1
|
Sciorio R, Cantatore C, D'Amato G, Smith GD. Cryopreservation, cryoprotectants, and potential risk of epigenetic alteration. J Assist Reprod Genet 2024:10.1007/s10815-024-03287-3. [PMID: 39436484 DOI: 10.1007/s10815-024-03287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
The cryopreservation of gametes and embryos has increased notably over the past 20 years and is now an essential part of assisted reproductive technologies (ARTs). However, because the cryopreservation process is un-physiological for human cells, gametes, and embryos, cryobiologists have suggested diverse methods to successfully cryopreserve human gametes and embryos in order to maintain their viability and assure successful pregnancy. During the first period of early development, major waves of epigenetic reprogramming-crucial for the fate of the embryo-occur. Recently, concerns relating to the increased incidence of epigenetic anomalies and genomic-imprinting disorders have been reported after ARTs and cryopreservation. Epigenetic reprogramming is particularly susceptible to environmental and un-physiological conditions such as ovarian stimulation, embryo culture, and cryopreservation that might collectively affect epigenetics dysregulation. Additionally, recent literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by vitrification, osmotic shock, oxidative stress, rapid temperature and pH changes, and cryoprotectants; it is therefore critical to have a more comprehensive understanding of the potential induced perturbations of epigenetic modifications that may be associated with vitrification. The aim of this paper is to present a critical evaluation of the association of gamete and embryo cryopreservation, use of cryoprotectants, and epigenetic dysregulations with potential long-term consequences for offspring health.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | - Clementina Cantatore
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, BA, Italy
| | - Giuseppe D'Amato
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, BA, Italy
| | - Gary D Smith
- Departments of Obstetrics and Gynecology, Physiology, and Urology and Reproductive Sciences Program, University of Michigan, 4742F Medical Sciences II, 1301 E. Catherine Street, Ann Arbor, MI, 48109-056171500, USA.
| |
Collapse
|
2
|
Ma X, Wang J, Shi Y, Tan J, Guan Y, Sun Y, Zhang B, Zhao J, Liu J, Cao Y, Li H, Zhang C, Chen F, Yi H, Wang Z, Xin X, Kong P, Lu Y, Huang L, Yuan Y, Liu H, Li C, Mol BWJ, Hu Z, Zhang H, Chen ZJ, Liu J. Effect of single blastocyst-stage versus single cleavage-stage embryo transfer on cumulative live births in women with good prognosis undergoing in vitro fertilization: Multicenter Randomized Controlled Trial. Nat Commun 2024; 15:7747. [PMID: 39237545 PMCID: PMC11377718 DOI: 10.1038/s41467-024-52008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
In this multicenter, non-inferiority, randomized trial, we randomly assigned 992 women undergoing in-vitro fertilization (IVF) with a good prognosis (aged 20-40, ≥3 transferrable cleavage-stage embryos) to strategies of blastocyst-stage (n = 497) or cleavage-stage (n = 495) single embryo transfer. Primary outcome was cumulative live-birth rate after up to three transfers. Secondary outcomes were cumulative live-births after all embryo transfers within 1 year of randomization, pregnancy outcomes, obstetric-perinatal complications, and livebirths outcomes. Live-birth rates were 74.8% in blastocyst-stage group versus 66.3% in cleavage-stage group (relative risk 1.13, 95%CI:1.04-1.22; Pnon-inferiority < 0.001, Psuperiority = 0.003) (1-year cumulative live birth rates of 75.7% versus 68.9%). Blastocyst transfer increased the risk of spontaneous preterm birth (4.6% vs 2.0%; P = 0.02) and neonatal hospitalization >3 days. Among good prognosis women, a strategy of single blastocyst transfer increases cumulative live-birth rates over single cleavage-stage transfer. Blastocyst transfer resulted in higher preterm birth rates. This information should be used to counsel patients on their choice between cleavage-stage and blastocyst-stage transfer (NCT03152643, https://clinicaltrials.gov/study/NCT03152643 ).
Collapse
Affiliation(s)
- Xiang Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Clinical Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Clinical Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuhua Shi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Yichun Guan
- Reproductive Medicine Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun Sun
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Bo Zhang
- Department of Reproductive Medicine Center, Maternal and Child Health Hospital in Guang Xi, Guangxi, China
| | - Junli Zhao
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Hong Li
- Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Cuilian Zhang
- Reproductive Medical Center, Henan Provincial People's Hospital, Zhengzhou, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Honggang Yi
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ze Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
| | - Xing Xin
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Pingping Kong
- Reproductive Medicine Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Lu
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ling Huang
- Department of Reproductive Medicine Center, Maternal and Child Health Hospital in Guang Xi, Guangxi, China
| | - Yingying Yuan
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Ningxia, China
| | - Haiying Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Caihua Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Ben Willem J Mol
- Department of Obstetrics and Gynaecology, The Ritchie Center, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Monash Health, Melbourne, VIC, Australia
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Clinical Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Center), the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Clinical Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Zhang JT, Lee R, Sauer MV, Ananth CV. Risks of Placental Abruption and Preterm Delivery in Patients Undergoing Assisted Reproduction. JAMA Netw Open 2024; 7:e2420970. [PMID: 38985469 PMCID: PMC11238021 DOI: 10.1001/jamanetworkopen.2024.20970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Importance Patients using assisted reproductive technology (ART) may need additional counseling about the increased risks of placental abruption and preterm delivery. Further investigation into the potential additive risk of ART and placental abruption is needed. Objective To ascertain the risk of placental abruption in patients who conceived with ART and to evaluate if placental abruption and ART conception are associated with an increased risk of preterm delivery (<37 weeks' gestation) over and above the risks conferred by each factor alone. Design, Setting, and Participants This cross-sectional study used data from the National Inpatient Sample, which includes data from all-payer hospital inpatient discharges from 48 states across the US. Participants included women aged 15 to 54 years who delivered from 2000 through 2019. Data were analyzed from January 17 to April 18, 2024. Exposures Pregnancies conceived with ART. Main Outcomes and Measures Risks of placental abruption and preterm delivery in ART conception compared with spontaneous conceptions. Associations were expressed as odds ratios (ORs) and 95% CIs derived from weighted logistic regression models before and after adjusting for confounders. The relative excess risk due to interaction (RERI) of the risk of preterm delivery based on ART conception and placental abruption was also assessed. Results Of 78 901 058 deliveries, the mean (SD) maternal age was 27.9 (6.0) years, and 9 212 117 patients (11.7%) were Black individuals, 14 878 539 (18.9%) were Hispanic individuals, 34 899 594 (44.2%) were White individuals, and 19 910 807 (25.2%) were individuals of other races and ethnicities. Of the total hospital deliveries, 98.2% were singleton pregnancies, 68.8% were vaginal deliveries, and 52.1% were covered by private insurance. The risks of placental abruption among spontaneous and ART conceptions were 11 and 17 per 1000 hospital discharges, respectively. After adjusting for confounders, the adjusted OR (AOR) of placental abruption was 1.42 (95% CI, 1.34-1.51) in ART pregnancies compared with spontaneous conceptions, with increased odds in White women (AOR, 1.42; 95% CI, 1.31-1.53) compared with Black women (AOR, 1.16; 95% CI, 0.93-1.44). The odds of preterm delivery were significantly higher in pregnancies conceived by ART compared with spontaneous conceptions (AOR, 1.46; 95% CI, 1.42-1.51). The risk of preterm delivery increased when patients had both ART conception and placental abruption (RERI, 2.0; 95% CI, 0.5-3.5). Conclusions and Relevance In this cross-sectional study, patients who conceived using ART and developed placental abruption had a greater risk of preterm delivery compared with spontaneous conception without placental abruption. These findings have implications for counseling patients who seek infertility treatment and obstetrical management of ART pregnancies.
Collapse
Affiliation(s)
- Jennifer T Zhang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Rachel Lee
- Division of Epidemiology and Biostatistics, Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Mark V Sauer
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Cande V Ananth
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Division of Epidemiology and Biostatistics, Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Cardiovascular Institute, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
4
|
Li Y, Xiao P, Boadu F, Goldkamp AK, Nirgude S, Cheng J, Hagen DE, Kalish JM, Rivera RM. The counterpart congenital overgrowth syndromes Beckwith-Wiedemann Syndrome in human and large offspring syndrome in bovine involve alterations in DNA methylation, transcription, and chromatin configuration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.14.23299981. [PMID: 38168424 PMCID: PMC10760283 DOI: 10.1101/2023.12.14.23299981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Beckwith-Wiedemann Syndrome (BWS, OMIM #130650) is a congenital epigenetic disorder in humans which affects approximately 1 in 10,340 children. The incidence is likely an underestimation as the condition is usually recognized based on observable phenotypes at birth. BWS children have up to a 28% risk of developing tumors and currently, only 80% of patients can be corroborated molecularly (epimutations/variants). It is unknown how the subtypes of this condition are molecularly similar/dissimilar globally, therefore there is a need to deeply characterize the syndrome at the molecular level. Here we characterize the methylome, transcriptome and chromatin configuration of 18 BWS individuals together with the animal model of the condition, the bovine large offspring syndrome (LOS). Sex specific comparisons are performed for a subset of the BWS patients and LOS. Given that this epigenetic overgrowth syndrome has been characterized as a loss-of-imprinting condition, parental allele-specific comparisons were performed using the bovine animal model. In general, the differentially methylated regions (DMRs) detected in BWS and LOS showed significant enrichment for CTCF binding sites. Altered chromosome compartments in BWS and LOS were positively correlated with gene expression changes, and the promoters of differentially expressed genes showed significant enrichment for DMRs, differential topologically associating domains, and differential A/B compartments in some comparisons of BWS subtypes and LOS. We show shared regions of dysregulation between BWS and LOS, including several HOX gene clusters, and also demonstrate that altered DNA methylation differs between the clinically epigenetically identified BWS patients and those identified as having DNA variants (i.e. CDKN1C microdeletion). Lastly, we highlight additional genes and genomic regions that have the potential to serve as targets for biomarker development to improve current molecular methodologies. In summary, our results suggest that genome-wide alternation of chromosome architecture, which is partially caused by DNA methylation changes, also contribute to the development of BWS and LOS.
