, EFTUD2 single allele knockout decreased the expression of ISG-encoded proteins, comprising Mx1, OAS1, and PKR (EIF2AK2), through mediated gene splicing. However, EFTUD2 did not affect the expression of Jak-STAT pathway genes. Furthermore, EFTUD2 overexpression could restore the attenuation of IFN anti-HBV activity and the reduction of ISG resulting from EFTUD2 single allele knockout. Conclusion EFTUD2, the spliceosome factor, is not IFN-inducible but is an IFN effector gene. EFTUD2 mediates IFN anti-HBV effect through regulation of gene splicing for certain ISGs, including Mx1, OAS1, and PKR. EFTUD2 does not affect IFN receptors or canonical signal transduction components. Therefore, it can be concluded that EFTUD2 regulates ISGs using a novel, nonclassical mechanism.
Collapse
Affiliation(s)
- Pingping Hu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuwen Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Linya Peng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruirui Xu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinyuan Cai
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Yuan
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tiantong Feng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Anran Tian
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Yue
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| |
Collapse
|
15
|
Wu HT, Yang GC, Shi Y, Fan CN, Li Y, Yuan MQ, Pei J, Wu Y. Spliceosomal GTPase Eftud2 regulates microglial activation and polarization. Neural Regen Res 2023; 18:856-862. [DOI: 10.4103/1673-5374.347739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Olthof AM, White AK, Kanadia RN. The emerging significance of splicing in vertebrate development. Development 2022; 149:dev200373. [PMID: 36178052 PMCID: PMC9641660 DOI: 10.1242/dev.200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Splicing is a crucial regulatory node of gene expression that has been leveraged to expand the proteome from a limited number of genes. Indeed, the vast increase in intron number that accompanied vertebrate emergence might have aided the evolution of developmental and organismal complexity. Here, we review how animal models for core spliceosome components have provided insights into the role of splicing in vertebrate development, with a specific focus on neuronal, neural crest and skeletal development. To this end, we also discuss relevant spliceosomopathies, which are developmental disorders linked to mutations in spliceosome subunits. Finally, we discuss potential mechanisms that could underlie the tissue-specific phenotypes often observed upon spliceosome inhibition and identify gaps in our knowledge that, we hope, will inspire further research.
Collapse
Affiliation(s)
- Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Alisa K. White
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
17
|
Craniofacial Defects in Embryos with Homozygous Deletion of Eftud2 in Their Neural Crest Cells Are Not Rescued by Trp53 Deletion. Int J Mol Sci 2022; 23:ijms23169033. [PMID: 36012294 PMCID: PMC9409426 DOI: 10.3390/ijms23169033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/12/2022] Open
Abstract
Embryos with homozygous mutation of Eftud2 in their neural crest cells (Eftud2ncc−/−) have brain and craniofacial malformations, hyperactivation of the P53-pathway and die before birth. Treatment of Eftud2ncc−/− embryos with pifithrin-α, a P53-inhibitor, partly improved brain and craniofacial development. To uncover if craniofacial malformations and death were indeed due to P53 hyperactivation we generated embryos with homozygous loss of function mutations in both Eftud2 and Trp53 in the neural crest cells. We evaluated the molecular mechanism underlying craniofacial development in pifithrin-α-treated embryos and in Eftud2; Trp53 double homozygous (Eftud2ncc−/−; Trp53ncc−/−) mutant embryos. Eftud2ncc−/− embryos that were treated with pifithrin-α or homozygous mutant for Trp53 in their neural crest cells showed reduced apoptosis in their neural tube and reduced P53-target activity. Furthermore, although the number of SOX10 positive cranial neural crest cells was increased in embryonic day (E) 9.0 Eftud2ncc−/−; Trp53ncc−/− embryos compared to Eftud2ncc−/− mutants, brain and craniofacial development, and survival were not improved in double mutant embryos. Furthermore, mis-splicing of both P53-regulated transcripts, Mdm2 and Foxm1, and a P53-independent transcript, Synj2bp, was increased in the head of Eftud2ncc−/−; Trp53ncc−/− embryos. While levels of Zmat3, a P53- regulated splicing factor, was similar to those of wild-type. Altogether, our data indicate that both P53-regulated and P53-independent pathways contribute to craniofacial malformations and death of Eftud2ncc−/− embryos.
