1
|
Philipp TM, Bottiglieri T, Clapper W, Liu K, Rodems S, Szabo C, Majtan T. Mechanism of action and impact of thiol homeostasis on efficacy of an enzyme replacement therapy for classical homocystinuria. Redox Biol 2024; 77:103383. [PMID: 39366068 PMCID: PMC11489331 DOI: 10.1016/j.redox.2024.103383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024] Open
Abstract
Homocystinuria (HCU) due to cystathionine beta-synthase (CBS) deficiency is characterized by elevated plasma and tissue homocysteine levels. There is no cure, but HCU is typically managed by methionine/protein restriction and vitamin B6 supplementation. Enzyme replacement therapy (ERT) based on human CBS has been developed and has shown significant efficacy correcting HCU phenotype in several mouse models by bringing plasma total homocysteine below the clinically relevant 100 μM threshold. As the reactive nature of homocysteine promotes disulfide formation and protein binding, and ERT is unable to normalize plasma total homocysteine levels, the mechanism of action of ERT in HCU remains to be further characterized. Here we showed that only a reduced homocysteine serves as a substrate for CBS and its availability restricts the homocysteine-degrading capacity of CBS. We also demonstrated that cells export homocysteine in its reduced form, which is efficiently metabolized by CBS in the culture medium. Availability of serine, a CBS co-substrate, was not a limiting factor in our cell-based model. Biological reductants, such as N-acetylcysteine, MESNA or cysteamine, increased the availability of the reduced homocysteine and thus promoted its subsequent CBS-based elimination. In a transgenic I278T mouse model of HCU, administration of biological reductants significantly increased the proportion of protein-unbound homocysteine in plasma, which improved the efficacy of the co-administered CBS-based ERT, as evidenced by significantly lower plasma total homocysteine levels. These results clarify the mechanism of action of CBS-based ERT and unveil novel pharmacological approaches to further increase its efficacy.
Collapse
Affiliation(s)
- Thilo Magnus Philipp
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, Switzerland
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, 75204, USA
| | | | - Kai Liu
- Travere Therapeutics, Inc., San Diego, CA, 92130, USA
| | - Steve Rodems
- Travere Therapeutics, Inc., San Diego, CA, 92130, USA
| | - Csaba Szabo
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, Switzerland
| | - Tomas Majtan
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, Switzerland.
| |
Collapse
|
2
|
Majtan T, Olsen T, Sokolova J, Krijt J, Křížková M, Ida T, Ditrói T, Hansikova H, Vit O, Petrak J, Kuchař L, Kruger WD, Nagy P, Akaike T, Kožich V. Deciphering pathophysiological mechanisms underlying cystathionine beta-synthase-deficient homocystinuria using targeted metabolomics, liver proteomics, sphingolipidomics and analysis of mitochondrial function. Redox Biol 2024; 73:103222. [PMID: 38843767 PMCID: PMC11190558 DOI: 10.1016/j.redox.2024.103222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Cystathionine β-synthase (CBS)-deficient homocystinuria (HCU) is an inherited disorder of sulfur amino acid metabolism with varying severity and organ complications, and a limited knowledge about underlying pathophysiological processes. Here we aimed at getting an in-depth insight into disease mechanisms using a transgenic mouse model of HCU (I278T). METHODS We assessed metabolic, proteomic and sphingolipidomic changes, and mitochondrial function in tissues and body fluids of I278T mice and WT controls. Furthermore, we evaluated the efficacy of methionine-restricted diet (MRD) in I278T mice. RESULTS In WT mice, we observed a distinct tissue/body fluid compartmentalization of metabolites with up to six-orders of magnitude differences in concentrations among various organs. The I278T mice exhibited the anticipated metabolic imbalance with signs of an increased production of hydrogen sulfide and disturbed persulfidation of free aminothiols. HCU resulted in a significant dysregulation of liver proteome affecting biological oxidations, conjugation of compounds, and metabolism of amino acids, vitamins, cofactors and lipids. Liver sphingolipidomics indicated upregulation of the pro-proliferative sphingosine-1-phosphate signaling pathway. Liver mitochondrial function of HCU mice did not seem to be impaired compared to controls. MRD in I278T mice improved metabolic balance in all tissues and substantially reduced dysregulation of liver proteome. CONCLUSION The study highlights distinct tissue compartmentalization of sulfur-related metabolites in normal mice, extensive metabolome, proteome and sphingolipidome disruptions in I278T mice, and the efficacy of MRD to alleviate some of the HCU-related biochemical abnormalities.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, 1700, Switzerland.
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jitka Sokolova
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Michaela Křížková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
| | - Hana Hansikova
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Ondrej Vit
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Jiri Petrak
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Ladislav Kuchař
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Warren D Kruger
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary; Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology Research Group, University of Veterinary Medicine, 1078, Budapest, Hungary; Chemistry Institute, University of Debrecen, 4012, Debrecen, Hungary
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Viktor Kožich
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic.
| |
Collapse
|
3
|
Kožich V, Majtan T. Komrower Memorial Lecture 2023. Molecular basis of phenotype expression in homocystinuria: Where are we 30 years later? J Inherit Metab Dis 2024. [PMID: 38873792 DOI: 10.1002/jimd.12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
This review summarises progress in the research of homocystinuria (HCU) in the past three decades. HCU due to cystathionine β-synthase (CBS) was discovered in 1962, and Prof. Jan Peter Kraus summarised developments in the field in the first-ever Komrower lecture in 1993. In the past three decades, significant advancements have been achieved in the biology of CBS, including gene organisation, tissue expression, 3D structures, and regulatory mechanisms. Renewed interest in CBS arose in the late 1990s when this enzyme was implicated in biogenesis of H2S. Advancements in genetic and biochemical techniques enabled the identification of several hundreds of pathogenic CBS variants and the misfolding of missense mutations as a common mechanism. Several cellular, invertebrate and murine HCU models allowed us to gain insights into functional and metabolic pathophysiology of the disease. Establishing the E-HOD consortium and patient networks, HCU Network Australia and HCU Network America, offered new possibilities for acquiring clinical data in registries and data on patients´ quality of life. A recent analysis of data from the E-HOD registry showed that the clinical variability of HCU is broad, extending from severe childhood disease to milder (late) adulthood forms, which typically respond to pyridoxine. Pyridoxine responsiveness appears to be the key factor determining the clinical course of HCU. Increased awareness about HCU played a role in developing novel therapies, such as gene therapy, correction of misfolding by chaperones, removal of methionine from the gut and enzyme therapies that decrease homocysteine or methionine in the circulation.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Tomas Majtan
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Skvorak K, Mitchell V, Teadt L, Franklin KA, Lee HO, Kruse N, Huitt-Roehl C, Hang J, Du F, Galanie S, Guan S, Aijaz H, Zhang N, Rajkovic G, Kruger WD, Ismaili MHA, Huisman G, McCluskie K, Silverman AP. An orally administered enzyme therapeutic for homocystinuria that suppresses homocysteine by metabolizing methionine in the gastrointestinal tract. Mol Genet Metab 2023; 139:107653. [PMID: 37463544 DOI: 10.1016/j.ymgme.2023.107653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Classical homocystinuria (HCU) is a rare inborn error of amino acid metabolism characterized by accumulation of homocysteine, an intermediate product of methionine metabolism, leading to significant systemic toxicities, particularly within the vascular, skeletal, and ocular systems. Most patients require lifelong dietary therapy with severe restriction of natural protein to minimize methionine intake, and many patients still struggle to maintain healthy homocysteine levels. Since eliminating methionine from the diet reduces homocysteine levels, we hypothesized that an enzyme that can degrade methionine within the gastrointestinal (GI) tract could help HCU patients maintain healthy levels while easing natural protein restrictions. We describe the preclinical development of CDX-6512, a methionine gamma lyase (MGL) enzyme that was engineered for stability and activity within the GI tract for oral administration to locally degrade methionine. CDX-6512 is stable to low pH and intestinal proteases, enabling it to survive the harsh GI environment without enteric coating and to degrade methionine freed from dietary protein within the small intestine. Administering CDX-6512 to healthy non-human primates following a high protein meal led to a dose-dependent suppression of plasma methionine. In Tg-I278T Cbs-/- mice, an animal model that recapitulates aspects of HCU disease including highly elevated serum homocysteine levels, oral dosing of CDX-6512 after a high protein meal led to suppression in serum levels of both methionine and homocysteine. When animals received a daily dose of CDX-6512 with a high protein meal for two weeks, the Tg-I278T Cbs-/- mice maintained baseline homocysteine levels, whereas homocysteine levels in untreated animals increased by 39%. These preclinical data demonstrate the potential of CDX-6512 as an oral enzyme therapy for HCU.
Collapse
Affiliation(s)
- Kristen Skvorak
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Vesna Mitchell
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Leann Teadt
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Hyung-Ok Lee
- Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Nikki Kruse
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Julie Hang
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Faye Du
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Steven Guan
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Hera Aijaz
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Nianliu Zhang
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Warren D Kruger
- Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | | | - Gjalt Huisman
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | | |
Collapse
|
5
|
Gupta S, Lee HO, Wang L, Kruger WD. Examination of two different proteasome inhibitors in reactivating mutant human cystathionine β-synthase in mice. PLoS One 2023; 18:e0286550. [PMID: 37319242 PMCID: PMC10270616 DOI: 10.1371/journal.pone.0286550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Classic homocystinuria is an inborn error of metabolism caused mainly by missense mutations leading to misfolded and/or unstable human cystathionine β-synthase (CBS) protein, causing the accumulation of excess total homocysteine (tHcy) in tissues. Previously, it has been shown that certain missense containing human CBS proteins can be functionally rescued in mouse models of CBS deficiency by treatment with proteasome inhibitors. The rescue by proteasome inhibitors is thought to work both by inhibiting the degradation of misfolded CBS protein and by inducing the levels of heat-shock chaperone proteins in the liver. Here we examine the effectiveness of two FDA approved protease inhibitors, carfilzomib and bortezomib, on various transgenic mouse models of human CBS deficiency. Our results show that although both drugs are effective in inducing the liver chaperone proteins Hsp70 and Hsp27, and are effective in inhibiting proteasome function, bortezomib was somewhat more robust in restoring the mutant CBS function. Moreover, there was no significant correlation between proteasome inhibition and CBS activity, suggesting that some of bortezomib's effects are via other mechanisms. We also test the use of low-doses of bortezomib and carfilzomib on various mouse models for extended periods of time and find that while low-doses are less toxic, they are also less effective at restoring CBS function. Overall, these results show that while restoration of mutant CBS function is possible with proteasome inhibitors, the exact mechanism is complicated and it will likely be too toxic for long-term patient treatment.