Collapse
|
5
|
Rahimi S, Shao X, Chan D, Martel J, Bérard A, Fraser WD, Simon MM, Kwan T, Bourque G, Trasler J. Capturing sex-specific and hypofertility-linked effects of assisted reproductive technologies on the cord blood DNA methylome. Clin Epigenetics 2023; 15:82. [PMID: 37170172 PMCID: PMC10176895 DOI: 10.1186/s13148-023-01497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Children conceived through assisted reproduction are at an increased risk for growth and genomic imprinting disorders, often linked to DNA methylation defects. It has been suggested that assisted reproductive technology (ART) and underlying parental infertility can induce epigenetic instability, specifically interfering with DNA methylation reprogramming events during germ cell and preimplantation development. To date, human studies exploring the association between ART and DNA methylation defects have reported inconsistent or inconclusive results, likely due to population heterogeneity and the use of technologies with limited coverage of the epigenome. In our study, we explored the epigenetic risk of ART by comprehensively profiling the DNA methylome of 73 human cord blood samples of singleton pregnancies (n = 36 control group, n = 37 ART/hypofertile group) from a human prospective longitudinal birth cohort, the 3D (Design, Develop, Discover) Study, using a high-resolution sequencing-based custom capture panel that examines over 2.4 million autosomal CpGs in the genome. RESULTS We identified evidence of sex-specific effects of ART/hypofertility on cord blood DNA methylation patterns. Our genome-wide analyses identified ~ 46% more CpGs affected by ART/hypofertility in female than in male infant cord blood. We performed a detailed analysis of three imprinted genes which have been associated with altered DNA methylation following ART (KCNQ1OT1, H19/IGF2 and GNAS) and found that female infant cord blood was associated with DNA hypomethylation. When compared to less invasive procedures such as intrauterine insemination, more invasive ARTs (in vitro fertilization, intracytoplasmic sperm injection, embryo culture) resulted in more marked and distinct effects on the cord blood DNA methylome. In the in vitro group, we found a close to fourfold higher proportion of significantly enriched Gene Ontology terms involved in development than in the in vivo group. CONCLUSIONS Our study highlights the ability of a sensitive, targeted, sequencing-based approach to uncover DNA methylation perturbations in cord blood associated with hypofertility and ART and influenced by offspring sex and ART technique invasiveness.
Collapse
Affiliation(s)
- Sophia Rahimi
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Xiaojian Shao
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Donovan Chan
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Josée Martel
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Anick Bérard
- Research Unit On Medications and Pregnancy, Research Centre, CHU Sainte-Justine, Montreal, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
- Faculty of Medicine, Université Claude Bernard Lyon 1, Lyon, France
| | - William D Fraser
- Department of Obstetrics and Gynecology, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | | | - Tony Kwan
- McGill University Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Guillaume Bourque
- McGill University Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jacquetta Trasler
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
- Department of Pediatrics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Igonina TN, Voronkova OM, Ragaeva DS, Brusentsev EY, Rozhkova IN, Kolosova NG, Amstislavsky SY. Effects of the Maternal Environment on Early Postnatal Development in OXYS Rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2023. [DOI: 10.1007/s11055-023-01378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/20/2021] [Indexed: 08/04/2023]
|
7
|
Zhu L, Zeng X, Liu W, Han W, Huang G, Li J. Comparison of DNA methylation profiles of human embryos cultured in either uninterrupted or interrupted incubators. J Assist Reprod Genet 2023; 40:113-123. [PMID: 36459262 PMCID: PMC9840733 DOI: 10.1007/s10815-022-02669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE We aimed to compare the DNA methylation profiles of human embryos cultured in uninterrupted or interrupted incubators. METHODS This study included 9 women, ≤ 30 years old (range: 20-30 years), without a history of genetic diseases or smoking, undergoing ICSI treatment, and each woman donated one oocyte. Embryos were randomly assigned to culture in either time-lapse imaging or standard incubators after ICSI. We compared the DNA methylation profiles of human eight-cell embryos cultured in uninterrupted condition using time-lapse imaging (TLI) incubator (EmbryoScope) to those cultured in interrupted culture model using standard incubators (SI, G185 K-System). Nine single-cell whole-genome bisulfite sequencing (WGBS) datasets were analyzed, including four SI-cultured embryos and five TLI-cultured embryos at the eight-cell stage. RESULTS A total of 581,140,020 and 732,348,182 clean reads were generated from the TLI and SI groups, respectively. TLI-cultured embryos had similar genome-wide methylation patterns to SI-cultured embryos. There were no significant differences in the methylation and transcription levels of transposable elements and imprinted control regions. Although a total of 198 differentially methylated genes (DMGs) were identified, only five DMGs had significantly different transcription levels between the two groups. CONCLUSIONS This is the first study to compare the DNA methylation profiles of embryos cultured in TLI and SI and will provide a foundation for evaluating the safety of TLI application in assisted reproductive technologies. However, further study with a larger cohort of samples was needed for the data validation.
Collapse
Affiliation(s)
- Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xi Zeng
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Weiwei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Wei Han
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| |
Collapse
|
8
|
Savy V, Stein P, Shi M, Williams CJ. PMCA1 depletion in mouse eggs amplifies calcium signaling and impacts offspring growth†. Biol Reprod 2022; 107:1439-1451. [PMID: 36130203 PMCID: PMC10144700 DOI: 10.1093/biolre/ioac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Egg activation in mammals is triggered by oscillations in egg intracellular calcium (Ca2+) level. Ca2+ oscillation patterns can be modified in vitro by changing the ionic composition of culture media or in vivo by conditions affecting mitochondrial function, such as obesity and inflammation. In mice, disruption of Ca2+ oscillations in vitro impacts embryo development and offspring growth. Here we tested the hypothesis that, even without in vitro manipulation, abnormal Ca2+ signaling following fertilization impacts offspring growth. Plasma membrane Ca2+ ATPases (PMCA) extrude cytosolic Ca2+ to restore Ca2+ homeostasis. To disrupt Ca2+ signaling in vivo, we conditionally deleted PMCA1 (cKO) in oocytes. As anticipated, in vitro fertilized cKO eggs had increased Ca2+ exposure relative to controls. To assess the impact on offspring growth, cKO females were mated to wild type males to generate pups that had high Ca2+ exposure at fertilization. Because these offspring would be heterozygous, we also tested the impact of global PMCA1 heterozygosity on offspring growth. Control heterozygous pups that had normal Ca2+ at fertilization were generated by mating wild type females to heterozygous males; these control offspring weighed significantly less than their wild type siblings. However, heterozygous offspring from cKO eggs (and high Ca2+ exposure) were larger than heterozygous controls at 12 week-of-age and males had altered body composition. Our results show that global PMCA1 haploinsufficiency impacts growth and support that abnormal Ca2+ signaling after fertilization in vivo has a long-term impact on offspring weight. These findings are relevant for environmental and medical conditions affecting Ca2+ handling and for design of culture conditions and procedures for domestic animal and human assisted reproduction.
Collapse
Affiliation(s)
- Virginia Savy
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Paula Stein
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Min Shi
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Carmen J Williams
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
9
|
Catford SR, Halliday J, Lewis S, O'Bryan MK, Handelsman DJ, Hart RJ, McBain J, Rombauts L, Amor DJ, Saffery R, McLachlan RI. The metabolic health of young men conceived using intracytoplasmic sperm injection. Hum Reprod 2022; 37:2908-2920. [PMID: 36166702 DOI: 10.1093/humrep/deac212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Is the metabolic health of men conceived using ICSI different to that of IVF and spontaneously conceived (SC) men? SUMMARY ANSWER ICSI-conceived men aged 18-24 years, compared with SC controls, showed differences in some metabolic parameters including higher resting diastolic blood pressure (BP) and homeostasis model assessment for insulin resistance (HOMA-IR) scores, although the metabolic parameters of ICSI- and IVF-conceived singleton men were more comparable. WHAT IS KNOWN ALREADY Some studies suggest that IVF-conceived offspring may have poorer cardiovascular and metabolic profiles than SC children. Few studies have examined the metabolic health of ICSI-conceived offspring. STUDY DESIGN, SIZE, DURATION This cohort study compared the metabolic health of ICSI-conceived men to IVF-conceived and SC controls who were derived from prior cohorts. Participants included 121 ICSI-conceived men (including 100 singletons), 74 IVF-conceived controls (all singletons) and 688 SC controls (including 662 singletons). PARTICIPANTS/MATERIALS, SETTING, METHODS Resting systolic and diastolic BP (measured using an automated sphygmomanometer), height, weight, BMI, body surface area and fasting serum metabolic markers including fasting insulin, glucose, total cholesterol, high-density lipoprotein cholesterol (HDLC), low-density lipoprotein cholesterol, triglycerides, highly sensitive C-reactive protein (hsCRP) and HOMA-IR were compared between groups. Data were analysed using multivariable linear regression adjusted for various covariates including age and education level. MAIN RESULTS AND THE ROLE OF CHANCE After adjusting for covariates, compared to 688 SC controls, 121 ICSI-conceived men had higher diastolic BP (β 4.9, 95% CI 1.1-8.7), lower fasting glucose (β -0.7, 95% CI -0.9 to -0.5), higher fasting insulin (ratio 2.2, 95% CI 1.6-3.0), higher HOMA-IR (ratio 1.9, 95% CI 1.4-2.6), higher HDLC (β 0.2, 95% CI 0.07-0.3) and lower hsCRP (ratio 0.4, 95% CI 0.2-0.7) levels. Compared to 74 IVF-conceived singletons, only glucose differed in the ICSI-conceived singleton men (β -0.4, 95% CI -0.7 to -0.1). No differences were seen in the paternal infertility subgroups. LIMITATIONS, REASONS FOR CAUTION The recruitment rate of ICSI-conceived men in this study was low and potential for recruitment bias exists. The ICSI-conceived men, the IVF-conceived men and SC controls were from different cohorts with different birth years and different geographical locations. Assessment of study groups and controls was not contemporaneous, and the measurements differed for some outcomes (BP, insulin, glucose, lipids and hsCRP). WIDER IMPLICATIONS OF THE FINDINGS These observations require confirmation in a larger study with a focus on potential mechanisms. Further efforts to identify whether health differences are due to parental characteristics and/or factors related to the ICSI procedure are also necessary. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by an Australian National Health and Medical Research Council Partnership Grant (NHMRC APP1140706) and was partially funded by the Monash IVF Research and Education Foundation. S.R.C. was supported through an Australian Government Research Training Program Scholarship. R.J.H. is supported by an NHMRC project grant (634457), and J.H. and R.I.M. have been supported by the NHMRC as Senior and Principal Research Fellows respectively (J.H. fellowship number: 1021252; R.I.M. fellowship number: 1022327). L.R. is a minority shareholder and the Group Medical Director for Monash IVF Group, and reports personal fees from Monash IVF Group and Ferring Australia, honoraria from Ferring Australia and travel fees from Merck Serono and MSD and Guerbet; R.J.H. is the Medical Director of Fertility Specialists of Western Australia and has equity in Western IVF; R.I.M. is a consultant for and shareholder of Monash IVF Group and S.R.C. reports personal fees from Besins Healthcare and nonfinancial support from Merck outside of the submitted work. The remaining authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- S R Catford
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
| | - J Halliday
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - S Lewis
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - M K O'Bryan
- The School of BioSciences and Bio21 Institute, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - D J Handelsman
- The ANZAC Research Institute, University of Sydney, Sydney, Australia
- Department of Andrology, Concord Repatriation General Hospital, Sydney, Australia
| | - R J Hart
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Fertility Specialists of Western Australia, Perth, Australia
| | - J McBain
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
- Melbourne IVF, East Melbourne, Australia
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Melbourne, Australia
| | - L Rombauts
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
- Monash IVF Group Pty Ltd, Melbourne, Australia
| | - D J Amor
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - R Saffery
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - R I McLachlan
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
- Monash IVF Group Pty Ltd, Melbourne, Australia
| |
Collapse
|
10
|
Mani S, Ghosh J, Rhon-Calderon EA, Lan Y, Ord T, Kalliora C, Chan J, Schultz B, Vaughan-Williams E, Coutifaris C, Sapienza C, Senapati S, Bartolomei MS, Mainigi M. Embryo cryopreservation leads to sex-specific DNA methylation perturbations in both human and mouse placentas. Hum Mol Genet 2022; 31:3855-3872. [PMID: 35717573 PMCID: PMC9652110 DOI: 10.1093/hmg/ddac138] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/25/2022] Open
Abstract
In vitro fertilization (IVF) is associated with DNA methylation abnormalities and a higher incidence of adverse pregnancy outcomes. However, which exposure(s), among the many IVF interventions, contributes to these outcomes remains unknown. Frozen embryo transfer (ET) is increasingly utilized as an alternative to fresh ET, but reports suggest a higher incidence of pre-eclampsia and large for gestational age infants. This study examines DNA methylation in human placentas using the 850K Infinium MethylationEPIC BeadChip array obtained after 65 programmed frozen ET cycles, 82 fresh ET cycles and 45 unassisted conceptions. Nine patients provided placentas following frozen and fresh ET from consecutive pregnancies for a paired subgroup analysis. In parallel, eight mouse placentas from fresh and frozen ET were analyzed using the Infinium Mouse Methylation BeadChip array. Human and mouse placentas were significantly hypermethylated after frozen ET compared with fresh. Paired analysis showed similar trends. Sex-specific analysis revealed that these changes were driven by male placentas in humans and mice. Frozen and fresh ET placentas were significantly different from controls, with frozen samples hypermethylated compared with controls driven by males and fresh samples being hypomethylated compared with controls, driven by females. Sexually dimorphic epigenetic changes could indicate differential susceptibility to IVF-associated perturbations, which highlights the importance of sex-specific evaluation of adverse outcomes. Similarities between changes in mice and humans underscore the suitability of the mouse model in evaluating how IVF impacts the epigenetic landscape, which is valuable given limited access to human tissue and the ability to isolate specific interventions in mice.
