1
|
Del Giudice L, Alifano P, Calcagnile M, Di Schiavi E, Bertapelle C, Aletta M, Pontieri P. Mitochondrial ribosomal protein genes connected with Alzheimer's and tellurite toxicity. Mitochondrion 2022; 64:45-58. [PMID: 35218961 DOI: 10.1016/j.mito.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Mitochondrial diseases are a group of genetic disorders characterized by dysfunctional mitochondria. Within eukaryotic cells, mitochondria contain their own ribosomes, which synthesize small amounts of proteins, all of which are essential for the biogenesis of the oxidative phosphorylation system. The ribosome is an evolutionarily conserved macromolecular machine in nature both from a structural and functional point of view, universally responsible for the synthesis of proteins. Among the diseases afflicting humans, those of ribosomal origin - either cytoplasmic ribosomes (80S) or mitochondrial ribosomes (70S) - are relevant. These are inherited or acquired diseases most commonly caused by either ribosomal protein haploinsufficiency or defects in ribosome biogenesis. Here we review the scientific literature about the recent advances on changes in mitochondrial ribosomal structural and assembly proteins that are implicated in primary mitochondrial diseases and neurodegenerative disorders, and their possible connection with metalloid pollution and toxicity, with a focus on MRPL44, NAM9 (MNA6) and GEP3 (MTG3), whose lack or defect was associated with resistance to tellurite. Finally, we illustrate the suitability of yeast Saccharomyces cerevisiae (S.cerevisiae) and the nematode Caenorhabditis elegans (C.elegans) as model organisms for studying mitochondrial ribosome dysfunctions including those involved in human diseases.
Collapse
Affiliation(s)
- Luigi Del Giudice
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy.
| | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce 73100, Italy
| | - Matteo Calcagnile
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce 73100, Italy
| | | | | | | | - Paola Pontieri
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy
| |
Collapse
|
2
|
Moore TM, Zhou Z, Strumwasser AR, Cohn W, Lin AJ, Cory K, Whitney K, Ho T, Ho T, Lee JL, Rucker DH, Hoang AN, Widjaja K, Abrishami AD, Charugundla S, Stiles L, Whitelegge JP, Turcotte LP, Wanagat J, Hevener AL. Age-induced mitochondrial DNA point mutations are inadequate to alter metabolic homeostasis in response to nutrient challenge. Aging Cell 2020; 19:e13166. [PMID: 33049094 PMCID: PMC7681042 DOI: 10.1111/acel.13166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/10/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is frequently associated with impairment in metabolic homeostasis and insulin action, and is thought to underlie cellular aging. However, it is unclear whether mitochondrial dysfunction is a cause or consequence of insulin resistance in humans. To determine the impact of intrinsic mitochondrial dysfunction on metabolism and insulin action, we performed comprehensive metabolic phenotyping of the polymerase gamma (PolG) D257A "mutator" mouse, a model known to accumulate supraphysiological mitochondrial DNA (mtDNA) point mutations. We utilized the heterozygous PolG mutator mouse (PolG+/mut ) because it accumulates mtDNA point mutations ~ 500-fold > wild-type mice (WT), but fails to develop an overt progeria phenotype, unlike PolGmut/mut animals. To determine whether mtDNA point mutations induce metabolic dysfunction, we examined male PolG+/mut mice at 6 and 12 months of age during normal chow feeding, after 24-hr starvation, and following high-fat diet (HFD) feeding. No marked differences were observed in glucose homeostasis, adiposity, protein/gene markers of metabolism, or oxygen consumption in muscle between WT and PolG+/mut mice during any of the conditions or ages studied. However, proteomic analyses performed on isolated mitochondria from 12-month-old PolG+/mut mouse muscle revealed alterations in the expression of mitochondrial ribosomal proteins, electron transport chain components, and oxidative stress-related factors compared with WT. These findings suggest that mtDNA point mutations at levels observed in mammalian aging are insufficient to disrupt metabolic homeostasis and insulin action in male mice.
Collapse
Affiliation(s)
- Timothy M. Moore
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCAUSA
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Whitaker Cohn
- Department of Psychiatry and Biobehavioral Sciences & The Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCAUSA
| | - Amanda J. Lin
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kevin Cory
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kate Whitney
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Theodore Ho
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Timothy Ho
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Joseph L. Lee
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Daniel H. Rucker
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Austin N. Hoang
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kevin Widjaja
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Aaron D. Abrishami
- Division of CardiologyDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Sarada Charugundla
- Division of CardiologyDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Julian P. Whitelegge
- Department of Psychiatry and Biobehavioral Sciences & The Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCAUSA
| | - Lorraine P. Turcotte
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Jonathan Wanagat
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Andrea L. Hevener
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Iris Cantor‐UCLA Women's Health CenterUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
3
|
Kurbalija Novičić Z, Bodén R, Kozarski K, Jelić M, Jovanović VM, Cunningham JL. Lithium influences whole-organism metabolic rate in Drosophila subobscura. J Neurosci Res 2020; 99:407-418. [PMID: 32729199 DOI: 10.1002/jnr.24678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 11/09/2022]
Abstract
Lithium is widely used to treat bipolar disorder. However, the efficacy and vulnerability as to its side effects are known to differ. Although the specific biochemical mechanism of action is still elusive, lithium may influence mitochondrial function, and consequently, metabolism. Lithium exposure in this study was conducted on a unique set of mito-nuclear introgression lines of Drosophila subobscura to disentangle the independent effects of mitochondrial DNA (mtDNA) against a common nuclear DNA background. The study addressed three issues: (a) whether lithium has a dose-dependent effect on whole-organism metabolic rate, (b) whether mtDNA haplotypes show divergent metabolic efficiency measured by metabolic rate to lithium exposure and (c) whether lithium influences the whole-organism metabolic rate across sexes. The results confirm that lithium influenced the whole-organism metabolic rate, showing a subtle balance between efficacy and adverse effects within a narrow dose range. In addition, lithium exposure was found to influence metabolism differently based on mtDNA haplotypes and sex. This preliminary research may have a range of biological implications for the role of mitochondrial variability in psychiatric disease and treatment by contributing to the understanding and predicting of the lithium treatment response and risk for toxic side effects.
Collapse
Affiliation(s)
- Zorana Kurbalija Novičić
- Department of Neuroscience, Psychiatry, Uppsala University Hospital, Uppsala, Sweden.,Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Robert Bodén
- Department of Neuroscience, Psychiatry, Uppsala University Hospital, Uppsala, Sweden
| | - Ksenija Kozarski
- Department of Neuroscience, Psychiatry, Uppsala University Hospital, Uppsala, Sweden
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vladimir M Jovanović
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany.,Human Biology Group, Freie Universität Berlin, Berlin, Germany.,Institute for Zoology, Freie Universität Berlin, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
4
|
Kurbalija Novičić Z, Sayadi A, Jelić M, Arnqvist G. Negative frequency dependent selection contributes to the maintenance of a global polymorphism in mitochondrial DNA. BMC Evol Biol 2020; 20:20. [PMID: 32019493 PMCID: PMC7001298 DOI: 10.1186/s12862-020-1581-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 01/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the forces that maintain diversity across a range of scales is at the very heart of biology. Frequency-dependent processes are generally recognized as the most central process for the maintenance of ecological diversity. The same is, however, not generally true for genetic diversity. Negative frequency dependent selection, where rare genotypes have an advantage, is often regarded as a relatively weak force in maintaining genetic variation in life history traits because recombination disassociates alleles across many genes. Yet, many regions of the genome show low rates of recombination and genetic variation in such regions (i.e., supergenes) may in theory be upheld by frequency dependent selection. RESULTS We studied what is essentially a ubiquitous life history supergene (i.e., mitochondrial DNA) in the fruit fly Drosophila subobscura, showing sympatric polymorphism with two main mtDNA genotypes co-occurring in populations world-wide. Using an experimental evolution approach involving manipulations of genotype starting frequencies, we show that negative frequency dependent selection indeed acts to maintain genetic variation in this region. Moreover, the strength of selection was affected by food resource conditions. CONCLUSIONS Our work provides novel experimental support for the view that balancing selection through negative frequency dependency acts to maintain genetic variation in life history genes. We suggest that the emergence of negative frequency dependent selection on mtDNA is symptomatic of the fundamental link between ecological processes related to resource use and the maintenance of genetic variation.
Collapse
Affiliation(s)
- Zorana Kurbalija Novičić
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.,Department of Neuroscience, Psychiatry, Uppsala University Hospital, Entrance 10, 751 85, Uppsala, Sweden
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, 11000, Serbia
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
5
|
Neueder A. RNA-Mediated Disease Mechanisms in Neurodegenerative Disorders. J Mol Biol 2018; 431:1780-1791. [PMID: 30597161 DOI: 10.1016/j.jmb.2018.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
RNA is accurately entangled in virtually all pathways that maintain cellular homeostasis. To name but a few, RNA is the "messenger" between DNA encoded information and the resulting proteins. Furthermore, RNAs regulate diverse processes by forming DNA::RNA or RNA::RNA interactions. Finally, RNA itself can be the scaffold for ribonucleoprotein complexes, for example, ribosomes or cellular bodies. Consequently, disruption of any of these processes can lead to disease. This review describes known and emerging RNA-based disease mechanisms like interference with regular splicing, the anomalous appearance of RNA-protein complexes and uncommon RNA species, as well as non-canonical translation. Due to the complexity and entanglement of the above-mentioned pathways, only few drugs are available that target RNA-based disease mechanisms. However, advances in our understanding how RNA is involved in and modulates cellular homeostasis might pave the way to novel treatments.
