1
|
Štefl M, Takamiya M, Middel V, Tekpınar M, Nienhaus K, Beil T, Rastegar S, Strähle U, Nienhaus GU. Caveolae disassemble upon membrane lesioning and foster cell survival. iScience 2024; 27:108849. [PMID: 38303730 PMCID: PMC10831942 DOI: 10.1016/j.isci.2024.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/22/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Repair of lesions in the plasma membrane is key to sustaining cellular homeostasis. Cells maintain cytoplasmic as well as membrane-bound stores of repair proteins that can rapidly precipitate at the site of membrane lesions. However, little is known about the origins of lipids and proteins for resealing and repair of the plasma membrane. Here we study the dynamics of caveolar proteins after laser-induced lesioning of plasma membranes of mammalian C2C12 tissue culture cells and muscle cells of intact zebrafish embryos. Single-molecule diffusivity measurements indicate that caveolar clusters break up into smaller entities after wounding. Unlike Annexins and Dysferlin, caveolar proteins do not accumulate at the lesion patch. In caveolae-depleted cavin1a knockout zebrafish embryos, lesion patch formation is impaired, and injured cells show reduced survival. Our data suggest that caveolae disassembly releases surplus plasma membrane near the lesion to facilitate membrane repair after initial patch formation for emergency sealing.
Collapse
Affiliation(s)
- Martin Štefl
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Volker Middel
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Miyase Tekpınar
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Karin Nienhaus
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Tanja Beil
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana−Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Orgil BO, Purevjav E. Molecular Pathways and Animal Models of Cardiomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:991-1019. [PMID: 38884766 DOI: 10.1007/978-3-031-44087-8_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiomyopathies are a heterogeneous group of disorders of the heart muscle that ultimately result in congestive heart failure. Rapid progress in genetics, molecular and cellular biology with breakthrough innovative genetic-engineering techniques, such as next-generation sequencing and multiomics platforms, stem cell reprogramming, as well as novel groundbreaking gene-editing systems over the past 25 years has greatly improved the understanding of pathogenic signaling pathways in inherited cardiomyopathies. This chapter will focus on intracellular and intercellular molecular signaling pathways that are activated by a genetic insult in cardiomyocytes to maintain tissue and organ level regulation and resultant cardiac remodeling in certain forms of cardiomyopathies. In addition, animal models of different clinical forms of human cardiomyopathies with their summaries of triggered key molecules and signaling pathways will be described.
Collapse
Affiliation(s)
- Buyan-Ochir Orgil
- Department of Pediatrics, The Heart Institute, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, The Heart Institute, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
3
|
Duan Y, Li T, Zhang G, Wu P, Chen L, Ding H, Wang J, Sun W. Transcriptome sequencing to explore the effect of miR-214 on chicken primary myoblasts. Anim Biotechnol 2023; 34:1727-1736. [PMID: 35262452 DOI: 10.1080/10495398.2022.2044840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
MicroRNAs are involved in a series of biological processes, such as proliferation, differentiation and apoptosis of primary myoblasts. The research group found that miR-214 is highly expressed in chicken primary myoblasts (CPMs), so we used miR-214 as a starting point to explore the biological function of miR-214 in skeletal muscle growth and development. In this experiment, CPMs were cultured in vitro; miR-214 was overexpressed in CPMs; and cell samples were collected for subsequent transcriptome sequencing (RNA-seq). After miR-214 overexpression, we identified 97 differentially expressed genes (DEGs), of which 21 DEGs were up-regulated and 76 DEGs were down-regulated. After bioinformatics analysis, these DEGs were found to be significantly enriched in myofibrils, muscle system processes, myofibril assembly and other biological processes related to muscle development. The significantly enriched KEGGs include focal adhesion and type II diabetes mellitus. The protein network of DEGs was drawn by STRING and Cytoscape software, and 5 DEGs were randomly selected to verify the sequencing results by real-time fluorescence quantification. CAV3 is not only an important node protein in the protein network but also a member of the focal adhesion signaling pathway. It is speculated that miR-214 may regulate muscle development through the focal adhesion signaling pathway.
Collapse
Affiliation(s)
- Yanjun Duan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, PR China
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Lan Chen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, PR China
| | - Hao Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
4
|
Tesoriero C, Greco F, Cannone E, Ghirotto F, Facchinello N, Schiavone M, Vettori A. Modeling Human Muscular Dystrophies in Zebrafish: Mutant Lines, Transgenic Fluorescent Biosensors, and Phenotyping Assays. Int J Mol Sci 2023; 24:8314. [PMID: 37176020 PMCID: PMC10179009 DOI: 10.3390/ijms24098314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of myopathies characterized by progressive muscle weakness leading to death from heart or respiratory failure. MDs are caused by mutations in genes involved in both the development and organization of muscle fibers. Several animal models harboring mutations in MD-associated genes have been developed so far. Together with rodents, the zebrafish is one of the most popular animal models used to reproduce MDs because of the high level of sequence homology with the human genome and its genetic manipulability. This review describes the most important zebrafish mutant models of MD and the most advanced tools used to generate and characterize all these valuable transgenic lines. Zebrafish models of MDs have been generated by introducing mutations to muscle-specific genes with different genetic techniques, such as (i) N-ethyl-N-nitrosourea (ENU) treatment, (ii) the injection of specific morpholino, (iii) tol2-based transgenesis, (iv) TALEN, (v) and CRISPR/Cas9 technology. All these models are extensively used either to study muscle development and function or understand the pathogenetic mechanisms of MDs. Several tools have also been developed to characterize these zebrafish models by checking (i) motor behavior, (ii) muscle fiber structure, (iii) oxidative stress, and (iv) mitochondrial function and dynamics. Further, living biosensor models, based on the expression of fluorescent reporter proteins under the control of muscle-specific promoters or responsive elements, have been revealed to be powerful tools to follow molecular dynamics at the level of a single muscle fiber. Thus, zebrafish models of MDs can also be a powerful tool to search for new drugs or gene therapies able to block or slow down disease progression.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Francesca Greco
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Elena Cannone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Francesco Ghirotto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Nicola Facchinello
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| |
Collapse
|
5
|
Ulhaq ZS, Ogino Y, Tse WKF. FGF8 rescues motor deficits in zebrafish model of limb-girdle muscular dystrophy R18. Biochem Biophys Res Commun 2023; 652:76-83. [PMID: 36827861 DOI: 10.1016/j.bbrc.2023.02.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Variants in the gene encoding trafficking protein particle complex 11 (TRAPPC11) cause limb-girdle muscular dystrophy R18 (LGMD R18). Although recently several genes related to myopathies have been identified, correlations between genetic causes and signaling events that lead from mutation to the disease phenotype are still mostly unclear. Here, we utilized zebrafish to model LGMD R18 by specifically inactivating trappc11 using antisense-mediated knockdown strategies and evaluated the resulting muscular phenotypes. Targeted ablation of trappc11 showed compromised skeletal muscle function due to muscle disorganization and myofibrosis. Our findings pinpoint that fish lacking functional trappc11 suppressed FGF8, which resulted in the aberrant activation of Notch signaling and eventually stimulated epithelial-mesenchymal transition (EMT) and fibrotic changes in the skeletal muscle. In summary, our study provides the role of FGF8 in the pathogenesis and its therapeutic potential of LGMD R18.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 8190395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Republic of Indonesia, Cibinong, 16911, Indonesia.
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 8190395, Japan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 8190395, Japan.
| |
Collapse
|
6
|
Lo HP, Lim YW, Xiong Z, Martel N, Ferguson C, Ariotti N, Giacomotto J, Rae J, Floetenmeyer M, Moradi SV, Gao Y, Tillu VA, Xia D, Wang H, Rahnama S, Nixon SJ, Bastiani M, Day RD, Smith KA, Palpant NJ, Johnston WA, Alexandrov K, Collins BM, Hall TE, Parton RG. Cavin4 interacts with Bin1 to promote T-tubule formation and stability in developing skeletal muscle. J Cell Biol 2021; 220:e201905065. [PMID: 34633413 PMCID: PMC8513623 DOI: 10.1083/jcb.201905065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/02/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation. In zebrafish, which possess duplicated cavin4 paralogs, Cavin4b was shown to directly interact with the T-tubule-associated BAR domain protein Bin1. Loss of both Cavin4a and Cavin4b caused aberrant accumulation of interconnected caveolae within the T-tubules, a fragmented T-tubule network enriched in Caveolin-3, and an impaired Ca2+ response upon mechanical stimulation. We propose a role for Cavin4 in remodeling the T-tubule membrane early in development by recycling caveolar components from the T-tubule to the sarcolemma. This generates a stable T-tubule domain lacking caveolae that is essential for T-tubule function.