Collapse
Affiliation(s)
- Sneha Mani
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jayashri Ghosh
- Cancer and Cellular Biology, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Eric A Rhon-Calderon
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Teri Ord
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charikleia Kalliora
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joe Chan
- Cancer and Cellular Biology, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Bryant Schultz
- Cancer and Cellular Biology, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Elaine Vaughan-Williams
- Cancer and Cellular Biology, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carmen Sapienza
- Cancer and Cellular Biology, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Suneeta Senapati
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Monica Mainigi
- To whom correspondence should be addressed at: Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3701 Market Street, 8th floor, Philadelphia, PA 19104, USA. Tel: +1 2156622972; Fax: +1 2153495512;
| |
Collapse
|
11
|
Influences of fresh and frozen embryo transfer on neonatal birthweight and the expression of imprinted genes PEG10 /L3MBTL1 in placenta. Reprod Biol 2022; 22:100665. [PMID: 35714554 DOI: 10.1016/j.repbio.2022.100665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022]
Abstract
To investigate the influences of fresh embryo transfer (ET) and frozen embryo transfer (FET) on neonatal birthweight and the expression of imprinted genes PEG10 and L3MBTL1 in the placenta after in vitro fertilization-embryo transfer (IVF-ET), we analyzed the neonatal birthweight between fresh ET and FET transfer cycles. Then, we collected placentas delivered by fresh ET and FET, and real-time quantitative PCR, Western blotting and immunohistochemistry were used to detect the expression of PEG10 and L3MBTL1. The mean neonatal birthweight of fresh ET was lower than that of FET(3348.48 ± 521.05 vs. 3450.34 ± 524.13, P < 0.001). The risks of low birthweight (LBW) and small-for-gestational age (SGA) were lower after FET (3.9 % vs. 5.4 %; 7.2 % vs. 10.3 %), with adjusted rate ratios of 0.74 (95 % CI, 0.59-0.93; P = 0.003) and 0.70 (95 % CI, 0.59-0.84; P < 0.001), respectively. FET resulted in higher frequencies of macrosomia and large-for-gestational age (LGA) (14.2 % vs. 10.3; 11.0 % vs. 7.1 %) than fresh ET, with adjusted rate ratios of 1.45 (95 % CI, 1.26-1.68; P < 0.001) and 1.62 (95 % CI, 1.37-1.91; P < 0.001), respectively. We also observed PEG10 mRNA and protein expression levels in placentas delivered by fresh ET and FET were significantly different, but there were no significant differences in L3MBTL1 between the two groups. Fresh ET may affect the expression of the imprinted gene PEG10 in the placenta and adverse to placental implantation and development, resulting to increasing incidences of LBW and SGA.
Collapse
|
12
|
Vrooman LA, Rhon-Calderon EA, Suri KV, Dahiya AK, Lan Y, Schultz RM, Bartolomei MS. Placental Abnormalities are Associated With Specific Windows of Embryo Culture in a Mouse Model. Front Cell Dev Biol 2022; 10:884088. [PMID: 35547813 PMCID: PMC9081528 DOI: 10.3389/fcell.2022.884088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Assisted Reproductive Technologies (ART) employ gamete/embryo handling and culture in vitro to produce offspring. ART pregnancies have an increased risk of low birth weight, abnormal placentation, pregnancy complications, and imprinting disorders. Embryo culture induces low birth weight, abnormal placental morphology, and lower levels of DNA methylation in placentas in a mouse model of ART. Whether preimplantation embryos at specific stages of development are more susceptible to these perturbations remains unresolved. Accordingly, we performed embryo culture for several discrete periods of preimplantation development and following embryo transfer, assessed fetal and placental outcomes at term. We observed a reduction in fetal:placental ratio associated with two distinct windows of preimplantation embryo development, one prior to the morula stage and the other from the morula to blastocyst stage, whereas placental morphological abnormalities and reduced imprinting control region methylation were only associated with culture prior to the morula stage. Extended culture to the blastocyst stage also induces additional placental DNA methylation changes compared to embryos transferred at the morula stage, and female concepti exhibited a higher loss of DNA methylation than males. By identifying specific developmental windows of susceptibility, this study provides a framework to optimize further culture conditions to minimize risks associated with ART pregnancies.
Collapse
Affiliation(s)
- Lisa A. Vrooman
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Eric A. Rhon-Calderon
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Kashviya V. Suri
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Asha K. Dahiya
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Yemin Lan
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Richard M. Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
13
|
Sciorio R, El Hajj N. Epigenetic Risks of Medically Assisted Reproduction. J Clin Med 2022; 11:jcm11082151. [PMID: 35456243 PMCID: PMC9027760 DOI: 10.3390/jcm11082151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Since the birth of Louise Joy Brown, the first baby conceived via in vitro fertilization, more than 9 million children have been born worldwide using assisted reproductive technologies (ART). In vivo fertilization takes place in the maternal oviduct, where the unique physiological conditions guarantee the healthy development of the embryo. During early embryogenesis, a major wave of epigenetic reprogramming takes place that is crucial for the correct development of the embryo. Epigenetic reprogramming is susceptible to environmental changes and non-physiological conditions such as those applied during in vitro culture, including shift in pH and temperature, oxygen tension, controlled ovarian stimulation, intracytoplasmic sperm injection, as well as preimplantation embryo manipulations for genetic testing. In the last decade, concerns were raised of a possible link between ART and increased incidence of imprinting disorders, as well as epigenetic alterations in the germ cells of infertile parents that are transmitted to the offspring following ART. The aim of this review was to present evidence from the literature regarding epigenetic errors linked to assisted reproduction treatments and their consequences on the conceived children. Furthermore, we provide an overview of disease risk associated with epigenetic or imprinting alterations in children born via ART.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Correspondence:
| | - Nady El Hajj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| |
Collapse
|
14
|
Sciorio R, Esteves SC. Contemporary Use of ICSI and Epigenetic Risks to Future Generations. J Clin Med 2022; 11:jcm11082135. [PMID: 35456226 PMCID: PMC9031244 DOI: 10.3390/jcm11082135] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Since the birth of Louise Brown in 1978 via IVF, reproductive specialists have acquired enormous knowledge and refined several procedures, which are nowadays applied in assisted reproductive technology (ART). One of the most critical steps in this practice is the fertilization process. In the early days of IVF, a remarkable concern was the unpleasant outcomes of failed fertilization, overtaken by introducing intracytoplasmic sperm injection (ICSI), delineating a real breakthrough in modern ART. ICSI became standard practice and was soon used as the most common method to fertilize oocytes. It has been used for severe male factor infertility and non-male factors, such as unexplained infertility or advanced maternal age, without robust scientific evidence. However, applying ICSI blindly is not free of potential detrimental consequences since novel studies report possible health consequences to offspring. DNA methylation and epigenetic alterations in sperm cells of infertile men might help explain some of the adverse effects reported in ICSI studies on reproductive health in future generations. Collected data concerning the health of ICSI children over the past thirty years seems to support the notion that there might be an increased risk of epigenetic disorders, congenital malformations, chromosomal alterations, and subfertility in babies born following ICSI compared to naturally conceived children. However, it is still to be elucidated to what level these data are associated with the cause of infertility or the ICSI technique. This review provides an overview of epigenetic mechanisms and possible imprinting alterations following the use of ART, in particular ICSI. It also highlights the sperm contribution to embryo epigenetic regulation and the risks of in vitro culture conditions on epigenetic dysregulation. Lastly, it summarizes the literature concerning the possible epigenetic disorders in children born after ART.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Correspondence:
| | - Sandro C. Esteves
- Androfert, Andrology and Human Reproduction Clinic, Campinas 13075-460, Brazil;
- Department of Surgery, Division of Urology, University of Campinas, Campinas 13083-970, Brazil
- Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
15
|
Xie Q, Jiang W, Ji H, Li X, Zhou Y, Zhao C, Zhang J, Lu J, Ling X. Perinatal outcomes of singletons born after blastocyst or cleavage-stage embryo transfer in FET cycles. Eur J Obstet Gynecol Reprod Biol 2022; 271:265-270. [PMID: 35259644 DOI: 10.1016/j.ejogrb.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE To compare perinatal outcomes of singletons after blastocyst versus cleavage-stage embryo transfer in frozen-thawed embryo transfer (FET) cycles. METHODS This was a retrospective cohort study of 4835 women who conceived after frozen-thawed embryo transfer and delivered a singleton baby from January 2015 to March 2020. The perinatal outcomes of the singletons born after blastocyst transfer (N = 3364) were compared to the singletons born after cleavage-stage transfer (N = 1471), including gestational week, birth weight, newborn gender and Apgar score. RESULTS Univariate and multivariate analysis found that infants born after blastocyst transfer had a higher risk of preterm birth (PTB) [adjusted odds ratio (aOR) 1.480; 95% confidence interval (CI) 1.213-1.807], large for gestational age (LGA) (aOR 1.329, 95%CI 1.149-1.536) and very large for gestational age (VLGA) (aOR 1.317, 95%CI 1.092-1.590) compared to infants born after cleavage-stage embryo transfer. When categorized by gestational weeks, the proportion of LGA was significantly higher for boys born after BT between GW 37 to 41 (aOR 1.301, 95%CI 1.051-1.609) and for girls born after BT between GW 32 to 41 (aOR 2.690, 95%CI 1.154-6.271, aOR 1.377, 95%CI 1.094-1.733), compared to boys and girls born after CT. CONCLUSION Our data suggested that the risk of PTB and LGA increased after blastocyst transfer versus cleavage-stage embryo transfer in FET cycles, and the risk of LGA is more apparent in the last trimester of pregnancy. Further studies are needed to confirm our findings and explored the association between the extended embryo culture and long-term outcomes of offspring.