Collapse
Affiliation(s)
- Andreas Neueder
- Experimental Neurology, Department of Neurology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
6
|
Aravintha Siva M, Mahalakshmi R, Bhakta-Guha D, Guha G. Gene therapy for the mitochondrial genome: Purging mutations, pacifying ailments. Mitochondrion 2018; 46:195-208. [PMID: 29890303 DOI: 10.1016/j.mito.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/24/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
In the recent years, the reported cases of mitochondrial disorders have reached a colossal number. These disorders spawn a sundry of pathological conditions, which lead to pernicious symptoms and even fatality. Due to the unpredictable etiologies, mitochondrial diseases are putatively referred to as "mystondria" (mysterious diseases of mitochondria). Although present-day research has greatly improved our understanding of mitochondrial disorders, effective therapeutic interventions are still at the precursory stage. The conundrum becomes further complicated because these pathologies might occur due to either mitochondrial DNA (mtDNA) mutations or due to mutations in the nuclear DNA (nDNA), or both. While correcting nDNA mutations by using gene therapy (replacement of defective genes by delivering wild-type (WT) ones into the host cell, or silencing a dominant mutant allele that is pathogenic) has emerged as a promising strategy to address some mitochondrial diseases, the complications in correcting the defects of mtDNA in order to renovate mitochondrial functions have remained a steep challenge. In this review, we focus specifically on the selective gene therapy strategies that have demonstrated prospects in targeting the pathological mutations in the mitochondrial genome, thereby treating mitochondrial ailments.
Collapse
Affiliation(s)
- M Aravintha Siva
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - R Mahalakshmi
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
7
|
Sonawane KD, Kamble AS, Fandilolu PM. Preferences of AAA/AAG codon recognition by modified nucleosides, τm 5s 2U 34 and t 6A 37 present in tRNA Lys. J Biomol Struct Dyn 2017; 36:4182-4196. [PMID: 29243556 DOI: 10.1080/07391102.2017.1417911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Deficiency of 5-taurinomethyl-2-thiouridine, τm5s2U at the 34th 'wobble' position in tRNALys causes MERRF (Myoclonic Epilepsy with Ragged Red Fibers), a neuromuscular disease. This modified nucleoside of mt tRNALys, recognizes AAA/AAG codons during protein biosynthesis process. Its preference to identify cognate codons has not been studied at the atomic level. Hence, multiple MD simulations of various molecular models of anticodon stem loop (ASL) of mt tRNALys in presence and absence of τm5s2U34 and N6-threonylcarbamoyl adenosine (t6A37) along with AAA and AAG codons have been accomplished. Additional four MD simulations of multiple ASL mt tRNALys models in the context of ribosomal A-site residues have also been performed to investigate the role of A-site in recognition of AAA/AAG codons. MD simulation results show that, ASL models in presence of τm5s2U34 and t6A37 with codons AAA/AAG are more stable than the ASL lacking these modified bases. MD trajectories suggest that τm5s2U recognizes the codons initially by 'wobble' hydrogen bonding interactions, and then tRNALys might leave the explicit codon by a novel 'single' hydrogen bonding interaction in order to run the protein biosynthesis process smoothly. We propose this model as the 'Foot-Step Model' for codon recognition, in which the single hydrogen bond plays a crucial role. MD simulation results suggest that, tRNALys with τm5s2U and t6A recognizes AAA codon more preferably than AAG. Thus, these results reveal the consequences of τm5s2U and t6A in recognition of AAA/AAG codons in mitochondrial disease, MERRF.
Collapse
Affiliation(s)
- Kailas D Sonawane
- a Structural Bioinformatics Unit, Department of Biochemistry , Shivaji University , Kolhapur 416 004 (M.S.) , India.,b Department of Microbiology , Shivaji University , Kolhapur 416 004 (M.S.) , India
| | - Asmita S Kamble
- a Structural Bioinformatics Unit, Department of Biochemistry , Shivaji University , Kolhapur 416 004 (M.S.) , India
| | - Prayagraj M Fandilolu
- a Structural Bioinformatics Unit, Department of Biochemistry , Shivaji University , Kolhapur 416 004 (M.S.) , India
| |
Collapse
|
8
|
Meng F, Cang X, Peng Y, Li R, Zhang Z, Li F, Fan Q, Guan AS, Fischel-Ghosian N, Zhao X, Guan MX. Biochemical Evidence for a Nuclear Modifier Allele (A10S) in TRMU (Methylaminomethyl-2-thiouridylate-methyltransferase) Related to Mitochondrial tRNA Modification in the Phenotypic Manifestation of Deafness-associated 12S rRNA Mutation. J Biol Chem 2017; 292:2881-2892. [PMID: 28049726 DOI: 10.1074/jbc.m116.749374] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/15/2016] [Indexed: 11/06/2022] Open
Abstract
Nuclear modifier gene(s) was proposed to modulate the phenotypic expression of mitochondrial DNA mutation(s). Our previous investigations revealed that a nuclear modifier allele (A10S) in TRMU (methylaminomethyl-2-thiouridylate-methyltransferase) related to tRNA modification interacts with 12S rRNA 1555A→G mutation to cause deafness. The A10S mutation resided at a highly conserved residue of the N-terminal sequence. It was hypothesized that the A10S mutation altered the structure and function of TRMU, thereby causing mitochondrial dysfunction. Using molecular dynamics simulations, we showed that the A10S mutation introduced the Ser10 dynamic electrostatic interaction with the Lys106 residue of helix 4 within the catalytic domain of TRMU. The Western blotting analysis displayed the reduced levels of TRMU in mutant cells carrying the A10S mutation. The thermal shift assay revealed the Tm value of mutant TRMU protein, lower than that of the wild-type counterpart. The A10S mutation caused marked decreases in 2-thiouridine modification of U34 of tRNALys, tRNAGlu and tRNAGln However, the A10S mutation mildly increased the aminoacylated efficiency of tRNAs. The altered 2-thiouridine modification worsened the impairment of mitochondrial translation associated with the m.1555A→G mutation. The defective translation resulted in the reduced activities of mitochondrial respiration chains. The respiratory deficiency caused the reduction of mitochondrial ATP production and elevated the production of reactive oxidative species. As a result, mutated TRMU worsened mitochondrial dysfunctions associated with m.1555A→G mutation, exceeding the threshold for expressing a deafness phenotype. Our findings provided new insights into the pathophysiology of maternally inherited deafness that was manifested by interaction between mtDNA mutation and nuclear modifier gene.
Collapse
Affiliation(s)
- Feilong Meng
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,the Institute of Genetics and
| | - Xiaohui Cang
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,the Institute of Genetics and
| | - Yanyan Peng
- the Institute of Genetics and.,the Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Ronghua Li
- the Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30307
| | | | | | | | - Anna S Guan
- the Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 90095, and
| | - Nathan Fischel-Ghosian
- the Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 90095, and
| | | | - Min-Xin Guan
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China, .,the Institute of Genetics and.,the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China.,the Joining Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
9
|
Conformational Preferences of Modified Nucleoside 5-Taurinomethyluridine, τm(5)U Occur at 'wobble' 34th Position in the Anticodon Loop of tRNA. Cell Biochem Biophys 2016; 71:1589-603. [PMID: 25388845 DOI: 10.1007/s12013-014-0382-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Conformational preferences of hypermodified nucleoside 5-taurinomethyluridine 5'-monophoshate 'p-τm(5)U' (-CH2-NH2(+)-CH2-CH2-SO3(-)) have been investigated using semi-empirical RM1 method. Automated geometry optimization using ab initio molecular orbital HF-SCF (6-31G**) and DFT (B3LYP/6-31G**) calculations have also been made to compare the salient features. The RM1 preferred most stable conformation of 'p-τm(5)U' has been stabilized by hydrogen bonding interactions between O(11a)…HN(8), O1P(34)…HN(8), and O1P(34)…HC(10). Another conformational study of 5-taurinomethyluridine side chain has also been performed in context of anticodon loop bases of E. coli tRNA(Leu). The atom O(11a) of τm(5)U(34) side chain interacts with adenosine (A35) as well as ribose-phosphate backbone which might provide structural stability to the anticodon loop. The glycosyl torsion angle of τm(5)U retains 'anti'-conformation. The solvent accessible surface area calculations revealed the role of τm(5)U in tRNA(Leu) anticodon loop. MD simulation results are found in agreement with RM1 preferred stable structure. The MEPs calculations of τm(5)U(34):G3 model show unique potential tunnels between the hydrogen bond donor and acceptor atoms as compared to τm(5)U(34):A3 model. Thus, these results could pave the way to understand the role of τm(5)U(34) to recognize UUG/UUA codons at atomic level in the mitochondrial disease, MELAS.
Collapse
|
10
|
Wang M, Peng Y, Zheng J, Zheng B, Jin X, Liu H, Wang Y, Tang X, Huang T, Jiang P, Guan MX. A deafness-associated tRNAAsp mutation alters the m1G37 modification, aminoacylation and stability of tRNAAsp and mitochondrial function. Nucleic Acids Res 2016; 44:10974-10985. [PMID: 27536005 PMCID: PMC5159531 DOI: 10.1093/nar/gkw726] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023] Open
Abstract
In this report, we investigated the pathogenic mechanism underlying the deafness-associated mitochondrial(mt) tRNAAsp 7551A > G mutation. The m.7551A > G mutation is localized at a highly conserved nucleotide(A37), adjacent (3′) to the anticodon, which is important for the fidelity of codon recognition and stabilization in functional tRNAs. It was anticipated that the m.7551A > G mutation altered the structure and function of mt-tRNAAsp. The primer extension assay demonstrated that the m.7551A > G mutation created the m1G37 modification of mt-tRNAAsp. Using cybrid cell lines generated by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA(mtDNA)-less (ρo) cells, we demonstrated the significant decreases in the efficiency of aminoacylation and steady-state level of mt-tRNAAsp in mutant cybrids, compared with control cybrids. A failure in metabolism of mt-tRNAAsp caused the variable reductions in mtDNA-encoded polypeptides in mutant cybrids. Impaired mitochondrial translation led to the respiratory phenotype in mutant cybrids. The respiratory deficiency lowed mitochondrial adenosine triphosphate production and increased the production of oxidative reactive species in mutant cybrids. Our data demonstrated that mitochondrial dysfunctions caused by the m.7551A > G mutation are associated with deafness. Our findings may provide new insights into the pathophysiology of maternally transmitted deafness that was manifested by altered nucleotide modification of mitochondrial tRNA.