Collapse
Affiliation(s)
- Harriet P. Lo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ye-Wheen Lim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Zherui Xiong
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nick Martel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jean Giacomotto
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service and University of Queensland, Brisbane, Queensland, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthias Floetenmeyer
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Shayli Varasteh Moradi
- CSIRO–Queensland University of Technology Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ya Gao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Vikas A. Tillu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, Brisbane, Queensland, Australia
| | - Huang Wang
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Samira Rahnama
- CSIRO–Queensland University of Technology Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Susan J. Nixon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Michele Bastiani
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ryan D. Day
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kelly A. Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nathan J. Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Wayne A. Johnston
- CSIRO–Queensland University of Technology Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kirill Alexandrov
- CSIRO–Queensland University of Technology Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas E. Hall
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Caveolin 1 is required for axonal outgrowth of motor neurons and affects Xenopus neuromuscular development. Sci Rep 2020; 10:16446. [PMID: 33020520 PMCID: PMC7536398 DOI: 10.1038/s41598-020-73429-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Caveolins are essential structural proteins driving the formation of caveolae, specialized invaginations of the plasma membrane. Loss of Caveolin-1 (Cav1) function in mice causes distinct neurological phenotypes leading to impaired motor control, however, the underlying developmental mechanisms are largely unknown. In this study we find that loss-of-function of Xenopus Cav1 results in a striking swimming defect characterized by paralysis of the morphants. High-resolution imaging of muscle cells revealed aberrant sarcomeric structures with disorganized actin fibers. As cav1 is expressed in motor neurons, but not in muscle cells, the muscular abnormalities are likely a consequence of neuronal defects. Indeed, targeting cav1 Morpholino oligonucleotides to neural tissue, but not muscle tissue, disrupts axonal outgrowth of motor neurons and causes swimming defects. Furthermore, inhibition of voltage-gated sodium channels mimicked the Cav1 loss-of-function phenotype. In addition, analyzing axonal morphology we detect that Cav1 loss-of-function causes excessive filopodia and lamellipodia formation. Using rescue experiments, we show that the Cav1 Y14 phosphorylation site is essential and identify a role of RhoA, Rac1, and Cdc42 signaling in this process. Taken together, these results suggest a previously unrecognized function of Cav1 in muscle development by supporting axonal outgrowth of motor neurons.
Collapse
|
8
|
Shah DS, Nisr RB, Stretton C, Krasteva-Christ G, Hundal HS. Caveolin-3 deficiency associated with the dystrophy P104L mutation impairs skeletal muscle mitochondrial form and function. J Cachexia Sarcopenia Muscle 2020; 11:838-858. [PMID: 32090499 PMCID: PMC7296273 DOI: 10.1002/jcsm.12541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/22/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Caveolin-3 (Cav3) is the principal structural component of caveolae in skeletal muscle. Dominant pathogenic mutations in the Cav3 gene, such as the Limb Girdle Muscular Dystrophy-1C (LGMD1C) P104L mutation, result in substantial loss of Cav3 and myopathic changes characterized by muscle weakness and wasting. We hypothesize such myopathy may also be associated with disturbances in mitochondrial biology. Herein, we report studies assessing the effects of Cav3 deficiency on mitochondrial form and function in skeletal muscle cells. METHODS L6 myoblasts were stably transfected with Cav3P104L or expression of native Cav3 repressed by shRNA or CRISPR/Cas9 genome editing prior to performing fixed/live cell imaging of mitochondrial morphology, subcellular fractionation and immunoblotting, or analysis of real time mitochondrial respiration. Skeletal muscle from wild-type and Cav3-/- mice was processed for analysis of mitochondrial proteins by immunoblotting. RESULTS Caveolin-3 was detected in mitochondrial-enriched membranes isolated from mouse gastrocnemius muscle and L6 myoblasts. Expression of Cav3P104L in L6 myoblasts led to its targeting to the Golgi and loss of native Cav3 (>95%), including that associated with mitochondrial membranes. Cav3P104L reduced mitochondrial mass and induced fragmentation of the mitochondrial network that was associated with significant loss of proteins involved in mitochondrial biogenesis, respiration, morphology, and redox function [i.e. PGC1α, succinate dehyrdogenase (SDHA), ANT1, MFN2, OPA1, and MnSOD). Furthermore, Cav3P104L myoblasts exhibited increased mitochondrial cholesterol and loss of cardiolipin. Consistent with these changes, Cav3P104L expression reduced mitochondrial respiratory capacity and increased myocellular superoxide production. These morphological, biochemical, and functional mitochondrial changes were phenocopied in myoblasts in which Cav3 had been silenced/knocked-out using shRNA or CRISPR. Reduced mitochondrial mass, PGC1α, SDHA, ANT1, and MnSOD were also demonstrable in Cav3-/- mouse gastrocnemius. Strikingly, Cav3 re-expression in Cav3KO myoblasts restored its mitochondrial association and facilitated reformation of a tubular mitochondrial network. Significantly, re-expression also mitigated changes in mitochondrial superoxide, cholesterol, and cardiolipin content and recovered cellular respiratory capacity. CONCLUSIONS Our results identify Cav3 as an important regulator of mitochondrial homeostasis and reveal that Cav3 deficiency in muscle cells associated with the Cav3P104L mutation invokes major disturbances in mitochondrial respiration and energy status that may contribute to the pathology of LGMD1C.
Collapse
Affiliation(s)
- Dinesh S Shah
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| | - Raid B Nisr
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| | - Clare Stretton
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, School of Medicine, Saarland University, Homburg, Germany
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
9
|
Yasuoka Y. Morphogenetic mechanisms forming the notochord rod: The turgor pressure-sheath strength model. Dev Growth Differ 2020; 62:379-390. [PMID: 32275068 DOI: 10.1111/dgd.12665] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
The notochord is a defining feature of chordates. During notochord formation in vertebrates and tunicates, notochord cells display dynamic morphogenetic movement, called convergent extension, in which cells intercalate and align at the dorsal midline. However, in cephalochordates, the most basal group of chordates, the notochord is formed without convergent extension. It is simply developed from mesodermal cells at the dorsal midline. This suggests that convergent extension movement of notochord cells is a secondarily acquired developmental attribute in the common ancestor of olfactores (vertebrates + tunicates), and that the chordate ancestor innovated the notochord upon a foundation of morphogenetic mechanisms independent of cell movement. Therefore, this review focuses on biological features specific to notochord cells, which have been well studied using clawed frogs, zebrafish, and tunicates. Attributes of notochord cells, such as vacuolation, membrane trafficking, extracellular matrix formation, and apoptosis, can be understood in terms of two properties: turgor pressure of vacuoles and strength of the notochord sheath. To maintain the straight rod-like structure of the notochord, these parameters must be counterbalanced. In the future, the turgor pressure-sheath strength model, proposed in this review, will be examined in light of quantitative molecular data and mathematical simulations, illuminating the evolutionary origin of the notochord.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
10
|
Bhattachan P, Rae J, Yu H, Jung W, Wei J, Parton RG, Dong B. Ascidian caveolin induces membrane curvature and protects tissue integrity and morphology during embryogenesis. FASEB J 2019; 34:1345-1361. [PMID: 31914618 DOI: 10.1096/fj.201901281r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 01/20/2023]
Abstract
Cell morphology and tissue integrity are essential for embryogenesis. Caveolins are membrane proteins that induce the formation of surface pits called caveolae that serve as membrane reservoirs for cell and tissue protection during development. In vertebrates, caveolin 1 (Cav1) and caveolin 3 (Cav3) are required for caveola formation. However, the formation of caveola and the function of caveolins in invertebrates are largely unknown. In this study, three caveolins, Cav-a, Cav-b, and CavY, are identified in the genome of the invertebrate chordate Ciona spp. Based on phylogenetic analysis, Cav-a is found to be closely related to the vertebrate Cav1 and Cav3. In situ hybridization shows that Cav-a is expressed in Ciona embryonic notochord and muscle. Cell-free experiments, model cell culture systems, and in vivo experiments demonstrate that Ciona Cav-a has the ability to induce membrane curvature at the plasma membrane. Knockdown of Cav-a in Ciona embryos causes loss of invaginations in the plasma membrane and results in the failure of notochord elongation and lumenogenesis. Expression of a dominant-negative Cav-a point mutation causes cells to change shape and become displaced from the muscle and notochord to disrupt tissue integrity. Furthermore, we demonstrate that Cav-a vesicles show polarized trafficking and localize at the luminal membrane during notochord lumenogenesis. Taken together, these results show that the invertebrate chordate caveolin from Ciona plays crucial roles in tissue integrity and morphology by inducing membrane curvature and intracellular vesicle trafficking during embryogenesis.