Collapse
Affiliation(s)
- Qijun Xie
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Jiang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hui Ji
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xin Li
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yuxi Zhou
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chun Zhao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Junqiang Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jing Lu
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
16
|
Cleal JK, Poore KR, Lewis RM. The placental exposome, placental epigenetic adaptations and lifelong cardio-metabolic health. Mol Aspects Med 2022; 87:101095. [DOI: 10.1016/j.mam.2022.101095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 12/15/2022]
|
17
|
Impact of superovulation and in vitro fertilization on LINE-1 copy number and telomere length in C57BL/6 J mice blastocysts. Mol Biol Rep 2022; 49:4909-4917. [PMID: 35316424 DOI: 10.1007/s11033-022-07351-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/09/2022] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Millions of babies have been conceived by IVF, yet debate about its safety to offspring continues. We hypothesized that superovulation and in vitro fertilization (IVF) promote genomic changes, including altered telomere length (TL) and activation of the retrotransposon LINE-1 (L1), and tested this hypothesis in a mouse model. MATERIAL AND METHODS Experimental study analyzing TL and L1 copy number in C57BL/6 J mouse blastocysts in vivo produced from natural mating cycles (N), in vivo produced following superovulation (S), or in vitro produced following superovulation (IVF). We also examined the effects of prolonged culture on TL and L1 copy number in the IVF group comparing blastocysts cultured 96 h versus blastocysts cultured 120 h. TL and L1 copy number were measured by Real Time PCR. RESULTS TL in S (n = 77; Mean: 1.50 ± 1.15; p = 0.0007) and IVF (n = 82; Mean: 1.72 ± 1.44; p < 0.0001) exceeded that in N (n = 16; Mean: 0.61 ± 0.27). TL of blastocysts cultured 120 h (n = 15, Mean: 2.14 ± 1.05) was significantly longer than that of embryos cultured for 96 h (n = 67, Mean: 1.63 ± 1.50; p = 0.0414). L1 copy number of blastocysts cultured for 120 h (n = 15, Mean: 1.71 ± 1.49) exceeded that of embryos cultured for 96 h (n = 67, Mean: 0.95 ± 1.03; p = 0.0162). CONCLUSIONS Intriguingly ovarian stimulation, alone or followed by IVF, produced embryos with significantly longer telomeres compared to in vivo, natural cycle-produced embryos. The significance of this enriched telomere endowment for the health and longevity of offspring born from IVF merit future studies.
Collapse
|
18
|
Multiple gestation associated with infertility therapy: a committee opinion. Fertil Steril 2022; 117:498-511. [PMID: 35115166 DOI: 10.1016/j.fertnstert.2021.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/19/2022]
Abstract
This Committee Opinion provides practitioners with suggestions to reduce the likelihood of iatrogenic multiple gestation resulting from infertility treatment. This document replaces the document of the same name previously published in 2012 (Fertil Steril 2012;97:825-34 by the American Society for Reproductive Medicine).
Collapse
|
19
|
Chu M, Yao F, Xi G, Yang J, Zhang Z, Yang Q, Tian J, An L. Vitamin C Rescues in vitro Embryonic Development by Correcting Impaired Active DNA Demethylation. Front Cell Dev Biol 2021; 9:784244. [PMID: 34869387 PMCID: PMC8640463 DOI: 10.3389/fcell.2021.784244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
During preimplantation development, a wave of genome-wide DNA demethylation occurs to acquire a hypomethylated genome of the blastocyst. As an essential epigenomic event, postfertilization DNA demethylation is critical to establish full developmental potential. Despite its importance, this process is prone to be disrupted due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF), and thus leading to epigenetic errors. However, since the first case of aberrant DNA demethylation reported in IVF embryos, its underlying mechanism remains unclear and the strategy for correcting this error remains unavailable in the past decade. Thus, understanding the mechanism responsible for DNA demethylation defects, may provide a potential approach for preventing or correcting IVF-associated complications. Herein, using mouse and bovine IVF embryos as the model, we reported that ten-eleven translocation (TET)-mediated active DNA demethylation, an important contributor to the postfertilization epigenome reprogramming, was impaired throughout preimplantation development. Focusing on modulation of TET dioxygenases, we found vitamin C and α-ketoglutarate, the well-established important co-factors for stimulating TET enzymatic activity, were synthesized in both embryos and the oviduct during preimplantation development. Accordingly, impaired active DNA demethylation can be corrected by incubation of IVF embryos with vitamin C, and thus improving their lineage differentiation and developmental potential. Together, our data not only provides a promising approach for preventing or correcting IVF-associated epigenetic errors, but also highlights the critical role of small molecules or metabolites from maternal paracrine in finetuning embryonic epigenomic reprogramming during early development.
Collapse
Affiliation(s)
- Meiqiang Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fusheng Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guangyin Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiajun Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenni Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianying Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Moncaut N, Hart-Johnson S. The impact of COVID-19 lockdowns on the genetic integrity of your mouse colonies. Lab Anim (NY) 2021; 50:301-302. [PMID: 34594046 DOI: 10.1038/s41684-021-00872-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Natalia Moncaut
- Genome Editing and Mouse Models, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
| | - Sarah Hart-Johnson
- Colony Management Services, BRF, The Francis Crick Institute, London, UK.
| |
Collapse
|
21
|
Barberet J, Romain G, Binquet C, Guilleman M, Bruno C, Ginod P, Chapusot C, Choux C, Fauque P. Do frozen embryo transfers modify the epigenetic control of imprinted genes and transposable elements in newborns compared with fresh embryo transfers and natural conceptions? Fertil Steril 2021; 116:1468-1480. [PMID: 34538459 DOI: 10.1016/j.fertnstert.2021.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine whether the epigenetic control of imprinted genes (IGs) and transposable elements (TEs) differs at birth between fresh or frozen embryo transfers and natural conceptions. DESIGN Prospective study. SETTING University hospital. PATIENT(S) A total of 202 singleton births were divided into three groups: 84 natural pregnancies (controls), 66 in vitro fertilization/intracytoplasmic sperm injection with fresh embryo transfers, and 52 vitro fertilization/intracytoplasmic sperm injection with frozen embryo transfers. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Pyrosequencing was used to assess the DNA methylation profiles of three IGs (H19/IGF2:IG-DMR [two sequences], KCNQ1OT1:TSS-DMR, and SNURF:TSS-DMR) and two TEs (LINE-1 and HERV-FRD) in cord blood and placenta. The quantitative reverse transcriptase polymerase chain reaction was used to study the transcription of three IGs (H19, KCNQ1, and SNRPN) and two TEs (LINE-1 and ORF2). RESULT(S) After adjustment, the placental DNA methylation levels of H19/IGF2 were lower in the fresh embryo transfer group than in the control (H19/IGF2-seq1) and frozen embryo transfer (H19/IGF2-seq2) groups. The DNA methylation rate for LINE-1 was lower in placentas from the fresh embryo transfer group than in placentas from the control and frozen embryo transfer groups and for HERV-FRD compared with controls. In cord blood, DNA methylation levels were not significantly associated with the mode of conception. The relative expression of LINE-1 and ORF2 was decreased in both cord blood and placental tissues from fresh embryo transfer conceptions compared with natural conceptions and frozen embryo transfer conceptions. CONCLUSION(S) Compared with natural conceptions and frozen embryo transfers, fresh embryo transfers were associated with methylation and/or transcription changes in some TEs and IGs, mostly in placental samples, which could indicate altered placental epigenetic regulation resulting from ovarian stimulation protocols.