Collapse
Affiliation(s)
- Meng Wang
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yanyan Peng
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jing Zheng
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Binjiao Zheng
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Xiaofen Jin
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Hao Liu
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong Wang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowen Tang
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pingping Jiang
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
11
|
El-Hattab AW, Scaglia F. Mitochondrial cytopathies. Cell Calcium 2016; 60:199-206. [PMID: 26996063 DOI: 10.1016/j.ceca.2016.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023]
Abstract
Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Most of mitochondrial proteins are encoded by the nuclear DNA (nDNA) whereas a very small fraction is encoded by the mitochondrial DNA (mtDNA). Mutations in mtDNA or mitochondria-related nDNA genes can result in mitochondrial dysfunction which leads to a wide range of cellular perturbations including aberrant calcium homeostasis, excessive reactive oxygen species production, dysregulated apoptosis, and insufficient energy generation to meet the needs of various organs, particularly those with high energy demand. Impaired mitochondrial function in various tissues and organs results in the multi-organ manifestations of mitochondrial diseases including epilepsy, intellectual disability, skeletal and cardiac myopathies, hepatopathies, endocrinopathies, and nephropathies. Defects in nDNA genes can be inherited in an autosomal or X-linked manners, whereas, mtDNA is maternally inherited. Mitochondrial diseases can result from mutations of nDNA genes encoding subunits of the electron transport chain complexes or their assembly factors, proteins associated with the mitochondrial import or networking, mitochondrial translation factors, or proteins involved in mtDNA maintenance. MtDNA defects can be either point mutations or rearrangements. The diagnosis of mitochondrial disorders can be challenging in many cases and is based on clinical recognition, biochemical screening, histopathological studies, functional studies, and molecular genetic testing. Currently, there are no satisfactory therapies available for mitochondrial disorders that significantly alter the course of the disease. Therapeutic options include symptomatic treatment, cofactor supplementation, and exercise.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
Structural significance of modified nucleoside 5-taurinomethyl-2-thiouridine, τm5s2U, found at ‘wobble’ position in anticodon loop of human mitochondrial tRNALys. Struct Chem 2015. [DOI: 10.1007/s11224-015-0642-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A. Mitochondrial ribosome assembly in health and disease. Cell Cycle 2015; 14:2226-50. [PMID: 26030272 DOI: 10.1080/15384101.2015.1053672] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health.
Collapse
Affiliation(s)
- Dasmanthie De Silva
- a Department of Biochemistry and Molecular Biology ; University of Miami Miller School of Medicine ; Miami , FL USA
| | | | | | | | | |
Collapse
|
14
|
Holmbeck MA, Donner JR, Villa-Cuesta E, Rand DM. A Drosophila model for mito-nuclear diseases generated by an incompatible interaction between tRNA and tRNA synthetase. Dis Model Mech 2015; 8:843-54. [PMID: 26035388 PMCID: PMC4527286 DOI: 10.1242/dmm.019323] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/23/2015] [Indexed: 12/30/2022] Open
Abstract
Communication between the mitochondrial and nuclear genomes is vital for cellular function. The assembly of mitochondrial enzyme complexes, which produce the majority of cellular energy, requires the coordinated expression and translation of both mitochondrially and nuclear-encoded proteins. The joint genetic architecture of this system complicates the basis of mitochondrial diseases, and mutations both in mitochondrial DNA (mtDNA)- and nuclear-encoded genes have been implicated in mitochondrial dysfunction. Previously, in a set of mitochondrial-nuclear introgression strains, we characterized a dual genome epistasis in which a naturally occurring mutation in the Drosophila simulans simw(501) mtDNA-encoded transfer RNA (tRNA) for tyrosine (tRNA(Tyr)) interacts with a mutation in the nuclear-encoded mitochondrially localized tyrosyl-tRNA synthetase from Drosophila melanogaster. Here, we show that the incompatible mitochondrial-nuclear combination results in locomotor defects, reduced mitochondrial respiratory capacity, decreased oxidative phosphorylation (OXPHOS) enzyme activity and severe alterations in mitochondrial morphology. Transgenic rescue strains containing nuclear variants of the tyrosyl-tRNA synthetase are sufficient to rescue many of the deleterious phenotypes identified when paired with the simw(501) mtDNA. However, the severity of this defective mito-nuclear interaction varies across traits and genetic backgrounds, suggesting that the impact of mitochondrial dysfunction might be tissue specific. Because mutations in mitochondrial tRNA(Tyr) are associated with exercise intolerance in humans, this mitochondrial-nuclear introgression model in Drosophila provides a means to dissect the molecular basis of these, and other, mitochondrial diseases that are a consequence of the joint genetic architecture of mitochondrial function.
Collapse
Affiliation(s)
- Marissa A Holmbeck
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Julia R Donner
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | | | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
15
|
Jeong MH, Kim JH, Seo KS, Kwak TH, Park WJ. β-Lapachone attenuates mitochondrial dysfunction in MELAS cybrid cells. Biochem Biophys Res Commun 2014; 454:417-22. [PMID: 25451262 DOI: 10.1016/j.bbrc.2014.10.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 02/05/2023]
Abstract
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a mitochondrial disease caused by mutations in the mitochondrial genome. This study investigated the efficacy of β-lapachone (β-lap), a natural quinone compound, in rescuing mitochondrial dysfunction in MELAS cybrid cells. β-Lap significantly restored energy production and mitochondrial membrane potential as well as normalized the elevated ROS level in MELAS cybrid cells. Additionally, β-lap reduced lactic acidosis and restored glucose uptake in the MELAS cybrid cells. Finally, β-lap activated Sirt1 by increasing the intracellular NAD(+)/NADH ratio, which was accompanied by increased mtDNA content. Two other quinone compounds (idebenone and CoQ10) that have rescued mitochondrial dysfunction in previous studies of MELAS cybrid cells had a minimal effect in the current study. Taken together, these results demonstrated that β-lap may provide a novel therapeutic modality for the treatment of MELAS.
Collapse
Affiliation(s)
- Moon Hee Jeong
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jin Hwan Kim
- R&D Center, KT&G Life Sciences Corp., Suwon, Republic of Korea
| | - Kang-Sik Seo
- R&D Center, KT&G Life Sciences Corp., Suwon, Republic of Korea
| | - Tae Hwan Kwak
- R&D Center, KT&G Life Sciences Corp., Suwon, Republic of Korea
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| |
Collapse
|
16
|
Siciliano G, Pasquali L, Mancuso M, Murri L. Molecular diagnostics and mitochondrial dysfunction: a future perspective. Expert Rev Mol Diagn 2014; 8:531-49. [DOI: 10.1586/14737159.8.4.531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Hoekstra LA, Siddiq MA, Montooth KL. Pleiotropic effects of a mitochondrial-nuclear incompatibility depend upon the accelerating effect of temperature in Drosophila. Genetics 2013; 195:1129-39. [PMID: 24026098 PMCID: PMC3813842 DOI: 10.1534/genetics.113.154914] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022] Open
Abstract
Interactions between mitochondrial and nuclear gene products that underlie eukaryotic energy metabolism can cause the fitness effects of mutations in one genome to be conditional on variation in the other genome. In ectotherms, the effects of these interactions are likely to depend upon the thermal environment, because increasing temperature accelerates molecular rates. We find that temperature strongly modifies the pleiotropic phenotypic effects of an incompatible interaction between a Drosophila melanogaster polymorphism in the nuclear-encoded, mitochondrial tyrosyl-transfer (t)RNA synthetase and a D. simulans polymorphism in the mitochondrially encoded tRNA(Tyr). The incompatible mitochondrial-nuclear genotype extends development time, decreases larval survivorship, and reduces pupation height, indicative of decreased energetic performance. These deleterious effects are ameliorated when larvae develop at 16° and exacerbated at warmer temperatures, leading to complete sterility in both sexes at 28°. The incompatible genotype has a normal metabolic rate at 16° but a significantly elevated rate at 25°, consistent with the hypothesis that inefficient energy metabolism extends development in this genotype at warmer temperatures. Furthermore, the incompatibility decreases metabolic plasticity of larvae developed at 16°, indicating that cooler development temperatures do not completely mitigate the deleterious effects of this genetic interaction. Our results suggest that the epistatic fitness effects of metabolic mutations may generally be conditional on the thermal environment. The expression of epistatic interactions in some environments, but not others, weakens the efficacy of selection in removing deleterious epistatic variants from populations and may promote the accumulation of incompatibilities whose fitness effects will depend upon the environment in which hybrids occur.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- DNA, Mitochondrial/genetics
- Drosophila/genetics
- Drosophila/growth & development
- Drosophila/physiology
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Drosophila melanogaster/physiology
- Epistasis, Genetic
- Evolution, Molecular
- Female
- Fertility/genetics
- Fertility/physiology
- Genes, Insect
- Genetic Fitness
- Hot Temperature
- Larva/genetics
- Larva/growth & development
- Larva/metabolism
- Male
- Mitochondria/genetics
- Mitochondria/metabolism
- Mutation
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/genetics
- RNA, Transfer, Tyr/metabolism
- Selection, Genetic
- Species Specificity
- Tyrosine-tRNA Ligase/genetics
- Tyrosine-tRNA Ligase/metabolism
Collapse
Affiliation(s)
- Luke A. Hoekstra
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | | | | |
Collapse
|
18
|
Moreno-Loshuertos R, Pérez-Martos A, Fernández-Silva P, Enríquez JA. Length variation in the mouse mitochondrial tRNA(Arg) DHU loop size promotes oxidative phosphorylation functional differences. FEBS J 2013; 280:4983-98. [PMID: 23910637 DOI: 10.1111/febs.12466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/07/2013] [Accepted: 07/22/2013] [Indexed: 01/24/2023]
Abstract
The efficiency of the cellular oxidative phosphorylation system was recently shown to be modulated by common mitochondrial tRNA(A) (rg) haplotypes. The molecular mechanism by which some mt-Tr haplotypes induce these functional differences remains undetermined. Common polymorphisms in mouse mt-Tr genes affect the size of the dihydrouridine loop in the mature tRNA, producing loops of between five and seven nucleotides, the largest being a rare variant among mammals. Here, we analyzed a new mt-Tr variant identified in C3H mice, and found that it is mitochondrial tRNA loop size, but not the specific sequence, that is responsible for the observed differences in cellular respiration. We further found that the sensitivity of mitochondrial protein synthesis to specific inhibitors is dependent on the mt-Tr gene haplotype, and confirmed that the differences in oxidative phosphorylation performance are masked by a reactive oxygen species-induced compensatory increase in mitochondrial biogenesis.
