1
|
Khandjian EW, Moss T, Rose TM, Robert C, Davidovic L. The fragile X proteins' enigma: to be or not to be nucleolar. Front Cell Dev Biol 2024; 12:1448209. [PMID: 39156973 PMCID: PMC11327008 DOI: 10.3389/fcell.2024.1448209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Affiliation(s)
- Edouard W. Khandjian
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, et Centre de Recherche Cervo, Québec, QC, Canada
| | - Tom Moss
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, et Centre de Recherche sur le Cancer, Axe Oncologie, Centre de Recherche du CHUQ, Université Laval, Québec, QC, Canada
| | - Timothy M. Rose
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Claude Robert
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | - Laetitia Davidovic
- Centre National de la Recherche Scientifique UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Inserm U1318, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
2
|
Moutabian H, Radi UK, Saleman AY, Adil M, Zabibah RS, Chaitanya MNL, Saadh MJ, Jawad MJ, Hazrati E, Bagheri H, Pal RS, Akhavan-Sigari R. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition. Pathol Res Pract 2023; 250:154789. [PMID: 37741138 DOI: 10.1016/j.prp.2023.154789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Among the leading causes of death globally has been cancer. Nearly 90% of all cancer-related fatalities are attributed to metastasis, which is the growing of additional malignant growths out of the original cancer origin. Therefore, a significant clinical need for a deeper comprehension of metastasis exists. Beginning investigations are being made on the function of microRNAs (miRNAs) in the metastatic process. Tiny non-coding RNAs called miRNAs have a crucial part in controlling the spread of cancer. Some miRNAs regulate migration, invasion, colonization, cancer stem cells' properties, the epithelial-mesenchymal transition (EMT), and the microenvironment, among other processes, to either promote or prevent metastasis. One of the most well-conserved and versatile miRNAs, miR-155 is primarily distinguished by overexpression in a variety of illnesses, including malignant tumors. It has been discovered that altered miR-155 expression is connected to a number of physiological and pathological processes, including metastasis. As a result, miR-155-mediated signaling pathways were identified as possible cancer molecular therapy targets. The current research on miR-155, which is important in controlling cancer cells' invasion, and metastasis as well as migration, will be summarized in the current work. The crucial significance of the lncRNA/circRNA-miR-155-mRNA network as a crucial regulator of carcinogenesis and a player in the regulation of signaling pathways or related genes implicated in cancer metastasis will be covered in the final section. These might provide light on the creation of fresh treatment plans for controlling cancer metastasis.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mv N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | | | - Ebrahi Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
3
|
Huang CJ, Lyu X, Kang J. The molecular characteristics and functional roles of microspherule protein 1 (MCRS1) in gene expression, cell proliferation, and organismic development. Cell Cycle 2023; 22:619-632. [PMID: 36384428 PMCID: PMC9980701 DOI: 10.1080/15384101.2022.2145816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/21/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Accurate spatial and temporal regulation of cell cycle progression is essential for cell proliferation and organismic development. This review demonstrates the role of microspherule protein 58kD, commonly known as MCRS1, as a key cell cycle regulator of higher eukaryotic organisms. We discuss the isoforms and functional domains of MCRS1 as well as their subcellular localization at specific stages of the cell cycle. These molecular characteristics reveal MCRS1's dynamic regulatory role in gene expression, genome stability, cell proliferation, and organismic development. Furthermore, we discuss the molecular details of its seemingly opposite, tumor-suppressive or tumor-promoting, role in different types of cancer.
Collapse
Affiliation(s)
| | - Xiaoai Lyu
- Arts and Science, New York University Shanghai, Shanghai, China
- Graduate School of Arts and Science, New York University, New York, USA
| | - Jungseog Kang
- Arts and Science, New York University Shanghai, Shanghai, China
- NYU-ECNU Center for Computational Chemistry, New York University Shanghai, Shanghai, China
| |
Collapse
|
4
|
Wang CY, Qiu ZJ, Zhang P, Tang XQ. Differentiated Embryo-Chondrocyte Expressed Gene1 and Parkinson's Disease: New Insights and Therapeutic Perspectives. Curr Neuropharmacol 2023; 21:2251-2265. [PMID: 37132111 PMCID: PMC10556388 DOI: 10.2174/1570159x21666230502123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 10/09/2022] [Indexed: 05/04/2023] Open
Abstract
Differentiated embryo-chondrocyte expressed gene1 (DEC1), an important transcription factor with a basic helix-loop-helix domain, is ubiquitously expressed in both human embryonic and adult tissues. DEC1 is involved in neural differentiation and neural maturation in the central nervous system (CNS). Recent studies suggest that DEC1 protects against Parkinson's disease (PD) by regulating apoptosis, oxidative stress, lipid metabolism, immune system, and glucose metabolism disorders. In this review, we summarize the recent progress on the role of DEC1 in the pathogenesis of PD and provide new insights into the prevention and treatment of PD and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zheng-Jie Qiu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Qing Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
5
|
Skalska L, Begley V, Beltran M, Lukauskas S, Khandelwal G, Faull P, Bhamra A, Tavares M, Wellman R, Tvardovskiy A, Foster BM, Ruiz de Los Mozos I, Herrero J, Surinova S, Snijders AP, Bartke T, Jenner RG. Nascent RNA antagonizes the interaction of a set of regulatory proteins with chromatin. Mol Cell 2021; 81:2944-2959.e10. [PMID: 34166609 DOI: 10.1016/j.molcel.2021.05.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 12/30/2022]
Abstract
A number of regulatory factors are recruited to chromatin by specialized RNAs. Whether RNA has a more general role in regulating the interaction of proteins with chromatin has not been determined. We used proteomics methods to measure the global impact of nascent RNA on chromatin in embryonic stem cells. Surprisingly, we found that nascent RNA primarily antagonized the interaction of chromatin modifiers and transcriptional regulators with chromatin. Transcriptional inhibition and RNA degradation induced recruitment of a set of transcriptional regulators, chromatin modifiers, nucleosome remodelers, and regulators of higher-order structure. RNA directly bound to factors, including BAF, NuRD, EHMT1, and INO80 and inhibited their interaction with nucleosomes. The transcriptional elongation factor P-TEFb directly bound pre-mRNA, and its recruitment to chromatin upon Pol II inhibition was regulated by the 7SK ribonucleoprotein complex. We postulate that by antagonizing the interaction of regulatory proteins with chromatin, nascent RNA links transcriptional output with chromatin composition.
Collapse
Affiliation(s)
- Lenka Skalska
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Victoria Begley
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Manuel Beltran
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Saulius Lukauskas
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Garima Khandelwal
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Peter Faull
- The Francis Crick Institute, London NW1 1AT, UK
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Manuel Tavares
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Rachel Wellman
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Benjamin M Foster
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Igor Ruiz de Los Mozos
- The Francis Crick Institute, London NW1 1AT, UK; Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Javier Herrero
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | | | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Richard G Jenner
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK.
| |
Collapse
|
6
|
Cui W, Cheong A, Wang Y, Tsuchida Y, Liu Y, Tremblay KD, Mager J. MCRS1 is essential for epiblast development during early mouse embryogenesis. Reproduction 2020; 159:1-13. [PMID: 31671403 DOI: 10.1530/rep-19-0334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Microspherule protein 1 (MCRS1, also known as MSP58) is an evolutionarily conserved protein that has been implicated in various biological processes. Although a variety of functions have been attributed to MCRS1 in vitro, mammalian MCRS1 has not been studied in vivo. Here we report that MCRS1 is essential during early murine development. Mcrs1 mutant embryos exhibit normal morphology at the blastocyst stage but cannot be recovered at gastrulation, suggesting an implantation failure. Outgrowth (OG) assays reveal that mutant blastocysts do not form a typical inner cell mass (ICM) colony, the source of embryonic stem cells (ESCs). Surprisingly, cell death and histone H4 acetylation analysis reveal that apoptosis and global H4 acetylation are normal in mutant blastocysts. However, analysis of lineage specification reveals that while the trophoblast and primitive endoderm are properly specified, the epiblast lineage is compromised and exhibits a severe reduction in cell number. In summary, our study demonstrates the indispensable role of MCRS1 in epiblast development during early mammalian embryogenesis.
Collapse
Affiliation(s)
- Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA.,Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, Massachusetts, USA
| | - Agnes Cheong
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yuran Tsuchida
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, Anhui, People's Republic of China
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
7
|
Neilson KM, Keer S, Bousquet N, Macrorie O, Majumdar HD, Kenyon KL, Alfandari D, Moody SA. Mcrs1 interacts with Six1 to influence early craniofacial and otic development. Dev Biol 2020; 467:39-50. [PMID: 32891623 DOI: 10.1016/j.ydbio.2020.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/29/2022]
Abstract
The Six1 transcription factor plays a major role in craniofacial development. Mutations in SIX1 and its co-factor, EYA1, are causative for about 50% of Branchio-otic/Branchio-oto-renal syndrome (BOR) patients, who are characterized by variable craniofacial, otic and renal malformations. We previously screened for other proteins that might interact with Six1 to identify additional genes that may play a role in BOR, and herein characterize the developmental role of one of them, Microspherule protein 1 (Mcrs1). We found that in cultured cells, Mcrs1 bound to Six1 and in both cultured cells and embryonic ectoderm reduced Six1-Eya1 transcriptional activation. Knock-down of Mcrs1 in embryos caused an expansion of the domains of neural plate genes and two genes expressed in both the neural plate and neural crest (zic1, zic2). In contrast, two other genes expressed in pre-migratory neural crest (foxd3, sox9) were primarily reduced. Cranial placode genes showed a mixture of expanded and diminished expression domains. At larval stages, loss of Mcrs1 resulted in a significant reduction of otic vesicle gene expression concomitant with a smaller otic vesicle volume. Experimentally increasing Mcrs1 above endogenous levels favored the expansion of neural border and neural crest gene domains over cranial placode genes; it also reduced otic vesicle gene expression but not otic vesicle volume. Co-expression of Mcrs1 and Six1 as well as double knock-down and rescue experiments establish a functional interaction between Mcrs1 and Six1 in the embryo, and demonstrate that this interaction has an important role in the development of craniofacial tissues including the otic vesicle.