Collapse
Affiliation(s)
- Punit Bhattachan
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Haiyan Yu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - WooRam Jung
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Jiankai Wei
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD, Australia
| | - Bo Dong
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Vissing J, Johnson K, Töpf A, Nafissi S, Díaz-Manera J, French VM, Schindler RF, Sarathchandra P, Løkken N, Rinné S, Freund M, Decher N, Müller T, Duno M, Krag T, Brand T, Straub V. POPDC3 Gene Variants Associate with a New Form of Limb Girdle Muscular Dystrophy. Ann Neurol 2019; 86:832-843. [PMID: 31610034 DOI: 10.1002/ana.25620] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The Popeye domain containing 3 (POPDC3) gene encodes a membrane protein involved in cyclic adenosine monophosphate (cAMP) signaling. Besides gastric cancer, no disease association has been described. We describe a new muscular dystrophy associated with this gene. METHODS We screened 1,500 patients with unclassified limb girdle weakness or hyperCKemia for pathogenic POPDC3 variants. Five patients carrying POPDC3 variants were examined by muscle magnetic resonance imaging (MRI), muscle biopsy, and cardiac examination. We performed functional analyses in a zebrafish popdc3 knockdown model and heterologous expression of the mutant proteins in Xenopus laevis oocytes to measure TREK-1 current. RESULTS We identified homozygous POPDC3 missense variants (p.Leu155His, p.Leu217Phe, and p.Arg261Gln) in 5 patients from 3 ethnically distinct families. Variants affected highly conserved residues in the Popeye (p.Leu155 and p.Leu217) and carboxy-terminal (p.Arg261) domains. The variants were almost absent from control populations. Probands' muscle biopsies were dystrophic, and serum creatine kinase levels were 1,050 to 9,200U/l. Muscle weakness was proximal with adulthood onset in most patients and affected lower earlier than upper limbs. Muscle MRI revealed fat replacement of paraspinal and proximal leg muscles; cardiac investigations were unremarkable. Knockdown of popdc3 in zebrafish, using 2 different splice-site blocking morpholinos, resulted in larvae with tail curling and dystrophic muscle features. All 3 mutants cloned in Xenopus oocytes caused an aberrant modulation of the mechano-gated potassium channel, TREK-1. INTERPRETATION Our findings point to an important role of POPDC3 for skeletal muscle function and suggest that pathogenic variants in POPDC3 are responsible for a novel type of autosomal recessive limb girdle muscular dystrophy. ANN NEUROL 2019;86:832-843.
Collapse
Affiliation(s)
- John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Denmark
| | - Katherine Johnson
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Shahriar Nafissi
- Department of Neurology, Iranian Center of Neurological Research, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Jordi Díaz-Manera
- Unitat de Malalties Neuromusculars, Servei de Neurologia, Hospital de la Santa Creu i Sant Pau de Barcelona and CIBERER, Madrid, Spain
| | - Vanessa M French
- Developmental Dynamics, Myocardial Function, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Roland F Schindler
- Developmental Dynamics, Myocardial Function, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Padmini Sarathchandra
- Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicoline Løkken
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Denmark
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Max Freund
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Thomas Müller
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Morten Duno
- Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Denmark
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Denmark
| | - Thomas Brand
- Developmental Dynamics, Myocardial Function, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
12
|
Pitchai A, Rajaretinam RK, Freeman JL. Zebrafish as an Emerging Model for Bioassay-Guided Natural Product Drug Discovery for Neurological Disorders. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E61. [PMID: 31151179 PMCID: PMC6631710 DOI: 10.3390/medicines6020061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
Most neurodegenerative diseases are currently incurable, with large social and economic impacts. Recently, there has been renewed interest in investigating natural products in the modern drug discovery paradigm as novel, bioactive small molecules. Moreover, the discovery of potential therapies for neurological disorders is challenging and involves developing optimized animal models for drug screening. In contemporary biomedicine, the growing need to develop experimental models to obtain a detailed understanding of malady conditions and to portray pioneering treatments has resulted in the application of zebrafish to close the gap between in vitro and in vivo assays. Zebrafish in pharmacogenetics and neuropharmacology are rapidly becoming a widely used organism. Brain function, dysfunction, genetic, and pharmacological modulation considerations are enhanced by both larval and adult zebrafish. Bioassay-guided identification of natural products using zebrafish presents as an attractive strategy for generating new lead compounds. Here, we see evidence that the zebrafish's central nervous system is suitable for modeling human neurological disease and we review and evaluate natural product research using zebrafish as a vertebrate model platform to systematically identify bioactive natural products. Finally, we review recently developed zebrafish models of neurological disorders that have the potential to be applied in this field of research.
Collapse
Affiliation(s)
- Arjun Pitchai
- Molecular and Nanomedicine Research Unit (MNRU), Centre for Nanoscience and Nanotechnology (CNSNT), Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Rajesh Kannan Rajaretinam
- Molecular and Nanomedicine Research Unit (MNRU), Centre for Nanoscience and Nanotechnology (CNSNT), Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
13
|
Ultracytochemical visualization of calcium distribution in heart cells and erythrocytes of zebrafish Danio rerio. Micron 2018; 111:19-27. [DOI: 10.1016/j.micron.2018.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/06/2023]
|
14
|
Shang L, Chen T, Deng Y, Huang Y, Huang Y, Xian J, Lu W, Yang L, Huang Q. Caveolin-3 promotes glycometabolism, growth and proliferation in muscle cells. PLoS One 2017; 12:e0189004. [PMID: 29206848 PMCID: PMC5716543 DOI: 10.1371/journal.pone.0189004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 11/18/2022] Open
Abstract
Objective Caveolin-3 (CAV3) protein is known to be expressed specifically in various myocytes, but its physiological function remains unclear. CAV3, located at the cell membrane, may promote the sensitivity of the Akt signaling pathway, which is closely related to glucose metabolism and to cell growth and proliferation. Methods The CAV3 gene was stably transfected into C2C12 muscle cells, and the effects were evaluated by biochemical assays, WB and confocal microscopy for the observation of cellular glucose metabolism, growth and proliferation, and the effect of CAV3 on the Akt signaling pathway with no insulin stimulation. Results After C2C12 cells were transfected with the mouse CAV3 gene, which increased CAV3 expression, the abundance of the CAV3 and GLUT4 proteins on the cell membrane increased, but the total GLUT4 protein content of the cell was unchanged. Glucose uptake was increased, and this did not affect the glycogen synthesis, but the cell surface area and cell proliferation increased. While there were significant increases in p-Akt and p-p70s6K, which is a downstream component of Akt signaling, the level of GSK3β protein, another component of Akt signaling did not change. Conclusions The muscle, CAV3 protein can activate Akt signaling, increase GLUT4 protein localization in the cell membrane, increase glucose uptake, and promote myocyte growth and proliferation. CAV3 protein has a physiological role in glycometabolism, growth and proliferation, independent of insulin stimulation.
Collapse
Affiliation(s)
- Lina Shang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Tingting Chen
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yufeng Deng
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yiyuan Huang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanheng Huang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Xian
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wensheng Lu
- Department of Endocrinology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Lihui Yang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Qin Huang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- * E-mail:
| |
Collapse
|
15
|
Seemann E, Sun M, Krueger S, Tröger J, Hou W, Haag N, Schüler S, Westermann M, Huebner CA, Romeike B, Kessels MM, Qualmann B. Deciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination. eLife 2017; 6. [PMID: 29202928 PMCID: PMC5716666 DOI: 10.7554/elife.29854] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Several human diseases are associated with a lack of caveolae. Yet, the functions of caveolae and the molecular mechanisms critical for shaping them still are debated. We show that muscle cells of syndapin III KO mice show severe reductions of caveolae reminiscent of human caveolinopathies. Yet, different from other mouse models, the levels of the plasma membrane-associated caveolar coat proteins caveolin3 and cavin1 were both not reduced upon syndapin III KO. This allowed for dissecting bona fide caveolar functions from those supported by mere caveolin presence and also demonstrated that neither caveolin3 nor caveolin3 and cavin1 are sufficient to form caveolae. The membrane-shaping protein syndapin III is crucial for caveolar invagination and KO rendered the cells sensitive to membrane tensions. Consistent with this physiological role of caveolae in counterpoising membrane tensions, syndapin III KO skeletal muscles showed pathological parameters upon physical exercise that are also found in CAVEOLIN3 mutation-associated muscle diseases.
Collapse
Affiliation(s)
- Eric Seemann
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Minxuan Sun
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Sarah Krueger
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Jessica Tröger
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Wenya Hou
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Natja Haag
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Susann Schüler
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Christian A Huebner
- Institute for Human Genetics, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Bernd Romeike
- Institute of Pathology, Division of Neuropathology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Michael M Kessels
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
16
|
|
17
|
|
18
|
Abstract
Skeletal muscle performs an essential function in human physiology with defects in genes encoding a variety of cellular components resulting in various types of inherited muscle disorders. Muscular dystrophies (MDs) are a severe and heterogeneous type of human muscle disease, manifested by progressive muscle wasting and degeneration. The disease pathogenesis and therapeutic options for MDs have been investigated for decades using rodent models, and considerable knowledge has been accumulated on the cause and pathogenetic mechanisms of this group of human disorders. However, due to some differences between disease severity and progression, what is learned in mammalian models does not always transfer to humans, prompting the desire for additional and alternative models. More recently, zebrafish have emerged as a novel and robust animal model for the study of human muscle disease. Zebrafish MD models possess a number of distinct advantages for modeling human muscle disorders, including the availability and ease of generating mutations in homologous disease-causing genes, the ability to image living muscle tissue in an intact animal, and the suitability of zebrafish larvae for large-scale chemical screens. In this chapter, we review the current understanding of molecular and cellular mechanisms involved in MDs, the process of myogenesis in zebrafish, and the structural and functional characteristics of zebrafish larval muscles. We further discuss the insights gained from the key zebrafish MD models that have been so far generated, and we summarize the attempts that have been made to screen for small molecules inhibitors of the dystrophic phenotypes using these models. Overall, these studies demonstrate that zebrafish is a useful in vivo system for modeling aspects of human skeletal muscle disorders. Studies using these models have contributed both to the understanding of the pathogenesis of muscle wasting disorders and demonstrated their utility as highly relevant models to implement therapeutic screening regimens.