Collapse
|
19
|
An Incompatibility between a mitochondrial tRNA and its nuclear-encoded tRNA synthetase compromises development and fitness in Drosophila. PLoS Genet 2013; 9:e1003238. [PMID: 23382693 PMCID: PMC3561102 DOI: 10.1371/journal.pgen.1003238] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial transcription, translation, and respiration require interactions between genes encoded in two distinct genomes, generating the potential for mutations in nuclear and mitochondrial genomes to interact epistatically and cause incompatibilities that decrease fitness. Mitochondrial-nuclear epistasis for fitness has been documented within and between populations and species of diverse taxa, but rarely has the genetic or mechanistic basis of these mitochondrial–nuclear interactions been elucidated, limiting our understanding of which genes harbor variants causing mitochondrial–nuclear disruption and of the pathways and processes that are impacted by mitochondrial–nuclear coevolution. Here we identify an amino acid polymorphism in the Drosophila melanogaster nuclear-encoded mitochondrial tyrosyl–tRNA synthetase that interacts epistatically with a polymorphism in the D. simulans mitochondrial-encoded tRNATyr to significantly delay development, compromise bristle formation, and decrease fecundity. The incompatible genotype specifically decreases the activities of oxidative phosphorylation complexes I, III, and IV that contain mitochondrial-encoded subunits. Combined with the identity of the interacting alleles, this pattern indicates that mitochondrial protein translation is affected by this interaction. Our findings suggest that interactions between mitochondrial tRNAs and their nuclear-encoded tRNA synthetases may be targets of compensatory molecular evolution. Human mitochondrial diseases are often genetically complex and variable in penetrance, and the mitochondrial–nuclear interaction we document provides a plausible mechanism to explain this complexity. The ancient symbiosis between two prokaryotes that gave rise to the eukaryotic cell has required genomic cooperation for at least a billion years. Eukaryotic cells respire through the coordinated expression of their nuclear and mitochondrial genomes, both of which encode the proteins and RNAs required for mitochondrial transcription, translation, and aerobic respiration. Genetic interactions between these genomes are hypothesized to influence the effects of mitochondrial mutations on disease and drive mitochondrial–nuclear coevolution. Here we characterize the molecular cause and the cellular and organismal consequences of a mitochondrial–nuclear interaction in Drosophila between naturally occurring mutations in a mitochondrial tRNA and a nuclear-encoded tRNA synthetase. These mutations have little effect on their own; but, when combined, they severely compromise development and reproduction. tRNA synthetases attach the appropriate amino acid onto their cognate tRNA, and this reaction is required for efficient and accurate protein synthesis. We show that disruption of this interaction compromises mitochondrial function, providing hypotheses for the variable penetrance of diseases associated with mitochondrial tRNAs and for which pathways and processes are likely to be affected by mitochondrial–nuclear interactions.
Collapse
|
20
|
Xie X, Le L, Fan Y, Lv L, Zhang J. Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition. Autophagy 2012; 8:1071-84. [PMID: 22576012 DOI: 10.4161/auto.20250] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitoribosome in mammalian cells is responsible for synthesis of 13 mtDNA-encoded proteins, which are integral parts of four mitochondrial respiratory chain complexes (I, III, IV and V). ERAL1 is a nuclear-encoded GTPase important for the formation of the 28S small mitoribosomal subunit. Here, we demonstrate that knockdown of ERAL1 by RNA interference inhibits mitochondrial protein synthesis and promotes reactive oxygen species (ROS) generation, leading to autophagic vacuolization in HeLa cells. Cells that lack ERAL1 expression showed a significant conversion of LC3-I to LC3-II and an enhanced accumulation of autophagic vacuoles carrying the LC3 marker, all of which were blocked by the autophagy inhibitor 3-MA as well as by the ROS scavenger NAC. Inhibition of mitochondrial protein synthesis either by ERAL1 siRNA or chloramphenicol (CAP), a specific inhibitor of mitoribosomes, induced autophagy in HTC-116 TP53 (+/+) cells, but not in HTC-116 TP53 (-/-) cells, indicating that tumor protein 53 (TP53) is essential for the autophagy induction. The ROS elevation resulting from mitochondrial protein synthesis inhibition induced TP53 expression at transcriptional levels by enhancing TP53 promoter activity, and increased TP53 protein stability by suppressing TP53 ubiquitination through MAPK14/p38 MAPK-mediated TP53 phosphorylation. Upregulation of TP53 and its downstream target gene DRAM1, but not CDKN1A/p21, was required for the autophagy induction in ERAL1 siRNA or CAP-treated cells. Altogether, these data indicate that autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.
Collapse
Affiliation(s)
- Xiaolei Xie
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | | | | | | |
Collapse
|
21
|
Abstract
Mitochondria are essential organelles with multiple functions, the most well known being the production of adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS). The mitochondrial diseases are defined by impairment of OXPHOS. They are a diverse group of diseases that can present in virtually any tissue in either adults or children. Here we review the main molecular mechanisms of mitochondrial diseases, as presently known. A number of disease-causing genetic defects, either in the nuclear genome or in the mitochondria's own genome, mitochondrial DNA (mtDNA), have been identified. The most classical genetic defect causing mitochondrial disease is a mutation in a gene encoding a structural OXPHOS subunit. However, mitochondrial diseases can also arise through impaired mtDNA maintenance, defects in mitochondrial translation factors, and various more indirect mechanisms. The putative consequences of mitochondrial dysfunction on a cellular level are discussed.
Collapse
Affiliation(s)
- Emil Ylikallio
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Finland.
| | | |
Collapse
|
22
|
Voets AM, van den Bosch BJC, Stassen AP, Hendrickx AT, Hellebrekers DM, Van Laer L, Van Eyken E, Van Camp G, Pyle A, Baudouin SV, Chinnery PF, Smeets HJM. Large scale mtDNA sequencing reveals sequence and functional conservation as major determinants of homoplasmic mtDNA variant distribution. Mitochondrion 2011; 11:964-72. [PMID: 21946566 DOI: 10.1016/j.mito.2011.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 04/19/2011] [Accepted: 09/09/2011] [Indexed: 02/07/2023]
Abstract
The mitochondrial DNA (mtDNA) is highly variable, containing large numbers of pathogenic mutations and neutral polymorphisms. The spectrum of homoplasmic mtDNA variation was characterized in 730 subjects and compared with known pathogenic sites. The frequency and distribution of variants in protein coding genes were inversely correlated with conservation at the amino acid level. Analysis of tRNA secondary structures indicated a preference of variants for the loops and some acceptor stem positions. This comprehensive overview of mtDNA variants distinguishes between regions and positions which are likely not critical, mainly conserved regions with pathogenic mutations and essential regions containing no mutations at all.
Collapse
Affiliation(s)
- A M Voets
- Department of Genetics and Cell Biology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sunami Y, Sugaya K, Chihara N, Goto YI, Matsubara S. Variable phenotypes in a family with mitochondrial encephalomyopathy harboring a 3291T > C mutation in mitochondrial DNA. Neurol Sci 2011; 32:861-4. [PMID: 21863273 PMCID: PMC3171650 DOI: 10.1007/s10072-011-0719-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/16/2011] [Indexed: 11/28/2022]
Abstract
We present a Japanese family suffering from mitochondrial encephalomyopathy associated with a T-to-C transition at mitochondrial DNA (mtDNA) nucleotide position 3291. Clinical manifestations of the patients include cerebellar ataxia with myopathy, recurrent headache, and myoclonus and epilepsy. The phenotypic variation among the affected members of a single family and the mutational analysis showing maternal inheritance in a heteroplasmic fashion are consistent with well-recognized phenomena associated with many pathogenic point mutations of mtDNA tRNA genes. The 3291 mutation is a rare mtDNA mutation whose clinical presentation had only been reported in three sporadic cases. This is the first report of a family segregating the 3291 mutation with multigenerational matrilinear recurrence of mitochondrial encephalopathy. Our findings provide conclusive evidence for the pathogenicity of the 3291T > C mutation in mtDNA and its characteristic clinical heterogeneity.