Collapse
Affiliation(s)
- Karen M Neilson
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Stephanie Keer
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nicole Bousquet
- Department of Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Olivia Macrorie
- Department of Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Himani D Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kristy L Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | | | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
8
|
Prieto M, Folci A, Martin S. Post-translational modifications of the Fragile X Mental Retardation Protein in neuronal function and dysfunction. Mol Psychiatry 2020; 25:1688-1703. [PMID: 31822816 DOI: 10.1038/s41380-019-0629-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
The Fragile X Mental Retardation Protein (FMRP) is an RNA-binding protein essential to the regulation of local translation at synapses. In the mammalian brain, synapses are constantly formed and eliminated throughout development to achieve functional neuronal networks. At the molecular level, thousands of proteins cooperate to accomplish efficient neuronal communication. Therefore, synaptic protein levels and their functional interactions need to be tightly regulated. FMRP generally acts as a translational repressor of its mRNA targets. FMRP is the target of several post-translational modifications (PTMs) that dynamically regulate its function. Here we provide an overview of the PTMs controlling the FMRP function and discuss how their spatiotemporal interplay contributes to the physiological regulation of FMRP. Importantly, FMRP loss-of-function leads to Fragile X syndrome (FXS), a rare genetic developmental condition causing a range of neurological alterations including intellectual disability (ID), learning and memory impairments, autistic-like features and seizures. Here, we also explore the possibility that recently reported missense mutations in the FMR1 gene disrupt the PTM homoeostasis of FMRP, thus participating in the aetiology of FXS. This suggests that the pharmacological targeting of PTMs may be a promising strategy to develop innovative therapies for patients carrying such missense mutations.
Collapse
Affiliation(s)
- Marta Prieto
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | | | - Stéphane Martin
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France.
| |
Collapse
|
9
|
Handling FMRP and its molecular partners: Structural insights into Fragile X Syndrome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 141:3-14. [PMID: 30905341 DOI: 10.1016/j.pbiomolbio.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/01/2018] [Indexed: 12/29/2022]
Abstract
Fragile X Mental Retardation Protein (FMRP) is a RNA-binding protein (RBP) known to control different steps of mRNA metabolism, even though its complete function is not fully understood yet. Lack or mutations of FMRP lead to Fragile X Syndrome (FXS), the most common form of inherited intellectual disability and a leading monogenic cause of autism spectrum disorder (ASD). It is well established that FMRP has a multi-domain architecture, a feature that allows this RBP to be engaged in a large interaction network with numerous proteins and mRNAs or non-coding RNAs. Insights into the three-dimensional (3D) structure of parts of its three domains (N-terminus, central domain and C-terminus) were obtained using Nuclear Magnetic Resonance and X-ray diffraction, but the complete 3D arrangement of each domain with respect to the others is still missing. Here, we review the structural features of FMRP and of the network of its protein and RNA interactions. Understanding these aspects is the first necessary step towards the design of novel compounds for new therapeutic interventions in FXS.
Collapse
|
10
|
Knockdown of MSP58 inhibits the proliferation and metastasis in human renal cell carcinoma cells. Biomed Pharmacother 2017; 91:54-59. [DOI: 10.1016/j.biopha.2017.04.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 01/12/2023] Open
|
11
|
Lee SH, Lee MS, Choi TI, Hong H, Seo JY, Kim CH, Kim J. MCRS1 associates with cytoplasmic dynein and mediates pericentrosomal material recruitment. Sci Rep 2016; 6:27284. [PMID: 27263857 PMCID: PMC4893664 DOI: 10.1038/srep27284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
MCRS1 is involved in multiple cellular activities, including mitotic spindle assembly, mTOR signaling and tumorigenesis. Although MCRS1 has been reported to bind to the dynein regulator NDE1, a functional interaction between MCRS1 and cytoplasmic dynein remains unaddressed. Here, we demonstrate that MCRS1 is required for dynein-dependent cargo transport to the centrosome and also plays a role in primary cilium formation. MCRS1 localized to centriolar satellites. Knockdown of MCRS1 resulted in a dispersion of centriolar satellites whose establishment depends on cytoplasmic dynein. By contrast, NDE1 was not necessary for the proper distribution of centriolar satellites, indicating a functional distinction between MCRS1 and NDE1. Unlike NDE1, MCRS1 played a positive role for the initiation of ciliogenesis, possibly through its interaction with TTBK2. Zebrafish with homozygous mcrs1 mutants exhibited a reduction in the size of the brain and the eye due to excessive apoptosis. In addition, mcrs1 mutants failed to develop distinct layers in the retina, and showed a defect in melatonin-induced aggregation of melanosomes in melanophores. These phenotypes are reminiscent of zebrafish dynein mutants. Reduced ciliogenesis was also apparent in the olfactory placode of mcrs1 mutants. Collectively, our findings identify MCRS1 as a dynein-interacting protein critical for centriolar satellite formation and ciliogenesis.
Collapse
Affiliation(s)
- Si-Hyung Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Mi-Sun Lee
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Hyowon Hong
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
12
|
Cavazza T, Vernos I. The RanGTP Pathway: From Nucleo-Cytoplasmic Transport to Spindle Assembly and Beyond. Front Cell Dev Biol 2016; 3:82. [PMID: 26793706 PMCID: PMC4707252 DOI: 10.3389/fcell.2015.00082] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/07/2015] [Indexed: 01/03/2023] Open
Abstract
The small GTPase Ran regulates the interaction of transport receptors with a number of cellular cargo proteins. The high affinity binding of the GTP-bound form of Ran to import receptors promotes cargo release, whereas its binding to export receptors stabilizes their interaction with the cargo. This basic mechanism linked to the asymmetric distribution of the two nucleotide-bound forms of Ran between the nucleus and the cytoplasm generates a switch like mechanism controlling nucleo-cytoplasmic transport. Since 1999, we have known that after nuclear envelope breakdown (NEBD) Ran and the above transport receptors also provide a local control over the activity of factors driving spindle assembly and regulating other aspects of cell division. The identification and functional characterization of RanGTP mitotic targets is providing novel insights into mechanisms essential for cell division. Here we review our current knowledge on the RanGTP system and its regulation and we focus on the recent advances made through the characterization of its mitotic targets. We then briefly review the novel functions of the pathway that were recently described. Altogether, the RanGTP system has moonlighting functions exerting a spatial control over protein interactions that drive specific functions depending on the cellular context.
Collapse
Affiliation(s)
- Tommaso Cavazza
- Cell and Developmental Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain; Institució Catalana de Recerca I Estudis AvançatsBarcelona, Spain
| |
Collapse
|
13
|
Moody SA, Neilson KM, Kenyon KL, Alfandari D, Pignoni F. Using Xenopus to discover new genes involved in branchiootorenal spectrum disorders. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:16-24. [PMID: 26117063 PMCID: PMC4662879 DOI: 10.1016/j.cbpc.2015.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022]
Abstract
Congenital hearing loss is an important clinical problem because, without early intervention, affected children do not properly acquire language and consequently have difficulties developing social skills. Although most newborns in the US are screened for hearing deficits, even earlier diagnosis can be made with prenatal genetic screening. Genetic screening that identifies the relevant mutated gene can also warn about potential congenital defects in organs not related to hearing. We will discuss efforts to identify new candidate genes that underlie the Branchiootorenal spectrum disorders in which affected children have hearing deficits and are also at risk for kidney defects. Mutations in two genes, SIX1 and EYA1, have been identified in about half of the patients tested. To uncover new candidate genes, we have used the aquatic animal model, Xenopus laevis, to identify genes that are part of the developmental genetic pathway of Six1 during otic and kidney development. We have already identified a large number of potential Six1 transcriptional targets and candidate co-factor proteins that are expressed at the right time and in the correct tissues to interact with Six1 during development. We discuss the advantages of using this system for gene discovery in a human congenital hearing loss syndrome.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA.
| | - Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Kristy L Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Francesca Pignoni
- Department of Ophthalmology, Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
14
|
Maurin T, Melko M, Abekhoukh S, Khalfallah O, Davidovic L, Jarjat M, D'Antoni S, Catania MV, Moine H, Bechara E, Bardoni B. The FMRP/GRK4 mRNA interaction uncovers a new mode of binding of the Fragile X mental retardation protein in cerebellum. Nucleic Acids Res 2015; 43:8540-50. [PMID: 26250109 PMCID: PMC4787806 DOI: 10.1093/nar/gkv801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The C-terminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 sub-domain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors.
Collapse
Affiliation(s)
- Thomas Maurin
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Mireille Melko
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Sabiha Abekhoukh
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Olfa Khalfallah
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Laetitia Davidovic
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Marielle Jarjat
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Simona D'Antoni
- Institute of Neurological Sciences, The National Research Council of Italy, 95126 Catania, Italy
| | - Maria Vincenza Catania
- Institute of Neurological Sciences, The National Research Council of Italy, 95126 Catania, Italy IRCCS Oasi Maria SS, 94018 Troina (EN), Italy
| | - Hervé Moine
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS, UMR7104, Inserm U596, Collège de France, Strasbourg University, 67400 Illkirch-Graffenstaden, France
| | - Elias Bechara
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Barbara Bardoni
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| |
Collapse
|
15
|
Yang CP, Chiang CW, Chen CH, Lee YC, Wu MH, Tsou YH, Yang YS, Chang WC, Lin DY. Identification and characterization of nuclear and nucleolar localization signals in 58-kDa microspherule protein (MSP58). J Biomed Sci 2015; 22:33. [PMID: 25981436 PMCID: PMC4434885 DOI: 10.1186/s12929-015-0136-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/21/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND MSP58 is a nucleolar protein associated with rRNA transcription and cell proliferation. Its mechanism of translocation into the nucleus or the nucleolus, however, is not entirely known. In order to address this lack, the present study aims to determine a crucial part of this mechanism: the nuclear localization signal (NLS) and the nucleolar localization signal (NoLS) associated with the MSP58 protein. RESULTS We have identified and characterized two NLSs in MSP58. The first is located between residues 32 and 56 (NLS1) and constitutes three clusters of basic amino acids (KRASSQALGTIPKRRSSSRFIKRKK); the second is situated between residues 113 and 123 (NLS2) and harbors a monopartite signal (PGLTKRVKKSK). Both NLS1 and NLS2 are highly conserved among different vertebrate species. Notably, one bipartite motif within the NLS1 (residues 44-56) appears to be absolutely necessary for MSP58 nucleolar localization. By yeast two-hybrid, pull-down, and coimmunoprecipitation analysis, we show that MSP58 binds to importin α1 and α6, suggesting that nuclear targeting of MSP58 utilizes a receptor-mediated and energy-dependent import mechanism. Functionally, our data show that both nuclear and nucleolar localization of MSP58 are crucial for transcriptional regulation on p21 and ribosomal RNA genes, and context-dependent effects on cell proliferation. CONCLUSIONS Results suggest that MSP58 subnuclear localization is regulated by two nuclear import signals, and that proper subcellular localization of MSP58 is critical for its role in transcriptional regulation. Our study reveals a molecular mechanism that controls nuclear and nucleolar localization of MSP58, a finding that might help future researchers understand the MSP58 biological signaling pathway.