Collapse
Affiliation(s)
- Sapna Gupta
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Hyung-Ok Lee
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Liqun Wang
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Warren D. Kruger
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| |
Collapse
|
6
|
Chen GL, Zeng B, Jiang H, Daskoulidou N, Saurabh R, Chitando RJ, Xu SZ. Ca 2+ Influx through TRPC Channels Is Regulated by Homocysteine-Copper Complexes. Biomolecules 2023; 13:952. [PMID: 37371532 DOI: 10.3390/biom13060952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
An elevated level of circulating homocysteine (Hcy) has been regarded as an independent risk factor for cardiovascular disease; however, the clinical benefit of Hcy lowering-therapy is not satisfying. To explore potential unrevealed mechanisms, we investigated the roles of Ca2+ influx through TRPC channels and regulation by Hcy-copper complexes. Using primary cultured human aortic endothelial cells and HEK-293 T-REx cells with inducible TRPC gene expression, we found that Hcy increased the Ca2+ influx in vascular endothelial cells through the activation of TRPC4 and TRPC5. The activity of TRPC4 and TRPC5 was regulated by extracellular divalent copper (Cu2+) and Hcy. Hcy prevented channel activation by divalent copper, but monovalent copper (Cu+) had no effect on the TRPC channels. The glutamic acids (E542/E543) and the cysteine residue (C554) in the extracellular pore region of the TRPC4 channel mediated the effect of Hcy-copper complexes. The interaction of Hcy-copper significantly regulated endothelial proliferation, migration, and angiogenesis. Our results suggest that Hcy-copper complexes function as a new pair of endogenous regulators for TRPC channel activity. This finding gives a new understanding of the pathogenesis of hyperhomocysteinemia and may explain the unsatisfying clinical outcome of Hcy-lowering therapy and the potential benefit of copper-chelating therapy.
Collapse
Affiliation(s)
- Gui-Lan Chen
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Bo Zeng
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Hongni Jiang
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Nikoleta Daskoulidou
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Rahul Saurabh
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Rumbidzai J Chitando
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Shang-Zhong Xu
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
7
|
Majtan T, Kožich V, Kruger WD. Recent therapeutic approaches to cystathionine beta-synthase-deficient homocystinuria. Br J Pharmacol 2023; 180:264-278. [PMID: 36417581 PMCID: PMC9822868 DOI: 10.1111/bph.15991] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Cystathionine beta-synthase (CBS)-deficient homocystinuria (HCU) is the most common inborn error of sulfur amino acid metabolism. The pyridoxine non-responsive form of the disease manifests itself by massively increasing plasma and tissue concentrations of homocysteine, a toxic intermediate of methionine metabolism that is thought to be the major cause of clinical complications including skeletal deformities, connective tissue defects, thromboembolism and cognitive impairment. The current standard of care involves significant dietary interventions that, despite being effective, often adversely affect quality of life of HCU patients, leading to poor adherence to therapy and inadequate biochemical control with clinical complications. In recent years, the unmet need for better therapeutic options has resulted in development of novel enzyme and gene therapies and exploration of pharmacological approaches to rescue CBS folding defects caused by missense pathogenic mutations. Here, we review scientific evidence and current state of affairs in development of recent approaches to treat HCU.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, 1700, Switzerland
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic
- Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Warren D. Kruger
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| |
Collapse
|
8
|
Kožich V, Schwahn BC, Sokolová J, Křížková M, Ditroi T, Krijt J, Khalil Y, Křížek T, Vaculíková-Fantlová T, Stibůrková B, Mills P, Clayton P, Barvíková K, Blessing H, Sykut-Cegielska J, Dionisi-Vici C, Gasperini S, García-Cazorla Á, Haack TB, Honzík T, Ješina P, Kuster A, Laugwitz L, Martinelli D, Porta F, Santer R, Schwarz G, Nagy P. Human ultrarare genetic disorders of sulfur metabolism demonstrate redundancies in H 2S homeostasis. Redox Biol 2022; 58:102517. [PMID: 36306676 PMCID: PMC9615310 DOI: 10.1016/j.redox.2022.102517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Regulation of H2S homeostasis in humans is poorly understood. Therefore, we assessed the importance of individual enzymes in synthesis and catabolism of H2S by studying patients with respective genetic defects. We analyzed sulfur compounds (including bioavailable sulfide) in 37 untreated or insufficiently treated patients with seven ultrarare enzyme deficiencies and compared them to 63 controls. Surprisingly, we observed that patients with severe deficiency in cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE) - the enzymes primarily responsible for H2S synthesis - exhibited increased and normal levels of bioavailable sulfide, respectively. However, an approximately 21-fold increase of urinary homolanthionine in CBS deficiency strongly suggests that lacking CBS activity is compensated for by an increase in CSE-dependent H2S synthesis from accumulating homocysteine, which suggests a control of H2S homeostasis in vivo. In deficiency of sulfide:quinone oxidoreductase - the first enzyme in mitochondrial H2S oxidation - we found normal H2S concentrations in a symptomatic patient and his asymptomatic sibling, and elevated levels in an asymptomatic sibling, challenging the requirement for this enzyme in catabolizing H2S under physiological conditions. Patients with ethylmalonic encephalopathy and sulfite oxidase/molybdenum cofactor deficiencies exhibited massive accumulation of thiosulfate and sulfite with formation of large amounts of S-sulfocysteine and S-sulfohomocysteine, increased renal losses of sulfur compounds and concomitant strong reduction in plasma total cysteine. Our results demonstrate the value of a comprehensive assessment of sulfur compounds in severe disorders of homocysteine/cysteine metabolism and provide evidence for redundancy and compensatory mechanisms in the maintenance of H2S homeostasis. Cystathionine γ-lyase can compensate for decreased H2S synthesis in cystathionine β-synthase deficiency. Sulfide:quinone oxidoreductase deficiency is compatible with normal H2S plasma levels under non-stressed conditions. Persulfide dioxygenase deficiency (ethylmalonic encephalopathy) causes the largest accumulation of H2S among disorders of sulfur metabolism. Excess sulfite forms S-sulfocysteine and S-sulfohomocysteine, and interferes with vitamin B6 metabolism. S-sulfocysteine correlates directly with sulfite and is a stable biomarker of sulfite accumulation.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic,Corresponding author. Department of Pediatrics and Inherited Metabolic Disorders, Charles University, Medicine and General University Hospital in Prague, Ke Karlovu 2, 128 08, Praha 2, Czech Republic.
| | - Bernd C Schwahn
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, United Kingdom
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Michaela Křížková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Tamas Ditroi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Youssef Khalil
- Genetics & Genomic Medicine Department, UCL GOS Institute of Child Health, London, UK
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Vaculíková-Fantlová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Blanka Stibůrková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic,Institute of Rheumatology, Prague, Czech Republic
| | - Philippa Mills
- Genetics & Genomic Medicine Department, UCL GOS Institute of Child Health, London, UK
| | - Peter Clayton
- Genetics & Genomic Medicine Department, UCL GOS Institute of Child Health, London, UK
| | - Kristýna Barvíková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Holger Blessing
- Kinder- und Jugendklinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Pediatrics, The Institute of Mother and Child, Warsaw, Poland
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Serena Gasperini
- Metabolic Rare Diseases Unit, Department of Pediatrics, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Ángeles García-Cazorla
- Inborn Errors of Metabolism Unit, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tomáš Honzík
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Ješina
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Alice Kuster
- Center for Inborn Errors of Metabolism, Pediatric Intensive Care Unit, University Hospital of Nantes, Nantes, France
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany,Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco Porta
- Department of Pediatrics, Metabolic diseases, AOU Città della Salute e della Scienza, University of Torino, Torino, Italy
| | - René Santer
- Department of Pediatrics, University Medical Centre Eppendorf, Hamburg, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany,Corresponding author. Institute of Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 4750674, Koeln, Germany.
| | - Peter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary,Department of Anatomy and Histology, ELKH-ÁTE Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary,Chemistry Institute, University of Debrecen, Debrecen, Hungary,Corresponding author. Department of Molecular Immunology and Toxicology, National Institute of Oncology, 1122 Budapest, Ráth György u. 7-9., Hungary.
| |
Collapse
|
9
|
Extracellular 5'-methylthioadenosine inhibits intracellular symmetric dimethylarginine protein methylation of FUSE-element binding proteins. J Biol Chem 2022; 298:102367. [PMID: 35963436 PMCID: PMC9467882 DOI: 10.1016/j.jbc.2022.102367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022] Open
Abstract
Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway that converts the polyamine synthesis byproduct 5'-deoxy-5'-methylthioadenosine (MTA) into methionine. Inactivation of MTAP, often by homozygous deletion, is found in both solid and hematologic malignancies and is one of the most frequently observed genetic alterations in human cancer. Previous work established that MTAP-deleted cells accumulate MTA and contain decreased amounts of proteins with arginine residues symmetrically dimethylated (sDMA). These findings led to the hypothesis that accumulation of intracellular MTA inhibits the arginine protein methylase (PRMT5) responsible for bulk protein sDMAylation. Here, we confirm that MTAP-deleted cells have increased MTA accumulation and reduced protein sDMAylation. However, we also show that addition of extracellular MTA can cause a dramatic reduction of the steady-state levels of sDMA-containing proteins in MTAP+ cells, even though no sustained increase in intracellular MTA is found due to catabolism of MTA by MTAP. We determined that inhibition of protein sDMAylation by extracellular MTA occurs within 48 hours, is reversible, and is specific. In addition, we have identified two enhancer-binding proteins, FUBP1 and FUBP3, that are differentially sDMAylated in response to MTAP and MTA. These proteins work via the far upstream element (FUSE)-site located upstream of Myc and other promoters. Using a transcription reporter construct containing the FUSE-site, we demonstrate that MTA addition can reduce transcription, suggesting the reduction in FUBP1 and FUBP3 sDMAylation has functional consequences. Overall, our findings show that extracellular MTA can inhibit protein sDMAylation and that this inhibition can affect FUBP function.
Collapse
|
10
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
11
|
Lee HO, Salami CO, Sondhi D, Kaminsky SM, Crystal RG, Kruger WD. Long-term functional correction of cystathionine β-synthase deficiency in mice by adeno-associated viral gene therapy. J Inherit Metab Dis 2021; 44:1382-1392. [PMID: 34528713 PMCID: PMC8578459 DOI: 10.1002/jimd.12437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
Cystathionine β-synthase (CBS) deficiency is a recessive inborn error of sulfur metabolism characterized by elevated blood levels of total homocysteine (tHcy). Patients diagnosed with CBS deficiency are currently treated by a combination of vitamin supplementation and restriction of foods containing the homocysteine precursor methionine, but the effectiveness of this therapy is limited due to poor compliance. A mouse model for CBS deficiency (Tg-I278T Cbs-/- ) was used to evaluate a potential gene therapy approach to treat CBS deficiency utilizing an AAVrh.10-based vector containing the human CBS cDNA downstream of the constitutive, strong CAG promoter (AAVrh.10hCBS). Mice were administered a single dose of virus and followed for up to 1 year. The data demonstrated a dose-dependent increase in liver CBS activity and a dose-dependent decrease in serum tHcy. Liver CBS enzyme activity at 1 year was similar to Cbs+/- control mice. Mice given the highest dose (5.6 × 1011 genomes/mouse) had mean serum tHcy decrease of 97% 1 week after injection and an 81% reduction 1 year after injection. Treated mice had either full- or substantial correction of alopecia, bone loss, and fat mass phenotypes associated with Cbs deficiency in mice. Our findings show that AAVrh.10-based gene therapy is highly effective in treating CBS deficiency in mice and supports additional pre-clinical testing for eventual use human trials.