Collapse
Affiliation(s)
- Yoko Sunami
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042, Japan.
| | | | | | | | | |
Collapse
|
24
|
Moreno-Loshuertos R, Ferrín G, Acín-Pérez R, Gallardo ME, Viscomi C, Pérez-Martos A, Zeviani M, Fernández-Silva P, Enríquez JA. Evolution meets disease: penetrance and functional epistasis of mitochondrial tRNA mutations. PLoS Genet 2011; 7:e1001379. [PMID: 21533077 PMCID: PMC3080857 DOI: 10.1371/journal.pgen.1001379] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 03/18/2011] [Indexed: 11/18/2022] Open
Abstract
About half of the mitochondrial DNA (mtDNA) mutations causing diseases in humans occur in tRNA genes. Particularly intriguing are those pathogenic tRNA mutations than can reach homoplasmy and yet show very different penetrance among patients. These mutations are scarce and, in addition to their obvious interest for understanding human pathology, they can be excellent experimental examples to model evolution and fixation of mitochondrial tRNA mutations. To date, the only source of this type of mutations is human patients. We report here the generation and characterization of the first mitochondrial tRNA pathological mutation in mouse cells, an m.3739G>A transition in the mitochondrial mt-Ti gene. This mutation recapitulates the molecular hallmarks of a disease-causing mutation described in humans, an m.4290T>C transition affecting also the human mt-Ti gene. We could determine that the pathogenic molecular mechanism, induced by both the mouse and the human mutations, is a high frequency of abnormal folding of the tRNA(Ile) that cannot be charged with isoleucine. We demonstrate that the cells harboring the mouse or human mutant tRNA have exacerbated mitochondrial biogenesis triggered by an increase in mitochondrial ROS production as a compensatory response. We propose that both the nature of the pathogenic mechanism combined with the existence of a compensatory mechanism can explain the penetrance pattern of this mutation. This particular behavior can allow a scenario for the evolution of mitochondrial tRNAs in which the fixation of two alleles that are individually deleterious can proceed in two steps and not require the simultaneous mutation of both.
Collapse
Affiliation(s)
- Raquel Moreno-Loshuertos
- Departamento de Bioquímica y
Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza,
Spain
| | - Gustavo Ferrín
- Departamento de Bioquímica y
Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza,
Spain
| | - Rebeca Acín-Pérez
- Departamento de Bioquímica y
Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza,
Spain
| | - M. Esther Gallardo
- Departamento de Bioquímica, Instituto de
Investigaciones Biomédicas “Alberto Sols,” Facultad de Medicina,
CSIC–Universidad Autónoma de Madrid, CIBERER, ISCIII, Madrid,
Spain
| | - Carlo Viscomi
- Division of Molecular Neurogenetics, Istituto
Neurologico “Carlo Besta,” Milano, Italy
| | - Acisclo Pérez-Martos
- Departamento de Bioquímica y
Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza,
Spain
| | - Massimo Zeviani
- Division of Molecular Neurogenetics, Istituto
Neurologico “Carlo Besta,” Milano, Italy
| | - Patricio Fernández-Silva
- Departamento de Bioquímica y
Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza,
Spain
| | - José Antonio Enríquez
- Departamento de Bioquímica y
Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza,
Spain
- Regenerative Cardiology Department, Centro
Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
25
|
Reinhold R, Bareth B, Balleininger M, Wissel M, Rehling P, Mick DU. Mimicking a SURF1 allele reveals uncoupling of cytochrome c oxidase assembly from translational regulation in yeast. Hum Mol Genet 2011; 20:2379-93. [PMID: 21470975 DOI: 10.1093/hmg/ddr145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Defects in mitochondrial energy metabolism lead to severe human disorders, mainly affecting tissues especially dependent on oxidative phosphorylation, such as muscle and brain. Leigh Syndrome describes a severe encephalomyopathy in infancy, frequently caused by mutations in SURF1. SURF1, termed Shy1 in Saccharomyces cerevisiae, is a conserved assembly factor for the terminal enzyme of the respiratory chain, cytochrome c oxidase. Although the molecular function of SURF1/Shy1 is still enigmatic, loss of function leads to cytochrome c oxidase deficiency and reduced expression of the central subunit Cox1 in yeast. Here, we provide insights into the molecular mechanisms leading to disease through missense mutations in codons of the most conserved amino acids in SURF1. Mutations affecting G(124) do not compromise import of the SURF1 precursor protein but lead to fast turnover of the mature protein within the mitochondria. Interestingly, an Y(274)D exchange neither affects stability nor localization of the protein. Instead, SURF1(Y274D) accumulates in a 200 kDa cytochrome c oxidase assembly intermediate. Using yeast as a model, we demonstrate that the corresponding Shy1(Y344D) is able to overcome the stage where cytochrome c oxidase assembly links to the feedback regulation of mitochondrial Cox1 expression. However, Shy1(Y344D) impairs the assembly at later steps, most apparent at low temperature and exhibits a dominant-negative phenotype upon overexpression. Thus, exchanging the conserved tyrosine (Y(344)) with aspartate in yeast uncouples translational regulation of Cox1 from cytochrome c oxidase assembly and provides evidence for the dual functionality of Shy1.
Collapse
Affiliation(s)
- Robert Reinhold
- Abteilung für Biochemie II, Universität Göttingen, D-37073 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Gianazza E, Eberini I, Sensi C, Barile M, Vergani L, Vanoni MA. Energy matters: mitochondrial proteomics for biomedicine. Proteomics 2011; 11:657-74. [PMID: 21241019 DOI: 10.1002/pmic.201000412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/22/2010] [Accepted: 11/03/2010] [Indexed: 12/16/2022]
Abstract
This review compiles results of medical relevance from mitochondrial proteomics, grouped either according to the type of disease - genetic or degenerative - or to the involved mechanism - oxidative stress or apoptosis. The findings are commented in the light of our current understanding of uniformity/variability in cell responses to different stimuli. Specificities in the conceptual and technical approaches to human mitochondrial proteomics are also outlined.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Ronchi D, Virgilio R, Bordoni A, Fassone E, Sciacco M, Ciscato P, Moggio M, Govoni A, Corti S, Bresolin N, Comi GP. The m.12316G>A mutation in the mitochondrial tRNA Leu(CUN) gene is associated with mitochondrial myopathy and respiratory impairment. J Neurol Sci 2010; 292:107-10. [PMID: 20163808 DOI: 10.1016/j.jns.2010.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/18/2010] [Accepted: 01/27/2010] [Indexed: 11/24/2022]
Abstract
Mitochondrial disorders are often associated with mutations in mitochondrial tRNA. Independent observation of the same molecular defect in unrelated subjects is a generally required proof of pathogenicity. A sporadic case of chronic external ophthalmoplegia (cPEO) with ragged red fibres (RRFs) has been previously related to an m.12316G>A substitution in tRNA(Leu(CUN)). Sequencing muscle-derived mtDNA, we found the m.12316G>A substitution in an adult woman with mitochondrial myopathy and respiratory impairment. Her muscle biopsy presented several cytochrome c oxidase-negative (COX-) fibres, and RRFs as signs of mitochondrial proliferation. Restriction-fragment length polymorphism (RFLP) analysis of the mutation in isolated muscle fibres showed a threshold of at least 60% of mutated mtDNA to determine a COX deficiency phenotype. This second report of the m.12316G>A mutation in a sporadic patient consolidates its pathogenic nature and provides further elements for genetic counselling.
Collapse
Affiliation(s)
- Dario Ronchi
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Foundation Ospedale Maggiore Policlinico, Mangiagalli and Regina Elena, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol 2010; 2010:737385. [PMID: 20396601 PMCID: PMC2854570 DOI: 10.1155/2010/737385] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 01/29/2010] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial disorders are a heterogeneous group of often multisystemic and early fatal diseases, which are amongst the most common inherited human diseases. These disorders are caused by defects in the oxidative phosphorylation (OXPHOS) system, which comprises five multisubunit enzyme complexes encoded by both the nuclear and the mitochondrial genomes. Due to the multitude of proteins and intricacy of the processes required for a properly functioning OXPHOS system, identifying the genetic defect that underlies an OXPHOS deficiency is not an easy task, especially in the case of combined OXPHOS defects. In the present communication we give an extensive overview of the proteins and processes (in)directly involved in mitochondrial translation and the biogenesis of the OXPHOS system and their roles in combined OXPHOS deficiencies. This knowledge is important for further research into the genetic causes, with the ultimate goal to effectively prevent and cure these complex and often devastating disorders.
Collapse
|
29
|
Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol Cell Biol 2010; 30:2147-54. [PMID: 20194621 DOI: 10.1128/mcb.01614-09] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mutations in mitochondrial tRNA genes are associated with a wide spectrum of human diseases. In particular, the tRNA(Leu(UUR)) A3243G mutation causes mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms (MELAS) and 2% of cases of type 2 diabetes. The primary defect in this mutation was an inefficient aminoacylation of the tRNA(Leu(UUR)). In the present study, we have investigated the molecular mechanism of the A3243G mutation and whether the overexpression of human mitochondrial leucyl-tRNA synthetase (LARS2) in the cytoplasmic hybrid (cybrid) cells carrying the A3243G mutation corrects the mitochondrial dysfunctions. Human LARS2 localizes exclusively to mitochondria, and LARS2 is expressed ubiquitously but most abundantly in tissues with high metabolic rates. We showed that the alteration of aminoacylation tRNA(Leu(UUR)) caused by the A3243G mutation led to mitochondrial translational defects and thereby reduced the aminoacylated efficiencies of tRNA(Leu(UUR)) as well as tRNA(Ala) and tRNA(Met). We demonstrated that the transfer of human mitochondrial leucyl-tRNA synthetase into the cybrid cells carrying the A3243G mutation improved the efficiency of aminoacylation and stability of mitochondrial tRNAs and then increased the rates of mitochondrial translation and respiration, consequently correcting the mitochondrial dysfunction. These findings provide new insights into the molecular mechanism of maternally inherited diseases and a step toward therapeutic interventions for these disorders.