Collapse
Affiliation(s)
- Chuan-Pin Yang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC. .,Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Chang-Han Chen
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC. .,Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, 54561, Taiwan, ROC.
| | - Yi-Chao Lee
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan, ROC. .,Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
| | - Mei-Hsiang Wu
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Yi-Huan Tsou
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Yu-San Yang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Wen-Chang Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC. .,Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan, ROC. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC. .,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
| | - Ding-Yen Lin
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC. .,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC. .,Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan, ROC. .,Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
| |
Collapse
|
16
|
Liu MX, Zhou KC, Cao Y. MCRS1 overexpression, which is specifically inhibited by miR-129*, promotes the epithelial-mesenchymal transition and metastasis in non-small cell lung cancer. Mol Cancer 2014; 13:245. [PMID: 25373388 PMCID: PMC4233086 DOI: 10.1186/1476-4598-13-245] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/26/2014] [Indexed: 12/18/2022] Open
Abstract
Background Although tumor invasion and metastasis are both classical hallmarks of cancer malignancy and the major causes of poor clinical outcomes among cancer patients, the underlying master regulators of invasion and metastasis remain largely unknown. In this study, we observed that an overexpression of microspherule protein 1 (MCRS1) promotes the invasion and metastasis of non-small cell lung cancer (NSCLC) cells. Furthermore, we sought to systematically investigate the pathophysiological functions and related mechanisms of MCRS1. Methods Retrovirus-mediated RNA interference was employed to knockdown MCRS1 expression in NSCLC cell lines. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot respectively were used to measure levels of mRNA and protein. Further cell permeability assessment, invasion and proliferation assays were conducted to evaluate MCRS1 functions in vitro while nude mice experiments were performed to examine metastatic capability in vivo. Microarray analysis and microRNA (miRNA) sequencing were respectively carried out for mRNA and miRNA expression profiling, while chromatin immunoprecipitation (ChIP), luciferase reporter assay, and miRNA transfection were used to investigate the interaction between MCRS1 and miRNAs. Results MCRS1 knockdown induced morphological alterations, increased monolayer integrity, decreased cellular invasion and metastasis, and attenuated stemness and drug resistance among tested NSCLC cells. The levels of MCRS1 expression were likewise correlated with tumor metastasis among NSCLC patients. We identified differentially expressed genes after MCRS1 silencing, which included cell junction molecules, such as ZO-1, Occludin, E-cadherin, and DSG2. However, these differentially expressed genes were not directly recognized by a transcriptional complex containing MCRS1. Furthermore, we found that MCRS1 binds to the miR-155 promoter and regulates its expression, as well as MCRS1 promotes epithelial-mesenchymal transition (EMT), invasion, and metastasis through the up-regulation of miR-155. Systematic investigations ultimately showed that MCRS1 was directly and negatively regulated by the binding of miR-129* to its 3’-UTR, with miR-129* overexpression suppressing the growth and invasion of NSCLC cells. Conclusions MiR-129* down-regulation induced MCRS1 overexpression, which promotes EMT and invasion/metastasis of NSCLC cells through both the up-regulation of miR-155 and down-regulation of cell junction molecules. This miR-129*/MCRS1/miR-155 axis provides a new angle in understanding the basis for the invasion and metastasis of lung cancer. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-245) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
17
|
Smith R, Rathod RJ, Rajkumar S, Kennedy D. Nervous translation, do you get the message? A review of mRNPs, mRNA-protein interactions and translational control within cells of the nervous system. Cell Mol Life Sci 2014; 71:3917-37. [PMID: 24952431 PMCID: PMC11113408 DOI: 10.1007/s00018-014-1660-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/22/2014] [Accepted: 05/30/2014] [Indexed: 01/01/2023]
Abstract
In neurons, translation of a message RNA can occur metres away from its transcriptional origin and in normal cells this is orchestrated with perfection. The life of an mRNA will see it pass through multiple steps of processing in the nucleus and the cytoplasm before it reaches its final destination. Processing of mRNA is determined by a myriad of RNA-binding proteins in multi-protein complexes called messenger ribonucleoproteins; however, incorrect processing and delivery of mRNA can cause several human neurological disorders. This review takes us through the life of mRNA from the nucleus to its point of translation in the cytoplasm. The review looks at the various cis and trans factors that act on the mRNA and discusses their roles in different cells of the nervous system and human disorders.
Collapse
Affiliation(s)
- Ross Smith
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia,
| | | | | | | |
Collapse
|
18
|
Matic K, Eninger T, Bardoni B, Davidovic L, Macek B. Quantitative phosphoproteomics of murine Fmr1-KO cell lines provides new insights into FMRP-dependent signal transduction mechanisms. J Proteome Res 2014; 13:4388-97. [PMID: 25168779 DOI: 10.1021/pr5006372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein that has a major effect on neuronal protein synthesis. Transcriptional silencing of the FMR1 gene leads to loss of FMRP and development of Fragile X syndrome (FXS), the most common known hereditary cause of intellectual impairment and autism. Here we utilize SILAC-based quantitative phosphoproteomics to analyze murine FMR1(-) and FMR1(+) fibroblastic cell lines derived from FMR1-KO embryos to identify proteins and phosphorylation sites dysregulated as a consequence of FMRP loss. We quantify FMRP-related changes in the levels of 5,023 proteins and 6,133 phosphorylation events and map them onto major signal transduction pathways. Our study confirms global downregulation of the MAPK/ERK pathway and decrease in phosphorylation level of ERK1/2 in the absence of FMRP, which is connected to attenuation of long-term potentiation. We detect differential expression of several key proteins from the p53 pathway, pointing to the involvement of p53 signaling in dysregulated cell cycle control in FXS. Finally, we detect differential expression and phosphorylation of proteins involved in pre-mRNA processing and nuclear transport, as well as Wnt and calcium signaling, such as PLC, PKC, NFAT, and cPLA2. We postulate that calcium homeostasis is likely affected in molecular pathogenesis of FXS.
Collapse
Affiliation(s)
- Katarina Matic
- Proteome Center Tübingen and ‡Graduate School of Cellular and Molecular Neuroscience, University of Tübingen , Österbergstrasse 3, 72074 Tübingen, Germany
| | | | | | | | | |
Collapse
|
19
|
Li Y, Zhao X. Concise review: Fragile X proteins in stem cell maintenance and differentiation. Stem Cells 2014; 32:1724-33. [PMID: 24648324 PMCID: PMC4255947 DOI: 10.1002/stem.1698] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/18/2014] [Accepted: 03/01/2014] [Indexed: 12/15/2022]
Abstract
Fragile X syndrome (FXS), the most common genetic form of autism spectrum disorder, is caused by deficiency of the fragile X mental retardation protein (FMRP). Despite extensive research and scientific progress, understanding how FMRP regulates brain development and function remains a major challenge. FMRP is a neuronal RNA-binding protein that binds about a third of messenger RNAs in the brain and controls their translation, stability, and cellular localization. The absence of FMRP results in increased protein synthesis, leading to enhanced signaling in a number of intracellular pathways, including the mTOR, mGLuR5, ERK, Gsk3β, PI3K, and insulin pathways. Until recently, FXS was largely considered a deficit of mature neurons; however, a number of new studies have shown that FMRP may also play important roles in stem cells, among them neural stem cells, germline stem cells, and pluripotent stem cells. In this review, we will cover these newly discovered functions of FMRP, as well as the other two fragile X-related proteins, in stem cells. We will also discuss the literature on the use of stem cells, particularly neural stem cells and induced pluripotent stem cells, as model systems for studying the functions of FMRP in neuronal development.
Collapse
Affiliation(s)
- Yue Li
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | | |
Collapse
|
20
|
Dury AY, El Fatimy R, Tremblay S, Rose TM, Côté J, De Koninck P, Khandjian EW. Nuclear Fragile X Mental Retardation Protein is localized to Cajal bodies. PLoS Genet 2013; 9:e1003890. [PMID: 24204304 PMCID: PMC3814324 DOI: 10.1371/journal.pgen.1003890] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/03/2013] [Indexed: 01/04/2023] Open
Abstract
Fragile X syndrome is caused by loss of function of a single gene encoding the Fragile X Mental Retardation Protein (FMRP). This RNA-binding protein, widely expressed in mammalian tissues, is particularly abundant in neurons and is a component of messenger ribonucleoprotein (mRNP) complexes present within the translational apparatus. The absence of FMRP in neurons is believed to cause translation dysregulation and defects in mRNA transport essential for local protein synthesis and for synaptic development and maturation. A prevalent model posits that FMRP is a nucleocytoplasmic shuttling protein that transports its mRNA targets from the nucleus to the translation machinery. However, it is not known which of the multiple FMRP isoforms, resulting from the numerous alternatively spliced FMR1 transcripts variants, would be involved in such a process. Using a new generation of anti-FMRP antibodies and recombinant expression, we show here that the most commonly expressed human FMRP isoforms (ISO1 and 7) do not localize to the nucleus. Instead, specific FMRP isoforms 6 and 12 (ISO6 and 12), containing a novel C-terminal domain, were the only isoforms that localized to the nuclei in cultured human cells. These isoforms localized to specific p80-coilin and SMN positive structures that were identified as Cajal bodies. The Cajal body localization signal was confined to a 17 amino acid stretch in the C-terminus of human ISO6 and is lacking in a mouse Iso6 variant. As FMRP is an RNA-binding protein, its presence in Cajal bodies suggests additional functions in nuclear post-transcriptional RNA metabolism. Supporting this hypothesis, a missense mutation (I304N), known to alter the KH2-mediated RNA binding properties of FMRP, abolishes the localization of human FMRP ISO6 to Cajal bodies. These findings open unexplored avenues in search for new insights into the pathophysiology of Fragile X Syndrome. Fragile X syndrome is the most common form of inherited mental retardation affecting approximately 1/7000 females and 1/4000 males worldwide. The syndrome is due to the silencing of a single gene, the Fragile Mental Retardation 1 (FMR1), that codes for a protein called the Fragile X mental retardation protein (FMRP). This protein, highly expressed in the brain, controls local protein synthesis essential for neuronal development and maturation. While considerable efforts have been focused on understanding FMRP functions in mental retardation, the pathophysiology of the syndrome is not well understood. Here, we show that in addition to the well-studied roles of FMRP in regulating protein synthesis, a minor species of FMRP different from the major one, is specifically found in structures called Cajal bodies present in the cell nucleus. Our observations suggest that different FMRP species, also called isoforms, might have independent cellular functions. These findings might open new avenues in search for new insights in the pathophysiology of Fragile X Syndrome.