Collapse
Affiliation(s)
- Hyung-Ok Lee
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Christiana O. Salami
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Stephen M. Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Warren D. Kruger
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Correspondence should be addressed to: Warren Kruger, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, Telephone: 215-728-3030, Fax: 215-214-1623,
| |
Collapse
|
12
|
Gupta S, Wang L, Slifker MJ, Cai KQ, Maclean KN, Wasek B, Bottiglieri T, Kruger WD. Analysis of differential neonatal lethality in cystathionine β-synthase deficient mouse models using metabolic profiling. FASEB J 2021; 35:e21629. [PMID: 33949005 DOI: 10.1096/fj.202100302r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Cystathionine beta-synthase (CBS) is a key enzyme of the trans-sulfuration pathway that converts homocysteine to cystathionine. Loss of CBS activity due to mutation results in CBS deficiency, an inborn error of metabolism characterized by extreme elevation of plasma total homocysteine (tHcy). C57BL6 mice containing either a homozygous null mutation in the cystathionine β-synthase (Cbs-/- ) gene or an inactive human CBS protein (Tg-G307S Cbs-/- ) are born in mendelian numbers, but the vast majority die between 18 and 21 days of age due to liver failure. However, adult Cbs null mice that express a hypomorphic allele of human CBS as a transgene (Tg-I278T Cbs-/- ) show almost no neonatal lethality despite having serum tHcy levels similar to mice with no CBS activity. Here, we characterize liver and serum metabolites in neonatal Cbs+/- , Tg-G307S Cbs-/- , and Tg-I278T Cbs-/- mice at 6, 10, and 17 days of age to understand this difference. In serum, we observe similar elevations in tHcy in both Tg-G307S Cbs-/- and Tg-I278T Cbs-/- compared to control animals, but methionine is much more severely elevated in Tg-G307S Cbs-/- mice. Large scale metabolomic analysis of liver tissue confirms that both methionine and methionine-sulfoxide are significantly more elevated in Tg-G307S Cbs-/- animals, along with significant differences in several other metabolites including hexoses, amino acids, other amines, lipids, and carboxylic acids. Our data are consistent with a model that the neonatal lethality observed in CBS-null mice is driven by excess methionine resulting in increased stress on a variety of related pathways including the urea cycle, TCA cycle, gluconeogenesis, and phosphatidylcholine biosynthesis.
Collapse
Affiliation(s)
- Sapna Gupta
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Liqun Wang
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Michael J Slifker
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
13
|
Cal-Kayitmazbatir S, Kulkoyluoglu-Cotul E, Growe J, Selby CP, Rhoades SD, Malik D, Oner H, Asimgil H, Francey LJ, Sancar A, Kruger WD, Hogenesch JB, Weljie A, Anafi RC, Kavakli IH. CRY1-CBS binding regulates circadian clock function and metabolism. FEBS J 2021; 288:614-639. [PMID: 32383312 PMCID: PMC7648728 DOI: 10.1111/febs.15360] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Circadian disruption influences metabolic health. Metabolism modulates circadian function. However, the mechanisms coupling circadian rhythms and metabolism remain poorly understood. Here, we report that cystathionine β-synthase (CBS), a central enzyme in one-carbon metabolism, functionally interacts with the core circadian protein cryptochrome 1 (CRY1). In cells, CBS augments CRY1-mediated repression of the CLOCK/BMAL1 complex and shortens circadian period. Notably, we find that mutant CBS-I278T protein, the most common cause of homocystinuria, does not bind CRY1 or regulate its repressor activity. Transgenic CbsZn/Zn mice, while maintaining circadian locomotor activity period, exhibit reduced circadian power and increased expression of E-BOX outputs. CBS function is reciprocally influenced by CRY1 binding. CRY1 modulates enzymatic activity of the CBS. Liver extracts from Cry1-/- mice show reduced CBS activity that normalizes after the addition of exogenous wild-type (WT) CRY1. Metabolomic analysis of WT, CbsZn/Zn , Cry1-/- , and Cry2-/- samples highlights the metabolic importance of endogenous CRY1. We observed temporal variation in one-carbon and transsulfuration pathways attributable to CRY1-induced CBS activation. CBS-CRY1 binding provides a post-translational switch to modulate cellular circadian physiology and metabolic control.
Collapse
Affiliation(s)
- Sibel Cal-Kayitmazbatir
- Department Molecular Biology and Genetics, Koc University
Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Eylem Kulkoyluoglu-Cotul
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Jacqueline Growe
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher P. Selby
- Department of Biochemistry and Biophysics, University of
North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Seth D. Rhoades
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dania Malik
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hasimcan Oner
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Hande Asimgil
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Lauren J. Francey
- Divisions of Human Genetics and Immunobiology, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of
North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Warren D. Kruger
- Cancer Biology Program, Fox Chase Cancer Center,
Philadelphia, PA, USA
| | - John B. Hogenesch
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Divisions of Human Genetics and Immunobiology, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Aalim Weljie
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ron C. Anafi
- Department of Medicine, Chronobiology and Sleep Institute,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ibrahim Halil Kavakli
- Department Molecular Biology and Genetics, Koc University
Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| |
Collapse
|
14
|
Park I, Johnson LK, Cox A, Branchford BR, Paola JD, Bublil EM, Majtan T. Hypermethioninemia Leads to Fatal Bleeding and Increased Mortality in a Transgenic I278T Mouse Model of Homocystinuria. Biomedicines 2020; 8:biomedicines8080244. [PMID: 32722248 PMCID: PMC7459533 DOI: 10.3390/biomedicines8080244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 01/20/2023] Open
Abstract
Severely elevated plasma homocysteine and methionine lead to thromboembolic events and strokes in homocystinuric (HCU) patients. Mouse models of HCU failed to exhibit prothrombotic phenotype, presumably due to lack of hypermethioninemia. We evaluated the impact of hypermethioninemia together with hyperhomocysteinemia on murine HCU phenotype and compared the efficacy of the current and novel therapies for HCU. High methionine intake decreased survival of I278T mice, which died from intestinal bleeding with hepatic and pancreatic failure. I278T mice on normal or increased methionine intake developed endothelial dysfunction, but paradoxically demonstrated delayed occlusion in an induced arterial thrombosis model. RNA-seq analysis suggested that expression of coagulation factor XI (FXI) is downregulated in livers of I278T mice. Indeed, plasma concentrations of FXI were decreased in I278T mice on normal diet and further reduced by increased methionine intake. Dietary methionine restriction normalized the observed phenotype. Similarly, treatment with OT-58, a novel enzyme therapy for HCU, corrected the phenotype in I278T mice regardless of their dietary methionine intake. Hypermethioninemia does not contribute to prothrombotic phenotype in murine HCU. Downregulation of FXI may contribute to the lack of prothrombotic tendency in I278T mice. Methionine restriction or treatment with OT-58 corrects vascular disease in the I278T mouse model of HCU.
Collapse
Affiliation(s)
- Insun Park
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Linda K. Johnson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Allaura Cox
- Section of Hematology/Oncology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA; (A.C.); (B.R.B.); (J.D.P.)
- University of Colorado Hemophilia and Thrombosis Center, Aurora, CO 80045, USA
| | - Brian R. Branchford
- Section of Hematology/Oncology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA; (A.C.); (B.R.B.); (J.D.P.)
- University of Colorado Hemophilia and Thrombosis Center, Aurora, CO 80045, USA
| | - Jorge Di Paola
- Section of Hematology/Oncology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA; (A.C.); (B.R.B.); (J.D.P.)
- University of Colorado Hemophilia and Thrombosis Center, Aurora, CO 80045, USA
| | | | - Tomas Majtan
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Correspondence: ; Tel.: +1-303-724-3813
| |
Collapse
|
15
|
Bublil EM, Majtan T. Classical homocystinuria: From cystathionine beta-synthase deficiency to novel enzyme therapies. Biochimie 2020; 173:48-56. [DOI: 10.1016/j.biochi.2019.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/13/2019] [Indexed: 01/23/2023]
|
16
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
17
|
Gu SX, Sonkar VK, Katare PB, Kumar R, Kruger WD, Arning E, Bottiglieri T, Lentz SR, Dayal S. Memantine Protects From Exacerbation of Ischemic Stroke and Blood Brain Barrier Disruption in Mild But Not Severe Hyperhomocysteinemia. J Am Heart Assoc 2020; 9:e013368. [PMID: 32067580 PMCID: PMC7070222 DOI: 10.1161/jaha.119.013368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Background Hyperhomocysteinemia is a risk factor for ischemic stroke; however, a targeted treatment strategy is lacking partly because of limited understanding of the causal role of homocysteine in cerebrovascular pathogenesis. Methods and Results In a genetic model of cystathionine beta synthase (CBS) deficiency, we tested the hypothesis that elevation in plasma total homocysteine exacerbates cerebrovascular injury and that memantine, a N-methyl-D-aspartate receptor antagonist, is protective. Mild or severe elevation in plasma total homocysteine was observed in Cbs+/- (6.1±0.3 μmol/L) or Cbs-/- (309±18 μmol/L) mice versus Cbs+/+ (3.1±0.6 μmol/L) mice. Surprisingly, Cbs-/- and Cbs+/- mice exhibited similar increases in cerebral infarct size following middle cerebral artery ischemia/reperfusion injury, despite the much higher total homocysteine levels in Cbs-/- mice. Likewise, disruption of the blood brain barrier was observed in both Cbs+/- and Cbs-/- mice. Administration of the N-methyl-D-aspartate receptor antagonist memantine protected Cbs+/- but not Cbs-/- mice from cerebral infarction and blood brain barrier disruption. Our data suggest that the differential effect of memantine in Cbs+/- versus Cbs-/- mice may be related to changes in expression of N-methyl-D-aspartate receptor subunits. Cbs-/-, but not Cbs+/- mice had increased expression of NR2B subunit, which is known to be relatively insensitive to homocysteine. Conclusions These data provide experimental evidence that even a mild increase in plasma total homocysteine can exacerbate cerebrovascular injury and suggest that N-methyl-D-aspartate receptor antagonism may represent a strategy to prevent reperfusion injury after acute ischemic stroke in patients with mild hyperhomocysteinemia.