Collapse
Affiliation(s)
- Julie Barberet
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France; Centre Hospitalier Universitaire Dijon-Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| | - Gaelle Romain
- Centre Hospitalier Universitaire Dijon-Bourgogne, Centre d'Investigation Clinique, Module Epidémiologie Clinique/Essais Cliniques (CIC-EC), Dijon, France; INSERM, CIC1432, Module Epidémiologie Clinique, Dijon, France
| | - Christine Binquet
- Centre Hospitalier Universitaire Dijon-Bourgogne, Centre d'Investigation Clinique, Module Epidémiologie Clinique/Essais Cliniques (CIC-EC), Dijon, France; INSERM, CIC1432, Module Epidémiologie Clinique, Dijon, France
| | - Magali Guilleman
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France; Centre Hospitalier Universitaire Dijon-Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| | - Céline Bruno
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France; Centre Hospitalier Universitaire Dijon-Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| | - Perrine Ginod
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France; Centre Hospitalier Universitaire Dijon-Bourgogne, Service de Gynécologie-Obstétrique, Dijon, France
| | - Caroline Chapusot
- Centre Hospitalier Universitaire Dijon-Bourgogne, Plateforme de Génétique des Cancers de Bourgogne, Dijon, France
| | - Cécile Choux
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France; Centre Hospitalier Universitaire Dijon-Bourgogne, Service de Gynécologie-Obstétrique, Dijon, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France; Centre Hospitalier Universitaire Dijon-Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France.
| |
Collapse
|
22
|
Tao P, Zhou W, Yan X, Wu R, Cheng L, Ye Y, Wang Z, Li Y. Effect of sequential versus single-step culture medium on IVF treatments, including embryo and clinical outcomes: a prospective randomized study. Arch Gynecol Obstet 2021; 305:757-765. [PMID: 34510243 DOI: 10.1007/s00404-021-06219-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Sequential media G5 series (Vitrolife) and single-step medium Continuous Single Culture Complete (CSC-C) (Irvine Scientific) are two different culture media. We want to examine difference between culturing effects of the two media. METHODS To compare the fertilization and early embryo development, a prospective randomized controlled trial with sibling oocytes in infertile patients, aged ≤ 45 years with ≥ 8 oocytes (226 cycles) was conducted. Each half of the retrieved oocytes from the same patient were randomly allocated to two culture media separately. The remaining fresh cycles were randomly assigned to two culture media during the same period (179 cycles). We compared the clinical outcomes based on the total fresh ET cycles in this periods, in which the transferred embryos were only from one culture medium. RESULTS Embryo outcomes: 226 cycles, included 176 IVF and 50 ICSI cycles, were analyzed, which correspond to 3518 inseminated or micro-injected oocytes. Clinical outcomes: 71 (CSC-C) and 71 (G5 series) fresh ET cycles were compared. There were no significant differences in clinical outcomes and general fertilization rate. However, the fertilization rate was superior in the CSC-C when compared with G5 in ICSI cycles (76.51% vs. 67.25%, P = 0.008). In addition, the compacted embryo development rate was significantly higher in CSC-C on day 3. The cycles that had compacted embryos on day 3 demonstrated better outcomes both in embryos as well as clinically. CONCLUSIONS CSC-C had higher fertilization rates than G5 series in ICSI cycles. In addition, the compaction rates of day 3 embryos were significantly higher in CSC-C.
Collapse
Affiliation(s)
- Ping Tao
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Weidong Zhou
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Xiaohong Yan
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Rongfeng Wu
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Ling Cheng
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Yuanyuan Ye
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Zhanxiang Wang
- Department of Neurosurgery, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China.
| | - Youzhu Li
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China.
| |
Collapse
|
23
|
Comparison of Histone H3K4me3 between IVF and ICSI Technologies and between Boy and Girl Offspring. Int J Mol Sci 2021; 22:ijms22168574. [PMID: 34445278 PMCID: PMC8395251 DOI: 10.3390/ijms22168574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Epigenetics play a vital role in early embryo development. Offspring conceived via assisted reproductive technologies (ARTs) have a three times higher risk of epigenetic diseases than naturally conceived children. However, investigations into ART-associated placental histone modifications or sex-stratified analyses of ART-associated histone modifications remain limited. In the current study, we carried out immunohistochemistry, chip-sequence analysis, and a series of in vitro experiments. Our results demonstrated that placentas from intra-cytoplasmic sperm injection (ICSI), but not in vitro fertilization (IVF), showed global tri-methylated-histone-H3-lysine-4 (H3K4me3) alteration compared to those from natural conception. However, for acetylated-histone-H3-lysine-9 (H3K9ac) and acetylated-histone-H3-lysine-27 (H3K27ac), no significant differences between groups could be found. Further, sex -stratified analysis found that, compared with the same-gender newborn cord blood mononuclear cell (CBMC) from natural conceptions, CBMC from ICSI-boys presented more genes with differentially enriched H3K4me3 (n = 198) than those from ICSI-girls (n = 79), IVF-girls (n = 5), and IVF-boys (n = 2). We also found that varying oxygen conditions, RNA polymerase II subunit A (Polr2A), and lysine demethylase 5A (KDM5A) regulated H3K4me3. These findings revealed a difference between IVF and ICSI and a difference between boys and girls in H3K4me3 modification, providing greater insight into ART-associated epigenetic alteration.
Collapse
|
24
|
Narapareddy L, Rhon-Calderon EA, Vrooman LA, Baeza J, Nguyen DK, Mesaros C, Lan Y, Garcia BA, Schultz RM, Bartolomei MS. Sex-specific effects of in vitro fertilization on adult metabolic outcomes and hepatic transcriptome and proteome in mouse. FASEB J 2021; 35:e21523. [PMID: 33734487 DOI: 10.1096/fj.202002744r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/31/2023]
Abstract
Although in vitro fertilization (IVF) is associated with adverse perinatal outcomes, there is increasing concern about the long-term and sex-specific health implications. Augmenting our IVF mouse model to longitudinally investigate metabolic outcomes in offspring from optimal neonatal litter sizes, we found sex-specific metabolic outcomes in IVF offspring. IVF-conceived females had higher body weight and cholesterol levels compared to naturally conceived females, whereas IVF-conceived males had higher levels of triglycerides and insulin, and increased body fat composition. Through adult liver transcriptomics and proteomics, we identified sexually dimorphic dysregulation of the sterol regulatory element-binding protein (SREBP) pathways that are associated with the sex-specific phenotypes. We also found that global loss of DNA methylation in placenta was linked to higher cholesterol levels in IVF-conceived females. Our findings indicate that IVF procedures have long-lasting sex-specific effects on metabolic health of offspring and lay the foundation to utilize the placenta as a predictor of long-term outcomes.
Collapse
Affiliation(s)
- Laren Narapareddy
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.,Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric A Rhon-Calderon
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa A Vrooman
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josue Baeza
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Duy K Nguyen
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clementina Mesaros
- Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard M Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Canovas S, Ivanova E, Hamdi M, Perez-Sanz F, Rizos D, Kelsey G, Coy P. Culture Medium and Sex Drive Epigenetic Reprogramming in Preimplantation Bovine Embryos. Int J Mol Sci 2021; 22:ijms22126426. [PMID: 34204008 PMCID: PMC8232708 DOI: 10.3390/ijms22126426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/25/2023] Open
Abstract
Assisted reproductive technologies impact transcriptome and epigenome of embryos and can result in long-term phenotypic consequences. Whole-genome DNA methylation profiles from individual bovine blastocysts in vivo- and in vitro-derived (using three sources of protein: reproductive fluids, blood serum and bovine serum albumin) were generated. The impact of in vitro culture on DNA methylation was analyzed, and sex-specific methylation differences at blastocyst stage were uncovered. In vivo embryos showed the highest levels of methylation (29.5%), close to those produced in vitro with serum, whilst embryos produced in vitro with reproductive fluids or albumin showed less global methylation (25-25.4%). During repetitive element analysis, the serum group was the most affected. DNA methylation differences between in vivo and in vitro groups were more frequent in the first intron than in CpGi in promoters. Moreover, hierarchical cluster analysis showed that sex produced a stronger bias in the results than embryo origin. For each group, distance between male and female embryos varied, with in vivo blastocyst showing a lesser distance. Between the sexually dimorphic methylated tiles, which were biased to X-chromosome, critical factors for reproduction, developmental process, cell proliferation and DNA methylation machinery were included. These results support the idea that blastocysts show sexually-dimorphic DNA methylation patterns, and the known picture about the blastocyst methylome should be reconsidered.
Collapse
Affiliation(s)
- Sebastian Canovas
- Physiology of Reproduction Group, Physiology Department, Mare Nostrum Campus, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, 30120 Murcia, Spain;
| | - Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; (E.I.); (G.K.)
| | - Meriem Hamdi
- Animal Reproduction Department, National Institute for Agriculture and Food Research and Technology, INIA, 28040 Madrid, Spain; (M.H.); (D.R.)
| | - Fernando Perez-Sanz
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, 30120 Murcia, Spain;
| | - Dimitrios Rizos
- Animal Reproduction Department, National Institute for Agriculture and Food Research and Technology, INIA, 28040 Madrid, Spain; (M.H.); (D.R.)
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; (E.I.); (G.K.)
| | - Pilar Coy
- Physiology of Reproduction Group, Physiology Department, Mare Nostrum Campus, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, 30120 Murcia, Spain;
- Correspondence:
| |
Collapse
|
26
|
Cao L, Dai X, Huang S, Shen K, Shi D, Li X. Inhibition of Suv39h1/2 expression improves the early development of Debao porcine somatic cell nuclear transfer embryos. Reprod Domest Anim 2021; 56:992-1003. [PMID: 33890331 DOI: 10.1111/rda.13942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
Suppressor of variegation 3-9 homolog (Suv39h)1 and 2, Histone H3 lysine 9 trimethylation (H3K9me3)-specific methyltransferases, are mainly involved in regulating the dynamic changes of H3K9me3. Regulating Suv39h expression influences the early development of mice somatic cell nuclear transfer (SCNT) embryos, there are few reports concerning their features in domestic animals. The aim of the present study was to characterize the Suv39h function in early development of Debao porcine SCNT embryos. The global level of H3K9me3 and the expression profiles of Suv39h1/2 in porcine early embryos were analysed by immunohistochemistry and qRT-PCR methods, respectively. Their roles in cell proliferation and histone modification of Debao porcine foetal fibroblast cells (PFFs), and developmental competence of porcine SCNT embryos were investigated by shRNA technology. The methylation levels of H3K9me3 and the expression patterns of Suv39h1 and Suv39h2 were similar (p < .05), and both of them displayed higher levels in Debao porcine SCNT embryos compared with that in PA embryos. The global levels of H3K9me3 and the expressions of G9a, HDAC1 and DNMT1 were decreased by combined inhibition of Suv39h1 and Suv39h2 (p < .05), while the expression of HAT1 was increased (p < .05). Downregulation of Suv39h1/2 also promoted cell proliferation and resulted in a significant increase in the expression of CyclinA2, CyclinB and PCNA in PFFs (p < .05). Furthermore, the use of donor somatic nuclei which depleted H3K9me3 by inhibiting Suv39h1/2 expression markedly increased the cleavage rate, the blastocyst rate and the total cell number of blastocysts of Debao porcine SCNT embryos (p < .05). Altogether, the above results indicate that H3K9me3 levels and Suv39h1/2 expressions display similar patterns in porcine early embryo, and low levels of them are critical to cell proliferation of PFFs and early development of SCNT embryos.