Collapse
|
30
|
Greaves LC, Barron MJ, Plusa S, Kirkwood TB, Mathers JC, Taylor RW, Turnbull DM. Defects in multiple complexes of the respiratory chain are present in ageing human colonic crypts. Exp Gerontol 2010; 45:573-9. [PMID: 20096767 PMCID: PMC2887930 DOI: 10.1016/j.exger.2010.01.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 01/12/2010] [Accepted: 01/14/2010] [Indexed: 01/21/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations accumulate in a number of ageing tissues and are proposed to play a role in the ageing process. We have previously shown that colonic crypt stem cells accumulate somatic mtDNA point mutations during ageing. These mtDNA mutations result in the loss of the activity of complex IV (cytochrome c oxidase (COX)) of the respiratory chain in the stem cells and their progeny, producing colonic crypts which are entirely COX deficient. However it is not known whether the other complexes of the respiratory chain are similarly affected during ageing. Here we have used antibodies to individual subunits of complexes I–IV to investigate their expression in the colonic epithelium from human subjects aged 18–84. We show that in ∼50% of crypts with any form of respiratory chain deficiency, decreased expression of subunits of multiple complexes is observed. Furthermore we have sequenced the entire mitochondrial genome of a number of cells with multiple complex defects and have found a wide variety of point mutations in these cells affecting a number of different protein encoding and RNA encoding genes. Finally we discuss the possible mechanisms by which multiple respiratory chain complex defects may occur in these cells.
Collapse
Affiliation(s)
- Laura C Greaves
- Mitochondrial Research Group, Institute for Ageing and Health, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Watanabe K. Unique features of animal mitochondrial translation systems. The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:11-39. [PMID: 20075606 PMCID: PMC3417567 DOI: 10.2183/pjab.86.11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/17/2009] [Indexed: 05/17/2023]
Abstract
In animal mitochondria, several codons are non-universal and their meanings differ depending on the species. In addition, the tRNA structures that decipher codons are sometimes unusually truncated. These features seem to be related to the shortening of mitochondrial (mt) genomes, which occurred during the evolution of mitochondria. These organelles probably originated from the endosymbiosis of an aerobic eubacterium into an ancestral eukaryote. It is plausible that these events brought about the various characteristic features of animal mt translation systems, such as genetic code variations, unusually truncated tRNA and rRNA structures, unilateral tRNA recognition mechanisms by aminoacyl-tRNA synthetases, elongation factors and ribosomes, and compensation for RNA deficits by enlarged proteins. In this article, we discuss molecular mechanisms for these phenomena. Finally, we describe human mt diseases that are caused by modification defects in mt tRNAs.
Collapse
Affiliation(s)
- Kimitsuna Watanabe
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, Japan.
| |
Collapse
|
32
|
Al-Dosary M, Whittaker RG, Haughton J, McFarland R, Goodship J, Turnbull DM, Taylor RW. Neuromuscular disease presentation with three genetic defects involving two genomes. Neuromuscul Disord 2009; 19:841-4. [DOI: 10.1016/j.nmd.2009.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/16/2009] [Accepted: 10/02/2009] [Indexed: 11/25/2022]
|
33
|
Postal M, Palodeto B, Sartorato EL, de Oliveira CA. C1494T mitochondrial DNA mutation, hearing loss, and aminoglycosides antibiotics. Braz J Otorhinolaryngol 2009; 75:884-7. [PMID: 20209292 PMCID: PMC9446014 DOI: 10.1016/s1808-8694(15)30554-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 02/02/2009] [Indexed: 10/31/2022] Open
Abstract
UNLABELLED In view of the complex mechanism of hearing, it is not difficult to understand that hearing impairment may result from a wide variety of genetically determined anomalies and various environmental factors. Specific mutations in the mitochondrial DNA 12S rRNA gene are responsible for maternally inherited non-syndromic hearing loss, and for increased susceptibility to the ototoxicity of aminoglycoside antibiotics. AIM To asses the presence of C1494T mutation among individuals with normal hearing and hearing impairment who used aminoglycosides and those who had not had contact with the antibiotic. MATERIAL AND METHOD The study was composed of 20 patients with nonsyndromic sensorineural hearing loss without prior use of aminoglycosides and 40 premature and high-risk newborns who used ototoxic drugs, of whom 20 had good hearing and 20 had hearing loss. The samples were analyzed by PCR-RFLP with the restriction enzyme Hph I. STUDY DESIGN Experimental. RESULTS The mitochondrial 12S rRNA C1494T mutation was not detected in any of the samples analyzed. CONCLUSION Our data suggest that the hearing loss of the individuals we analyzed was not related to the ototoxicity of mutation C1494T, showing that this mutation is not frequent in our population.
Collapse
Affiliation(s)
- Mariana Postal
- 4th year student of biomedicine, Hermínio Ometto University - UNIARARAS
| | - Bruna Palodeto
- 24th year student of biomedicine, Hermínio Ometto University - UNIARARAS
| | - Edi Lúcia Sartorato
- Associate Professor, Researcher - Center of Molecular Biology and Genetic Engineering - CBMEG-UNICAMP
| | - Camila Andréa de Oliveira
- PhD. Assistant Professor - Health Sciences Nucleus - NUCISA - Hermínio Ometto University - UNIARARAS
| |
Collapse
|
34
|
Messmer M, Gaudry A, Sissler M, Florentz C. Pathology-related mutation A7526G (A9G) helps in the understanding of the 3D structural core of human mitochondrial tRNA(Asp). RNA (NEW YORK, N.Y.) 2009; 15:1462-1468. [PMID: 19535463 PMCID: PMC2714750 DOI: 10.1261/rna.1626109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/08/2009] [Indexed: 05/27/2023]
Abstract
More than 130 mutations in human mitochondrial tRNA (mt-tRNA) genes have been correlated with a variety of neurodegenerative and neuromuscular disorders. Their molecular impacts are of mosaic type, affecting various stages of tRNA biogenesis, structure, and/or functions in mt-translation. Knowledge of mammalian mt-tRNA structures per se remains scarce however. Primary and secondary structures deviate from classical tRNAs, while rules for three-dimensional (3D) folding are almost unknown. Here, we take advantage of a myopathy-related mutation A7526G (A9G) in mt-tRNA(Asp) to investigate both the primary molecular impact underlying the pathology and the role of nucleotide 9 in the network of 3D tertiary interactions. Experimental evidence is presented for existence of a 9-12-23 triple in human mt-tRNA(Asp) with a strongly conserved interaction scheme in mammalian mt-tRNAs. Mutation A7526G disrupts the triple interaction and in turn reduces aspartylation efficiency.
Collapse
|
35
|
Büeler H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Exp Neurol 2009; 218:235-46. [PMID: 19303005 DOI: 10.1016/j.expneurol.2009.03.006] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 02/26/2009] [Accepted: 03/03/2009] [Indexed: 12/21/2022]
|
36
|
Rossmanith W, Freilinger M, Roka J, Raffelsberger T, Moser-Their K, Prayer D, Bernert G, Bittner R. Isolated cytochrome c oxidase deficiency as a cause of MELAS. BMJ Case Rep 2009; 2009:bcr08.2008.0666. [PMID: 21686692 PMCID: PMC3027970 DOI: 10.1136/bcr.08.2008.0666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Deletion of a single nucleotide (7630delT) within MT-CO2, the gene of subunit II of cytochrome c oxidase (COX), was identified in a clinically typical MELAS case. The deletion-induced frameshift results in a stop codon close to the 5' end of the reading frame. The lack of subunit II (COII) precludes the assembly of COX and leads to the degradation of unassembled subunits, even those not directly affected by the mutation. Despite mitochondrial proliferation and transcriptional upregulation of nuclear and mtDNA-encoded COX genes (including MT-CO2), a severe COX deficiency was found with all investigations of the muscle biopsy (histochemistry, biochemistry, immunoblotting). The 7630delT mutation in MT-CO2 leads to a lack of COII with subsequent misassembly and degradation of respiratory complex IV despite transcriptional upregulation of its subunits. The genetic and pathobiochemical heterogeneity of MELAS appears to be greater than previously appreciated.
Collapse
Affiliation(s)
- Walter Rossmanith
- Medical University of Vienna, Währinger Straße 13, Vienna, 1090, Austria
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Park H, Davidson E, King MP. Overexpressed mitochondrial leucyl-tRNA synthetase suppresses the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. RNA (NEW YORK, N.Y.) 2008; 14:2407-2416. [PMID: 18796578 PMCID: PMC2578859 DOI: 10.1261/rna.1208808] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 07/29/2008] [Indexed: 05/26/2023]
Abstract
The A3243G mutation in the human mitochondrial tRNA(Leu(UUR)) gene causes a number of human diseases. This mutation reduces the level and fraction of aminoacylated tRNA(Leu(UUR)) and eliminates nucleotide modification at the wobble position of the anticodon. These deficiencies are associated with mitochondrial translation defects that result in decreased levels of mitochondrial translation products and respiratory chain enzyme activities. We have suppressed the respiratory chain defects in A3243G mutant cells by overexpressing human mitochondrial leucyl-tRNA synthetase. The rates of oxygen consumption in suppressed cells were directly proportional to the levels of leucyl-tRNA synthetase. Fifteenfold higher levels of leucyl-tRNA synthetase resulted in wild-type respiratory chain function. The suppressed cells had increased steady-state levels of tRNA(Leu(UUR)) and up to threefold higher steady-state levels of mitochondrial translation products, but did not have rates of protein synthesis above those in parental mutant cells. These data suggest that suppression of the A3243G mutation occurred by increasing protein stability. This suppression of a tRNA gene mutation by increasing the steady-state levels of its cognate aminoacyl-tRNA synthetase is a model for potential therapies for human pathogenic tRNA mutations.