Collapse
Affiliation(s)
- Sean X. Gu
- Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityIA
| | - Vijay K. Sonkar
- Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityIA
| | - Parmeshwar B. Katare
- Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityIA
| | - Rahul Kumar
- Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityIA
| | | | | | | | - Steven R. Lentz
- Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityIA
| | - Sanjana Dayal
- Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityIA
| |
Collapse
|
18
|
Gupta S, Gallego-Villar L, Wang L, Lee HO, Nasrallah G, Al-Dewik N, Häberle J, Thöny B, Blom HJ, Ben-Omran T, Kruger WD. Analysis of the Qatari R336C cystathionine β-synthase protein in mice. J Inherit Metab Dis 2019; 42:831-838. [PMID: 31240737 PMCID: PMC7336392 DOI: 10.1002/jimd.12140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 11/10/2022]
Abstract
Classical homocystinuria is a recessive inborn error of metabolism caused by mutations in the cystathionine beta-synthase (CBS) gene. The highest incidence of CBS deficiency in the world is found in the country of Qatar due to the combination of high rates of consanguinity and the presence of a founder mutation, c.1006C>T (p.R336C). This mutation does not respond to pyridoxine and is considered severe. Here we describe the creation of a mouse that is null for the mouse Cbs gene and expresses human p.R336C CBS from a zinc-inducible transgene (Tg-R336C Cbs -/- ). Zinc-treated Tg-R336C Cbs -/- mice have extreme elevation in both serum total homocysteine (tHcy) and liver tHcy compared with control transgenic mice. Both the steady-state protein levels and CBS enzyme activity levels in liver lysates from Tg-R336C Cbs -/- mice are significantly reduced compared to that found in Tg-hCBS Cbs -/- mice expressing wild-type human CBS. Treatment of Tg-R336C Cbs -/- mice with the proteasome inhibitor bortezomib results in stabilization of liver CBS protein and an increase in activity to levels found in corresponding Tg-hCBS Cbs -/- wild type mice. Surprisingly, serum tHcy did not fully correct even though liver enzyme activity was as high as control animals. This discrepancy is explained by in vitro enzymatic studies of mouse liver extracts showing that p.R336C causes reduced binding affinity for the substrate serine by almost 7-fold and significantly increased dependence on pyridoxal phosphate in the reaction buffer. These studies demonstrate that the p.R336C alteration effects both protein stability and substrate/cofactor binding.
Collapse
Affiliation(s)
- Sapna Gupta
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Lorena Gallego-Villar
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Centre Freiburg, Freiburg, Germany
| | - Liqun Wang
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Hyung-Ok Lee
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Gheyath Nasrallah
- Department of Biomedical Sciences, College of Health Sciences and Biomedical Research Center, Qatar University, Doha, Qatar
| | - Nader Al-Dewik
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Johannes Häberle
- Division of Metabolism, University Children’s Hospital and Children’s Research Center, Zurich, Switzerland
| | - Beat Thöny
- Division of Metabolism, University Children’s Hospital and Children’s Research Center, Zurich, Switzerland
| | - Henk J Blom
- Department of Internal Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Warren D. Kruger
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
- Corresponding author: Warren D. Kruger, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA. 19111. Phone: 215-728-3030;
| |
Collapse
|
19
|
Lee HO, Gallego-Villar L, Grisch-Chan HM, Häberle J, Thöny B, Kruger WD. Treatment of Cystathionine β-Synthase Deficiency in Mice Using a Minicircle-Based Naked DNA Vector. Hum Gene Ther 2019; 30:1093-1100. [PMID: 31084364 PMCID: PMC6761586 DOI: 10.1089/hum.2019.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/04/2019] [Indexed: 12/17/2022] Open
Abstract
Cystathionine β-synthase (CBS) deficiency is a recessive inborn error of metabolism characterized by extremely elevated total homocysteine (tHcy) in the blood. Patients diagnosed with CBS deficiency have a variety of clinical problems, including dislocated lenses, osteoporosis, cognitive and behavioral issues, and a significantly increased risk of thrombosis. Current treatment strategies involve a combination of vitamin supplementation and restriction of foods containing the homocysteine precursor methionine. Here, a mouse model for CBS deficiency (Tg-I278T Cbs-/-) was used to evaluate the potential of minicircle-based naked DNA gene therapy to treat CBS deficiency. A 2.3 kb DNA-minicircle containing the liver-specific P3 promoter driving the human CBS cDNA (MC.P3-hCBS) was delivered into Tg-I278T Cbs-/- mice via a single hydrodynamic tail vein injection. Mean serum tHcy decreased from 351 μM before injection to 176 μM 7 days after injection (p = 0.0005), and remained decreased for at least 42 days. Western blot analysis reveals significant minicircle-directed CBS expression in the liver tissue. Liver CBS activity increased 34-fold (12.8 vs. 432 units; p = 0.0004) in MC.P3-hCBS-injected animals. Injection of MC.P3-hCBS in young mice, subsequently followed for 202 days, showed that the vector can ameliorate the mouse homocystinuria alopecia phenotype. The present findings show that minicircle-based gene therapy can lower tHcy in a mouse model of CBS deficiency.
Collapse
Affiliation(s)
- Hyung-Ok Lee
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Lorena Gallego-Villar
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Centre Freiburg, Freiburg, Germany
| | - Hiu Man Grisch-Chan
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Switzerland
| | - Beat Thöny
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Switzerland
| | - Warren D. Kruger
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Majtan T, Park I, Cox A, Branchford BR, di Paola J, Bublil EM, Kraus JP. Behavior, body composition, and vascular phenotype of homocystinuric mice on methionine-restricted diet or enzyme replacement therapy. FASEB J 2019; 33:12477-12486. [PMID: 31450979 DOI: 10.1096/fj.201901203r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Classic homocystinuria (HCU) is an inherited disorder characterized by elevated homocysteine (Hcy) in plasma and tissues resulting from cystathionine β-synthase (CBS) deficiency. There is no cure, and patients are predominantly managed by methionine-restricted diet (MRD) to limit the production of Hcy. In this study, we used the I278T mouse model of HCU to evaluate the long-term impact of a novel enzyme replacement therapy [truncated human CBS C15S mutant modified with linear 20-kDa N-hydroxysuccinimide ester polyethylene glycol (OT-58)] on clinical end points relevant to human patients with HCU. In addition, we compared its efficacy on a background of either MRD or normal methionine intake [regular diet (REG)] to that of MRD alone. We found that, compared with untreated I278T mice, OT-58 treatment of I278T mice fed with the REG diet resulted in a 90% decrease in plasma Hcy concentrations and correction of learning/cognition, endothelial dysfunction, hemostasis, bone mineralization, and body composition. On background of the MRD, OT-58 performed equally well with plasma Hcy entirely normalized. The MRD alone decreased plasma Hcy by 67% and corrected the HCU phenotype in I278T mice. However, the MRD increased anxiety and reduced bone mineral content in both I278T mice and wild-type controls. This study shows that OT-58 is a highly efficacious novel treatment for HCU on the background of either normal or restricted methionine intake.-Majtan, T., Park, I., Cox, A., Branchford, B. R., di Paola, J., Bublil, E. M., Kraus, J. P. Behavior, body composition, and vascular phenotype of homocystinuric mice on methionine-restricted diet or enzyme replacement therapy.
Collapse
Affiliation(s)
- Tomas Majtan
- Section of Genetics, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Insun Park
- Section of Genetics, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Allaura Cox
- Section of Hematology/Oncology, Department of Pediatrics, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado, USA.,Hemophilia and Thrombosis Center, University of Colorado, Aurora, Colorado, USA
| | - Brian R Branchford
- Section of Hematology/Oncology, Department of Pediatrics, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado, USA.,Hemophilia and Thrombosis Center, University of Colorado, Aurora, Colorado, USA
| | - Jorge di Paola
- Section of Hematology/Oncology, Department of Pediatrics, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado, USA.,Hemophilia and Thrombosis Center, University of Colorado, Aurora, Colorado, USA
| | - Erez M Bublil
- Orphan Technologies Limited, Rapperswil, Switzerland
| | - Jan P Kraus
- Section of Genetics, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
21
|
Rajendran S, Shen X, Glawe J, Kolluru GK, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling. Compr Physiol 2019; 9:1213-1247. [PMID: 31187898 DOI: 10.1002/cphy.c180026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemic vascular remodeling occurs in response to stenosis or arterial occlusion leading to a change in blood flow and tissue perfusion. Altered blood flow elicits a cascade of molecular and cellular physiological responses leading to vascular remodeling of the macro- and micro-circulation. Although cellular mechanisms of vascular remodeling such as arteriogenesis and angiogenesis have been studied, therapeutic approaches in these areas have had limited success due to the complexity and heterogeneous constellation of molecular signaling events regulating these processes. Understanding central molecular players of vascular remodeling should lead to a deeper understanding of this response and aid in the development of novel therapeutic strategies. Hydrogen sulfide (H2 S) and nitric oxide (NO) are gaseous signaling molecules that are critically involved in regulating fundamental biochemical and molecular responses necessary for vascular growth and remodeling. This review examines how NO and H2 S regulate pathophysiological mechanisms of angiogenesis and arteriogenesis, along with important chemical and experimental considerations revealed thus far. The importance of NO and H2 S bioavailability, their synthesis enzymes and cofactors, and genetic variations associated with cardiovascular risk factors suggest that they serve as pivotal regulators of vascular remodeling responses. © 2019 American Physiological Society. Compr Physiol 9:1213-1247, 2019.
Collapse
Affiliation(s)
| | - Xinggui Shen
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - John Glawe
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Gopi K Kolluru
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Christopher G Kevil
- Departments of Pathology, LSU Health Sciences Center, Shreveport.,Departments of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport.,Departments of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport
| |
Collapse
|
22
|
Gupta S, Kelow S, Wang L, Andrake MD, Dunbrack RL, Kruger WD. Mouse modeling and structural analysis of the p.G307S mutation in human cystathionine β-synthase ( CBS) reveal effects on CBS activity but not stability. J Biol Chem 2018; 293:13921-13931. [PMID: 30030379 DOI: 10.1074/jbc.ra118.002164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/18/2018] [Indexed: 11/06/2022] Open
Abstract
Mutations in the cystathionine β-synthase (CBS) gene are the cause of classical homocystinuria, the most common inborn error in sulfur metabolism. The p.G307S mutation is the most frequent cause of CBS deficiency in Ireland, which has the highest prevalence of CBS deficiency in Europe. Individuals homozygous for this mutation tend to be severely affected and are pyridoxine nonresponsive, but the molecular basis for the strong effects of this mutation is unclear. Here, we characterized a transgenic mouse model lacking endogenous Cbs and expressing human p.G307S CBS protein from a zinc-inducible metallothionein promoter (Tg-G307S Cbs-/-). Unlike mice expressing other mutant CBS alleles, the Tg-G307S transgene could not efficiently rescue neonatal lethality of Cbs-/- in a C57BL/6J background. In a C3H/HeJ background, zinc-induced Tg-G307S Cbs-/- mice expressed high levels of p.G307S CBS in the liver, and this protein variant forms multimers, similarly to mice expressing WT human CBS. However, the p.G307S enzyme had no detectable residual activity. Moreover, treating mice with proteasome inhibitors failed to significantly increase CBS-specific activity. These findings indicated that the G307S substitution likely affects catalytic function as opposed to causing a folding defect. Using molecular dynamics simulation techniques, we found that the G307S substitution likely impairs catalytic function by limiting the ability of the tyrosine at position 308 to assume the proper conformational state(s) required for the formation of the pyridoxal-cystathionine intermediate. These results indicate that the p.G307S CBS is stable but enzymatically inert and therefore unlikely to respond to chaperone-based therapy.