Collapse
Affiliation(s)
- Alain Y. Dury
- Centre de recherche, Institut en santé mentale de Québec, Québec, Québec, Canada
- Département de psychiatrie et des neurosciences, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Rachid El Fatimy
- Centre de recherche, Institut en santé mentale de Québec, Québec, Québec, Canada
- Département de psychiatrie et des neurosciences, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Sandra Tremblay
- Centre de recherche, Institut en santé mentale de Québec, Québec, Québec, Canada
| | - Timothy M. Rose
- Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine and Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Paul De Koninck
- Centre de recherche, Institut en santé mentale de Québec, Québec, Québec, Canada
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, Québec, Canada
| | - Edouard W. Khandjian
- Centre de recherche, Institut en santé mentale de Québec, Québec, Québec, Canada
- Département de psychiatrie et des neurosciences, Faculté de médecine, Université Laval, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
21
|
Fernández E, Rajan N, Bagni C. The FMRP regulon: from targets to disease convergence. Front Neurosci 2013; 7:191. [PMID: 24167470 PMCID: PMC3807044 DOI: 10.3389/fnins.2013.00191] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/04/2013] [Indexed: 01/08/2023] Open
Abstract
The fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates mRNA metabolism. FMRP has been largely studied in the brain, where the absence of this protein leads to fragile X syndrome, the most frequent form of inherited intellectual disability. Since the identification of the FMRP gene in 1991, many studies have primarily focused on understanding the function/s of this protein. Hundreds of potential FMRP mRNA targets and several interacting proteins have been identified. Here, we report the identification of FMRP mRNA targets in the mammalian brain that support the key role of this protein during brain development and in regulating synaptic plasticity. We compared the genes from databases and genome-wide association studies with the brain FMRP transcriptome, and identified several FMRP mRNA targets associated with autism spectrum disorders, mood disorders and schizophrenia, showing a potential common pathway/s for these apparently different disorders.
Collapse
Affiliation(s)
- Esperanza Fernández
- Center for the Biology of Disease, Vlaams Institut voor Biotechnologie Leuven, Belgium ; Center for Human Genetics, Leuven Institute for Neuroscience and Disease, KU Leuven Leuven, Belgium
| | | | | |
Collapse
|
22
|
Bagni C, Oostra BA. Fragile X syndrome: From protein function to therapy. Am J Med Genet A 2013; 161A:2809-21. [PMID: 24115651 DOI: 10.1002/ajmg.a.36241] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/28/2013] [Indexed: 12/23/2022]
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism. The FMR1 gene contains a CGG repeat present in the 5'-untranslated region which can be unstable upon transmission to the next generation. The repeat is up to 55 CGGs long in the normal population. In patients with fragile X syndrome (FXS), a repeat length exceeding 200 CGGs generally leads to methylation of the repeat and the promoter region, which is accompanied by silencing of the FMR1 gene. The disease is a result of lack of expression of the fragile X mental retardation protein leading to severe symptoms, including intellectual disability, hyperactivity, and autistic-like behavior. The FMR1 protein (FMRP) has a number of functions. The translational dysregulation of a subset of mRNAs targeted by FMRP is probably the major contribution to FXS. FMRP is also involved in mRNA transport to synapses where protein synthesis occurs. For some FMRP-bound mRNAs, FMRP is a direct modulator of mRNA stability either by sustaining or preventing mRNA decay. Increased knowledge about the role of FMRP has led to the identification of potential treatments for fragile X syndrome that were often tested first in the different animal models. This review gives an overview about the present knowledge of the function of FMRP and the therapeutic strategies in mouse and man.
Collapse
Affiliation(s)
- Claudia Bagni
- VIB Center for the Biology of Disease, Catholic University of Leuven, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Italy
| | | |
Collapse
|
23
|
Lin W, Li XM, Zhang J, Huang Y, Wang J, Zhang J, Jiang XF, Fei Z. Increased expression of the 58-kD microspherule protein (MSP58) is correlated with poor prognosis in glioma patients. Med Oncol 2013; 30:677. [PMID: 23996240 DOI: 10.1007/s12032-013-0677-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/21/2013] [Indexed: 10/26/2022]
Abstract
The pathological grading system for human gliomas is usually used to evaluate the prognosis of glioma patients. However, some glioma patients with similar grades have obvious discrepancies in survival. It is therefore necessary to identify some new certain tumor biomarkers that are more suitable for the prognostic assessment of gliomas than the grading system. The 58-kD microspherule protein (MSP58) is an evolutionarily conserved nuclear protein and plays an important role in the regulation of cell proliferation and malignant transformation. However, whether MSP58 can be used as a biomarker to evaluate the malignancy and the prognosis of glioma patients is unknown. In the present study, we performed immunohistochemical analysis to evaluate MSP58 protein expression in 158 specimens of human gliomas and 34 normal control brain tissues. Compared with the control tissues, MSP58 expression was not only significantly higher in the glioma tissues (P < 0.05), but also increased with the increasing pathological grade (P < 0.001). Furthermore, the Kaplan-Meier analysis showed that high expression of MSP58 could predict poor survival in glioma patients (P < 0.001). In the multivariate analysis, high expression of MSP58 was also an independent unfavorable prognostic factor for the overall survival in glioma patients (P < 0.001, hazard ratio, 8.177, 95% CI 2.571-26.008). In conclusion, the increased expression of MSP58 is correlated with a higher malignant grade and poor prognosis in glioma patients. MSP58 is valuable both as an indicator of the malignancy of gliomas and as a prognostic factor for the clinical outcome of glioma patients.
Collapse
Affiliation(s)
- Wei Lin
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cook D, Nuro E, Murai KK. Increasing our understanding of human cognition through the study of Fragile X Syndrome. Dev Neurobiol 2013; 74:147-77. [PMID: 23723176 PMCID: PMC4216185 DOI: 10.1002/dneu.22096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior.
Collapse
Affiliation(s)
- Denise Cook
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
25
|
Mahboubi H, Seganathy E, Kong D, Stochaj U. Identification of Novel Stress Granule Components That Are Involved in Nuclear Transport. PLoS One 2013; 8:e68356. [PMID: 23826389 PMCID: PMC3694919 DOI: 10.1371/journal.pone.0068356] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 05/31/2013] [Indexed: 11/30/2022] Open
Abstract
Background Importin-α1 belongs to a subfamily of nuclear transport adaptors and participates in diverse cellular functions. Best understood for its role in protein transport, importin-α1 also contributes to other biological processes. For instance, arsenite treatment causes importin-α1 to associate with cytoplasmic stress granules (SGs) in mammalian cells. These stress-induced compartments contain translationally arrested mRNAs, small ribosomal subunits and numerous proteins involved in mRNA transport and metabolism. At present, it is not known whether members of all three importin-α subfamilies locate to SGs in response to stress. Results Here, we demonstrate that the oxidant diethyl maleate (DEM), arsenite and heat shock, promote the formation of cytoplasmic SGs that contain nuclear transport factors. Specifically, importin-α1, α4 and α5, which belong to distinct subfamilies, and importin-β1 were targeted by all of these stressors to cytoplasmic SGs, but not to P-bodies. Importin-α family members have been implicated in transcriptional regulation, which prompted us to analyze their ability to interact with poly(A)-RNA in growing cells. Our studies show that importin-α1, but not α4, α5, importin-β1 or CAS, associated with poly(A)-RNA under nonstress conditions. Notably, this interaction was significantly reduced when cells were treated with DEM. Additional studies suggest that importin-α1 is likely connected to poly(A)-RNA through an indirect interaction, as the adaptor did not bind homopolymer RNA specifically in vitro. Significance Our studies establish that members of three importin-α subfamilies are bona fide SG components under different stress conditions. Furthermore, importin-α1 is unique in its ability to interact with poly(A)-RNA in a stress-dependent fashion, and in vitro experiments indicate that this association is indirect. Collectively, our data emphasize that nuclear transport factors participate in a growing number of cellular activities that are modulated by stress.
Collapse
Affiliation(s)
- Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | - Dekun Kong
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
26
|
Xu CS, Zheng JY, Zhang HL, Zhao HD, Zhang J, Wu GQ, Wu L, Wang Q, Wang WZ, Zhang J. MSP58 knockdown inhibits the proliferation of esophageal squamous cell carcinoma in vitro and in vivo. Asian Pac J Cancer Prev 2013; 13:3233-8. [PMID: 22994740 DOI: 10.7314/apjcp.2012.13.7.3233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Esophageal carcinoma (EC) is one of the most aggressive cancers with a poor prognosis. Understanding the molecular mechanisms underlying esophageal cancer progression is a high priority for improved EC diagnosis and prognosis. Recently, MSP58 was shown to behave as an oncogene in colorectal carcinomas and gliomas. However, little is known about its function in esophageal carcinomas. We therefore examined the effects of MSP58 knockdown on the growth of esophageal squamous cell carcinoma (ESCC) cells in vitro and in vivo in order to gain a better understanding of its potential as a tumor therapeutic target. We employed lentiviral-mediated small hairpin RNA (shRNA) to knock down the expression of MSP58 in the ESCC cell lines Eca-109 and EC9706 and demonstrated inhibition of ESCC cell proliferation and colony formation in vitro. Furthermore, flow cytometry and western blot analyses revealed that MSP58 depletion induced cell cycle arrest by regulating the expression of P21, CDK4 and cyclin D1. Notably, the downregulation of MSP58 significantly inhibited the growth of ESCC xenografts in nude mice. Our results suggest that MSP58 may play an important role in ESCC progression.