Collapse
Affiliation(s)
- M Li
- Monash University, Clayton, VIC, Australia
| | - K J Hromowyk
- The Ohio State University, Columbus, OH, United States
| | - S L Amacher
- The Ohio State University, Columbus, OH, United States
| | - P D Currie
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
19
|
Housley MP, Njaine B, Ricciardi F, Stone OA, Hölper S, Krüger M, Kostin S, Stainier DYR. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish. PLoS Genet 2016; 12:e1006099. [PMID: 27294373 PMCID: PMC4905656 DOI: 10.1371/journal.pgen.1006099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 05/10/2016] [Indexed: 01/16/2023] Open
Abstract
Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.
Collapse
Affiliation(s)
- Michael P. Housley
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, California, United States of America
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail: (MPH); (DYRS)
| | - Brian Njaine
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Oliver A. Stone
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, California, United States of America
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Soraya Hölper
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marcus Krüger
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sawa Kostin
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, California, United States of America
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail: (MPH); (DYRS)
| |
Collapse
|
20
|
Lo HP, Nixon SJ, Hall TE, Cowling BS, Ferguson C, Morgan GP, Schieber NL, Fernandez-Rojo MA, Bastiani M, Floetenmeyer M, Martel N, Laporte J, Pilch PF, Parton RG. The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J Cell Biol 2015; 210:833-49. [PMID: 26323694 PMCID: PMC4555827 DOI: 10.1083/jcb.201501046] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The caveolar membrane microdomain plays an integral role in stabilizing the muscle fiber surface in mice and zebrafish. Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1−/− muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin–cavin system.
Collapse
Affiliation(s)
- Harriet P Lo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susan J Nixon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Belinda S Cowling
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de la Recherche Scientifique UMR7104, Strasbourg University, Illkirch 67404, France
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Garry P Morgan
- Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicole L Schieber
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Manuel A Fernandez-Rojo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michele Bastiani
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthias Floetenmeyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nick Martel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de la Recherche Scientifique UMR7104, Strasbourg University, Illkirch 67404, France
| | - Paul F Pilch
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
21
|
Faggi F, Codenotti S, Poliani PL, Cominelli M, Chiarelli N, Colombi M, Vezzoli M, Monti E, Bono F, Tulipano G, Fiorentini C, Zanola A, Lo HP, Parton RG, Keller C, Fanzani A. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS One 2015; 10:e0130287. [PMID: 26086601 PMCID: PMC4472524 DOI: 10.1371/journal.pone.0130287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/19/2015] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.
Collapse
Affiliation(s)
- Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Nicola Chiarelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marika Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giovanni Tulipano
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Alessandra Zanola
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Harriet P. Lo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Charles Keller
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States of America
- Children’s Cancer Therapy Development Institute, Fort Collins, CO, United States of America
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
- * E-mail:
| |
Collapse
|
22
|
O'Hare EA, Wang X, Montasser ME, Chang YPC, Mitchell BD, Zaghloul NA. Disruption of ldlr causes increased LDL-c and vascular lipid accumulation in a zebrafish model of hypercholesterolemia. J Lipid Res 2014; 55:2242-53. [PMID: 25201834 DOI: 10.1194/jlr.m046540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hyperlipidemia and arterial cholesterol accumulation are primary causes of cardiovascular events. Monogenic forms of hyperlipidemia and recent genome-wide association studies indicate that genetics plays an important role. Zebrafish are a useful model for studying the genetic susceptibility to hyperlipidemia owing to conservation of many components of lipoprotein metabolism, including those related to LDL, ease of genetic manipulation, and in vivo observation of lipid transport and vascular calcification. We sought to develop a genetic model for lipid metabolism in zebrafish, capitalizing on one well-understood player in LDL cholesterol (LDL-c) transport, the LDL receptor (ldlr), and an established in vivo model of hypercholesterolemia. We report that morpholinos targeted against the gene encoding ldlr effectively suppressed its expression in embryos during the first 8 days of development. The ldlr morphants exhibited increased LDL-c levels that were exacerbated by feeding a high cholesterol diet. Increased LDL-c was ameliorated in morphants upon treatment with atorvastatin. Furthermore, we observed significant vascular and liver lipid accumulation, vascular leakage, and plaque oxidation in ldlr-deficient embryos. Finally, upon transcript analysis of several cholesterol-regulating genes, we observed changes similar to those seen in mammalian systems, suggesting that cholesterol regulation may be conserved in zebrafish. Taken together, these observations indicate conservation of ldlr function in zebrafish and demonstrate the utility of transient gene knockdown in embryos as a genetic model for hyperlipidemia.
Collapse
Affiliation(s)
- Elizabeth A O'Hare
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Xiaochun Wang
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - May E Montasser
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Yen-Pei C Chang
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Norann A Zaghloul
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
23
|
TM4SF5 suppression disturbs integrin α5-related signalling and muscle development in zebrafish. Biochem J 2014; 462:89-101. [DOI: 10.1042/bj20140177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TM4SF5 suppression in zebrafish causes abnormal trunk morphology with aberrant translocation and organization of muscle cells, via altered fibronectin/integrin α5/FAK/vinculin/actin signalling. TM4SF5 controls muscle differentiation via alteration in integrin α5-related signalling.
Collapse
|
24
|
Horstick EJ, Gibbs EM, Li X, Davidson AE, Dowling JJ. Analysis of embryonic and larval zebrafish skeletal myofibers from dissociated preparations. J Vis Exp 2013:e50259. [PMID: 24300240 DOI: 10.3791/50259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The zebrafish has proven to be a valuable model system for exploring skeletal muscle function and for studying human muscle diseases. Despite the many advantages offered by in vivo analysis of skeletal muscle in the zebrafish, visualizing the complex and finely structured protein milieu responsible for muscle function, especially in whole embryos, can be problematic. This hindrance stems from the small size of zebrafish skeletal muscle (60 μm) and the even smaller size of the sarcomere. Here we describe and demonstrate a simple and rapid method for isolating skeletal myofibers from zebrafish embryos and larvae. We also include protocols that illustrate post preparation techniques useful for analyzing muscle structure and function. Specifically, we detail the subsequent immunocytochemical localization of skeletal muscle proteins and the qualitative analysis of stimulated calcium release via live cell calcium imaging. Overall, this video article provides a straight-forward and efficient method for the isolation and characterization of zebrafish skeletal myofibers, a technique which provides a conduit for myriad subsequent studies of muscle structure and function.
Collapse
Affiliation(s)
- Eric J Horstick
- Departments of Pediatrics and Neurology, University of Michigan
| | | | | | | | | |
Collapse
|
25
|
Gibbs EM, Horstick EJ, Dowling JJ. Swimming into prominence: the zebrafish as a valuable tool for studying human myopathies and muscular dystrophies. FEBS J 2013; 280:4187-97. [PMID: 23809187 DOI: 10.1111/febs.12412] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/07/2013] [Accepted: 06/20/2013] [Indexed: 11/28/2022]
Abstract
A new and exciting phase of muscle disease research has recently been entered. The application of next generation sequencing technology has spurred an unprecedented era of gene discovery for both myopathies and muscular dystrophies. Gene-based therapies for Duchenne muscular dystrophy have entered clinical trial, and several pathway-based therapies are doing so as well for a handful of muscle diseases. While many factors have aided the extraordinary developments in gene discovery and therapy development, the zebrafish model system has emerged as a vital tool in these advancements. In this review, we will highlight how the zebrafish has greatly aided in the identification of new muscle disease genes and in the recognition of novel therapeutic strategies. We will start with a general introduction to the zebrafish as a model, discuss the ways in which muscle disease can be modeled and analyzed in the fish, and conclude with observations from recent studies that highlight the power of the fish as a research tool for muscle disease.
Collapse
Affiliation(s)
- Elizabeth M Gibbs
- Departments of Neuroscience, Neurology and Pediatrics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | | | | |
Collapse
|
26
|
Sloboda DD, Claflin DR, Dowling JJ, Brooks SV. Force measurement during contraction to assess muscle function in zebrafish larvae. J Vis Exp 2013. [PMID: 23912162 PMCID: PMC3846141 DOI: 10.3791/50539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Zebrafish larvae provide models of muscle development, muscle disease and muscle-related chemical toxicity, but related studies often lack functional measures of muscle health. In this video article, we demonstrate a method to measure force generation during contraction of zebrafish larval trunk muscle. Force measurements are accomplished by placing an anesthetized larva into a chamber filled with a salt solution. The anterior end of the larva is tied to a force transducer and the posterior end of the larva is tied to a length controller. An isometric twitch contraction is elicited by electric field stimulation and the force response is recorded for analysis. Force generation during contraction provides a measure of overall muscle health and specifically provides a measure of muscle function. Although we describe this technique for use with wild-type larvae, this method can be used with genetically modified larvae or with larvae treated with drugs or toxicants, to characterize muscle disease models and evaluate treatments, or to study muscle development, injury, or chemical toxicity.