Collapse
Affiliation(s)
- Sapna Gupta
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 and
| | - Simon Kelow
- the Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Liqun Wang
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 and
| | - Mark D Andrake
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 and
| | - Roland L Dunbrack
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 and
| | - Warren D Kruger
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 and
| |
Collapse
|
23
|
Lee HO, Wang L, Kuo YM, Andrews AJ, Gupta S, Kruger WD. S-adenosylhomocysteine hydrolase over-expression does not alter S-adenosylmethionine or S-adenosylhomocysteine levels in CBS deficient mice. Mol Genet Metab Rep 2018; 15:15-21. [PMID: 30023284 PMCID: PMC6047060 DOI: 10.1016/j.ymgmr.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 11/29/2022] Open
Abstract
Elevated plasma total homocysteine (tHcy) is associated with a number of human diseases including coronary artery disease, stroke, osteoporosis and dementia. It is highly correlated with intracellular S-adenosylhomocysteine (SAH). Since SAH is a strong inhibitor of methyl-transfer reactions involving the methyl-donor S-adenosylmethionine (SAM), elevation in SAH could be an explanation for the wide association of tHcy and human disease. Here, we have created a transgenic mouse (Tg-hAHCY) that expresses human S-adenosylhomocysteine hydrolase (AHCY) from a zinc-inducible promoter in the liver and kidney. Protein analysis shows that human AHCY is expressed well in both liver and kidney, but elevated AHCY enzyme activity (131% increase) is only detected in the kidney due to the high levels of endogenous mouse AHCY expression in liver. Tg-hAHCY mice were crossed with mice lacking cystathionine β-synthase activity (Tg-I278T Cbs−/−) to explore the effect to AHCY overexpression in the context of elevated serum tHcy and elevated tissue SAM and SAH. Overexpression of AHCY had no significant effect on the phenotypes of Tg-I278T Cbs−/− mice or any effect on the steady state concentrations of methionine, total homocysteine, SAM, SAH, and SAM/SAH ratio in the liver and kidney. Furthermore, enhanced AHCY activity did not lower serum and tissue tHcy or methionine levels. Our data suggests that enhancing AHCY activity does not alter the distribution of methionine recycling metabolites, even when they are greatly elevated by Cbs mutations.
Collapse
Key Words
- AHCY, S-adenosylhomocysteine hydrolase
- CBS, cystathionine beta synthase
- CMC, carboxymethylcellulose
- Cbs−, CBS knockout allele
- HA, hemagglutinin
- HHcy, hyperhomocysteinemia
- Hcy, homocysteine
- Met, methionine
- Metabolism
- Methionine
- SAH, S-adenosyl homocysteine
- SAM, S-adenosyl methionine
- Tg-I278T, transgene human CBS containing the I278T mutation
- Transgenic
- Zn, zinc water
- tHcy, total homocysteine
Collapse
Affiliation(s)
- Hyung-Ok Lee
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Liqun Wang
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yin-Ming Kuo
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Andrew J Andrews
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sapna Gupta
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
24
|
Majtan T, Jones W, Krijt J, Park I, Kruger WD, Kožich V, Bassnett S, Bublil EM, Kraus JP. Enzyme Replacement Therapy Ameliorates Multiple Symptoms of Murine Homocystinuria. Mol Ther 2017; 26:834-844. [PMID: 29398487 DOI: 10.1016/j.ymthe.2017.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/21/2023] Open
Abstract
Classical homocystinuria (HCU) is the most common inherited disorder of sulfur amino acid metabolism caused by deficiency in cystathionine beta-synthase (CBS) activity and characterized by severe elevation of homocysteine in blood and tissues. Treatment with dietary methionine restriction is not optimal, and poor compliance leads to serious complications. We developed an enzyme replacement therapy (ERT) and studied its efficacy in a severe form of HCU in mouse (the I278T model). Treatment was initiated before or after the onset of clinical symptoms in an effort to prevent or reverse the phenotype. ERT substantially reduced and sustained plasma homocysteine concentration at around 100 μM and normalized plasma cysteine for up to 9 months of treatment. Biochemical balance was also restored in the liver, kidney, and brain. Furthermore, ERT corrected liver glucose and lipid metabolism. The treatment prevented or reversed facial alopecia, fragile and lean phenotype, and low bone mass. In addition, structurally defective ciliary zonules in the eyes of I278T mice contained low density and/or broken fibers, while administration of ERT from birth partially rescued the ocular phenotype. In conclusion, ERT maintained an improved metabolic pattern and ameliorated many of the clinical complications in the I278T mouse model of HCU.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Wendell Jones
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jakub Krijt
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Insun Park
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Steven Bassnett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erez M Bublil
- Orphan Technologies, Ltd., Rapperswil 8640, Switzerland
| | - Jan P Kraus
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
25
|
Majtan T, Park I, Bublil EM, Kraus JP. Enzyme replacement therapy prevents loss of bone and fat mass in murine homocystinuria. Hum Mutat 2017; 39:210-218. [PMID: 29044829 DOI: 10.1002/humu.23360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 01/04/2023]
Abstract
Skeletal and connective tissue defects are the most striking symptoms in patients suffering from classical homocystinuria (HCU). Here, we determined body composition and bone mass in three mouse models of HCU and assessed whether a long-term administration of enzyme replacement therapy (ERT) corrected the phenotype. The mouse models of HCU were analyzed using dual-energy X-ray absorptiometry and the data were complemented by plasma biochemical profiles. Both the mouse model lacking CBS (KO) and the one expressing human CBS mutant transgene on a mouse CBS null background (I278T) showed marked bone loss and decreased weight mostly due to a lower fat content compared with negative controls. In contrast, the HO mouse expressing the human CBS WT transgene on a mouse CBS null background showed no such phenotype despite similar plasma biochemical profile to the KO and I278T mice. More importantly, administration of ERT rescued bone mass and changes in body composition in the KO mice treated since birth and reversed bone loss and improved fat content in the I278T mice injected after the development of clinical symptoms. Our study suggests that ERT for HCU may represent an effective way of preventing the skeletal problems in patients without a restricted dietary regime.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Insun Park
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Jan P Kraus
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
26
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
27
|
Poloni S, Spritzer PM, Mendes RH, D'Almeida V, Castro K, Sperb-Ludwig F, Kugele J, Tucci S, Blom HJ, Schwartz IVD. Leptin concentrations and SCD-1 indices in classical homocystinuria: Evidence for the role of sulfur amino acids in the regulation of lipid metabolism. Clin Chim Acta 2017; 473:82-88. [PMID: 28801090 DOI: 10.1016/j.cca.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND We describe body composition, lipid metabolism and Stearoyl-CoA desaturase-1 (SCD-1) indices in patients with classical homocystinuria (HCU). METHODS Eleven treated HCU patients and 16 healthy controls were included. Body composition and bone mineral density were assessed by dual X-ray absorptiometry. Sulfur amino acids (SAA) and their derivatives (total homocysteine, cysteine, methionine, S-adenosylmethionine, S-adenosylhomocysteine, and glutathione), lipids (free fatty acids, acylcarnitines, triglycerides and lipoproteins), glucose, insulin, leptin, adiponectin, and isoprostanes were measured in plasma. Insulin resistance was evaluated by HOMA-IR. To estimate liver SCD-1 activity, SCD-16 [16:1(n-7)/16:0] and SCD-18 [18:1(n-9)/18:0] desaturation indices were determined. RESULTS In HCU patients, SCD-16 index was significantly reduced (p=0.03). A trend of an association of SCD-16 index with cysteine was observed (r=0.624, p=0.054). HCU patients displayed lower lean mass (p<0.05), with no differences in fat mass percentage. Leptin and low-density lipoprotein concentrations were lower in HCU patients (p<0.05). Femur bone mineral density Z-scores were correlated with plasma cysteine (r=0.829; p=0.04) and total homocysteine (r=-0.829; p=0.04) in HCU patients. CONCLUSIONS We report alterations in leptin and SCD-1 in HCU patients. These results agree with previous findings from epidemiologic and animal studies, and support a role for SAA on lipid homeostasis.
Collapse
Affiliation(s)
- Soraia Poloni
- Post-Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences) - Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Poli Mara Spritzer
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clinicas de Porto Alegre, Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberta H Mendes
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences) - Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vânia D'Almeida
- Laboratory of Inborn Errors of Metabolism, Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Kamila Castro
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fernanda Sperb-Ludwig
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences) - Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Johanna Kugele
- Laboratory for Clinical Biochemistry and Metabolism, University Medical Center, Freiburg, Germany
| | - Sara Tucci
- Laboratory for Clinical Biochemistry and Metabolism, University Medical Center, Freiburg, Germany
| | - Henk J Blom
- Laboratory for Clinical Biochemistry and Metabolism, University Medical Center, Freiburg, Germany
| | - Ida V D Schwartz
- Post-Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences) - Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
28
|
Kruger WD. Cystathionine β-synthase deficiency: Of mice and men. Mol Genet Metab 2017; 121:199-205. [PMID: 28583326 PMCID: PMC5526210 DOI: 10.1016/j.ymgme.2017.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 01/28/2023]
Abstract
Cystathionine β-synthase (CBS) deficiency (Online Mendelian Inheritance in Man [OMIM] 236,200) is an autosomal recessive disorder that is caused by mutations in the CBS gene. It is the most common inborn error of sulfur metabolism and is the cause of classical homocystinuria, a condition characterized by very high levels of plasma total homocysteine and methionine. Although recognized as an inborn error of metabolism over 60years ago, these is still much we do not understand related to how this specific metabolic defect gives rise to its distinct phenotypes. To try and answer these questions, several groups have developed mouse models on CBS deficiency. In this article, we will review various mouse models of CBS deficiency and discuss how these mouse models compare to human CBS deficient patients.
Collapse
Affiliation(s)
- Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
29
|
Gupta S, Wang L, Kruger WD. The c.797 G>A (p.R266K) cystathionine β-synthase mutation causes homocystinuria by affecting protein stability. Hum Mutat 2017; 38:863-869. [PMID: 28488385 DOI: 10.1002/humu.23240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 11/10/2022]
Abstract
Mutations in the cystathionine beta-synthase (CBS) gene are the cause of classical homocystinuria, the most common inborn error in sulfur metabolism. The c.797 G>A (p.R266K) mutation in CBS was originally described in several Norwegian pyridoxine responsive CBS deficient patients, and heterologous gene expression studies have shown that the protein has near wild-type levels of enzyme activity. Here, we characterize a transgenic mouse lacking endogenous Cbs and expressing p.R266K human CBS protein from a zinc inducible metallothionein promoter (Tg-R266K Cbs-/- ). Unlike mice expressing other mutant CBS alleles, the Tg-R266K transgene is unable to efficiently rescue neonatal lethality of Cbs-/- on a C57BL/6J background. On a C3H/HeJ background, zinc-induced Tg-R266K Cbs-/- mice express CBS mRNA, but have very low levels of CBS protein and enzyme activity, resulting in extreme elevations in serum total homocysteine (tHcy). Treatment with pyridoxine did not have any appreciable effect on tHcy, indicating this allele is not pyridoxine responsive in mice. However, treatment with the proteasome inhibitor bortezomib resulted in an 97% reduction in tHcy and a 2381% increase in liver CBS activity. These studies show that the p.R266K mutation causes increased proteasomal degradation in vivo, and that treatments that stabilize the protein can be used to reverse its effect.