Collapse
Affiliation(s)
- Lihua Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xiaoli Dai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Kaiyuan Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
27
|
Mulder CL, Wattimury TM, Jongejan A, de Winter-Korver CM, van Daalen SKM, Struijk RB, Borgman SCM, Wurth Y, Consten D, van Echten-Arends J, Mastenbroek S, Dumoulin JCM, Repping S, van Pelt AMM, van Montfoort APA. Comparison of DNA methylation patterns of parentally imprinted genes in placenta derived from IVF conceptions in two different culture media. Hum Reprod 2021; 35:516-528. [PMID: 32222762 PMCID: PMC7105329 DOI: 10.1093/humrep/deaa004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Study question Is there a difference in DNA methylation status of imprinted genes in placentas derived from IVF conceptions where embryo culture was performed in human tubal fluid (HTF) versus G5 culture medium? Summary answer We found no statistically significant differences in the mean DNA methylation status of differentially methylated regions (DMRs) associated with parentally imprinted genes in placentas derived from IVF conceptions cultured in HTF versus G5 culture medium. What is known already Animal studies indicate that the embryo culture environment affects the DNA methylation status of the embryo. In humans, birthweight is known to be affected by the type of embryo culture medium used. The effect of embryo culture media on pregnancy, birth and child development may thus be mediated by differential methylation of parentally imprinted genes in the placenta. Study design, size, duration To identify differential DNA methylation of imprinted genes in human placenta derived from IVF conceptions exposed to HTF or G5 embryo culture medium, placenta samples (n = 43 for HTF, n = 54 for G5) were collected between 2010 and 2012 s as part of a multi-center randomized controlled trial in the Netherlands comparing these embryo culture media. Placenta samples from 69 naturally conceived (NC) live births were collected during 2008–2013 in the Netherlands as reference material. Participants/materials, setting, methods To identify differential DNA methylation of imprinted genes, we opted for an amplicon-based sequencing strategy on an Illumina MiSeq sequencing platform. DNA was isolated and 34 DMRs associated with well-defined parentally imprinted genes were amplified in a two-step PCR before sequencing using MiSeq technology. Sequencing data were analyzed in a multivariate fashion to eliminate possible confounding effects. Main results and the role of chance We found no statistically significant differences in the mean DNA methylation status of any of the imprinted DMRs in placentas derived from IVF conceptions cultured in HTF or G5 culture medium. We also did not observe any differences in the mean methylation status per amplicon nor in the variance in methylation per amplicon between the two culture medium groups. A separate surrogate variable analysis also demonstrated that the IVF culture medium was not associated with the DNA methylation status of these DMRs. The mean methylation level and variance per CpG was equal between HTF and G5 placenta. Additional comparison of DNA methylation status of NC placenta samples revealed no statistically significant differences in mean amplicon and CpG methylation between G5, HTF and NC placenta; however, the number of placenta samples exhibiting outlier methylation levels was higher in IVF placenta compared to NC (P < 0.00001). Also, we were able to identify 37 CpG sites that uniquely displayed outlier methylation in G5 placentas and 32 CpG sites that uniquely displayed outlier methylation in HTF. In 8/37 (G5) and 4/32 (HTF) unique outliers CpGs, a medium-specific unique outlier could be directly correlated to outlier methylation of the entire amplicon. Limitations, reasons for caution Due to practical reasons, not all placentas were collected during the trial, and we collected the placentas from natural conceptions from a different cohort, potentially creating bias. We limited ourselves to the DNA methylation status of 34 imprinted DMRs, and we studied only the placenta and no other embryo-derived tissues. Wider implications of the findings It has often been postulated, but has yet to be rigorously tested, that imprinting mediates the effects of embryo culture conditions on pregnancy, birth and child development in humans. Since we did not detect any statistically significant effects of embryo culture conditions on methylation status of imprinted genes in the placenta, this suggests that other unexplored mechanisms may underlie these effects. The biological and clinical relevance of detected outliers with respect to methylation levels of CpGs and DMR require additional analysis in a larger sample size as well. Given the importance and the growing number of children born through IVF, research into these molecular mechanisms is urgently needed. Study funding/competing interest(s) This study was funded by the March of Dimes grant number #6-FY13-153. The authors have no conflicts of interest. Trial registration number Placental biopsies were obtained under Netherlands Trial Registry number 1979 and 1298.
Collapse
Affiliation(s)
- Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tess M Wattimury
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Cindy M de Winter-Korver
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Saskia K M van Daalen
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Robert B Struijk
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Susanne C M Borgman
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Yvonne Wurth
- Center for Reproductive Medicine, St. Elisabeth-TweeSteden Hospital, Hilvarenbeekseweg 60, 5022 GC, Tilburg, the Netherlands
| | - Dimitri Consten
- Center for Reproductive Medicine, St. Elisabeth-TweeSteden Hospital, Hilvarenbeekseweg 60, 5022 GC, Tilburg, the Netherlands
| | - Jannie van Echten-Arends
- Section of Reproductive Medicine, Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Sebastiaan Mastenbroek
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - John C M Dumoulin
- Department of Obstetrics & Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P Debyelaan 25, 6229 GX, Maastricht, the Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Aafke P A van Montfoort
- Department of Obstetrics & Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P Debyelaan 25, 6229 GX, Maastricht, the Netherlands
| |
Collapse
|
28
|
Delaroche L, Oger P, Genauzeau E, Meicler P, Lamazou F, Dupont C, Humaidan P. Embryotoxicity testing of IVF disposables: how do manufacturers test? Hum Reprod 2021; 35:283-292. [PMID: 32053198 DOI: 10.1093/humrep/dez277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/30/2019] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION How do manufacturers perform embryotoxicity testing in their quality control programs when validating IVF consumables? SUMMARY ANSWER The Mouse Embryo Assay (MEA) and Human Sperm Survival Assay (HSSA) used for IVF disposables differed from one manufacturer to another. WHAT IS KNOWN ALREADY Many components used in IVF laboratories, such as culture media and disposable consumables, may negatively impact human embryonic development. STUDY DESIGN, SIZE, DURATION Through a questionnaire-based survey, the main manufacturers of IVF disposable devices were contacted during the period November to December 2018 to compare the methodology of the MEA and HSSA. We focused on catheters for embryo transfer, catheters for insemination, straws, serological pipettes, culture dishes and puncture needles used in the ART procedures. PARTICIPANTS/MATERIALS, SETTING, METHODS We approached the manufacturers of IVF disposables and asked for details about methodology of the MEA and HSSA performed for toxicity testing of their IVF disposable devices. All specific parameters like mouse strains, number of embryos used, culture conditions (media, temperature, atmosphere), extraction protocol, subcontracting, and thresholds were registered and compared between companies. MAIN RESULTS AND THE ROLE OF CHANCE Twenty-one companies were approached, of which only 11 answered the questionnaire. Significant differences existed in the methodologies and thresholds of the MEA and HSSA used for toxicity testing of IVF disposables. Importantly, some of these parameters could influence the sensitivity of the tests. LIMITATIONS, REASONS FOR CAUTION Although we approached the main IVF manufacturers, the response rate was relatively low. WIDER IMPLICATIONS OF THE FINDINGS Our study confirms the high degree of heterogeneity of the embryotoxicity tests performed by manufacturers when validating their IVF disposable devices. Currently, no regulations exist on this issue. Professionals should call for and request standardization and a future higher degree of transparency as regards embryotoxicity testing from supplying companies; moreover, companies should be urged to provide the users clear and precise information about the results of their tests and how testing was performed. Future recommendations are urgently awaited to improve the sensitivity and reproducibility of embryotoxicity assays over time. STUDY FUNDING/COMPETING INTEREST(S) This study did not receive any funding. L.D. declares a competing interest with Patrick Choay SAS. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- L Delaroche
- Centre d'AMP, Ramsay Santé, Hôpital Privé de Parly 2, 21 rue Moxouris, 78150 Le Chesnay, France.,Centre de Biologie Médicale, Hôpital Privé de Parly 2, 21 rue Moxouris, 78150 Le Chesnay, France
| | - P Oger
- Centre d'AMP, Ramsay Santé, Hôpital Privé de Parly 2, 21 rue Moxouris, 78150 Le Chesnay, France
| | - E Genauzeau
- Centre d'AMP, Ramsay Santé, Hôpital Privé de Parly 2, 21 rue Moxouris, 78150 Le Chesnay, France.,Centre de Biologie Médicale, Hôpital Privé de Parly 2, 21 rue Moxouris, 78150 Le Chesnay, France
| | - P Meicler
- Centre d'AMP, Ramsay Santé, Hôpital Privé de Parly 2, 21 rue Moxouris, 78150 Le Chesnay, France
| | - F Lamazou
- Centre d'AMP, Ramsay Santé, Hôpital Privé de Parly 2, 21 rue Moxouris, 78150 Le Chesnay, France
| | - C Dupont
- INSERM équipe Lipodystrophies génétiques et acquises. Service de biologie de la reproduction-CECOS, Sorbonne Université, Saint Antoine Research Center, AP-HP, Hôpital Tenon, F-75020 Paris, France
| | - P Humaidan
- The Fertility Clinic, Skive Regional Hospital, Resenvej 25, 7800 Skive, Denmark.,Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
29
|
Wang N, Zhao X, Ma M, Zhu Q, Wang Y. Effect of Day 3 and Day 5/6 Embryo Quality on the Reproductive Outcomes in the Single Vitrified Embryo Transfer Cycles. Front Endocrinol (Lausanne) 2021; 12:641623. [PMID: 34046010 PMCID: PMC8147686 DOI: 10.3389/fendo.2021.641623] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Objective To explore the live birth rate and neonatal outcome after single vitrified blastocyst transfer versus single vitrified cleavage-stage embryo transfer at different grades of embryo quality. Methods A retrospective cohort study including 6077 single vitrified-thawed embryo transfer cycles was performed in the time-period from January 2013 to December 2018. Results After controlling for potential confounding variables, there are 161% increased odds of a live birth after transfer of single good quality embryo at day 5, 152% increased odds of a live birth after transfer of single poor quality embryo at day 5, 60% increased odds of a live birth after transfer of single good quality embryo at day 6 compared with transfer of single good quality embryo at day 3. Results from the generalized estimated equation regression showed significant relationship of unadjusted birth weight with development stage of embryo and embryo quality (good quality embryo on day 5 vs. Good quality embryo on day 3:β=108.55, SE=34.89, P=0.002; good quality embryo on day 6 vs. Good quality embryo on day 3:β=68.80, SE=33.75, P=0.041). However, no significant differences were seen in birth weight between transfer single poor quality embryo on day 5, 6 and transfer single good quality embryo on day 3. Conclusion A significant increase in live birth rate and birth weight after transfer of single good quality embryo on day 5 and day 6 compared with transfer of single good quality embryo on day 3 in the vitrified embryo transfer cycles.