Collapse
Affiliation(s)
- Chun-Sheng Xu
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Davidovic L, Durand N, Khalfallah O, Tabet R, Barbry P, Mari B, Sacconi S, Moine H, Bardoni B. A novel role for the RNA-binding protein FXR1P in myoblasts cell-cycle progression by modulating p21/Cdkn1a/Cip1/Waf1 mRNA stability. PLoS Genet 2013; 9:e1003367. [PMID: 23555284 PMCID: PMC3605292 DOI: 10.1371/journal.pgen.1003367] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/21/2013] [Indexed: 12/14/2022] Open
Abstract
The Fragile X-Related 1 gene (FXR1) is a paralog of the Fragile X Mental Retardation 1 gene (FMR1), whose absence causes the Fragile X syndrome, the most common form of inherited intellectual disability. FXR1P plays an important role in normal muscle development, and its absence causes muscular abnormalities in mice, frog, and zebrafish. Seven alternatively spliced FXR1 transcripts have been identified and two of them are skeletal muscle-specific. A reduction of these isoforms is found in myoblasts from Facio-Scapulo Humeral Dystrophy (FSHD) patients. FXR1P is an RNA–binding protein involved in translational control; however, so far, no mRNA target of FXR1P has been linked to the drastic muscular phenotypes caused by its absence. In this study, gene expression profiling of C2C12 myoblasts reveals that transcripts involved in cell cycle and muscular development pathways are modulated by Fxr1-depletion. We observed an increase of p21—a regulator of cell-cycle progression—in Fxr1-knocked-down mouse C2C12 and FSHD human myoblasts. Rescue of this molecular phenotype is possible by re-expressing human FXR1P in Fxr1-depleted C2C12 cells. FXR1P muscle-specific isoforms bind p21 mRNA via direct interaction with a conserved G-quadruplex located in its 3′ untranslated region. The FXR1P/G-quadruplex complex reduces the half-life of p21 mRNA. In the absence of FXR1P, the upregulation of p21 mRNA determines the elevated level of its protein product that affects cell-cycle progression inducing a premature cell-cycle exit and generating a pool of cells blocked at G0. Our study describes a novel role of FXR1P that has crucial implications for the understanding of its role during myogenesis and muscle development, since we show here that in its absence a reduced number of myoblasts will be available for muscle formation/regeneration, shedding new light into the pathophysiology of FSHD. Muscle development is a complex process controlled by the timely expression of genes encoding crucial regulators of the muscle cell precursors called myoblasts. We know from previous studies that inactivation of the Fragile X related 1 (FXR1) gene in various animal models (mouse, frog, and zebrafish) causes muscular and cardiac abnormalities. Also, FXR1P is reduced in a human myopathy called Fascio-Scapulo Humeral Dystrophy (FSHD), suggesting its critical role in muscle that findings presented in this study contribute to elucidating. Cell-cycle arrest is a prerequisite to differentiation of myoblasts into mature myotubes, which will form the muscle. One key regulator is the p21/Cdkn1a/Cip1/Waf1 protein, which commands myoblasts to stop proliferating, and this action is particularly important during muscle regeneration. In this study, we have identified FXR1P as a novel regulator of p21 expression. We show that FXR1P absence in mouse myoblasts and FSHD-derived myopathic myoblasts increases abnormally the levels of p21, causing a premature cell cycle exit of myoblasts. Our study predicts that FXR1P absence leads to a reduced number of myoblasts available for muscle formation and regeneration. This explains the drastic effects of FXR1 inactivation on muscle and brings a better understanding of the molecular/cellular bases of FSHD.
Collapse
Affiliation(s)
- Laetitia Davidovic
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
- Université de Nice-Sophia Antipolis, Nice, France
| | - Nelly Durand
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
- Université de Nice-Sophia Antipolis, Nice, France
| | - Olfa Khalfallah
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
- Université de Nice-Sophia Antipolis, Nice, France
| | - Ricardo Tabet
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS, UMR7104, Inserm U596, Collège de France, Strasbourg University, Illkirch-Graffenstaden, France
| | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
- Université de Nice-Sophia Antipolis, Nice, France
| | - Bernard Mari
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
- Université de Nice-Sophia Antipolis, Nice, France
| | - Sabrina Sacconi
- INSERM U638, Faculté de Médecine, Université de Nice Sophia-Antipolis, Centre de Référence pour les Maladies Neuromusculaires, CHU de Nice, Nice, France
| | - Hervé Moine
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS, UMR7104, Inserm U596, Collège de France, Strasbourg University, Illkirch-Graffenstaden, France
| | - Barbara Bardoni
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
- Université de Nice-Sophia Antipolis, Nice, France
- * E-mail:
| |
Collapse
|
28
|
Abstract
MSP58, a novel oncogene, shows transforming activity in mouse embryonic fibroblasts. However, the oncogenic role of MSP58 in tumor cells has not been fully characterized. To extend understanding of how this protein operates in tumorigenesis, we aimed to identify the effect of MSP58 on neuroblastoma cell proliferation. Here, we found that MSP58 was highly expressed in neuroblastoma tumor samples and cell lines. We found that the majority of MSP58 protein can be detected in the nucleus as reported in other cells. Moreover, MSP58-targeted shRNA lentivirus attenuated neuroblastoma cell proliferation. Knockdown of MSP58 resulted in S-phase cell accumulation, which was accompanied by changes in cell cycle-related molecules. These results indicate that MSP58 plays an oncogenic role in the proliferation of neuroblastoma cells and could be a novel target for the treatment of neuroblastoma.
Collapse
|
29
|
Sanchez G, Dury AY, Murray LM, Biondi O, Tadesse H, El Fatimy R, Kothary R, Charbonnier F, Khandjian EW, Côté J. A novel function for the survival motoneuron protein as a translational regulator. Hum Mol Genet 2012; 22:668-84. [PMID: 23136128 DOI: 10.1093/hmg/dds474] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
SMN1, the causative gene for spinal muscular atrophy (SMA), plays a housekeeping role in the biogenesis of small nuclear RNA ribonucleoproteins. SMN is also present in granular foci along axonal projections of motoneurons, which are the predominant cell type affected in the pathology. These so-called RNA granules mediate the transport of specific mRNAs along neurites and regulate mRNA localization, stability, as well as local translation. Recent work has provided evidence suggesting that SMN may participate in the assembly of RNA granules, but beyond that, the precise nature of its role within these structures remains unclear. Here, we demonstrate that SMN associates with polyribosomes and can repress translation in an in vitro translation system. We further identify the arginine methyltransferase CARM1 as an mRNA that is regulated at the translational level by SMN and find that CARM1 is abnormally up-regulated in spinal cord tissue from SMA mice and in severe type I SMA patient cells. We have previously characterized a novel regulatory pathway in motoneurons involving the SMN-interacting RNA-binding protein HuD and CARM1. Thus, our results suggest the existence of a potential negative feedback loop in this pathway. Importantly, an SMA-causing mutation in the Tudor domain of SMN completely abolished translational repression, a strong indication for the functional significance of this novel SMN activity in the pathology.
Collapse
Affiliation(s)
- Gabriel Sanchez
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The novel interaction between microspherule protein Msp58 and ubiquitin E3 ligase EDD regulates cell cycle progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:21-32. [PMID: 23069210 DOI: 10.1016/j.bbamcr.2012.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 09/18/2012] [Accepted: 10/04/2012] [Indexed: 11/20/2022]
Abstract
Microspherule protein Msp58 (or MCRS1) plays a role in numerous cellular processes including transcriptional regulation and cell proliferation. It is not well understood either how Msp58 mediates its myriad functions or how it is itself regulated. Here, by immunoprecipitation, we identify EDD (E3 identified by differential display) as a novel Msp58-interacting protein. EDD, also called UBR5, is a HECT-domain (homologous to E6-AP carboxy-terminus) containing ubiquitin ligase that plays a role in cell proliferation, differentiation and DNA damage response. Both in vitro and in vivo binding assays show that Msp58 directly interacts with EDD. Microscopy studies reveal that these two proteins co-localize in the nucleus. We have also found that depletion of EDD leads to an increase of Msp58 protein level and extends the half-life of Msp58, demonstrating that EDD negatively regulates Msp58's protein stability. Furthermore, we show that Msp58 is upregulated in multiple different cell lines upon the treatment with proteasome inhibitor MG132 and exogenously expressed Msp58 is ubiquitinated, suggesting that Msp58 is degraded by the ubiquitin-proteasome pathway. Finally, knockdown of either Msp58 or EDD in human lung fibroblast WI-38 cells affects the levels of cyclins B, D and E, as well as cell cycle progression. Together, these results suggest a role for the Msp58/EDD interaction in controlling cell cycle progression. Given that both Msp58 and EDD are often aberrantly expressed in various human cancers, our findings open a new direction to elucidate Msp58 and EDD's roles in cell proliferation and tumorigenesis.
Collapse
|
31
|
Shi H, Li SJ, Zhang B, Liu HL, Chen CS. Expression of MSP58 in human colorectal cancer and its correlation with prognosis. Med Oncol 2012; 29:3136-42. [PMID: 22773039 PMCID: PMC3505539 DOI: 10.1007/s12032-012-0284-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 06/12/2012] [Indexed: 12/21/2022]
Abstract
We had reported that MSP58 regulates colorectal cancer cell proliferation, development, and apoptosis, by the cyclin D1-cyclin-dependent kinase 4-p21 pathway. In this study, MSP58 protein expression was examined by immunohistochemistry in 499 specimens of CRC. The relationship between various clinicopathological features and overall patient survival rate was analyzed. The association of MSP58 expression with the 499 CRC patients’ survival rate was assessed by Kaplan–Meier and Cox regression. Using ROC curve to provide sensitivity and specificity of the score of MSP58 predicts local recurrence and survival of CRC patients. The expression of MSP58 was positively correlated with the depth of invasion (P < 0.001), local recurrence (P = 0.008), tumor grade (P = 0.002), and UICC stage (P < 0.001). The Kaplan–Meier survival analysis demonstrated that the survival time of CRC patients with low expression of MSP58 was longer than those with high expression during the 5-year follow-up period (P < 0.001). COX regression analysis indicated that high expression of MSP58 (P < 0.001), depth of invasion >pT1 (P = 0.008), distant organ metastasis (pM1) (P < 0.001), regional lymph node metastasis (≥pN1) (P < 0.001), and local recurrence (Yes) (P = 0.007) were independent, poor prognostic factors of CRC. ROC curve showed the score of MSP58 expression level did provide a maximal sensitivity and specificity to predict local recurrence and survival of CRC patients. Our results demonstrated MSP58 might serve as a novel prognostic marker that is independent of, and additive to, the UICC staging system.