Collapse
|
18
|
The Core Splicing Factors EFTUD2, SNRPB and TXNL4A Are Essential for Neural Crest and Craniofacial Development. J Dev Biol 2022; 10:jdb10030029. [PMID: 35893124 PMCID: PMC9326569 DOI: 10.3390/jdb10030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/11/2022] Open
Abstract
Mandibulofacial dysostosis (MFD) is a human congenital disorder characterized by hypoplastic neural-crest-derived craniofacial bones often associated with outer and middle ear defects. There is growing evidence that mutations in components of the spliceosome are a major cause for MFD. Genetic variants affecting the function of several core splicing factors, namely SF3B4, SF3B2, EFTUD2, SNRPB and TXNL4A, are responsible for MFD in five related but distinct syndromes known as Nager and Rodriguez syndromes (NRS), craniofacial microsomia (CFM), mandibulofacial dysostosis with microcephaly (MFDM), cerebro-costo-mandibular syndrome (CCMS) and Burn–McKeown syndrome (BMKS), respectively. Animal models of NRS and MFDM indicate that MFD results from an early depletion of neural crest progenitors through a mechanism that involves apoptosis. Here we characterize the knockdown phenotype of Eftud2, Snrpb and Txnl4a in Xenopus embryos at different stages of neural crest and craniofacial development. Our results point to defects in cranial neural crest cell formation as the likely culprit for MFD associated with EFTUD2, SNRPB and TXNL4A haploinsufficiency, and suggest a commonality in the etiology of these craniofacial spliceosomopathies.
Collapse
|
19
|
Kohailan M, Al-Saei O, Padmajeya S, Aamer W, Elbashir N, Al-Shabeeb Akil A, Kamboh AR, Fakhro K. A de novo start-loss in EFTUD2 associated with mandibulofacial dysostosis with microcephaly: case report. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006206. [PMID: 35732499 PMCID: PMC9235844 DOI: 10.1101/mcs.a006206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Mandibulofacial dysostosis with microcephaly (MFDM) is a rare genetic disorder inherited in an autosomal dominant pattern. Major characteristics include developmental delay, craniofacial malformations such as malar and mandibular hypoplasia, and ear anomalies. Here, we report a 4.5-yr-old female patient with symptoms fitting MFDM. Using whole-genome sequencing, we identified a de novo start-codon loss (c.3G > T) in the EFTUD2. We examined EFTUD2 expression in the patient by RNA sequencing and observed a notable functional consequence of the variant on gene expression in the patient. We identified a novel variant for the development of MFDM in humans. To the best of our knowledge, this is the first report of a start-codon loss in EFTUD2 associated with MFDM.
Collapse
Affiliation(s)
- Muhammad Kohailan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Omayma Al-Saei
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar
| | | | - Waleed Aamer
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Najwa Elbashir
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar
| | | | - Abdul-Rauf Kamboh
- Department of Pediatric Ophthalmology, Sidra Medicine, Doha 26999, Qatar
| | - Khalid Fakhro
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar.,Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar.,Department of Genetic Medicine, Weill-Cornell Medical College, Doha 24144, Qatar
| |
Collapse
|
20
|
Alam SS, Kumar S, Beauchamp MC, Bareke E, Boucher A, Nzirorera N, Dong Y, Padilla R, Zhang SJ, Majewski J, Jerome-Majewska LA. Snrpb is required in murine neural crest cells for proper splicing and craniofacial morphogenesis. Dis Model Mech 2022; 15:275486. [PMID: 35593225 PMCID: PMC9235875 DOI: 10.1242/dmm.049544] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022] Open
Abstract
Heterozygous mutations in SNRPB, an essential core component of the five small ribonucleoprotein particles of the spliceosome, are responsible for cerebrocostomandibular syndrome (CCMS). We show that Snrpb heterozygous mouse embryos arrest shortly after implantation. Additionally, heterozygous deletion of Snrpb in the developing brain and neural crest cells models craniofacial malformations found in CCMS, and results in death shortly after birth. RNAseq analysis of mutant heads prior to morphological defects revealed increased exon skipping and intron retention in association with increased 5′ splice site strength. We found increased exon skipping in negative regulators of the P53 pathway, along with increased levels of nuclear P53 and P53 target genes. However, removing Trp53 in Snrpb heterozygous mutant neural crest cells did not completely rescue craniofacial development. We also found a small but significant increase in exon skipping of several transcripts required for head and midface development, including Smad2 and Rere. Furthermore, mutant embryos exhibited ectopic or missing expression of Fgf8 and Shh, which are required to coordinate face and brain development. Thus, we propose that mis-splicing of transcripts that regulate P53 activity and craniofacial-specific genes contributes to craniofacial malformations. This article has an associated First Person interview with the first author of the paper. Summary: We report the first mouse model for cerebrocostomandibular syndrome, showing that mis-splicing of transcripts that regulate P53 activity and craniofacial-specific genes contributes to craniofacial malformations.