Collapse
Affiliation(s)
| | | | | | - Qianqian Zhu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, School of Medicine, JiaoTong University, Shanghai, China
| | - Yao Wang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, School of Medicine, JiaoTong University, Shanghai, China
| |
Collapse
|
30
|
Ozmen A, Kipmen-Korgun D, Isenlik BS, Erman M, Sakinci M, Berkkanoglu M, Coetzee K, Ozgur K, Cetindag E, Yanar K, Korgun ET. Does fresh or frozen embryo transfer affect imprinted gene expressions in human term placenta? Acta Histochem 2021; 123:151694. [PMID: 33571695 DOI: 10.1016/j.acthis.2021.151694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/28/2022]
Abstract
Our research aimed to compare the epigenetic alterations between placentae of in vitro fertilization (IVF) patients and spontaneous pregnancies. Additionally, the expression levels of proliferation markers (PCNA, Ki67) and glucose transporter proteins (GLUT1, GLUT3) were assessed in control and IVF placentae to examine the possible consequences of epigenetic alterations on placental development. Control group placentae were obtained from spontaneous pregnancies of healthy women (n = 16). IVF placentae were obtained from fresh (n = 16) and frozen (n = 16) embryo transfer pregnancies. A group of maternal and paternal imprint genes H19, IGF2, IGF2, IGF2R, PHLDA2, PLAGL1, MASH2, GRB10, PEG1, PEG3, and PEG10 were detected by Real-Time PCR. Additionally, PCNA, Ki67, GLUT1, and GLUT3 protein levels were assessed by immunohistochemistry and western blot. In the fresh embryo transfer placenta group (fETP), gene expression of paternal PEG1 and PEG10 was upregulated compared with the control group. Increased gene expression in paternal PEG1 and maternal IGFR2 genes was detected in the frozen embryo transfer placenta group (FET) compared with the control group. Conversely, expression levels of H19 and IGF2 genes were downregulated in the FET group. On the other hand, GLUT3 and PCNA expression was increased in FET group placentae. IVF techniques affect placental imprinted gene expressions which are important for proper placental development. Imprinted genes are differently expressed in fresh ET placentae and frozen ET placentae. In conclusion, these data indicate that altered imprinted gene expression may affect glucose transport and cell proliferation, therefore play an important role in placental development.
Collapse
Affiliation(s)
- Asli Ozmen
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Dijle Kipmen-Korgun
- Department of Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Bekir Sitki Isenlik
- Department of Obstetrics and Gynecology, Training and Research Hospital, Health Sciences University, Antalya, Turkey
| | - Munire Erman
- Department of Obstetrics and Gynecology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Mehmet Sakinci
- Department of Obstetrics and Gynecology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | | | - Kevin Coetzee
- Antalya IVF, Halide Edip Cd. No:7, Kanal Mh., Antalya, Turkey
| | - Kemal Ozgur
- Antalya IVF, Halide Edip Cd. No:7, Kanal Mh., Antalya, Turkey
| | - Emre Cetindag
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Kerem Yanar
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
31
|
Ranneva SV, Brusentsev EY, Igonina TN, Ragaeva DS, Rozhkova IN, Ershov NI, Levinson AL, Amstislavsky SY. The Effect of Embryo Culture on Ontogenesis of Mammalian Offspring. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420060077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Gurner KH, Truong TT, Harvey AJ, Gardner DK. A combination of growth factors and cytokines alter preimplantation mouse embryo development, foetal development and gene expression profiles. Mol Hum Reprod 2020; 26:953-970. [DOI: 10.1093/molehr/gaaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract
Within the maternal tract, the preimplantation embryo is exposed to an array of growth factors (GFs) and cytokines, most of which are absent from culture media used in clinical IVF. Whilst the addition of individual GFs and cytokines to embryo culture media can improve preimplantation mouse embryo development, there is a lack of evidence on the combined synergistic effects of GFs and cytokines on embryo development and further foetal growth. Therefore, in this study, the effect of a combined group of GFs and cytokines on mouse preimplantation embryo development and subsequent foetal development and gene expression profiles was investigated. Supplementation of embryo culture media with an optimised combination of GFs and cytokines (0.05 ng/ml vascular endothelial GF, 1 ng/ml platelet-derived GF, 0.13 ng/ml insulin-like GF 1, 0.026 ng/ml insulin-like GF 2 and 1 ng/ml granulocyte colony-stimulating factor) had no effect on embryo morphokinetics but significantly increased trophectoderm cell number (P = 0.0002) and total cell number (P = 0.024). Treatment with this combination of GFs and cytokines also significantly increased blastocyst outgrowth area (P < 0.05) and, following embryo transfer, increased foetal weight (P = 0.027), crown-rump length (P = 0.017) and overall morphological development (P = 0.027). RNA-seq analysis of in vitro derived foetuses identified concurrent alterations to the transcriptional profiles of liver and placental tissues compared with those developed in vivo, with greater changes observed in the GF and cytokine treated group. Together these data highlight the importance of balancing the actions of such factors for the regulation of normal development and emphasise the need for further studies investigating this prior to clinical implementation.
Collapse
Affiliation(s)
- Kathryn H Gurner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thi T Truong
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Melbourne IVF, East Melbourne, VIC 3002, Australia
| |
Collapse
|
33
|
Fu W, Yue Y, Miao K, Xi G, Zhang C, Wang W, An L, Tian J. Repression of FGF signaling is responsible for Dnmt3b inhibition and impaired de novo DNA methylation during early development of in vitro fertilized embryos. Int J Biol Sci 2020; 16:3085-3099. [PMID: 33061820 PMCID: PMC7545699 DOI: 10.7150/ijbs.51607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/12/2020] [Indexed: 12/30/2022] Open
Abstract
Well-orchestrated epigenetic modifications during early development are essential for embryonic survival and postnatal growth. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, DNA methylation defects are of great concern. Despite the critical role of DNA methylation in determining embryonic development potential, the mechanisms underlying IVF-associated DNA methylation defects, however, remains largely elusive. We reported herein that repression of fibroblast growth factor (FGF) signaling as the main reason for IVF-associated DNA methylation defects. Comparative methylome analysis by postimplantation stage suggested that IVF mouse embryos undergo impaired de novo DNA methylation during implantation stage. Further analyses indicated that Dnmt3b, the main de novo DNA methyltransferase, was consistently inhibited during the transition from the blastocyst to postimplantation stage (Embryonic day 7.5, E7.5). Using blastocysts and embryonic stem cells (ESCs) as the model, we showed repression of FGF signaling is responsible for Dnmt3b inhibition and global hypomethylation during early development, and MEK/ERK-SP1 pathway plays an essential mediating role in FGF signaling-induced transcriptional activation of Dnmt3b. Supplementation of FGF2, which was exclusively produced in the maternal oviduct, into embryo culture medium significantly rescued Dnmt3b inhibition. Our study, using mouse embryos as the model, not only identifies FGF signaling as the main target for correcting IVF-associated epigenetic errors, but also highlights the importance of oviductal paracrine factors in supporting early embryonic development and improving in vitro culture system.
Collapse
Affiliation(s)
- Wei Fu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yuan Yue
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Kai Miao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Guangyin Xi
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Chao Zhang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Wenjuan Wang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Lei An
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
34
|
Rivera RM. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reprod Fertil Dev 2020; 32:65-81. [PMID: 32188559 DOI: 10.1071/rd19276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Procedures used in assisted reproduction have been under constant scrutiny since their inception with the goal of improving the number and quality of embryos produced. However, invitro production of embryos is not without complications because many fertilised oocytes fail to become blastocysts, and even those that do often differ in the genetic output compared with their invivo counterparts. Thus only a portion of those transferred complete normal fetal development. An unwanted consequence of bovine assisted reproductive technology (ART) is the induction of a syndrome characterised by fetal overgrowth and placental abnormalities, namely large offspring syndrome; a condition associated with inappropriate control of the epigenome. Epigenetics is the study of chromatin and its effects on genetic output. Establishment and maintenance of epigenetic marks during gametogenesis and embryogenesis is imperative for the maintenance of cell identity and function. ARTs are implemented during times of vast epigenetic reprogramming; as a result, many studies have identified ART-induced deviations in epigenetic regulation in mammalian gametes and embryos. This review describes the various layers of epigenetic regulation and discusses findings pertaining to the effects of ART on the epigenome of bovine gametes and the preimplantation embryo.
Collapse
Affiliation(s)
- Rocío Melissa Rivera
- Division of Animal Science University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
35
|
Abstract
Development of assisted reproductive technologies has been driven by the goals of reducing the incidence of infertility, increasing the number of offspring from genetically elite animals, facilitating genetic manipulation, aiding preservation and long-distance movement of germplasm, and generating research material. Superovulation is associated with reduced fertilization rate and alterations in endometrial function. In vitro production of embryos can have a variety of consequences. Most embryos produced in vitro are capable of establishing pregnancy and developing into healthy neonatal animals. However, in vitro production is associated with reduced ability to develop to the blastocyst stage, increased incidence of failure to establish pregnancy, placental dysfunction, and altered fetal development. Changes in the developmental program mean that some consequences of being produced in vitro can extend into adult life. Reduced competence of the embryo produced in vitro to develop to the blastocyst stage is caused largely by disruption of events during oocyte maturation and fertilization. Conditions during embryo culture can affect embryo freezability and competence to establish pregnancy after transfer. Culture conditions, including actions of embryokines, can also affect the postnatal phenotype of the resultant progeny.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville, Florida 32611-0910, USA;
| |
Collapse
|
36
|
Kaminen-Ahola N. Fetal alcohol spectrum disorders: Genetic and epigenetic mechanisms. Prenat Diagn 2020; 40:1185-1192. [PMID: 32386259 DOI: 10.1002/pd.5731] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/26/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are a consequence of prenatal alcohol exposure (PAE). The etiology of the complex FASD phenotype with growth deficit, birth defects, and neurodevelopmental impairments is under extensive research. Both genetic and environmental factors contribute to the wide phenotype: chromosomal rearrangements, risk and protective alleles, environmental-induced epigenetic alterations as well as gene-environment interactions are all involved. Understanding the molecular mechanisms of PAE can provide tools for prevention or intervention of the alcohol-induced developmental disorders in the future. By revealing the alcohol-induced genetic and epigenetic alterations which associate with the variable FASD phenotypes, it is possible to identify biomarkers for the disorder. This would enable early diagnoses and personalized support for development of the affected child.