Collapse
Affiliation(s)
- Darcée D Sloboda
- Department of Biomedical Engineering, University of Michigan, Michigan, USA
| | | | | | | |
Collapse
|
27
|
Ferraresso S, Bonaldo A, Parma L, Cinotti S, Massi P, Bargelloni L, Gatta PP. Exploring the larval transcriptome of the common sole (Solea solea L.). BMC Genomics 2013; 14:315. [PMID: 23663263 PMCID: PMC3659078 DOI: 10.1186/1471-2164-14-315] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The common sole (Solea solea) is a promising candidate for European aquaculture; however, the limited knowledge of the physiological mechanisms underlying larval development in this species has hampered the establishment of successful flatfish aquaculture. Although the fact that genomic tools and resources are available for some flatfish species, common sole genomics remains a mostly unexplored field. Here, we report, for the first time, the sequencing and characterisation of the transcriptome of S. solea and its application for the study of molecular mechanisms underlying physiological and morphological changes during larval-to-juvenile transition. RESULTS The S. solea transcriptome was generated from whole larvae and adult tissues using the Roche 454 platform. The assembly process produced a set of 22,223 Isotigs with an average size of 726 nt, 29 contigs and a total of 203,692 singletons. Of the assembled sequences, 75.2% were annotated with at least one known transcript/protein; these transcripts were then used to develop a custom oligo-DNA microarray. A total of 14,674 oligonucleotide probes (60 nt), representing 12,836 transcripts, were in situ synthesised onto the array using Agilent non-contact ink-jet technology. The microarray platform was used to investigate the gene expression profiles of sole larvae from hatching to the juvenile form. Genes involved in the ontogenesis of the visual system are up-regulated during the early stages of larval development, while muscle development and anaerobic energy pathways increase in expression over time. The gene expression profiles of key transcripts of the thyroid hormones (TH) cascade and the temporal regulation of the GH/IGF1 (growth hormone/insulin-like growth factor I) system suggest a pivotal role of these pathways in fish growth and initiation of metamorphosis. Pre-metamorphic larvae display a distinctive transcriptomic landscape compared to previous and later stages. Our findings highlighted the up-regulation of gene pathways involved in the development of the gastrointestinal system as well as biological processes related to folic acid and retinol metabolism. Additional evidence led to the formation of the hypothesis that molecular mechanisms of cell motility and ECM adhesion may play a role in tissue rearrangement during common sole metamorphosis. CONCLUSIONS Next-generation sequencing provided a good representation of the sole transcriptome, and the combination of different approaches led to the annotation of a high number of transcripts. The construction of a microarray platform for the characterisation of the larval sole transcriptome permitted the definition of the main processes involved in organogenesis and larval growth.
Collapse
Affiliation(s)
- Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Increased caveolae density and caveolin-1 expression accompany impaired NO-mediated vasorelaxation in diet-induced obesity. Histochem Cell Biol 2012; 139:309-21. [DOI: 10.1007/s00418-012-1032-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2012] [Indexed: 01/24/2023]
|
29
|
Abstract
Caveolins are scaffolding proteins that play a pivotal role in numerous processes, including caveolae biogenesis, vesicular transport, cholesterol homeostasis and regulation of signal transduction. There are three different isoforms (Cav-1, -2 and -3) that form homo- and hetero-aggregates at the plasma membrane and modulate the activity of a number of intracellular binding proteins. Cav-1 and Cav-3, in particular, are respectively expressed in the reserve elements (e.g. satellite cells) and in mature myofibres of skeletal muscle and their expression interplay characterizes the switch from muscle precursors to differentiated elements. Recent findings have shown that caveolins are also expressed in rhabdomyosarcoma, a group of heterogeneous childhood soft-tissue sarcomas in which the cancer cells seem to derive from progenitors that resemble myogenic cells. In this review, we will focus on the role of caveolins in rhabdomyosarcomas and on their potential use as markers of the degree of differentiation in these paediatric tumours. Given that the function of Cav-1 as tumour conditional gene in cancer has been well-established, we will also discuss the relationship between Cav-1 and the progression of rhabdomyosarcoma.
Collapse
Affiliation(s)
- Stefania Rossi
- Department of Biomedical Sciences and Biotechnologies, Interuniversity Institute of Myology (IIM), University of Brescia, Brescia, Italy Department of Pathology, University of Brescia, Brescia, Italy
| | | | | | | | | |
Collapse
|
30
|
Boyden SE, Mahoney LJ, Kawahara G, Myers JA, Mitsuhashi S, Estrella EA, Duncan AR, Dey F, DeChene ET, Blasko-Goehringer JM, Bönnemann CG, Darras BT, Mendell JR, Lidov HGW, Nishino I, Beggs AH, Kunkel LM, Kang PB. Mutations in the satellite cell gene MEGF10 cause a recessive congenital myopathy with minicores. Neurogenetics 2012; 13:115-24. [PMID: 22371254 PMCID: PMC3332380 DOI: 10.1007/s10048-012-0315-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/25/2012] [Indexed: 02/04/2023]
Abstract
We ascertained a nuclear family in which three of four siblings were affected with an unclassified autosomal recessive myopathy characterized by severe weakness, respiratory impairment, scoliosis, joint contractures, and an unusual combination of dystrophic and myopathic features on muscle biopsy. Whole genome sequence from one affected subject was filtered using linkage data and variant databases. A single gene, MEGF10, contained nonsynonymous mutations that co-segregated with the phenotype. Affected subjects were compound heterozygous for missense mutations c.976T > C (p.C326R) and c.2320T > C (p.C774R). Screening the MEGF10 open reading frame in 190 patients with genetically unexplained myopathies revealed a heterozygous mutation, c.211C > T (p.R71W), in one additional subject with a similar clinical and histological presentation as the discovery family. All three mutations were absent from at least 645 genotyped unaffected control subjects. MEGF10 contains 17 atypical epidermal growth factor-like domains, each of which contains eight cysteine residues that likely form disulfide bonds. Both the p.C326R and p.C774R mutations alter one of these residues, which are completely conserved in vertebrates. Previous work showed that murine Megf10 is required for preserving the undifferentiated, proliferative potential of satellite cells, myogenic precursors that regenerate skeletal muscle in response to injury or disease. Here, knockdown of megf10 in zebrafish by four different morpholinos resulted in abnormal phenotypes including unhatched eggs, curved tails, impaired motility, and disorganized muscle tissue, corroborating the pathogenicity of the human mutations. Our data establish the importance of MEGF10 in human skeletal muscle and suggest satellite cell dysfunction as a novel myopathic mechanism.
Collapse
Affiliation(s)
- Steven E. Boyden
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Lane J. Mahoney
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Genri Kawahara
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Jennifer A. Myers
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Satomi Mitsuhashi
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Elicia A. Estrella
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Anna R. Duncan
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Friederike Dey
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Elizabeth T. DeChene
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Jessica M. Blasko-Goehringer
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Carsten G. Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Basil T. Darras
- Department of Neurology, Children’s Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Jerry R. Mendell
- Center for Gene Therapy Research Institute, Nationwide Children’s Hospital, Columbus, OH USA
| | - Hart G. W. Lidov
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
- Department of Pathology, Children’s Hospital Boston and Harvard Medical School, Boston, MA USA
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Alan H. Beggs
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
- Department of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Louis M. Kunkel
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Department of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Peter B. Kang
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
- Department of Neurology, Children’s Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
31
|
Shestopalov IA, Pitt CLW, Chen JK. Spatiotemporal resolution of the Ntla transcriptome in axial mesoderm development. Nat Chem Biol 2012; 8:270-6. [PMID: 22286130 PMCID: PMC3288381 DOI: 10.1038/nchembio.772] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/23/2011] [Indexed: 11/09/2022]
Abstract
Transcription factors have diverse roles during embryonic development, combinatorially controlling cellular states in a spatially and temporally defined manner. Resolving the dynamic transcriptional profiles that underlie these patterning processes is essential for understanding embryogenesis at the molecular level. Here we show how temporal, tissue-specific changes in embryonic transcription factor function can be discerned by integrating caged morpholino oligonucleotides with photoactivatable fluorophores, fluorescence-activated cell sorting and microarray technologies. As a proof of principle, we have dynamically profiled No tail a (Ntla)-dependent genes at different stages of axial mesoderm development in zebrafish, discovering discrete sets of transcripts that are coincident with either notochord cell fate commitment or differentiation. Our studies reveal new regulators of notochord development and the sequential activation of distinct transcriptomes within a cell lineage by a single transcriptional factor and demonstrate how optically controlled chemical tools can dissect developmental processes with spatiotemporal precision.
Collapse
Affiliation(s)
- Ilya A Shestopalov
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
32
|
Kirchmaier BC, Poon KL, Schwerte T, Huisken J, Winkler C, Jungblut B, Stainier DY, Brand T. The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development. Dev Biol 2012; 363:438-50. [PMID: 22290329 DOI: 10.1016/j.ydbio.2012.01.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 11/18/2022]
Abstract
The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish. Popdc2 transcripts were detected in the embryonic myocardium and transiently in the craniofacial and tail musculature. Morpholino oligonucleotide-mediated knockdown of popdc2 resulted in aberrant development of skeletal muscle and heart. Muscle segments in the trunk were irregularly shaped and craniofacial muscles were severely reduced or even missing. In the heart, pericardial edema was prevalent in the morphants and heart chambers were elongated and looping was abnormal. These pathologies in muscle and heart were alleviated after reducing the morpholino concentration. However the heart still was abnormal displaying cardiac arrhythmia at later stages of development. Optical recordings of cardiac contractility revealed irregular ventricular contractions with a 2:1, or 3:1 atrial/ventricular conduction ratio, which caused a significant reduction in heart frequency. Recordings of calcium transients with high spatiotemporal resolution using a transgenic calcium indicator line (Tg(cmlc2:gCaMP)(s878)) and SPIM microscopy confirmed the presence of a severe arrhythmia phenotype. Our results identify popdc2 as a gene important for striated muscle differentiation and cardiac morphogenesis. In addition it is required for the development of the cardiac conduction system.