Collapse
Affiliation(s)
- Sapna Gupta
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Liqun Wang
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Lee HO, Wang L, Kuo YM, Gupta S, Slifker MJ, Li YS, Andrews AJ, Kruger WD. Lack of global epigenetic methylation defects in CBS deficient mice. J Inherit Metab Dis 2017; 40:113-120. [PMID: 27444757 PMCID: PMC5300059 DOI: 10.1007/s10545-016-9958-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/06/2016] [Accepted: 06/21/2016] [Indexed: 11/27/2022]
Abstract
Cystathionine β-synthase (CBS) deficiency is a recessive inborn error of metabolism in which patients have extremely elevated plasma total homocysteine and have clinical manifestations in the vascular, visual, skeletal, and nervous systems. Homocysteine is an intermediary metabolite produced from the hydrolysis of S-adenosylhomocysteine (SAH), which is a by-product of methylation reactions involving the methyl-donor S-adenosylmethionine (SAM). Here, we have measured SAM, SAH, DNA and histone methylation status in an inducible mouse model of CBS deficiency to test the hypothesis that homocysteine-related phenotypes are caused by inhibition of methylation due to elevated SAH and reduced SAM/SAH ratio. We found that mice lacking CBS have elevated cellular SAH and reduced SAM/SAH ratios in both liver and kidney, but this was not associated with alterations in the level of 5-methylcytosine or various histone modifications. Using methylated DNA immunoprecipitation in combination with microarray, we found that of the 241 most differentially methylated promoter probes, 89 % were actually hypermethylated in CBS deficient mice. In addition, we did not find that changes in DNA methylation correlated well with changes in RNA expression in the livers of induced and uninduced CBS mice. Our data indicates that reduction in the SAM/SAH ratio, due to loss of CBS activity, does not result in overall hypomethylation of either DNA or histones.
Collapse
Affiliation(s)
- Hyung-Ok Lee
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Liqun Wang
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Yin-Ming Kuo
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Sapna Gupta
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Michael J Slifker
- Biostatisitics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yue-Sheng Li
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Andrew J Andrews
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
31
|
Rose P, Moore PK, Zhu YZ. H 2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci 2016; 74:1391-1412. [PMID: 27844098 PMCID: PMC5357297 DOI: 10.1007/s00018-016-2406-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/07/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissues.
Collapse
Affiliation(s)
- Peter Rose
- School of Life Science, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire, LN6 7TS, UK. .,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China.
| | - Philip K Moore
- Department of Pharmacology, National University of Singapore, Lee Kong Chian Wing, UHL #05-02R, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
32
|
Khayati K, Antikainen H, Bonder EM, Weber GF, Kruger WD, Jakubowski H, Dobrowolski R. The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice. FASEB J 2016; 31:598-609. [PMID: 28148781 DOI: 10.1096/fj.201600915r] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/11/2016] [Indexed: 11/11/2022]
Abstract
The molecular mechanisms leading to and responsible for age-related, sporadic Alzheimer's disease (AD) remain largely unknown. It is well documented that aging patients with elevated levels of the amino acid metabolite homocysteine (Hcy) are at high risk of developing AD. We investigated the impact of Hcy on molecular clearance pathways in mammalian cells, including in vitro cultured induced pluripotent stem cell-derived forebrain neurons and in vivo neurons in mouse brains. Exposure to Hcy resulted in up-regulation of the mechanistic target of rapamycin complex 1 (mTORC1) activity, one of the major kinases in cells that is tightly linked to anabolic and catabolic pathways. Hcy is sensed by a constitutive protein complex composed of leucyl-tRNA-synthetase and folliculin, which regulates mTOR tethering to lysosomal membranes. In hyperhomocysteinemic human cells and cystathionine β-synthase-deficient mouse brains, we find an acute and chronic inhibition of the molecular clearance of protein products resulting in a buildup of abnormal proteins, including β-amyloid and phospho-Tau. Formation of these protein aggregates leads to AD-like neurodegeneration. This pathology can be prevented by inhibition of mTORC1 or by induction of autophagy. We conclude that an increase of intracellular Hcy levels predisposes neurons to develop abnormal protein aggregates, which are hallmarks of AD and its associated onset and pathophysiology with age.-Khayati, K., Antikainen, H., Bonder, E. M., Weber, G. F., Kruger, W. D., Jakubowski, H., Dobrowolski, R. The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice.
Collapse
Affiliation(s)
- Khoosheh Khayati
- Federated Department of Biological Sciences, Rutgers University/New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Henri Antikainen
- Federated Department of Biological Sciences, Rutgers University/New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Edward M Bonder
- Federated Department of Biological Sciences, Rutgers University/New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Gregory F Weber
- Federated Department of Biological Sciences, Rutgers University/New Jersey Institute of Technology, Newark, New Jersey, USA
| | | | - Hieronim Jakubowski
- Department of Microbiology, Biochemistry, and Molecular Genetics, International Center for Public Health, Rutgers-New Jersey Medical School, Newark, New Jersey, USA.,Institute of Bioorganic Chemistry, Poznań, Poland; and.,Department of Biochemistry and Biotechnology, University of Life Sciences, Poznań, Poland
| | - Radek Dobrowolski
- Federated Department of Biological Sciences, Rutgers University/New Jersey Institute of Technology, Newark, New Jersey, USA;
| |
Collapse
|
33
|
Ahmad A, Gerö D, Olah G, Szabo C. Effect of endotoxemia in mice genetically deficient in cystathionine-γ-lyase, cystathionine-β-synthase or 3-mercaptopyruvate sulfurtransferase. Int J Mol Med 2016; 38:1683-1692. [PMID: 27748832 PMCID: PMC5117757 DOI: 10.3892/ijmm.2016.2771] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/14/2016] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) has been proposed to exert pro- as well as anti-inflammatory effects in various models of critical illness. In this study, we compared bacterial lipopolysaccharide (LPS)-induced changes in inflammatory mediator production, indices of multiple organ injury and survival in wild-type (WT) mice and in mice with reduced expression of one of the three H2S-producing enzymes, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS) or 3-mercaptopyruvate sulfurtransferase (3MST). Mice were injected intraperitoneally (i.p.) with LPS (10 mg/kg). After 6 h, the animals were sacrificed, blood and organs were collected and the following parameters were evaluated: blood urea nitrogen (BUN) levels in blood, myeloperoxidase (MPO) and malondialdehyde (MDA) in the lung, cytokine levels in plasma and the expression of the three H2S-producing enzymes (CBS, CSE and 3MST) in the spleen, lung, liver and kidney. LPS induced a tissue-dependent upregulation of some of the H2S-producing enzymes in WT mice (upregulation of CBS in the spleen, upregulation of 3MST in the liver and upregulation of CBS, CSE and 3MST in the lung). Moreover, LPS impaired glomerular function, as evidenced by increased BUN levels. Renal impairment was comparable in the CSE−/− and Δ3MST mice after LPS challenge; however, it was attenuated in the CBS+/− mice. MPO levels (an index of neutrophil infiltration) and MDA levels (an index of oxidative stress) in lung homogenates were significantly increased in response to LPS; these effects were similar in the WT, CBS+/−, CSE−/− and Δ3MST mice; however, the MDA levels tended to be lower in the CBS+/− and CSE−/− mice. LPS induced significant increases in the plasma levels of multiple cytokines [tumor necrosis factor (TNF)α, interleukin (IL)-1β, IL-6, IL-10, IL-12 and interferon (IFN)γ] in plasma; TNFα, IL-10 and IL-12 levels tended to be lower in all three groups of animals expressing lower levels of H2S-producing enzymes. The survival rates after the LPS challenge did not show any significant differences between the four animal groups tested. Thus, the findings of this study indicate that a deficiency in 3MST does not significantly affect endotoxemia, while a deficiency in CBS or CSE slightly ameliorates the outcome of LPS-induced endotoxemia in vivo.
Collapse
Affiliation(s)
- Akbar Ahmad
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555‑1102, USA
| | - Domokos Gerö
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555‑1102, USA
| | - Gabor Olah
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555‑1102, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555‑1102, USA
| |
Collapse
|
34
|
Gupta S, Wang L, Kruger WD. Betaine supplementation is less effective than methionine restriction in correcting phenotypes of CBS deficient mice. J Inherit Metab Dis 2016; 39:39-46. [PMID: 26231230 PMCID: PMC4784539 DOI: 10.1007/s10545-015-9883-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
Cystathionine beta synthase (CBS) deficiency is a recessive inborn error of metabolism characterized by elevated serum total homocysteine (tHcy). Betaine supplementation, which can lower tHcy by stimulating homocysteine remethylation to methionine, is often given to CBS deficient patients in combination with other treatments such as methionine restriction and supplemental B-vitamins. However, the effectiveness of betaine supplementation by itself in the treatment of CBS deficiency has not been well explored. Here, we have examined the effect of a betaine supplemented diet on the Tg-I278T Cbs (-/-) mouse model of CBS deficiency and compared its effectiveness to our previously published data using a methionine restricted diet. Tg-I278T Cbs (-/-) mice on betaine, from the time of weaning until for 240 days of age, had a 40 % decrease in mean tHcy level and a 137 % increase in serum methionine levels. Betaine-treated Tg-I278T Cbs (-/-) mice also exhibited increased levels of betaine-dependent homocysteine methyl transferase (BHMT), increased levels of the lipogenic enzyme stearoyl-coenzyme A desaturase (SCD-1), and increased lipid droplet accumulation in the liver. Betaine supplementation largely reversed the hair loss phenotype in Tg-I278T Cbs (-/-) animals, but was far less effective than methionine restriction in reversing the weight-loss, fat-loss, and osteoporosis phenotypes. Surprisingly, betaine supplementation had several negative effects in control Tg-I278T Cbs (+/-) mice including decreased weight gain, lean mass, and bone mineral density. Our findings indicate that while betaine supplementation does have some beneficial effects, it is not as effective as methionine restriction for reversing the phenotypes associated with severe CBS deficiency in mice.
Collapse
Affiliation(s)
- Sapna Gupta
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Liqun Wang
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
35
|
Meng G, Ma Y, Xie L, Ferro A, Ji Y. Emerging role of hydrogen sulfide in hypertension and related cardiovascular diseases. Br J Pharmacol 2015; 172:5501-11. [PMID: 25204754 PMCID: PMC4667855 DOI: 10.1111/bph.12900] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022] Open
Abstract
Hydrogen sulfide (H2 S) has traditionally been viewed as a highly toxic gas; however, recent studies have implicated H2 S as a third member of the gasotransmitter family, exhibiting properties similar to NO and carbon monoxide. Accumulating evidence has suggested that H2 S influences a wide range of physiological and pathological processes, among which blood vessel relaxation, cardioprotection and atherosclerosis have been particularly studied. In the cardiovascular system, H2 S production is predominantly catalyzed by cystathionine γ-lyase (CSE). Decreased endogenous H2 S levels have been found in hypertensive patients and animals, and CSE(-/-) mice develop hypertension with age, suggesting that a deficiency in H2 S contributes importantly to BP regulation. H2 S supplementation attenuates hypertension in different hypertensive animal models. The mechanism by which H2 S was originally proposed to attenuate hypertension was by virtue of its action on vascular tone, which may be related to effects on different ion channels. Both H2 S and NO cause vasodilatation and there is cross-talk between these two molecules to regulate BP. Suppression of oxidative stress may also contribute to antihypertensive effects of H2 S. This review also summarizes the state of research on H2 S and hypertension in China. A better understanding of the role of H2 S in hypertension and related cardiovascular diseases will allow novel strategies to be devised for their treatment.