Collapse
Affiliation(s)
- Hyejeong Park
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
38
|
Salinas T, Duchêne AM, Maréchal-Drouard L. Recent advances in tRNA mitochondrial import. Trends Biochem Sci 2008; 33:320-9. [DOI: 10.1016/j.tibs.2008.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/22/2008] [Accepted: 04/22/2008] [Indexed: 02/02/2023]
|
39
|
Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N. HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG. Genes Cells 2008; 13:429-38. [PMID: 18429816 DOI: 10.1111/j.1365-2443.2008.01181.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
While all essential mammalian mitochondrial factors involved in the initiation and elongation phases of translation have been cloned and well characterized, little is known about the factors involved in the termination process. In the present work, we report the functional analysis of human mitochondrial translation release factors (RF). Here, we show that HMRF1, which had been previously denoted as a human mitochondrial RF, was inactive in in vitro translation system, although it is a mitochondrial protein. Instead, we identified another human mitochondrial RF candidate, HMRF1L, and demonstrated that HMRF1L is indeed a mitochondrial protein that functions specifically as an RF for the decoding of mitochondrial UAA and UAG termination codons in vitro. The identification of the functional mitochondrial RF brings us much closer to a detailed understanding of the translational termination process in mammalian mitochondria as well as to the unraveling of the molecular mechanism of diseases caused by the dys-regulation of translational termination in human mitochondria.
Collapse
Affiliation(s)
- Yusuke Nozaki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-401, 5-1-5, Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | | | | | | | | |
Collapse
|
40
|
Haque ME, Grasso D, Miller C, Spremulli LL, Saada A. The effect of mutated mitochondrial ribosomal proteins S16 and S22 on the assembly of the small and large ribosomal subunits in human mitochondria. Mitochondrion 2008; 8:254-61. [PMID: 18539099 PMCID: PMC2517634 DOI: 10.1016/j.mito.2008.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/17/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
Mutations in mitochondrial small subunit ribosomal proteins MRPS16 or MRPS22 cause severe, fatal respiratory chain dysfunction due to impaired translation of mitochondrial mRNAs. The loss of either MRPS16 or MRPS22 was accompanied by the loss of most of another small subunit protein MRPS11. However, MRPS2 was reduced only about 2-fold in patient fibroblasts. This observation suggests that the small ribosomal subunit is only partially able to assemble in these patients. Two large subunit ribosomal proteins, MRPL13 and MRPL15, were present in substantial amounts suggesting that the large ribosomal subunit is still present despite a non-functional small subunit.
Collapse
Affiliation(s)
- Md. Emdadul Haque
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC-27599-3290
| | - Domenick Grasso
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC-27599-3290
| | - Chaya Miller
- Metabolic Disease Unit, Hadassah Medical Center, P.O.B. 12000, 91120 Jerusalem, Israel
| | - Linda L Spremulli
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC-27599-3290
| | - Ann Saada
- Metabolic Disease Unit, Hadassah Medical Center, P.O.B. 12000, 91120 Jerusalem, Israel
| |
Collapse
|
41
|
Gaur R, Grasso D, Datta PP, Krishna PDV, Das G, Spencer A, Agrawal RK, Spremulli L, Varshney U. A single mammalian mitochondrial translation initiation factor functionally replaces two bacterial factors. Mol Cell 2008; 29:180-90. [PMID: 18243113 DOI: 10.1016/j.molcel.2007.11.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/30/2007] [Accepted: 11/05/2007] [Indexed: 11/19/2022]
Abstract
The mechanism of translation in eubacteria and organelles is thought to be similar. In eubacteria, the three initiation factors IF1, IF2, and IF3 are vital. Although the homologs of IF2 and IF3 are found in mammalian mitochondria, an IF1 homolog has never been detected. Here, we show that bovine mitochondrial IF2 (IF2(mt)) complements E. coli containing a deletion of the IF2 gene (E. coli DeltainfB). We find that IF1 is no longer essential in an IF2(mt)-supported E. coli DeltainfB strain. Furthermore, biochemical and molecular modeling data show that a conserved insertion of 37 amino acids in the IF2(mt) substitutes for the function of IF1. Deletion of this insertion from IF2(mt) supports E. coli for the essential function of IF2. However, in this background, IF1 remains essential. These observations provide strong evidence that a single factor (IF2(mt)) in mammalian mitochondria performs the functions of two eubacterial factors, IF1 and IF2.
Collapse
Affiliation(s)
- Rahul Gaur
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chervin SM, Kittendorf JD, Garcia GA. Probing the intermediacy of covalent RNA enzyme complexes in RNA modification enzymes. Methods Enzymol 2007; 425:121-37. [PMID: 17673081 PMCID: PMC2800168 DOI: 10.1016/s0076-6879(07)25005-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Within the large and diverse group of RNA-modifying enzymes, a number of enzymes seem to form stable covalent linkages to their respective RNA substrates. A complete understanding of the chemical and kinetic mechanisms of these enzymes, some of which have identified pathological roles, is lacking. As part of our ongoing work studying the posttranscriptional modification of tRNA with queuine, we wish to understand fully the chemical and kinetic mechanisms involved in this key transglycosylation reaction. In our previous investigations, we have used a gel mobility-shift assay to characterize an apparent covalent enzyme-RNA intermediate believed to be operative in the catalytic pathway. However, the simple observation of a covalent complex is not sufficient to prove intermediacy. To be a true intermediate, the complex must be both chemically and kinetically competent. As a case study for the proof of intermediacy, we report the use of this gel-shift assay under mildly denaturing conditions to probe the kinetic competency of the covalent association between RNA and the tRNA modifying enzyme tRNA-guanine transglycosylase (TGT).
Collapse
Affiliation(s)
- Stephanie M Chervin
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
43
|
Pütz J, Dupuis B, Sissler M, Florentz C. Mamit-tRNA, a database of mammalian mitochondrial tRNA primary and secondary structures. RNA (NEW YORK, N.Y.) 2007; 13:1184-90. [PMID: 17585048 PMCID: PMC1924894 DOI: 10.1261/rna.588407] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mamit-tRNA (http://mamit-tRNA.u-strasbg.fr), a database for mammalian mitochondrial genomes, has been developed for deciphering structural features of mammalian mitochondrial tRNAs and as a helpful tool in the frame of human diseases linked to point mutations in mitochondrial tRNA genes. To accommodate the rapid growing availability of fully sequenced mammalian mitochondrial genomes, Mamit-tRNA has implemented a relational database, and all annotated tRNA genes have been curated and aligned manually. System administrative tools have been integrated to improve efficiency and to allow real-time update (from GenBank Database at NCBI) of available mammalian mitochondrial genomes. More than 3000 tRNA gene sequences from 150 organisms are classified into 22 families according to the amino acid specificity as defined by the anticodon triplets and organized according to phylogeny. Each sequence is displayed linearly with color codes indicating secondary structural domains and can be converted into a printable two-dimensional (2D) cloverleaf structure. Consensus and typical 2D structures can be extracted for any combination of primary sequences within a given tRNA specificity on the basis of phylogenetic relationships or on the basis of structural peculiarities. Mamit-tRNA further displays static individual 2D structures of human mitochondrial tRNA genes with location of polymorphisms and pathology-related point mutations. The site offers also a table allowing for an easy conversion of human mitochondrial genome nucleotide numbering into conventional tRNA numbering. The database is expected to facilitate exploration of structure/function relationships of mitochondrial tRNAs and to assist clinicians in the frame of pathology-related mutation assignments.
Collapse
Affiliation(s)
- Joern Pütz
- Architecture et Réactivité de l'ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, Strasbourg, France
| | | | | | | |
Collapse
|
44
|
Niu X, Trifunovic A, Larsson NG, Canlon B. Somatic mtDNA mutations cause progressive hearing loss in the mouse. Exp Cell Res 2007; 313:3924-34. [PMID: 17662273 DOI: 10.1016/j.yexcr.2007.05.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Mitochondrial dysfunction has been implicated in the commonly occurring age-associated hearing loss (presbyacusis). We have previously generated mtDNA mutator mice with increased levels of somatic mtDNA point mutations causing phenotypes consistent with premature ageing. We have now utilized these mice to investigate whether elevated levels of somatic mtDNA mutations affect the auditory system. The mtDNA mutator mice develop a progressive impairment of hearing (ABR thresholds). Quantitative assessment of hair cell loss in the cochlea did not show any significant difference between the mutator and wild-type mice. The mtDNA mutator mice showed progressive apoptotic cell loss in the spiral ganglion and increased pathology with increasing age in the stria vascularis. The neurons in the cochlear nucleus showed an accelerated progressive degeneration with increasing age in the mutator mice compared to the wild-type mice. Both physiological and histological characterization thus reveals a striking resemblance between the auditory system pathology of mtDNA mutator mice and humans with presbyacusis. Somatic mtDNA mutations accumulate during normal ageing and further studies in humans are now warranted to investigate whether presbyacusis can be linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xianzhi Niu
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
45
|
Alemi M, Prigione A, Wong A, Schoenfeld R, DiMauro S, Hirano M, Taroni F, Cortopassi G. Mitochondrial DNA deletions inhibit proteasomal activity and stimulate an autophagic transcript. Free Radic Biol Med 2007; 42:32-43. [PMID: 17157191 PMCID: PMC1927835 DOI: 10.1016/j.freeradbiomed.2006.09.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/29/2006] [Accepted: 09/14/2006] [Indexed: 01/01/2023]
Abstract
Deletions within the mitochondrial DNA (mtDNA) cause Kearns Sayre syndrome (KSS) and chronic progressive external opthalmoplegia (CPEO). The clinical signs of KSS include muscle weakness, heart block, pigmentary retinopathy, ataxia, deafness, short stature, and dementia. The identical deletions occur and rise exponentially as humans age, particularly in substantia nigra. Deletions at >30% concentration cause deficits in basic bioenergetic parameters, including membrane potential and ATP synthesis, but it is poorly understood how these alterations cause the pathologies observed in patients. To better understand the consequences of mtDNA deletions, we microarrayed six cell types containing mtDNA deletions from KSS and CPEO patients. There was a prominent inhibition of transcripts encoding ubiquitin-mediated proteasome activity, and a prominent induction of transcripts involved in the AMP kinase pathway, macroautophagy, and amino acid degradation. In mutant cells, we confirmed a decrease in proteasome biochemical activity, significantly lower concentration of several amino acids, and induction of an autophagic transcript. An interpretation consistent with the data is that mtDNA deletions increase protein damage, inhibit the ubiquitin-proteasome system, decrease amino acid salvage, and activate autophagy. This provides a novel pathophysiological mechanism for these diseases, and suggests potential therapeutic strategies.