Collapse
Affiliation(s)
- Bettina C Kirchmaier
- Cell- and Developmental Biology, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sakowski SA, Lunn JS, Busta AS, Palmer M, Dowling JJ, Feldman EL. A novel approach to study motor neurons from zebrafish embryos and larvae in culture. J Neurosci Methods 2012; 205:277-82. [PMID: 22285259 DOI: 10.1016/j.jneumeth.2012.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 12/27/2022]
Abstract
Zebrafish are becoming increasingly popular models for examining the mechanisms of and treatments for neurological diseases. The available methods and technology to examine disease processes in vivo are increasing, however, detailed observations of subcellular structures and processes are complex in whole organisms. To address this need, we developed a primary motor neuron (MN) culture technique for utilization with zebrafish neurological disease models. Our protocol enables the culturing of cells from embryos older than 24h post-fertilization, at points after MN axonal development and outgrowth begins, which enables MN axons to develop in vivo in the context of the normal endogenous cues of the model organism, while also providing the accessibility of an in vitro system. When utilized with the increasing number of genetically modified or transgenic models of neurological diseases, this approach provides a novel tool for the examination of cellular and subcellular disease mechanisms, and offers a new platform for therapeutic discoveries in zebrafish.
Collapse
|
34
|
Huang SH, Hsiao CD, Lin DS, Chow CY, Chang CJ, Liau I. Imaging of zebrafish in vivo with second-harmonic generation reveals shortened sarcomeres associated with myopathy induced by statin. PLoS One 2011; 6:e24764. [PMID: 21966365 PMCID: PMC3179478 DOI: 10.1371/journal.pone.0024764] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 08/17/2011] [Indexed: 01/25/2023] Open
Abstract
We employed second-harmonic generation (SHG) imaging and the zebrafish model to investigate the myopathy caused by statin in vivo with emphasis on the altered microstructures of the muscle sarcomere, the fundamental contractile element of muscles. This approach derives an advantage of SHG imaging to observe the striated skeletal muscle of living zebrafish based on signals produced mainly from the thick myosin filament of sarcomeres without employing exogenous labels, and eliminates concern about the distortion of muscle structures caused by sample preparation in conventional histological examination. The treatment with statin caused a significantly shortened sarcomere relative to an untreated control (1.73±0.09 µm vs 1.91±0.08 µm, P<0.05) while the morphological integrity of the muscle fibers remained largely intact. Mechanistic tests indicated that this microstructural disorder was associated with the biosynthetic pathway of cholesterol, or, specifically, with the impaired production of mevalonate by statins. This microstructural disorder exhibited a strong dependence on both the dosage and the duration of treatment, indicating a possibility to assess the severity of muscle injury according to the altered length of the sarcomeres. In contrast to a conventional assessment of muscle injury using clinical biomarkers in blood, such as creatine kinase that is released from only disrupted myocytes, the ability to determine microstructural modification of sarcomeres allows diagnosis of muscle injury before an onset of conventional clinical symptoms. In light of the increasing prevalence of the incidence of muscle injuries caused by new therapies, our work consolidates the combined use of the zebrafish and SHG imaging as an effective and sensitive means to evaluate the safety profile of new therapeutic targets in vivo.
Collapse
Affiliation(s)
- Shih-Hao Huang
- Department of Applied Chemistry, Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li, Taiwan
| | | | - Cho-Yen Chow
- Department of Applied Chemistry, Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Jen Chang
- Department of Applied Chemistry, Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Ian Liau
- Department of Applied Chemistry, Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
35
|
Follo C, Ozzano M, Mugoni V, Castino R, Santoro M, Isidoro C. Knock-down of cathepsin D affects the retinal pigment epithelium, impairs swim-bladder ontogenesis and causes premature death in zebrafish. PLoS One 2011; 6:e21908. [PMID: 21747967 PMCID: PMC3128622 DOI: 10.1371/journal.pone.0021908] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/14/2011] [Indexed: 02/04/2023] Open
Abstract
The lysosomal aspartic protease Cathepsin D (CD) is ubiquitously expressed in eukaryotic organisms. CD activity is essential to accomplish the acid-dependent extensive or partial proteolysis of protein substrates within endosomal and lysosomal compartments therein delivered via endocytosis, phagocytosis or autophagocytosis. CD may also act at physiological pH on small-size substrates in the cytosol and in the extracellular milieu. Mouse and fruit fly CD knock-out models have highlighted the multi-pathophysiological roles of CD in tissue homeostasis and organ development. Here we report the first phenotypic description of the lack of CD expression during zebrafish (Danio rerio) development obtained by morpholino-mediated knock-down of CD mRNA. Since the un-fertilized eggs were shown to be supplied with maternal CD mRNA, only a morpholino targeting a sequence containing the starting ATG codon was effective. The main phenotypic alterations produced by CD knock-down in zebrafish were: 1. abnormal development of the eye and of retinal pigment epithelium; 2. absence of the swim-bladder; 3. skin hyper-pigmentation; 4. reduced growth and premature death. Rescue experiments confirmed the involvement of CD in the developmental processes leading to these phenotypic alterations. Our findings add to the list of CD functions in organ development and patho-physiology in vertebrates.
Collapse
Affiliation(s)
- Carlo Follo
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Matteo Ozzano
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Vera Mugoni
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Roberta Castino
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Massimo Santoro
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Ciro Isidoro
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
- * E-mail:
| |
Collapse
|
36
|
Stoppani E, Rossi S, Meacci E, Penna F, Costelli P, Bellucci A, Faggi F, Maiolo D, Monti E, Fanzani A. Point mutated caveolin-3 form (P104L) impairs myoblast differentiation via Akt and p38 signalling reduction, leading to an immature cell signature. Biochim Biophys Acta Mol Basis Dis 2011; 1812:468-79. [DOI: 10.1016/j.bbadis.2010.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 11/30/2010] [Accepted: 12/08/2010] [Indexed: 11/24/2022]
|
37
|
Nucleoside diphosphate kinase B is required for the formation of heterotrimeric G protein containing caveolae. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:461-72. [PMID: 21409430 DOI: 10.1007/s00210-011-0618-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 02/25/2011] [Indexed: 01/12/2023]
Abstract
Caveolae are flask-shaped invaginations in the plasma membrane that serve to compartmentalize and organize signal transduction processes, including signals mediated by G protein-coupled receptors and heterotrimeric G proteins. Herein we report evidence for a close association of the nucleoside diphosphate kinase B (NDPK B) and caveolin proteins which is required for G protein scaffolding and caveolae formation. A concomitant loss of the proteins NDPK B, caveolin isoforms 1 (Cav1) and 3, and heterotrimeric G proteins occurred when one of these proteins was specifically depleted in zebrafish embryos. Co-immunoprecipitation of Cav1 with the G protein Gβ-subunit and NDPK B from zebrafish lysates corroborated the direct association of these proteins. Similarly, in embryonic fibroblasts from the respective knockout (KO) mice, the membrane content of the Cav1, Gβ, and NDPK B was found to be mutually dependent on one another. A redistribution of Cav1 and Gβ from the caveolae containing fractions of lower density to other membrane compartments with higher density could be detected by means of density gradient fractionation of membranes derived from NDPK A/B KO mouse embryonic fibroblasts (MEFs) and after shRNA-mediated NDPK B knockdown in H10 cardiomyocytes. This redistribution could be visualized by confocal microscopy analysis showing a decrease in the plasma membrane bound Cav1 in NDPK A/B KO cells and vice versa and a decrease in the plasma membrane pool of NDPK B in Cav1 KO cells. Consequently, ultrastructural analysis revealed a reduction of surface caveolae in the NDPK A/B KO cells. To prove that the disturbed subcellular localization of Cav1 in NDPK A/B KO MEFs as well as NDPK B in Cav1 KO MEFs is a result of the loss of NDPK B and Cav1, respectively, we performed rescue experiments. The adenoviral re-expression of NDPK B in NDPK A/B KO MEFs rescued the protein content and the plasma membrane localization of Cav1. The expression of an EGFP-Cav1 fusion protein in Cav1-KO cells induced a restoration of NDPK B expression levels and its appearance at the plasma membrane. We conclude from these findings that NDPK B, heterotrimeric G proteins, and caveolins are mutually dependent on each other for stabile localization and caveolae formation at the plasma membrane. The data point to a disturbed transport of caveolin/G protein/NDPK B complexes from intracellular membrane compartments if one of the components is missing.