Collapse
Affiliation(s)
- Sabrina Shameen Alam
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada.,Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Shruti Kumar
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada.,Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Marie-Claude Beauchamp
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Alexia Boucher
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada
| | - Nadine Nzirorera
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada.,Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Yanchen Dong
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada.,Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Reinnier Padilla
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Si Jing Zhang
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Loydie A Jerome-Majewska
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada.,Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.,Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
21
|
p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways. Cell Death Differ 2022; 29:972-982. [PMID: 35444234 PMCID: PMC9090812 DOI: 10.1038/s41418-022-00999-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/05/2023] Open
Abstract
Despite several decades of intense research focused on understanding function(s) and disease-associated malfunction of p53, there is no sign of any “mid-life crisis” in this rapidly advancing area of biomedicine. Firmly established as the hub of cellular stress responses and tumor suppressor targeted in most malignancies, p53’s many talents continue to surprise us, providing not only fresh insights into cell and organismal biology, but also new avenues to cancer treatment. Among the most fruitful lines of p53 research in recent years have been the discoveries revealing the multifaceted roles of p53-centered pathways in the fundamental processes of DNA replication and ribosome biogenesis (RiBi), along with cellular responses to replication and RiBi stresses, two intertwined areas of cell (patho)physiology that we discuss in this review. Here, we first provide concise introductory notes on the canonical roles of p53, the key interacting proteins, downstream targets and post-translational modifications involved in p53 regulation. We then highlight the emerging involvement of p53 as a key component of the DNA replication Fork Speed Regulatory Network and the mechanistic links of p53 with cellular checkpoint responses to replication stress (RS), the driving force of cancer-associated genomic instability. Next, the tantalizing, yet still rather foggy functional crosstalk between replication and RiBi (nucleolar) stresses is considered, followed by the more defined involvement of p53-mediated monitoring of the multistep process of RiBi, including the latest updates on the RPL5/RPL11/5 S rRNA-MDM2-p53-mediated Impaired Ribosome Biogenesis Checkpoint (IRBC) pathway and its involvement in tumorigenesis. The diverse defects of RiBi and IRBC that predispose and/or contribute to severe human pathologies including developmental syndromes and cancer are then outlined, along with examples of promising small-molecule-based strategies to therapeutically target the RS- and particularly RiBi- stress-tolerance mechanisms to which cancer cells are addicted due to their aberrant DNA replication, repair, and proteo-synthesis demands. ![]()
Collapse
|
22
|
Bertrand RE, Wang J, Li Y, Cheng X, Wang K, Stoilov P, Chen R. Cwc27, associated with retinal degeneration, functions as a splicing factor in vivo. Hum Mol Genet 2022; 31:1278-1292. [PMID: 34726245 PMCID: PMC9029344 DOI: 10.1093/hmg/ddab319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
Previous in vitro studies indicate that CWC27 functions as a splicing factor in the Bact spliceosome complex, interacting with CWC22 to form a landing platform for eIF4A3, a core component of the exon junction complex. However, the function of CWC27 as a splicing factor has not been validated in any in vivo systems. CWC27 variants have been shown to cause autosomal recessive retinal degeneration, in both syndromic and non-syndromic forms. The Cwc27K338fs/K338fs mouse model was shown to have significant retinal dysfunction and degeneration by 6 months of age. In this report, we have taken advantage of the Cwc27K338fs/K338fs mouse model to show that Cwc27 is involved in splicing in vivo in the context of the retina. Bulk RNA and single cell RNA-sequencing of the mouse retina showed that there were gene expression and splicing pattern changes, including alternative splice site usage and intron retention. Positive staining for CHOP suggests that ER stress may be activated in response to the splicing pattern changes and is a likely contributor to the disease mechanism. Our results provide the first evidence that CWC27 functions as a splicing factor in an in vivo context. The splicing defects and gene expression changes observed in the Cwc27K338fs/K338fs mouse retina provide insight to the potential disease mechanisms, paving the way for targeted therapeutic development.