Collapse
Affiliation(s)
- Mansour Alemi
- Department of Molecular Biosciences, 1311 Haring Hall, University of California, Davis, CA 95616, USA
| | - Alessandro Prigione
- Department of Molecular Biosciences, 1311 Haring Hall, University of California, Davis, CA 95616, USA
| | - Alice Wong
- Department of Molecular Biosciences, 1311 Haring Hall, University of California, Davis, CA 95616, USA
| | - Robert Schoenfeld
- Department of Molecular Biosciences, 1311 Haring Hall, University of California, Davis, CA 95616, USA
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, 630 West 168 Street, New York, NY 10032
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, 630 West 168 Street, New York, NY 10032
| | - Franco Taroni
- Division of Biochemistry and Genetics, Istituto Nazionale Neurologico Carlo Besta, Milan, Italy
| | - Gino Cortopassi
- Department of Molecular Biosciences, 1311 Haring Hall, University of California, Davis, CA 95616, USA
| |
Collapse
|
46
|
Datta S, Majumder M, Biswas NK, Sikdar N, Roy B. Increased risk of oral cancer in relation to common Indian mitochondrial polymorphisms and AutosomalGSTP1 locus. Cancer 2007; 110:1991-9. [PMID: 17886251 DOI: 10.1002/cncr.23016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Polymorphisms at mitochondrial (mt) loci could modulate the risk of diseases including cancers. Here the mtDNA polymorphisms at 12,308 nucleotide pairs (np), 11,467 np, 10,400 np, and 10,398 np were studied to examine the association with the risk of oral cancer and leukoplakia, alone and in combination with polymorphisms at the GST loci. METHODS Polymorphisms at mt loci were screened in 310 cancer, 224 leukoplakia, and 389 control individuals by polymerase chain reaction (PCR) restriction length polymorphism (RFLP) and most of the GST genotype data were taken from previously published reports. Data were analyzed to determine the risk of the diseases. RESULTS The major allele, A, at 12,308 np on tRNA(Leu) (CUN), increased the risk of cancer (odd ratio [OR] of 1.7; 95% confidence interval [95% CI], 1.1-2.6) but not that of leukoplakia. The same allele also appeared to increase the risk of cancer in smokers (OR of 4.0; 95% CI, 1.1-14.4), who are mostly males (OR of 1.8; 95% CI, 1.1-3-2), but not in smokeless tobacco users, who are mostly females. The major allele A at 11467 np demonstrated identical results as the major allele, A, at 12,308 np. The major alleles G at 10,398 np and T at 10,400 np (ie, M-haplogroup) increased the risk of cancer significantly in smokers (OR of 2.6; 95% CI, 1.2-5.7 and OR of 2.4; 95% CI, 1.1-5.1, respectively). The risk-risk genotype-allele combination at GSTP1 and mt12308 np loci increased the risk of cancer (OR of 2.6; 95% CI, 1.4-4.9) when compared with the nonrisk-nonrisk combination in leukoplakia patients. CONCLUSIONS Polymorphisms at the mt loci alone and in combination with the risk genotype at GSTP1 increased the risk of oral cancer. Thus, risk genotypes from 2 different organelles may work in combination to increase the risk of oral cancer.
Collapse
Affiliation(s)
- Sayantan Datta
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | | | | | | | | |
Collapse
|
47
|
Seligmann H, Krishnan NM, Rao BJ. Mitochondrial tRNA sequences as unusual replication origins: Pathogenic implications for Homo sapiens. J Theor Biol 2006; 243:375-85. [DOI: 10.1016/j.jtbi.2006.06.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 05/10/2006] [Accepted: 06/27/2006] [Indexed: 12/19/2022]
|
48
|
Smeitink JAM, Elpeleg O, Antonicka H, Diepstra H, Saada A, Smits P, Sasarman F, Vriend G, Jacob-Hirsch J, Shaag A, Rechavi G, Welling B, Horst J, Rodenburg RJ, van den Heuvel B, Shoubridge EA. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am J Hum Genet 2006; 79:869-77. [PMID: 17033963 PMCID: PMC1698578 DOI: 10.1086/508434] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 08/14/2006] [Indexed: 01/06/2023] Open
Abstract
The 13 polypeptides encoded in mitochondrial DNA (mtDNA) are synthesized in the mitochondrial matrix on a dedicated protein-translation apparatus that resembles that found in prokaryotes. Here, we have investigated the genetic basis for a mitochondrial protein-synthesis defect associated with a combined oxidative phosphorylation enzyme deficiency in two patients, one of whom presented with encephalomyopathy and the other with hypertrophic cardiomyopathy. Sequencing of candidate genes revealed the same homozygous mutation (C997T) in both patients in TSFM, a gene coding for the mitochondrial translation elongation factor EFTs. EFTs functions as a guanine nucleotide exchange factor for EFTu, another translation elongation factor that brings aminoacylated transfer RNAs to the ribosomal A site as a ternary complex with guanosine triphosphate. The mutation predicts an Arg333Trp substitution at an evolutionarily conserved site in a subdomain of EFTs that interacts with EFTu. Molecular modeling showed that the substitution disrupts local subdomain structure and the dimerization interface. The steady-state levels of EFTs and EFTu in patient fibroblasts were reduced by 75% and 60%, respectively, and the amounts of assembled complexes I, IV, and V were reduced by 35%-91% compared with the amounts in controls. These phenotypes and the translation defect were rescued by retroviral expression of either EFTs or EFTu. These data clearly establish mutant EFTs as the cause of disease in these patients. The fact that the same mutation is associated with distinct clinical phenotypes suggests the presence of genetic modifiers of the mitochondrial translation apparatus.
Collapse
Affiliation(s)
- Jan A M Smeitink
- Nijmegen Centre for Mitochondrial Disorders, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen FL, Liu Y, Song XY, Hu HY, Xu HB, Zhang XM, Shi JH, Hu J, Shen Y, Lu B, Wang XC, Hu RM. A novel mitochondrial DNA missense mutation at G3421A in a family with maternally inherited diabetes and deafness. Mutat Res 2006; 602:26-33. [PMID: 16949108 DOI: 10.1016/j.mrfmmm.2006.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 07/24/2006] [Accepted: 07/28/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Mutations in mtDNA are thought to be responsible for the pathogenesis of maternally inherited diabetes. Here, we report a family with maternally inherited diabetes and deafness whose members did not harbour the mtDNA A3243G mutation, the most frequent point mutation in mitochondrial diabetic patients. This study aimed to investigate a possible other mtDNA mutation and its prevalence in type 2 diabetic patients. METHODS Height, body weight, waistline, and hip circumference were measured and serum biochemical marks determined in all members of the family. In addition, a 75 g oral glucose tolerance test and electric listening test were conducted in these members. Genomic DNA was prepared from peripheral leukocytes. Direct sequencing of PCR products was used to detect the mtDNA mutation in this family. The prevalence of mtDNA G3421A nucleotide substitutions was investigated by restriction fragment length polymorphism analysis in 1350 unrelated type 2 diabetic patients recruited by random cluster sampling from the central city area of Shanghai, China. RESULTS (1) A new missense homoplasmic mutation of mtDNA G3421A was found in a maternally inherited diabetic family and existed neither in 1350 unrelated type 2 diabetic patients nor in 50 non-diabetic individuals. (2) The mode of mutation and diabetes transmission was typical maternal inheritance in this family. (3) All diabetic family members were found to have an onset at 35-42 years of age, accompanied by deafness of varying degrees. CONCLUSION mtDNA G3421A (Val39Ile) found in a family with maternally inherited diabetes and deafness is a novel missense mutation. Whether this is a diabetogenic mutation and its effect on mitochondrial function needs to be further studied.
Collapse
Affiliation(s)
- F L Chen
- Department of Endocrinology, Institute of Endocrinology and Diabetology, Huashan Hospital, Fu Dan University, 12 Middle Wurumqi Road, Shanghai 200040, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Xin L, Pu D, Deliang H, Huijun Y, Weiming L, Fei Y, Xin Z, Dongyang K, Juyang C, Weiyan Y, Dongyi H, Zhengce J, Minxin G. Mitochondrial DNA A1555G mutation screening using a testing kit method and its significance in preventing aminoglycoside-related hearing loss. J Otol 2006. [DOI: 10.1016/s1672-2930(06)50011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|