Collapse
|
38
|
Ullrich ND, Fischer D, Kornblum C, Walter MC, Niggli E, Zorzato F, Treves S. Alterations of excitation-contraction coupling and excitation coupled Ca(2+) entry in human myotubes carrying CAV3 mutations linked to rippling muscle. Hum Mutat 2011; 32:309-17. [PMID: 21294223 PMCID: PMC3132216 DOI: 10.1002/humu.21431] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 12/06/2010] [Indexed: 11/08/2022]
Abstract
Rippling muscle disease is caused by mutations in the gene encoding caveolin-3 (CAV3), the muscle-specific isoform of the scaffolding protein caveolin, a protein involved in the formation of caveolae. In healthy muscle, caveolin-3 is responsible for the formation of caveolae, which are highly organized sarcolemmal clusters influencing early muscle differentiation, signalling and Ca2+ homeostasis. In the present study we examined Ca2+ homeostasis and excitation–contraction (E-C) coupling in cultured myotubes derived from two patients with Rippling muscle disease with severe reduction in caveolin-3 expression; one patient harboured the heterozygous c.84C>A mutation while the other patient harbored a homozygous splice-site mutation (c.102+ 2T>C) affecting the splice donor site of intron 1 of the CAV3 gene. Our results show that cells from control and rippling muscle disease patients had similar resting [Ca2+]i and 4-chloro-m-cresol-induced Ca2+ release but reduced KCl-induced Ca2+ influx. Detailed analysis of the voltage-dependence of Ca2+ transients revealed a significant shift of Ca2+ release activation to higher depolarization levels in CAV3 mutated cells. High resolution immunofluorescence analysis by Total Internal Fluorescence microscopy supports the hypothesis that loss of caveolin-3 leads to microscopic disarrays in the colocalization of the voltage-sensing dihydropyridine receptor and the ryanodine receptor, thereby reducing the efficiency of excitation–contraction coupling. Hum Mutat 32:309–317, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Nina D Ullrich
- Department of Physiology, University of Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
39
|
Couchoux H, Bichraoui H, Chouabe C, Altafaj X, Bonvallet R, Allard B, Ronjat M, Berthier C. Caveolin-3 is a direct molecular partner of the Cav1.1 subunit of the skeletal muscle L-type calcium channel. Int J Biochem Cell Biol 2011; 43:713-20. [PMID: 21262376 DOI: 10.1016/j.biocel.2011.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/18/2010] [Accepted: 01/17/2011] [Indexed: 12/14/2022]
Abstract
Caveolin-3 is the striated muscle specific isoform of the scaffolding protein family of caveolins and has been shown to interact with a variety of proteins, including ion channels. Mutations in the human CAV3 gene have been associated with several muscle disorders called caveolinopathies and among these, the P104L mutation (Cav-3(P104L)) leads to limb girdle muscular dystrophy of type 1C characterized by the loss of sarcolemmal caveolin. There is still no clear-cut explanation as to specifically how caveolin-3 mutations lead to skeletal muscle wasting. Previous results argued in favor of a role for caveolin-3 in dihydropyridine receptor (DHPR) functional regulation and/or T-tubular membrane localization. It appeared worth closely examining such a functional link and investigating if it could result from the direct physical interaction of the two proteins. Transient expression of Cav-3(P104L) or caveolin-3 specific siRNAs in C2C12 myotubes both led to a significant decrease of the L-type Ca(2+) channel maximal conductance. Immunolabeling analysis of adult skeletal muscle fibers revealed the colocalization of a pool of caveolin-3 with the DHPR within the T-tubular membrane. Caveolin-3 was also shown to be present in DHPR-containing triadic membrane preparations from which both proteins co-immunoprecipitated. Using GST-fusion proteins, the I-II loop of Ca(v)1.1 was identified as the domain interacting with caveolin-3, with an apparent affinity of 60nM. The present study thus revealed a direct molecular interaction between caveolin-3 and the DHPR which is likely to underlie their functional link and whose loss might therefore be involved in pathophysiological mechanisms associated to muscle caveolinopathies.
Collapse
Affiliation(s)
- Harold Couchoux
- Physiologie Intégrative Cellulaire et Moléculaire, Université Lyon 1, UMR CNRS 5123, Université de Lyon, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gazzerro E, Bonetto A, Minetti C. Caveolinopathies: translational implications of caveolin-3 in skeletal and cardiac muscle disorders. HANDBOOK OF CLINICAL NEUROLOGY 2011; 101:135-142. [PMID: 21496630 DOI: 10.1016/b978-0-08-045031-5.00010-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Caveolae are specialized lipid rafts localized on the cytoplasmic surface of the sarcolemmal membrane. Caveolae contribute to the maintenance of plasma membrane integrity, constitute specific macromolecular complexes that provide highly localized regulation of ion channels, and regulate vesicular trafficking and signal transduction. In skeletal muscle, the main structural assembly of caveolae is mediated by caveolin-3. Another family of adapter proteins, the cavins, is involved in the regulation of caveolae function and in the trafficking of caveolin-derived structures. Caveolin-3 defects lead to four distinct skeletal muscle disease phenotypes: limb-girdle muscular dystrophy, rippling muscle disease, distal myopathy, and hyperCKemia. Many patients show an overlap of these symptoms, and the same mutation can be linked to different clinical phenotypes. An ever-growing interest is also focused on the association between caveolin-3 mutations and heart disorders. Indeed, caveolin-3 mutants have been described in a patient with hypertrophic cardiomyopathy and two patients with dilated cardiomyopathy, and mutations in the caveolin-3 gene (CAV3) have been identified in patients affected by congenital long QT syndrome. Although caveolin-3 deficiency represents the primary event, multiple secondary molecular mechanisms lead to muscle tissue damage. Among these, sarcolemmal membrane alterations, disorganization of skeletal muscle T-tubule network, and disruption of distinct cell signaling pathways have been determined.
Collapse
Affiliation(s)
- E Gazzerro
- Unit of Muscular and Neurodegenerative Diseases, G. Gaslini Institute, Genova, Italy
| | | | | |
Collapse
|
41
|
Stuermer CAO. Microdomain-forming proteins and the role of the reggies/flotillins during axon regeneration in zebrafish. Biochim Biophys Acta Mol Basis Dis 2010; 1812:415-22. [PMID: 21147218 DOI: 10.1016/j.bbadis.2010.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 01/08/2023]
Abstract
The two proteins reggie-1 and reggie-2 (flotillins) were identified in axon-regenerating neurons in the central nervous system and shown to be essential for neurite growth and regeneration in fish and mammals. Reggies/flotillins are microdomain scaffolding proteins sharing biochemical properties with lipid raft molecules, form clusters at the cytoplasmic face of the plasma membrane and interact with signaling molecules in a cell type specific manner. In this review, reggie microdomains, lipid rafts, related scaffolding proteins and caveolin-which, however, are responsible for their own microdomains and functions-are introduced. Moreover, the function of the reggies in axon growth is demonstrated: neurons fail to extend axons after reggie knockdown. Furthermore, our current concept of the molecular mechanism underlying reggie function is presented: the association of glycosyl-phophatidyl inositol (GPJ)-anchored surface proteins with reggie microdomains elicits signals which activate src tyrosine and mitogen-activated protein kinases, as well as small guanosine 5'-triphosphate-hydrolyzing enzymes. This leads to the mobilization of intracellular vesicles and to the recruitment of bulk membrane and specific cargo proteins, such as cadherin, to specific sites of the plasma membrane such as the growth cone of elongating axons. Thus, reggies regulate the targeted delivery of cargo-a process which is required for process extension and growth. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
|
42
|
Abstract
Zebrafish are an increasingly popular vertebrate model organism in which to study biological phenomena. It has been widely used, especially in developmental biology and neurobiology, and many aspects of its development and physiology are similar to those of mammals. The popularity of zebrafish relies on its relatively low cost, rapid development and ease of genetic manipulation. Moreover, the optical transparency of the developing fish together with novel imaging techniques enable the direct visualization of complex phenomena at the level of the entire organism. This potential is now also being increasingly appreciated by the lipid research community. In the present review we summarize basic information on the lipid composition and distribution in zebrafish tissues, including lipoprotein metabolism, intestinal lipid absorption, the yolk lipids and their mobilization, as well as lipids in the nervous system. We also discuss studies in which zebrafish have been employed for the visualization of whole-body lipid distribution and trafficking. Finally, recent advances in using zebrafish as a model for lipid-related diseases, including atherosclerosis, obesity, diabetes and hepatic steatosis are highlighted. As the insights into zebrafish lipid metabolism increase, it is likely that zebrafish as a model organism will become an increasingly powerful tool in lipid research.
Collapse
|
43
|
Goody MF, Kelly MW, Lessard KN, Khalil A, Henry CA. Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo: Nrk2b and NAD+ in muscle morphogenesis. Dev Biol 2010; 344:809-26. [PMID: 20566368 DOI: 10.1016/j.ydbio.2010.05.513] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/22/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not beta-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn plays roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis.