Collapse
Affiliation(s)
- Guoliang Meng
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| | - Yan Ma
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| | - Liping Xie
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| | - Albert Ferro
- Department of Clinical PharmacologyCardiovascular DivisionSchool of MedicineKing's College LondonLondonUK
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| |
Collapse
|
36
|
Kruger WD, Gupta S. The effect of dietary modulation of sulfur amino acids on cystathionine β synthase-deficient mice. Ann N Y Acad Sci 2015; 1363:80-90. [PMID: 26599618 DOI: 10.1111/nyas.12967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cystathionine β synthase (CBS) is a key enzyme in the methionine and cysteine metabolic pathway, acting as a metabolic gatekeeper to regulate the flow of fixed sulfur from methionine to cysteine. Mutations in the CBS gene cause clinical CBS deficiency, a disease characterized by elevated plasma total homocysteine (tHcy) and methionine and decreased plasma cysteine. The treatment goal for CBS-deficient patients is to normalize the metabolic values of these three metabolites using a combination of vitamin therapy and dietary manipulation. To better understand the effectiveness of nutritional treatment strategies, we have performed a series of long-term dietary manipulation studies using our previously developed Tg-I278T Cbs(-/-) mouse model of CBS deficiency and sibling Tg-I278T Cbs(+/-) controls. Tg-I278T Cbs(-/-) mice have undetectable levels of CBS activity, extremely elevated plasma tHcy, modestly elevated plasma methionine, and low plasma cysteine. They exhibit several easily assayable phenotypes, including osteoporosis, loss of fat mass, reduced life span, and facial alopecia. The diets used in these studies differed in the amounts of sulfur amino acids or sulfur amino acid precursors. In this review, we will discuss our findings and their relevance to CBS deficiency and the concept of gene-diet interaction.
Collapse
Affiliation(s)
- Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sapna Gupta
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Carter RN, Morton NM. Cysteine and hydrogen sulphide in the regulation of metabolism: insights from genetics and pharmacology. J Pathol 2015; 238:321-32. [PMID: 26467985 PMCID: PMC4832394 DOI: 10.1002/path.4659] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 09/29/2015] [Accepted: 10/10/2015] [Indexed: 12/22/2022]
Abstract
Obesity and diabetes represent a significant and escalating worldwide health burden. These conditions are characterized by abnormal nutrient homeostasis. One such perturbation is altered metabolism of the sulphur‐containing amino acid cysteine. Obesity is associated with elevated plasma cysteine, whereas diabetes is associated with reduced cysteine levels. One mechanism by which cysteine may act is through its enzymatic breakdown to produce hydrogen sulphide (H2S), a gasotransmitter that regulates glucose and lipid homeostasis. Here we review evidence from both pharmacological studies and transgenic models suggesting that cysteine and hydrogen sulphide play a role in the metabolic dysregulation underpinning obesity and diabetes. We then outline the growing evidence that regulation of hydrogen sulphide levels through its catabolism can impact metabolic health. By integrating hydrogen sulphide production and breakdown pathways, we re‐assess current hypothetical models of cysteine and hydrogen sulphide metabolism, offering new insight into their roles in the pathogenesis of obesity and diabetes. © 2015 The Authors. Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Roderick N Carter
- Molecular Metabolism Group, University/BHF Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, UK
| | - Nicholas M Morton
- Molecular Metabolism Group, University/BHF Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, UK
| |
Collapse
|
38
|
Paul R, Borah A. The potential physiological crosstalk and interrelationship between two sovereign endogenous amines, melatonin and homocysteine. Life Sci 2015; 139:97-107. [PMID: 26281918 DOI: 10.1016/j.lfs.2015.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/07/2015] [Accepted: 07/31/2015] [Indexed: 12/13/2022]
Abstract
The antioxidant melatonin and the non-proteinogenic excitotoxic amino acid homocysteine (Hcy) are very distinct but related reciprocally to each other in their mode of action. The elevated Hcy level has been implicated in several disease pathologies ranging from cardio- and cerebro-vascular diseases to neurodegeneration owing largely to its free radical generating potency. Interestingly, melatonin administration potentially normalizes the elevated Hcy level, thereby protecting the cells from the undesired Hcy-induced excitotoxicity and cell death. However, the exact mechanism and between them remain obscure. Through literature survey we have found an indistinct but a vital link between melatonin and Hcy i.e., the existence of reciprocal regulation between them, and this aspect has been thoroughly described herein. In this review, we focus on all the possibilities of co-regulation of melatonin and Hcy at the level of their production and metabolism both in basal and in pathological conditions, and appraised the potential of melatonin in ameliorating homocysteinemia-induced cellular stresses. Also, we have summarized the differential mode of action of melatonin and Hcy on health and disease states.
Collapse
Affiliation(s)
- Rajib Paul
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India.
| |
Collapse
|
39
|
Koning AM, Frenay ARS, Leuvenink HG, van Goor H. Hydrogen sulfide in renal physiology, disease and transplantation – The smell of renal protection. Nitric Oxide 2015; 46:37-49. [DOI: 10.1016/j.niox.2015.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 01/08/2023]
|
40
|
Dayal S, Lentz SR. Homocysteine. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Xiong XY, Meng S, Yang X, Wang H. Methylation and Atherosclerosis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Esse R, Imbard A, Florindo C, Gupta S, Quinlivan EP, Davids M, Teerlink T, Tavares de Almeida I, Kruger WD, Blom HJ, Castro R. Protein arginine hypomethylation in a mouse model of cystathionine β-synthase deficiency. FASEB J 2014; 28:2686-95. [PMID: 24532665 DOI: 10.1096/fj.13-246579] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Accumulation of the homocysteine (Hcy) precursor S-adenosylhomocysteine (AdoHcy) may cause cellular hypomethylation in the setting of hyperhomocysteinemia because of cystathionine β-synthase (CBS) deficiency, an inborn error of metabolism. To test this hypothesis, DNA and protein arginine methylation status were assessed in liver, brain, heart, and kidney obtained from a previously described mouse model of CBS deficiency. Metabolite levels in tissues and serum were determined by high-performance liquid chromatography or liquid chromatography-electrospray ionization-tandem mass spectrometry. Global DNA and protein arginine methylation status were evaluated as the contents of 5-methyldeoxycytidine in DNA and of methylarginines in proteins, respectively. In addition, histone arginine methylation was assessed by Western blotting. CBS-deficient mice exhibited increased (>6-fold) Hcy and AdoHcy levels in all tissues examined compared with control levels. In addition, global DNA methylation status was not affected, but global protein arginine methylation status was decreased (10-35%) in liver and brain. Moreover, asymmetric dimethylation of arginine 3 on histone H4 (H4R3me2a) content was markedly decreased in liver, and no differences were observed for the other histone arginine methylation marks examined. Our results show that CBS-deficient mice present severe accumulation of tissue Hcy and AdoHcy, protein arginine hypomethylation in liver and brain, and decreased H4R3me2a content in liver. Therefore, protein arginine hypomethylation arises as a potential player in the pathophysiology of CBS deficiency.
Collapse
Affiliation(s)
- Ruben Esse
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam, The Netherlands; Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and
| | - Apolline Imbard
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam, The Netherlands; Service de Biochimie-Hormonologie, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | | | - Sapna Gupta
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Eoin P Quinlivan
- Biomedical Mass Spectrometry Laboratory, University of Florida, Gainesville, Florida, USA; and
| | - Mariska Davids
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam, The Netherlands
| | - Tom Teerlink
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam, The Netherlands
| | - Isabel Tavares de Almeida
- Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Henk J Blom
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam, The Netherlands; Laboratory for Clinical Biochemistry and Metabolism, Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital, Freiburg, Germany
| | - Rita Castro
- Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
43
|
Gupta S, Melnyk SB, Kruger WD. Cystathionine β-synthase-deficient mice thrive on a low-methionine diet. FASEB J 2013; 28:781-90. [PMID: 24189943 DOI: 10.1096/fj.13-240770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cystathionine β-synthase (CBS) deficiency is a recessive inborn error of metabolism characterized by elevated serum total homocysteine (tHcy). Previously, our laboratory developed a mouse model of CBS deficiency, TgI278T Cbs(-)/(-) (abbreviated as Cbs(-/-)), characterized by low weight, low adiposity, decreased Scd-1 expression, facial alopecia, and osteoporosis. To determine the potential benefit of a methionine-restricted diet (MRD), we fed Cbs(-/-) and Cbs(+/-) control mice either an MRD or a regular diet (RD) from weaning till 240 d of age. Cbs(-/-) mice fed the MRD had a 77% decrease in tHcy, 28% increase in weight, 130% increase in fat mass, 82% increase in Scd-1 expression, and 10.6% increase in bone density and entirely lacked the alopecia phenotype observed in age-matched Cbs(-/-) mice fed the RD. At the end of the study, Cbs(-/-) mice fed the MRD were phenotypically indistinguishable from Cbs(+/-) mice fed the RD. Notably, whereas the MRD diet was highly beneficial to Cbs(-/-) mice, it had nearly opposite effect on Cbs(+/-) mice. These studies show that a low-methionine diet can correct the phenotypic consequences of loss of CBS and provide a striking example of how genotype and diet can interact to influence phenotype in mammals.
Collapse
Affiliation(s)
- Sapna Gupta
- 1Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111, USA.
| | | | | |
Collapse
|
44
|
Gupta S, Wang L, Anderl J, Slifker MJ, Kirk C, Kruger WD. Correction of cystathionine β-synthase deficiency in mice by treatment with proteasome inhibitors. Hum Mutat 2013; 34:1085-93. [PMID: 23592311 DOI: 10.1002/humu.22335] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022]
Abstract
Cystathionine beta-synthase (CBS) deficiency is an inborn error of metabolism characterized by extremely elevated levels of plasma total homocysteine. The vast majority of CBS-deficient patients have missense mutations located in the CBS gene that result in the production of either misfolded or unstable protein. Here, we examine the effect of proteasome inhibitors on mutant CBS function using two different mouse models of CBS deficiency. These mice lack mouse CBS and express a missense mutant human CBS enzyme (either p.I278T or p.S466L) that has less than 5% of normal liver CBS activity, resulting in a 10-30-fold elevation in plasma homocysteine levels. We show that treatment of these mice with two different proteasome inhibitors can induce liver Hsp70, Hsp40, and Hsp27, increase levels of active CBS, and lower plasma homocysteine levels to within the normal range. However, response rates varied, with 100% (8/8) of the p.S466L animals showing correction, but only 38% (10/26) of the p.I278T animals. In total, our data show that treatment with proteostasis modulators can restore significant enzymatic activity to mutant misfolded CBS enzymes and suggests that they may be useful in treating certain types of genetic diseases caused by missense mutations.