Collapse
Affiliation(s)
- Hai Shi
- State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shanxi, People's Republic of China.
| | | | | | | | | |
Collapse
|
32
|
Fragile X mental retardation protein interacts with the RNA-binding protein Caprin1 in neuronal RiboNucleoProtein complexes [corrected]. PLoS One 2012; 7:e39338. [PMID: 22737234 PMCID: PMC3380850 DOI: 10.1371/journal.pone.0039338] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/23/2012] [Indexed: 01/17/2023] Open
Abstract
Fragile X syndrome is caused by the absence of the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein. FMRP is associated with messenger RiboNucleoParticles (mRNPs) present in polyribosomes and its absence in neurons leads to alteration in synaptic plasticity as a result of translation regulation defects. The molecular mechanisms by which FMRP plays a role in translation regulation remain elusive. Using immunoprecipitation approaches with monoclonal Ab7G1-1 and a new generation of chicken antibodies, we identified Caprin1 as a novel FMRP-cellular partner. In vivo and in vitro evidence show that Caprin1 interacts with FMRP at the level of the translation machinery as well as in trafficking neuronal granules. As an RNA-binding protein, Caprin1 has in common with FMRP at least two RNA targets that have been identified as CaMKIIα and Map1b mRNAs. In view of the new concept that FMRP species bind to RNA regardless of known structural motifs, we propose that protein interactors might modulate FMRP functions.
Collapse
|
33
|
Microspherule protein 2 associates with ASK1 and acts as a negative regulator of stress-induced ASK1 activation. FEBS Lett 2012; 586:1678-86. [DOI: 10.1016/j.febslet.2012.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/10/2012] [Accepted: 04/25/2012] [Indexed: 01/02/2023]
|
34
|
Davidovic L, Navratil V, Bonaccorso CM, Catania MV, Bardoni B, Dumas ME. A metabolomic and systems biology perspective on the brain of the fragile X syndrome mouse model. Genome Res 2011; 21:2190-202. [PMID: 21900387 DOI: 10.1101/gr.116764.110] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fragile X syndrome (FXS) is the first cause of inherited intellectual disability, due to the silencing of the X-linked Fragile X Mental Retardation 1 gene encoding the RNA-binding protein FMRP. While extensive studies have focused on the cellular and molecular basis of FXS, neither human Fragile X patients nor the mouse model of FXS--the Fmr1-null mouse--have been profiled systematically at the metabolic and neurochemical level to provide a complementary perspective on the current, yet scattered, knowledge of FXS. Using proton high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR)-based metabolic profiling, we have identified a metabolic signature and biomarkers associated with FXS in various brain regions of Fmr1-deficient mice. Our study highlights for the first time that Fmr1 gene inactivation has profound, albeit coordinated consequences in brain metabolism leading to alterations in: (1) neurotransmitter levels, (2) osmoregulation, (3) energy metabolism, and (4) oxidative stress response. To functionally connect Fmr1-deficiency to its metabolic biomarkers, we derived a functional interaction network based on the existing knowledge (literature and databases) and show that the FXS metabolic response is initiated by distinct mRNA targets and proteins interacting with FMRP, and then relayed by numerous regulatory proteins. This novel "integrated metabolome and interactome mapping" (iMIM) approach advantageously unifies novel metabolic findings with previously unrelated knowledge and highlights the contribution of novel cellular pathways to the pathophysiology of FXS. These metabolomic and integrative systems biology strategies will contribute to the development of potential drug targets and novel therapeutic interventions, which will eventually benefit FXS patients.
Collapse
Affiliation(s)
- Laetitia Davidovic
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 6097, 06560 Valbonne, France.
| | | | | | | | | | | |
Collapse
|
35
|
Blackwell E, Ceman S. A new regulatory function of the region proximal to the RGG box in the fragile X mental retardation protein. J Cell Sci 2011; 124:3060-5. [PMID: 21868366 DOI: 10.1242/jcs.086751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is required for normal cognition. FMRP has two autosomal paralogs, which although similar to FMRP, cannot compensate for the loss of FMRP expression in brain. The arginine- and glycine-rich region of FMRP (the RGG box) is unique; it is the high-affinity RNA-binding motif in FMRP and is encoded by exon 15. Alternative splicing occurs in the 5' end of exon 15, which is predicted to affect the structure of the distally encoded RGG box. Here, we provide evidence that isoform 3, which removes 25 amino acids from the 5' end of exon 15, has an altered conformation that reduces binding of a specific antibody and renders the RGG box unable to efficiently associate with polyribosomes. Isoform 3 is also compromised in its ability to form granules and to associate with a key messenger ribonucleoprotein Yb1 (also known as p50, NSEP1 and YBX1). Significantly, these functions are similarly compromised when the RGG box is absent from FMRP, suggesting an important regulatory role of the N-terminal region encoded by exon 15.
Collapse
Affiliation(s)
- Ernest Blackwell
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | |
Collapse
|
36
|
Lattmann S, Stadler MB, Vaughn JP, Akman SA, Nagamine Y. The DEAH-box RNA helicase RHAU binds an intramolecular RNA G-quadruplex in TERC and associates with telomerase holoenzyme. Nucleic Acids Res 2011; 39:9390-404. [PMID: 21846770 PMCID: PMC3241650 DOI: 10.1093/nar/gkr630] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Guanine-quadruplexes (G4) consist of non-canonical four-stranded helical arrangements of guanine-rich nucleic acid sequences. The bulky and thermodynamically stable features of G4 structures have been shown in many respects to affect normal nucleic acid metabolism. In vivo conversion of G4 structures to single-stranded nucleic acid requires specialized proteins with G4 destabilizing/unwinding activity. RHAU is a human DEAH-box RNA helicase that exhibits G4-RNA binding and resolving activity. In this study, we employed RIP-chip analysis to identify en masse RNAs associated with RHAU in vivo. Approximately 100 RNAs were found to be associated with RHAU and bioinformatics analysis revealed that the majority contained potential G4-forming sequences. Among the most abundant RNAs selectively enriched with RHAU, we identified the human telomerase RNA template TERC as a true target of RHAU. Remarkably, binding of RHAU to TERC depended on the presence of a stable G4 structure in the 5′-region of TERC, both in vivo and in vitro. RHAU was further found to associate with the telomerase holoenzyme via the 5′-region of TERC. Collectively, these results provide the first evidence that intramolecular G4-RNAs serve as physiologically relevant targets for RHAU. Furthermore, our results suggest the existence of alternatively folded forms of TERC in the fully assembled telomerase holoenyzme.
Collapse
Affiliation(s)
- Simon Lattmann
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
37
|
Kuo CW, Wang WH, Liu ST. Mapping signals that are important for nuclear and nucleolar localization in MCRS2. Mol Cells 2011; 31:547-52. [PMID: 21533551 PMCID: PMC3887618 DOI: 10.1007/s10059-011-1033-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 11/27/2022] Open
Abstract
MCRS2 is an oncoprotein that is sequestered in the nucleolus. When in the nucleolus, it promotes the transcription of the rRNA gene. MCRS2 also brings proteins into the nucleolus to change their function. This study analyzes the sequence of MCRS2 and determines that the nuclear localization signal, which has the sequence KRKK, is situated between amino acids 66 and 69. Meanwhile, MCRS2 contains a bipartite nucleolar localization signal, which comprises a KKSK motif, located between amino acids 133 and 136, and a downstream 152-amino acid region, from amino acid 314 to 465. The results of this study are important to understand the function of MCRS2.
Collapse
Affiliation(s)
| | | | - Shih-Tung Liu
- Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| |
Collapse
|
38
|
Neilson KM, Pignoni F, Yan B, Moody SA. Developmental expression patterns of candidate cofactors for vertebrate six family transcription factors. Dev Dyn 2010; 239:3446-66. [PMID: 21089078 PMCID: PMC3059517 DOI: 10.1002/dvdy.22484] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Six family transcription factors play important roles in craniofacial development. Their transcriptional activity can be modified by cofactor proteins. Two Six genes and one cofactor gene (Eya1) are involved in the human Branchio-otic (BO) and Branchio-otic-renal (BOR) syndromes. However, mutations in Six and Eya genes only account for approximately half of these patients. To discover potential new causative genes, we searched the Xenopus genome for orthologues of Drosophila cofactor proteins that interact with the fly Six-related factor, SO. We identified 33 Xenopus genes with high sequence identity to 20 of the 25 fly SO-interacting proteins. We provide the developmental expression patterns of the Xenopus orthologues for 11 of the fly genes, and demonstrate that all are expressed in developing craniofacial tissues with at least partial overlap with Six1/Six2. We speculate that these genes may function as Six-interacting partners with important roles in vertebrate craniofacial development and perhaps congenital syndromes.