Collapse
Affiliation(s)
- Renae Elaine Bertrand
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuesen Cheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Ihewulezi C, Saint-Jeannet JP. Function of chromatin modifier Hmgn1 during neural crest and craniofacial development. Genesis 2021; 59:e23447. [PMID: 34478234 PMCID: PMC8922215 DOI: 10.1002/dvg.23447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022]
Abstract
The neural crest is a dynamic embryonic structure that plays a major role in the formation of the vertebrate craniofacial skeleton. Neural crest formation is regulated by a complex sequence of events directed by a network of transcription factors working in concert with chromatin modifiers. The high mobility group nucleosome binding protein 1 (Hmgn1) is a nonhistone chromatin architectural protein, associated with transcriptionally active chromatin. Here we report the expression and function of Hmgn1 during Xenopus neural crest and craniofacial development. Hmgn1 is broadly expressed at the gastrula and neurula stages, and is enriched in the head region at the tailbud stage, especially in the eyes and the pharyngeal arches. Hmgn1 knockdown affected the expression of several neural crest specifiers, including sox8, sox10, foxd3, and twist1, while other genes (sox9 and snai2) were only marginally affected. The specificity of this phenotype was confirmed by rescue, where injection of Hmgn1 mRNA was able to restore sox10 expression in morphant embryos. The reduction in neural crest gene expression at the neurula stage in Hmgn1 morphant embryos correlated with a decreased number of sox10- and twist1-positive cells in the pharyngeal arches at the tailbud stage, and hypoplastic craniofacial cartilages at the tadpole stage. These results point to a novel role for Hmgn1 in the control of gene expression essential for neural crest and craniofacial development. Future work will investigate the precise mode of action of Hmgn1 in this context.
Collapse
Affiliation(s)
- Chibuike Ihewulezi
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, NY, USA
| | | |
Collapse
|
24
|
Over-activation of EFTUD2 correlates with tumor propagation and poor survival outcomes in hepatocellular carcinoma. Clin Transl Oncol 2021; 24:93-103. [PMID: 34282556 DOI: 10.1007/s12094-021-02673-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/18/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Elongation factor Tu GTP-binding domain containing 2 (EFTUD2) is an essential constituent of U5 small nuclear ribonucleoproteins (snRNPs) and plays a crucial role in spliceosome activation and cancer. The mechanism of EFTUD2 on carcinogenesis and development of liver cancer still need further study. METHODS Bioinformatic analysis was performed to find differential expressed genes and related pathways. Western blotting and quantitative PCR assays were used to verify the EFTUD2 expression in HCC cell lines and tumor tissues of liver cancer patients. Transfection of shRNAs in SKHEP1 and Huh7 cell lines was conducted to explore the mechanisms of EFTUD2 in HCC. CCK-8 method, colony formation, and cell cycle detection kit were used to detect the proliferation. A tumor model in nude mice was used to explore the role of EFTUD2 in liver cancer in vivo. RESULTS Based on the tumor tissues and para-tumor tissues in our HCC patients, we identified EFTUD2 as highly expressed in HCC tissues (P < 0.001). Bioinformatic analysis from the TCGA database also supported this biological phenomenon (P = 1.911e-17). Furtherly, the results of clinical specimens and TCGA data suggested that higher EFTUD2 expression levels correlated with high histologic grades, high pathological grades, and poor survival prognoses in HCC patients. And knockdown of EFTUD2 suppressed cell proliferation and colony formation in vitro. In vivo, knockdown of EFTUD2 constrained the tumor growing and expansion derived from SKHEP1 cells and induced a decrease in the tumor volume and tumor weight resected from nude mice. Furthermore, RNA sequencing based on EFTUD2 knockdown revealed that EFTUD2 affected target genes concerned with the cell cycle. Flow cytometric analyses in the SKHEP1 cell model revealed that knockdown significantly suppressed cell cycle course and caused cell cycle arrest in the G1 phase. CyclinD1 proteins were also inhibited by knocking down of EFTUD2. CONCLUSION EFTUD2 is markedly overexpressed in HCC tumor tissues. High EFTUD2 expression in HCC patients is associated with clinical features. Moreover, we confirmed that EFTUD2 shows a pivotal role in HCC cell proliferation and cell cycle course and could be a possible therapeutic avenue in HCC through disturbing EFTUD2.
Collapse
|