Collapse
Affiliation(s)
- Michelle F Goody
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | | | | | | | | |
Collapse
|
44
|
Collett GP, Linton EA, Redman CWG, Sargent IL. Downregulation of caveolin-1 enhances fusion of human BeWo choriocarcinoma cells. PLoS One 2010; 5:e10529. [PMID: 20463894 PMCID: PMC2865536 DOI: 10.1371/journal.pone.0010529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 04/13/2010] [Indexed: 12/11/2022] Open
Abstract
Background Fusion of placental villous cytotrophoblasts with the overlying syncytiotrophoblast is essential for the maintenance of successful pregnancy, and disturbances in this process have been implicated in pathological conditions such as pre-eclampsia and intra-uterine growth retardation. Caveolin-1 has been shown to be expressed in human villous cytotrophoblast and to be downregulated during fusion into syncytiotrophoblast but it is unclear whether it plays a role in this process. Methodology/Principal Findings We used RNA interference to determine whether caveolin-1 plays a role in differentiation and fusion in the BeWo choriocarcinoma cell line, a model of villous cytotrophoblast fusion. Assessment of cell fusion by desmosomal protein immunostaining revealed that cells transfected with caveolin-1 siRNA showed significantly enhanced fusion in response to treatment with dibutyryl cyclic AMP compared with cells transfected with a non-silencing control. Furthermore, caveolin-1 knockdown alone was sufficient to promote spontaneous fusion. In addition, biochemical differentiation, assessed by expression of placental alkaline phosphatase, was upregulated in caveolin-1 siRNA-transfected cells, with or without dbcAMP treatment. Assessment of Akt phosphorylation showed that caveolin-1 knockdown resulted in a significant reduction in phosphorylation at Thr308. Conclusions/Significance Taken together, these results suggest that caveolin-1 regulates BeWo cell differentiation and fusion, possibly through a mechanism involving modulation of Akt activity.
Collapse
Affiliation(s)
- Gavin P Collett
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom.
| | | | | | | |
Collapse
|
45
|
Dowling JJ, Low SE, Busta AS, Feldman EL. Zebrafish MTMR14 is required for excitation-contraction coupling, developmental motor function and the regulation of autophagy. Hum Mol Genet 2010; 19:2668-81. [PMID: 20400459 DOI: 10.1093/hmg/ddq153] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myotubularins are a family of dual-specificity phosphatases that act to modify phosphoinositides and regulate membrane traffic. Mutations in several myotubularins are associated with human disease. Sequence changes in MTM1 and MTMR14 (also known as Jumpy) have been detected in patients with a severe skeletal myopathy called centronuclear myopathy. MTM1 has been characterized in vitro and in several model systems, while the function of MTMR14 and its specific role in muscle development and disease is much less well understood. We have previously reported that knockdown of zebrafish MTM1 results in significantly impaired motor function and severe histopathologic changes in skeletal muscle that are characteristic of human centronuclear myopathy. In the current study, we examine zebrafish MTMR14 using gene dosage manipulation. As with MTM1 knockdown, morpholino-mediated knockdown of MTMR14 results in morphologic abnormalities, a developmental motor phenotype characterized by diminished spontaneous contractions and abnormal escape response, and impaired excitation-contraction coupling. In contrast to MTM1 knockdown, however, muscle ultrastructure is unaffected. Double knockdown of both MTM1 and MTMR14 significantly impairs motor function and alters skeletal muscle ultrastructure. The combined effect of reducing levels of both MTMR14 and MTM1 is significantly more severe than either knockdown alone, an effect which is likely mediated, at least in part, by increased autophagy. In all, our results suggest that MTMR14 is required for motor function and, in combination with MTM1, is required for myocyte homeostasis and normal embryonic development.
Collapse
Affiliation(s)
- J J Dowling
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
The zebrafish is a powerful vertebrate system with great advantages for both forward and reverse genetic screens and as a model for human disease conditions. Light microscopy has been used extensively to study zebrafish development but less frequently have these studies been combined with ultrastructural information. Zebrafish embryos are ideal for electron microscopy (EM) with a single transverse section containing many different cell types and tissues. However, conventional methods of EM do not provide optimal preservation of all tissues and are usually incompatible with immunolabelling and visualisation of expressed fluorescently tagged proteins. Here we examine methods that overcome these problems. We summarise a range of methods, applicable to the ultrastructural analysis of zebrafish embryos, including methods for fast freezing and processing of zebrafish embryos. These methods preserve antigenicity, ultrastructure and GFP fluorescence even after embedding in resin. In addition, they are compatible with electron tomography. These methods provide a new set of research tools that provide an additional level of information, complementing current methods for study of this widely used model system.
Collapse
|
47
|
Serra M, Scotlandi K. Caveolins in the development and diseases of musculoskeletal system. Cancer Lett 2009; 284:113-21. [DOI: 10.1016/j.canlet.2009.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/06/2009] [Accepted: 02/09/2009] [Indexed: 01/09/2023]
|
48
|
The interaction of nucleoside diphosphate kinase B with Gbetagamma dimers controls heterotrimeric G protein function. Proc Natl Acad Sci U S A 2009; 106:16269-74. [PMID: 19805292 DOI: 10.1073/pnas.0901679106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Heterotrimeric G proteins in physiological and pathological processes have been extensively studied so far. However, little is known about mechanisms regulating the cellular content and compartmentalization of G proteins. Here, we show that the association of nucleoside diphosphate kinase B (NDPK B) with the G protein betagamma dimer (Gbetagamma) is required for G protein function in vivo. In zebrafish embryos, morpholino-mediated knockdown of zebrafish NDPK B, but not NDPK A, results in a severe decrease in cardiac contractility. The depletion of NDPK B is associated with a drastic reduction in Gbeta(1)gamma(2) dimer expression. Moreover, the protein levels of the adenylyl cyclase (AC)-regulating Galpha(s) and Galpha(i) subunits as well as the caveolae scaffold proteins caveolin-1 and -3 are strongly reduced. In addition, the knockdown of the zebrafish Gbeta(1) orthologs, Gbeta(1) and Gbeta(1like), causes a cardiac phenotype very similar to that of NDPK B morphants. The loss of Gbeta(1)/Gbeta(1like) is associated with a down-regulation in caveolins, AC-regulating Galpha-subunits, and most important, NDPK B. A comparison of embryonic fibroblasts from wild-type and NDPK A/B knockout mice demonstrate a similar reduction of G protein, caveolin-1 and basal cAMP content in mammalian cells that can be rescued by re-expression of human NDPK B. Thus, our results suggest a role for the interaction of NDPK B with Gbetagamma dimers and caveolins in regulating membranous G protein content and maintaining normal G protein function in vivo.
Collapse
|
49
|
Zhang R, Yang J, Zhu J, Xu X. Depletion of zebrafish Tcap leads to muscular dystrophy via disrupting sarcomere-membrane interaction, not sarcomere assembly. Hum Mol Genet 2009; 18:4130-40. [PMID: 19679566 DOI: 10.1093/hmg/ddp362] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tcap/telethonin encodes a Z-disc protein that plays important roles in sarcomere assembly, sarcomere-membrane interaction and stretch sensing. It remains unclear why mutations in Tcap lead to limb-girdle muscular dystrophy 2G (LGMD2G) in human patients. Here, we cloned tcap in zebrafish and conducted genetic studies. We show that tcap is functionally conserved, as the Tcap protein appears in the sarcomeric Z-disc and reduction of Tcap resulted in muscular dystrophy-like phenotypes including deformed muscle structure and impaired swimming ability. However, the observations that Tcap integrates into the sarcomere at a stage after the Z-disc becomes periodic, and that the sarcomere remains intact in tcap morphants, suggest that defective sarcomere assembly does not contribute to this particular type of muscular dystrophy. Instead, a defective interaction between the sarcomere and plasma membrane was detected, which was further underscored by the disrupted development of the T-tubule system. Pertinent to a potential function in stretch sensor signaling, zebrafish tcap exhibits a variable expression pattern during somitogenesis. The variable expression is inducible by stretch force, and the expression level of Tcap is negatively regulated by integrin-link kinase (ILK), a protein kinase that is involved in stretch sensing signaling. Together, our genetic studies of tcap in zebrafish suggested that pathogenesis in LGMD2G is due to a disruption of sarcomere-T-tubular interaction, but not of sarcomere assembly per se. In addition, our data prompted a novel hypothesis that predicts that the transcription level of Tcap can be regulated by the stretch force to ensure proper sarcomere-membrane interaction in striated muscles.
Collapse
Affiliation(s)
- Ruilin Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
50
|
Abstract
In muscle tissue the protein caveolin-3 forms caveolae--flask-shaped invaginations localized on the cytoplasmic surface of the sarcolemmal membrane. Caveolae have a key role in the maintenance of plasma membrane integrity and in the processes of vesicular trafficking and signal transduction. Mutations in the caveolin-3 gene lead to skeletal muscle pathology through multiple pathogenetic mechanisms. Indeed, caveolin-3 deficiency is associated to sarcolemmal membrane alterations, disorganization of skeletal muscle T-tubule network and disruption of distinct cell-signaling pathways. To date, there have been 30 caveolin-3 mutations identified in the human population. Caveolin-3 defects lead to four distinct skeletal muscle disease phenotypes: limb girdle muscular dystrophy, rippling muscle disease, distal myopathy, and hyperCKemia. In addition, one caveolin-3 mutant has been described in a case of hypertrophic cardiomyopathy. Many patients show an overlap of these symptoms and the same mutation can be linked to different clinical phenotypes. This variability can be related to additional genetic or environmental factors. This review will address caveolin-3 biological functions in muscle cells and will describe the muscle and heart disease phenotypes associated with caveolin-3 mutations.
Collapse
|