Collapse
Affiliation(s)
- Karen M Neilson
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | | | | | | |
Collapse
|
39
|
Lin W, Zhang J, Zhang J, Liu X, Fei Z, Li X, Davidovic L, Tang Z, Shen L, Deng Y, Yang A, Han H, Zhang X, Yao L. RNAi-mediated inhibition of MSP58 decreases tumour growth, migration and invasion in a human glioma cell line. J Cell Mol Med 2010; 13:4608-22. [PMID: 18798870 PMCID: PMC4515075 DOI: 10.1111/j.1582-4934.2008.00499.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
MSP58, a 58-kD nuclear microspherule protein, is an evolutionarily conserved nuclear protein implicated in the regulation of gene transcription as well as in malignant transformation. An analysis of mRNA expression by real-time PCR revealed that MSP58 was significantly up-regulated in 29% of high-grade glioblastoma tissues as well as in four glioblastoma cell lines. In the present study, we further evaluated the biological functions of MSP58 in U251 glioma cell proliferation, migration, invasion and tumour growth in vivo by specific MSP58 knockdown using short hairpin RNA (shRNA). We found that MSP58 depletion inhibited glioma cell growth, primarily by inducing cell cycle arrest rather than apoptosis. MSP58 depletion also decreased the invasive capability of glioma cells and anchorage-independent colony formation in soft agar. Moreover, suppression of MSP58 expression significantly impaired the growth of glioma xenografts in nude mice. Finally, a cell cycle-associated gene array revealed potential molecular mechanisms contributing to cell cycle arrest in MSP58-depleted glioma cells. In summary, our data highlight the importance of MSP58 in glioma progression and provided a biological basis for MSP58 as a novel candidate target for treatment of glioma.
Collapse
Affiliation(s)
- Wei Lin
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University and The State Key Laboratory of Cancer Biology, Xi'an, The People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Melko M, Bardoni B. The role of G-quadruplex in RNA metabolism: involvement of FMRP and FMR2P. Biochimie 2010; 92:919-26. [PMID: 20570707 DOI: 10.1016/j.biochi.2010.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/28/2010] [Indexed: 12/20/2022]
Abstract
Regulation of post-transcriptional gene expression is a cellular process that is accomplished through the activity of multiple mRNP (messenger RiboNucleoProtein) complexes which are composed of mRNA-binding proteins and RNA molecules interacting with those proteins. The specificity of these interactions is mediated by the ability of the RNA-binding proteins to precisely recognize and bind RNA sequences or structures. Alterations of their function may have some dramatic consequences, resulting in different pathologies. An increasing body of data is emerging showing the impact of a G-quadruplex forming structure in the maturation and expression of some RNA molecules. We review here the role of the G-quadruplex RNA structure in the regulation of translation and splicing, when it interacts with two RNA-binding proteins: FMRP (Fragile X Mental Retardation Protein) and FMR2P (Fragile X Mental Retardation 2 protein). Impaired expression of these proteins causes two forms of intellectual disability: the Fragile X Mental Retardation syndrome (FXS) and the FRAXE-associated mental retardation (FRAXE), respectively. FMRP is involved in different steps of RNA metabolism and, in particular, in translational regulation. FMR2P has been initially described as a transcription factor and we recently showed also its role in regulation of alternative splicing. By the study of the functional significance of the interaction of both FMRP and FMR2P with a G-quadruplex forming RNA we were able to show an impact of this structure in translational regulation and also in splicing, behaving as an Exonic Splicing Enhancer.
Collapse
Affiliation(s)
- Mireille Melko
- CNRS UMR 6097, Institute of Molecular and Cellular Pharmacology, University of Nice-Sophia Antipolis, 06560 Valbonne Sophia-Antipolis, France
| | | |
Collapse
|
41
|
Dolzhanskaya N, Bolton DC, Denman RB. Chemical and structural probing of the N-terminal residues encoded by FMR1 exon 15 and their effect on downstream arginine methylation. Biochemistry 2008; 47:8491-503. [PMID: 18656952 DOI: 10.1021/bi702298f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Exon 15 of the fragile X mental retardation protein gene (FMR1) is alternatively spliced into three variants. The amino acids encoded by the 5' end of the exon contain several regulatory determinants including phosphorylation sites and a potential conformational switch. Residues encoded by the 3' end of the exon specify FMRP's RGG box, an RNA binding domain that interacts with G-quartet motifs. Previous studies demonstrated that the exon 15-encoded N-terminal residues influence the extent of arginine methylation, independent of S 500 phosphorylation. In the present study we focus on the role the putative conformational switch plays in arginine methylation. Chemical and structural probing of Ex15 alternatively spliced variant proteins and several mutants leads to the following conclusions: Ex15c resides largely in a conformation that is refractory toward methylation; however, it can be methylated by supplementing extracts with recombinant PRMT1 or PRMT3. Protein modeling studies reveal that the RG-rich region is part of a three to four strand antiparallel beta-sheet, which in other RNA binding proteins functions as a platform for nucleic acid interactions. In the Ex15c variant the first strand of this sheet is truncated, and this significantly perturbs the side-chain conformations of the arginine residues in the RG-rich region. Mutating R 507 in the conformational switch to K also truncates the first strand of the beta-sheet, and corresponding decreases in in vitro methylation were found for this and R 507/R 544 and R 507/R 546 double mutants. These effects are not due to the loss of R 507 methylation as a conformational switch-containing peptide reacted under substrate excess and in methyl donor excess was not significantly methylated. Consistent with this, similar changes in beta-sheet structure and decreases in in vitro methylation were observed with a W 513-K mutant. These data support a novel model for FMRP arginine methylation and a role for conformational switch residues in arginine modification.
Collapse
Affiliation(s)
- Natalia Dolzhanskaya
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | | | | |
Collapse
|
42
|
Mutational analysis establishes a critical role for the N terminus of fragile X mental retardation protein FMRP. J Neurosci 2008; 28:3221-6. [PMID: 18354025 DOI: 10.1523/jneurosci.5528-07.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome is the most common form of heritable mental retardation caused by the loss of function of the fragile X mental retardation protein FMRP. FMRP is a multidomain, RNA-binding protein involved in RNA transport and/or translational regulation. However, the binding specificity between FMRP and its various partners including interacting proteins and mRNA targets is essentially unknown. Previous work demonstrated that dFMRP, the Drosophila homolog of human FMRP, is structurally and functionally conserved with its mammalian counterparts. Here, we perform a forward genetic screen and isolate 26 missense mutations at 13 amino acid residues in the dFMRP coding dfmr1. Interestingly, all missense mutations identified affect highly conserved residues in the N terminal of dFMRP. Loss- and gain-of-function analyses reveal altered axonal and synaptic elaborations in mutants. Yeast two-hybrid assays and in vivo analyses of interaction with CYFIP (cytoplasmic FMR1 interacting protein) in the nervous system demonstrate that some of the mutations disrupt specific protein-protein interactions. Thus, our mutational analyses establish that the N terminus of FMRP is critical for its neuronal function.
Collapse
|
43
|
Piazzon N, Rage F, Schlotter F, Moine H, Branlant C, Massenet S. In vitro and in cellulo evidences for association of the survival of motor neuron complex with the fragile X mental retardation protein. J Biol Chem 2007; 283:5598-610. [PMID: 18093976 DOI: 10.1074/jbc.m707304200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein. Although the SMN complex is essential for assembly of spliceosomal U small nuclear RNPs, it is still not understood why reduced levels of the SMN protein specifically cause motor neuron degeneration. SMN was recently proposed to have specific functions in mRNA transport and translation regulation in neuronal processes. The defective protein in Fragile X mental retardation syndrome (FMRP) also plays a role in transport of mRNPs and in their translation. Therefore, we examined possible relationships of SMN with FMRP. We observed granules containing both transiently expressed red fluorescent protein(RFP)-tagged SMN and green fluorescent protein(GFP)-tagged FMRP in cell bodies and processes of rat primary neurons of hypothalamus in culture. By immunoprecipitation experiments, we detected an association of FMRP with the SMN complex in human neuroblastoma SH-SY5Y cells and in murine motor neuron MN-1 cells. Then, by in vitro experiments, we demonstrated that the SMN protein is essential for this association. We showed that the COOH-terminal region of FMRP, as well as the conserved YG box and the region encoded by exon 7 of SMN, are required for the interaction. Our findings suggest a link between the SMN complex and FMRP in neuronal cells.
Collapse
Affiliation(s)
- Nathalie Piazzon
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex
| | | | | | | | | | | |
Collapse
|
44
|
Wagner EJ, Burch BD, Godfrey AC, Salzler HR, Duronio RJ, Marzluff WF. A genome-wide RNA interference screen reveals that variant histones are necessary for replication-dependent histone pre-mRNA processing. Mol Cell 2007; 28:692-9. [PMID: 18042462 DOI: 10.1016/j.molcel.2007.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/18/2007] [Accepted: 10/03/2007] [Indexed: 11/18/2022]
Abstract
Metazoan replication-dependent histone mRNAs are not polyadenylated and instead end in a conserved stem loop that is the cis element responsible for coordinate posttranscriptional regulation of these mRNAs. Using biochemical approaches, only a limited number of factors required for cleavage of histone pre-mRNA have been identified. We therefore performed a genome-wide RNA interference screen in Drosophila cells using a GFP reporter that is expressed only when histone pre-mRNA processing is disrupted. Four of the 24 genes identified encode proteins also necessary for cleavage/polyadenylation, indicating mechanistic conservation in formation of different mRNA 3' ends. We also unexpectedly identified the histone variants H2Av and H3.3A/B. In H2Av mutant cells, U7 snRNP remains active but fails to accumulate at the histone locus, suggesting there is a regulatory pathway that coordinates the production of variant and canonical histones that acts via localization of essential histone pre-mRNA processing factors.
Collapse
Affiliation(s)
- Eric J Wagner
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
45
|
Zhang M, Wang Q, Huang Y. Fragile X mental retardation protein FMRP and the RNA export factor NXF2 associate with and destabilize Nxf1 mRNA in neuronal cells. Proc Natl Acad Sci U S A 2007; 104:10057-62. [PMID: 17548835 PMCID: PMC1891223 DOI: 10.1073/pnas.0700169104] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Indexed: 11/18/2022] Open
Abstract
Fragile X syndrome is caused by the inactivation of the X-linked FMR1 gene, leading to the loss of its encoded protein FMRP. Although macroorchidism and defects in neuronal architecture and function have been associated with lack of FMRP, the exact molecular mechanism underlying this disease remains unclear. We have reported previously that in the brain and testis of mice, FMRP specifically interacts with a distinct mRNA nuclear export factor NXF2 but not with its close relative NXF1, a ubiquitously expressed essential mRNA nuclear export factor. This interaction marked NXF2 as a putative functional partner of FMRP. Here, we demonstrate by immunoprecipitation and quantitative real-time RT-PCR that, in cultured mouse neuronal cells, both FMRP and NXF2 are present in Nxf1 mRNA-containing ribonucleoprotein particles. Further, we show that expression of NXF2 leads to the destabilization of Nxf1 mRNA and that this effect is abolished when Fmr1 expression is reduced by siRNA, arguing that both proteins collaborate to exert this effect. Importantly, these findings correlate well with our observations that in both mouse hippocampal neurons and male germ cells where the expression of FMRP and NXF2 is most prominent, the expression of NXF1 is relatively poorly expressed. Our studies thus identify Nxf1 mRNA as a likely biologically relevant in vivo target of both FMRP and NXF2 and implicate FMRP, in conjunction with NXF2, as a posttranscriptional regulator of a major mRNA export factor. Such regulation may prove important in the normal development and function of neurons as well as of male germ cells.