Collapse
Affiliation(s)
- Sapna Gupta
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
45
|
Zhao JY, Yang XY, Shi KH, Sun SN, Hou J, Ye ZZ, Wang J, Duan WY, Qiao B, Chen YJ, Shen HB, Huang GY, Jin L, Wang HY. A functional variant in the cystathionine β-synthase gene promoter significantly reduces congenital heart disease susceptibility in a Han Chinese population. Cell Res 2012; 23:242-253. [PMID: 22986502 DOI: 10.1038/cr.2012.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Homocysteine is an independent risk factor for various cardiovascular diseases. There are two ways to remove homocysteine from embryonic cardiac cells: remethylation to form methionine or transsulfuration to form cysteine. Cystathionine β-synthase (CBS) catalyzes the first step of homocysteine transsulfuration as a rate-limiting enzyme. In this study, we identified a functional variant -4673C>G (rs2850144) in the CBS gene promoter region that significantly reduces the susceptibility to congenital heart disease (CHD) in a Han Chinese population consisting of 2 340 CHD patients and 2 270 controls. Individuals carrying the heterozygous CG and homozygous GG genotypes had a 15% (odds ratio (OR) = 0.85, 95% confidence interval (CI) = 0.75-0.96, P = 0.011) and 40% (OR = 0.60, 95% CI = 0.49-0.73, P = 1.78 × 10(-7)) reduced risk to develop CHD than the wild-type CC genotype carriers in the combined samples, respectively. Additional stratified analyses demonstrated that CBS -4673C>G is significantly related to septation defects and conotruncal defects. In vivo detection of CBS mRNA levels in human cardiac tissues and in vitro luciferase assays consistently showed that the minor G allele significantly increased CBS transcription. A functional analysis revealed that both the attenuated transcription suppressor SP1 binding affinity and the CBS promoter hypomethylation specifically linked with the minor G allele contributed to the remarkably upregulated CBS expression. Consequently, the carriers with genetically increased CBS expression would benefit from the protection due to the low homocysteine levels maintained by CBS in certain cells during the critical heart development stages. These results shed light on unexpected role of CBS and highlight the importance of homocysteine removal in cardiac development.Cell Research advance online publication 18 September 2012; doi:10.1038/cr.2012.135.
Collapse
Affiliation(s)
- Jian-Yuan Zhao
- 1] The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China [2] Institute of Sports Science and Technology, Administration of Sports of Anhui Province, 97 Wuhu Road, Hefei, Anhui 230001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Maclean KN, Greiner LS, Evans JR, Sood SK, Lhotak S, Markham NE, Stabler SP, Allen RH, Austin RC, Balasubramaniam V, Jiang H. Cystathionine protects against endoplasmic reticulum stress-induced lipid accumulation, tissue injury, and apoptotic cell death. J Biol Chem 2012; 287:31994-2005. [PMID: 22854956 DOI: 10.1074/jbc.m112.355172] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cystathionine (R-S-(2-amino-2-carboxyethyl)-l-homocysteine) is a non-proteinogenic thioether containing amino acid. In mammals, cystathionine is formed as an intermediate of the transsulfuration pathway by the condensation of serine and homocysteine (Hcy) in a reaction catalyzed by cystathionine β-synthase (CBS). Cystathionine is subsequently converted to cysteine plus ammonia and α-ketobutyrate by the action of cystathionine γ-lyase (CGL). Pathogenic mutations in CBS result in CBS-deficient homocystinuria (HCU) which, if untreated, results in mental retardation, thromboembolic complications and connective tissue disorders. Currently there is no known function for cystathionine other than serving as an intermediate in transsulfuration and to date, the possible contribution of the abolition of cystathionine synthesis to pathogenesis in HCU has not been investigated. Using both mouse and cell-culture models, we have found that cystathionine is capable of blocking the induction of hepatic steatosis and kidney injury, acute tubular necrosis, and apoptotic cell death by the endoplasmic reticulum stress inducing agent tunicamycin. Northern and Western blotting analysis indicate that the protective effects of cystathionine occur without any obvious alteration of the induction of the unfolded protein response. Our data constitute the first experimental evidence that the abolition of cystathionine synthesis may contribute to the pathology of HCU and that this compound has therapeutic potential for disease states where ER stress is implicated as a primary initiating pathogenic factor.
Collapse
Affiliation(s)
- Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hoose SA, Rawlings JA, Kelly MM, Leitch MC, Ababneh QO, Robles JP, Taylor D, Hoover EM, Hailu B, McEnery KA, Downing SS, Kaushal D, Chen Y, Rife A, Brahmbhatt KA, Smith R, Polymenis M. A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division. PLoS Genet 2012; 8:e1002590. [PMID: 22438835 PMCID: PMC3305459 DOI: 10.1371/journal.pgen.1002590] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/25/2012] [Indexed: 01/20/2023] Open
Abstract
Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene deletions that altered cell cycle progression did not change cell size. Our results highlight a strong requirement for ribosomal biogenesis and protein synthesis for initiation of cell division. We also identified numerous factors that have not been previously implicated in cell cycle control mechanisms. We found that CBS, which catalyzes the synthesis of cystathionine from serine and homocysteine, advances START in two ways: by promoting cell growth, which requires CBS's catalytic activity, and by a separate function, which does not require CBS's catalytic activity. CBS defects cause disease in humans, and in animals CBS has vital, non-catalytic, unknown roles. Hence, our results may be relevant for human biology. Taken together, these findings significantly expand the range of factors required for the timely initiation of cell division. The systematic identification of non-essential regulators of cell division we describe will be a valuable resource for analysis of cell cycle progression in yeast and other organisms. What determines when cells begin a new round of cell division also dictates how fast cells multiply. Knowing which cellular pathways and how these pathways affect the machinery of cell division will allow modulations of cell proliferation. Baker's yeast is suited for genetic and biochemical studies of eukaryotic cell division. Previous studies relied mainly on cell size changes to identify systematically factors that control initiation of cell division. Here, we measured the DNA content of each non-essential single gene deletion strain to identify genes required for the correct timing of cell cycle transitions. Our comprehensive strategy revealed new pathways that control cell division. We expect that this study will be a valuable resource for numerous future analyses of mechanisms that control cell division in yeast and other organisms, including humans.
Collapse
Affiliation(s)
- Scott A. Hoose
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Jeremy A. Rawlings
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Michelle M. Kelly
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - M. Camille Leitch
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Qotaiba O. Ababneh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Juan P. Robles
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - David Taylor
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Evelyn M. Hoover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Bethel Hailu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Kayla A. McEnery
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - S. Sabina Downing
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Deepika Kaushal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Yi Chen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Alex Rife
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Kirtan A. Brahmbhatt
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Roger Smith
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Inhibition of betaine-homocysteine S-methyltransferase in rats causes hyperhomocysteinemia and reduces liver cystathionine β-synthase activity and methylation capacity. Nutr Res 2012; 31:563-71. [PMID: 21840473 DOI: 10.1016/j.nutres.2011.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/17/2011] [Accepted: 06/18/2011] [Indexed: 11/21/2022]
Abstract
Methylation of homocysteine (Hcy) by betaine-Hcy S-methyltransferase (BHMT) produces methionine, which is required for S-adenosylmethionine (SAM) synthesis. We have recently shown that short-term dietary intake of S-(Δ-carboxybutyl)-dl-Hcy (D,L-CBHcy), a potent and specific inhibitor of BHMT, significantly decreases liver BHMT activity and SAM concentrations but does not have an adverse affect on liver histopathology, plasma markers of liver damage, or DNA methylation in rats. The present study was designed to investigate the hypothesis that BHMT is required to maintain normal liver and plasma amino acid and glutathione profiles, and liver SAM and lipid accumulation. Rats were fed an adequate (4.5 g/kg methionine and 3.7 g/kg cystine), cysteine-devoid (4.5 g/kg methionine and 0 g/kg cystine), or methionine-deficient (1.5 g/kg methionine and 3.7 g/kg cystine) diet either with or without L-CBHcy for 3 or 14 days. All rats fed L-CBHcy had increased total plasma Hcy (2- to 5-fold) and reduced liver BHMT activity (>90%) and SAM concentrations (>40%). S-(Δ-carboxybutyl)-l-Hcy treatment slightly reduced liver glutathione levels in rats fed the adequate or cysteine-devoid diet for 14 days. Rats fed the methionine-deficient diet with L-CBHcy developed fatty liver. Liver cystathionine β-synthase activity was reduced in all L-CBHcy-treated animals, and the effect was exacerbated as time on the L-CBHcy diet increased. Our data indicate that BHMT activity is required to maintain adequate levels of liver SAM and low levels of total plasma Hcy and might be critical for liver glutathione and triglyceride homeostasis under some dietary conditions.
Collapse
|
49
|
Paradoxical absence of a prothrombotic phenotype in a mouse model of severe hyperhomocysteinemia. Blood 2011; 119:3176-83. [PMID: 22186991 DOI: 10.1182/blood-2011-09-380568] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hyperhomocysteinemia confers a high risk for thrombotic vascular events, but homocysteine-lowering therapies have been ineffective in reducing the incidence of secondary vascular outcomes, raising questions regarding the role of homocysteine as a mediator of cardiovascular disease. Therefore, to determine the contribution of elevated homocysteine to thrombosis susceptibility, we studied Cbs(-/-) mice conditionally expressing a zinc-inducible mutated human CBS (I278T) transgene. Tg-I278T Cbs(-/-) mice exhibited severe hyperhomocysteinemia and endothelial dysfunction in cerebral arterioles. Surprisingly, however, these mice did not display increased susceptibility to arterial or venous thrombosis as measured by photochemical injury in the carotid artery, chemical injury in the carotid artery or mesenteric arterioles, or ligation of the inferior vena cava. A survey of hemostatic and hemodynamic parameters revealed no detectible differences between control and Tg-I278T Cbs(-/-) mice. Our data demonstrate that severe elevation in homocysteine leads to the development of vascular endothelial dysfunction but is not sufficient to promote thrombosis. These findings may provide insights into the failure of homocysteine-lowering trials in secondary prevention from thrombotic vascular events.
Collapse
|
50
|
Gupta S, Kruger WD. Cystathionine beta-synthase deficiency causes fat loss in mice. PLoS One 2011; 6:e27598. [PMID: 22096601 PMCID: PMC3214081 DOI: 10.1371/journal.pone.0027598] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/20/2011] [Indexed: 12/19/2022] Open
Abstract
Cystathionine beta synthase (CBS) is the rate-limiting enzyme responsible for the de novo synthesis of cysteine. Patients with CBS deficiency have greatly elevated plasma total homocysteine (tHcy), decreased levels of plasma total cysteine (tCys), and often a marfanoid appearance characterized by thinness and low body-mass index (BMI). Here, we characterize the growth and body mass characteristics of CBS deficient TgI278T Cbs−/− mice and show that these animals have significantly decreased fat mass and tCys compared to heterozygous sibling mice. The decrease in fat mass is accompanied by a 34% decrease in liver glutathione (GSH) along with a significant decrease in liver mRNA and protein for the critical fat biosynthesizing enzyme Stearoyl CoA desaturase-1 (Scd-1). Because plasma tCys has been positively associated with fat mass in humans, we tested the hypothesis that decreased tCys in TgI278T Cbs−/− mice was the cause of the lean phenotype by placing the animals on water supplemented with N-acetyl cysteine (NAC) from birth to 240 days of age. Although NAC treatment in TgI278T Cbs−/− mice caused significant increase in serum tCys and liver GSH, there was no increase in body fat content or in liver Scd-1 levels. Our results show that lack of CBS activity causes loss of fat mass, and that this effect appears to be independent of low serum tCys.
Collapse
Affiliation(s)
- Sapna Gupta
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Warren D. Kruger
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|