Collapse
Affiliation(s)
- Meiqin Zhang
- *Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 300 George Street, New Haven, CT 06511; and
- Department of Gynecologic Oncology, Tumor Hospital, Fudan University, 270 Dongan Road, Shanghai 200032, China
| | - Qiaoqiao Wang
- *Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 300 George Street, New Haven, CT 06511; and
| | - Yingqun Huang
- *Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 300 George Street, New Haven, CT 06511; and
| |
Collapse
|
46
|
Bechara E, Davidovic L, Melko M, Bensaid M, Tremblay S, Grosgeorge J, Khandjian EW, Lalli E, Bardoni B. Fragile X related protein 1 isoforms differentially modulate the affinity of fragile X mental retardation protein for G-quartet RNA structure. Nucleic Acids Res 2006; 35:299-306. [PMID: 17170008 PMCID: PMC1802556 DOI: 10.1093/nar/gkl1021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/13/2006] [Accepted: 11/13/2006] [Indexed: 11/12/2022] Open
Abstract
Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of expression of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein with high specificity for G-quartet RNA structure. FMRP is involved in several steps of mRNA metabolism: nucleocytoplasmic trafficking, translational control and transport along dendrites in neurons. Fragile X Related Protein 1 (FXR1P), a homologue and interactor of FMRP, has been postulated to have a function similar to FMRP, leading to the hypothesis that it can compensate for the absence of FMRP in Fragile X patients. Here we analyze the ability of three isoforms of FXR1P, expressed in different tissues, to bind G-quartet RNA structure specifically. Only the longest FXR1P isoform was found to be able to bind specifically the G-quartet RNA, albeit with a lower affinity as compared to FMRP, whereas the other two isoforms negatively regulate the affinity of FMRP for G-quartet RNA. This result is important to decipher the molecular basis of fragile X syndrome, through the understanding of FMRP action in the context of its multimolecular complex in different tissues. In addition, we show that the action of FXR1P is synergistic rather than compensatory for FMRP function.
Collapse
Affiliation(s)
- Elias Bechara
- CNRS UMR 6543, Faculté de Médecine–Université de Nice Sophia-Antipolis28 Avenue De Valombrose, 06107, Nice, France
- Unité de Recherche en Génétique Humaine et Moléculaire, Centre de Recherche Hôpital Saint-François d'Assisele CHUQ, Québec, Canada G1L 3L5, Département de Biologie Médicale, Faculté de Médecine, Université Laval, Québec, Canada
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097Université de Nice Sophia-Antipolis, 660 Route des Lucioles, 06560 Valbonne Sophia-Antipolis, France
| | - Laetitia Davidovic
- Unité de Recherche en Génétique Humaine et Moléculaire, Centre de Recherche Hôpital Saint-François d'Assisele CHUQ, Québec, Canada G1L 3L5, Département de Biologie Médicale, Faculté de Médecine, Université Laval, Québec, Canada
| | - Mireille Melko
- CNRS UMR 6543, Faculté de Médecine–Université de Nice Sophia-Antipolis28 Avenue De Valombrose, 06107, Nice, France
- Unité de Recherche en Génétique Humaine et Moléculaire, Centre de Recherche Hôpital Saint-François d'Assisele CHUQ, Québec, Canada G1L 3L5, Département de Biologie Médicale, Faculté de Médecine, Université Laval, Québec, Canada
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097Université de Nice Sophia-Antipolis, 660 Route des Lucioles, 06560 Valbonne Sophia-Antipolis, France
| | - Mounia Bensaid
- CNRS UMR 6543, Faculté de Médecine–Université de Nice Sophia-Antipolis28 Avenue De Valombrose, 06107, Nice, France
- Unité de Recherche en Génétique Humaine et Moléculaire, Centre de Recherche Hôpital Saint-François d'Assisele CHUQ, Québec, Canada G1L 3L5, Département de Biologie Médicale, Faculté de Médecine, Université Laval, Québec, Canada
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097Université de Nice Sophia-Antipolis, 660 Route des Lucioles, 06560 Valbonne Sophia-Antipolis, France
| | - Sandra Tremblay
- Unité de Recherche en Génétique Humaine et Moléculaire, Centre de Recherche Hôpital Saint-François d'Assisele CHUQ, Québec, Canada G1L 3L5, Département de Biologie Médicale, Faculté de Médecine, Université Laval, Québec, Canada
| | - Josiane Grosgeorge
- CNRS UMR 6543, Faculté de Médecine–Université de Nice Sophia-Antipolis28 Avenue De Valombrose, 06107, Nice, France
- Unité de Recherche en Génétique Humaine et Moléculaire, Centre de Recherche Hôpital Saint-François d'Assisele CHUQ, Québec, Canada G1L 3L5, Département de Biologie Médicale, Faculté de Médecine, Université Laval, Québec, Canada
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097Université de Nice Sophia-Antipolis, 660 Route des Lucioles, 06560 Valbonne Sophia-Antipolis, France
| | - Edouard W. Khandjian
- Unité de Recherche en Génétique Humaine et Moléculaire, Centre de Recherche Hôpital Saint-François d'Assisele CHUQ, Québec, Canada G1L 3L5, Département de Biologie Médicale, Faculté de Médecine, Université Laval, Québec, Canada
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097Université de Nice Sophia-Antipolis, 660 Route des Lucioles, 06560 Valbonne Sophia-Antipolis, France
| | - Barbara Bardoni
- To whom correspondence should be addressed. Tel: +0033 493377786; Fax: +0033 493377033;
| |
Collapse
|
47
|
Politz JCR, Zhang F, Pederson T. MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proc Natl Acad Sci U S A 2006; 103:18957-62. [PMID: 17135348 PMCID: PMC1748159 DOI: 10.1073/pnas.0609466103] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs are small, approximately 21- to 24-nt RNAs that have been found to regulate gene expression. miR-206 is a microRNA that is expressed at high levels in Drosophila, zebrafish, and mouse skeletal muscle and is thought to be involved in the attainment and/or maintenance of the differentiated state. We used locked nucleic acid probes for in situ hybridization analysis of the intracellular localization of miR-206 during differentiation of rat myogenic cells. Like most microRNAs, which are presumed to suppress translation of target mRNAs, we found that miR-206 occupies a cytoplasmic location in cultured myoblasts and differentiated myotubes and that its level increases in myotubes over the course of differentiation, consistent with previous findings in muscle tissue in vivo. However, to our surprise, we also observed miR-206 to be concentrated in nucleoli. A probe designed to be complementary to the precursor forms of miR-206 gave no nucleolar signal. We characterized the intracellular localization of miR-206 at higher spatial resolution and found that a substantial fraction colocalizes with 28S rRNA in both the cytoplasm and the nucleolus. miR-206 is not concentrated in either the fibrillar centers of the nucleolus or the dense fibrillar component, where ribosomal RNA transcription and early processing occur, but rather is localized in the granular component, the region of the nucleolus where final ribosome assembly takes place. These results suggest that miR-206 may associate both with nascent ribosomes in the nucleolus and with exported, functional ribosomes in the cytoplasm.
Collapse
Affiliation(s)
- Joan C Ritland Politz
- Department of Biochemistry and Molecular Pharmacology and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | |
Collapse
|
48
|
Abstract
The interaction of RNA-binding proteins (RBPs) with RNA is a crucial aspect of normal cellular metabolism. Yet, the diverse number of RBPs and RNA motifs to which they bind, the wide range of interaction strengths and the fact that RBPs associate in dynamic complexes have made it challenging to determine whether a particular RNA-binding protein binds a particular RNA. Recent work by three different laboratories has led to the development of new tools to query such interactions in the more physiological environs of cultured cells. The use of these methods has led to insights into (1) the networks of RNAs regulated by a particular protein, (2) the identification of new protein partners within messenger ribonucleoprotein particles and (3) the flux of RNA-binding proteins on an mRNA throughout its lifecycle. Here, I examine these new methods and discuss their relative strengths and current limitations.
Collapse
Affiliation(s)
- Robert B Denman
- Department of Molecular Biology, Laboratory of Biochemical Molecular Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| |
Collapse
|
49
|
Du X, Wang Q, Hirohashi Y, Greene MI. DIPA, which can localize to the centrosome, associates with p78/MCRS1/MSP58 and acts as a repressor of gene transcription. Exp Mol Pathol 2006; 81:184-90. [PMID: 17014843 DOI: 10.1016/j.yexmp.2006.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 07/27/2006] [Indexed: 01/27/2023]
Abstract
DIPA (delta-interacting protein A) was initially identified as a protein that associates with the hepatitis delta antigen. In this study, we found that DIPA can associate with p78/MCRS/MSP58, a Forkhead-associated domain containing protein implicated in malignant transformation as well as in regulation of gene transcription and translation. We analyzed the interaction between DIPA and p78 by co-immunoprecipitation and identified the structural regions involved in the interaction. Consistent with the physical interaction, we found that DIPA is predominant co-localized with p78 to the nucleus. In addition, a fraction of DIPA can be detected on the centrosome. Furthermore, we demonstrate that DIPA can act as a repressor of gene transcription, an activity that appears to be enhanced by p78. Taken together, our results revealed a novel protein complex that plays a role in regulation of gene expression and cell proliferation. We propose that dysfunction of DIPA may contribute to malignant transformation by affecting the functions of p78.
Collapse
Affiliation(s)
- Xiulian Du
- Department of Pathology and Laboratory Medicine, 252 John Morgan Building, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|