Collapse
Affiliation(s)
- Nina Kaminen-Ahola
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Lu Y, Jiang J, Si J, Wu Q, Tian F, Jiao K, Mu Y, Dong P, Zhu Z. PDLIM5 improves depression-like behavior of prenatal stress offspring rats via methylation in male, but not female. Psychoneuroendocrinology 2020; 115:104629. [PMID: 32171900 DOI: 10.1016/j.psyneuen.2020.104629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Prenatal stress (PS) contributes to depression-like behavior in the offspring. PDLIM5 is involved in the onset of mental disorders. This study is to investigate the role and mechanism of PDLIM5 in depression-like behavior of PS offspring rats. METHODS PS model was used to analyze the effects of different treatments to PS offspring rats with different sex, including PDLIM5, PDLIM5 shRNA and 5-aza-2' -deoxycytidine (5-azaD). The depression-like behavior was assessed by the sucrose preference test (SPT) and forced swimming test (FST). The mRNA and protein expression levels of PDLIM5 in the hippocampus of PS offspring rats were detected by qRT-PCR and western blot, respectively. The methylation of PDLIM5 promoter were analyzed by bisulfite sequencing. RESULTS Our data revealed that PS offspring rats showed a significant decrease in sucrose preference and a prolonged immobility time. Injection of PDLIM5 significantly improved the depression-like behavior in PS offspring rats, whereas administration of PDLIM5 shRNA aggravated it. In addition, PDLIM5 expression was decreased at the mRNA and protein levels, and the methylation level of PDLIM5 promoter was increased in hippocampus of PS male but not female offspring rats. Furthermore, microinjection of 5-azaD improved the PS induced depression-like behavior in offspring rats. Moreover, in male PS offspring rats, microinjection of 5-azaD reversed the effect of PS on PDLIM5 expression and promoter methylation. CONCLUSION PDLIM5 can significantly improve the depression-like behavior of both male and female PS offspring rats, while the PDLIM5 promoter methylation is only observed in male PS offspring rats. Our study may provide new mechanism for the pathogenesis of depression and experimental evidence for sex-based precise treatment.
Collapse
Affiliation(s)
- Yong Lu
- Central Laboratory, Heze Medical College, Heze, 274000, China
| | - Jiguo Jiang
- Central Laboratory, Heze Medical College, Heze, 274000, China
| | - Jingfang Si
- Central Laboratory, Heze Medical College, Heze, 274000, China
| | - Qi Wu
- Central Laboratory, Heze Medical College, Heze, 274000, China
| | - Fengjuan Tian
- Central Laboratory, Heze Medical College, Heze, 274000, China
| | - Keling Jiao
- Central Laboratory, Heze Medical College, Heze, 274000, China
| | - Yingjun Mu
- Central Laboratory, Heze Medical College, Heze, 274000, China
| | - Peng Dong
- Central Laboratory, Heze Medical College, Heze, 274000, China
| | - Zhongliang Zhu
- Maternal and Infant Health Research Institute and Medical College, Northwestern University, Xi'an, 710069, China.
| |
Collapse
|
38
|
Leary C, Sturmey RG. Metabolic profile of in vitro derived human embryos is not affected by the mode of fertilization. Mol Hum Reprod 2020; 26:277-287. [PMID: 32059054 PMCID: PMC8598873 DOI: 10.1093/molehr/gaaa015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/05/2020] [Indexed: 11/24/2022] Open
Abstract
The pattern of metabolism by early embryos in vitro has been linked to a range of phenotypes, including viability. However, the extent to which metabolic function of embryos is modified by specific methods used during ART has yet to be fully described. This study has sought to determine if the mode of fertilization used to create embryos affects subsequent embryo metabolism of substrates. A metabolic profile, including consumption of key substrates and the endogenous triglyceride content of individual IVF and ICSI supernumerary embryos, was assessed and compared. Embryo development and quality was also recorded. All embryos were donated at a single clinical IVF center, on Day 5, from 36 patients aged 18-38 years, The data revealed that consumption of glucose and pyruvate, and production of lactate, did not differ between embryos created by IVF or ICSI. Similarly, the mode of insemination did not impact on the triglyceride content of embryos. However, ICSI-derived embryos displayed a more active turnover of amino acids (P = 0.023), compared to IVF embryos. The specific amino acids produced in higher quantities from ICSI compared to IVF embryos were aspartate (P = 0.016), asparagine (P = 0.04), histidine (P = 0.021) and threonine (P = 0.009) while leucine consumption was significantly lower (P = 0.04). However, importantly neither individual nor collective differences in amino acid metabolism were apparent for sibling oocytes subjected to either mode of fertilization. Embryo morphology (the number of top grade embryos) and development (proportion reaching the blastocyst stage) were comparable in patients undergoing IVF and ICSI. In conclusion, the microinjection of spermatozoa into oocytes does not appear to have an impact on subsequent metabolism and viability. Observed differences in amino acid metabolism may be attributed to male factor infertility of the patients rather than the ICSI procedure per se.
Collapse
Affiliation(s)
- Christine Leary
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, The University of Hull, Hull, HU6 7RX, UK
- The Hull IVF Unit, The Women and Children’s Hospital, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK
| | - Roger G Sturmey
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, The University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
39
|
Sobolewski M, Abston K, Conrad K, Marvin E, Harvey K, Susiarjo M, Cory-Slechta DA. Lineage- and Sex-Dependent Behavioral and Biochemical Transgenerational Consequences of Developmental Exposure to Lead, Prenatal Stress, and Combined Lead and Prenatal Stress in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:27001. [PMID: 32073883 PMCID: PMC7064322 DOI: 10.1289/ehp4977] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Lead (Pb) exposure and prenatal stress (PS) during development are co-occurring risk factors with shared biological substrates. PS has been associated with transgenerational passage of altered behavioral phenotypes, whereas the transgenerational behavioral or biochemical consequences of Pb exposure, and modification of any such effects by PS, is unknown. OBJECTIVES The present study sought to determine whether Pb, PS, or combined Pb and PS exposures produced adverse transgenerational consequences on brain and behavior. METHODS Maternal Pb and PS exposures were carried out in F0 mice. Outside breeders were used at each subsequent breeding, producing four F1-F2 lineages: [F1 female-F2 female (FF), FM (male), MF, and MM]. F3 offspring were generated from each of these lineages and examined for outcomes previously found to be altered by Pb, PS, or combined Pb and PS in F1 offspring: behavioral performance [fixed-interval (FI) schedule of food reward, locomotor activity, and anxiety-like behavior], dopamine function [striatal expression of tyrosine hydroxylase (Th)], glucocorticoid receptor (GR) and plasma corticosterone, as well as brain-derived neurotrophic factor (BDNF) and total percent DNA methylation of Th and Bdnf genes in the frontal cortex and hippocampus. RESULTS Maternal F0 Pb exposure produced runting in F3 offspring. Considered across lineages, F3 females exhibited Pb-related alterations in behavior, striatal BDNF levels, frontal cortical Th total percentage DNA methylation levels and serum corticosterone levels, whereas F3 males showed Pb- and PS-related alterations in behavior and total percent DNA methylation of hippocampal Bdnf. However, numerous lineage-specific effects were observed, most of greater magnitude than those observed across lineages, with outcomes differing by F3 sex. DISCUSSION These findings support the possibility that exposures of previous generations to Pb or PS may influence the brain and behavior of future generations. Observed changes were sex-dependent, with F3 females showing multiple changes through Pb-exposed lineages. Lineage effects may occur through maternal responses to pregnancy, altered maternal behavior, epigenetic modifications, or a combination of mechanisms, but they have significant public health ramifications regardless of mechanism. https://doi.org/10.1289/EHP4977.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Kadijah Abston
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Katherine Harvey
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
40
|
Ly L, Chan D, Landry M, Angle C, Martel J, Trasler J. Impact of mothers' early life exposure to low or high folate on progeny outcome and DNA methylation patterns. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa018. [PMID: 33240529 PMCID: PMC7673481 DOI: 10.1093/eep/dvaa018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/19/2020] [Indexed: 05/14/2023]
Abstract
The dynamic patterning of DNA and histone methylation during oocyte development presents a potentially susceptible time for epigenetic disruption due to early life environmental exposure of future mothers. We investigated whether maternal exposure to folic acid deficient and supplemented diets starting in utero could affect oocytes and cause adverse developmental and epigenetic effects in next generation progeny. Female BALB/c mice (F0) were placed on one of four amino acid defined diets for 4 weeks before pregnancy and throughout gestation and lactation: folic acid control (rodent recommended daily intake; Ctrl), 7-fold folic acid deficient, 10-fold folic acid supplemented or 20-fold folic acid supplemented diets. F1 female pups were weaned onto Ctrl diets, mated to produce the F2 generation and the F2 offspring were examined at E18.5 for developmental and epigenetic abnormalities. Resorption rates were increased and litter sizes decreased amongst F2 E18.5-day litters in the 20-fold folic acid supplemented group. Increases in abnormal embryo outcomes were observed in all three folic acid deficient and supplemented groups. Subtle genome-wide DNA methylation alterations were found in the placentas and brains of F2 offspring in the 7-fold folic acid deficient , 10-fold folic acid supplemented and 20-fold folic acid supplemented groups; in contrast, global and imprinted gene methylation were not affected. The findings show that early life female environmental exposures to both low and high folate prior to oocyte maturation can compromise oocyte quality, adversely affecting offspring of the next generation, in part by altering DNA methylation patterns.
Collapse
Affiliation(s)
- Lundi Ly
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Donovan Chan
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mylène Landry
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Camille Angle
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Josée Martel
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jacquetta Trasler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
- Correspondence address. Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Block E.M.0.3211, Montreal, QC, Canada H4A 3J1. Tel: +1-514-934-1934 (ext. 25235); Fax: +1-514-933-9673; E-mail:
| |
Collapse
|
41
|
Mani S, Ghosh J, Coutifaris C, Sapienza C, Mainigi M. Epigenetic changes and assisted reproductive technologies. Epigenetics 2020; 15:12-25. [PMID: 31328632 PMCID: PMC6961665 DOI: 10.1080/15592294.2019.1646572] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Children conceived by Assisted Reproductive Technologies (ART) are at moderately increased risk for a number of undesirable outcomes, including low birth weight. Whether the additional risk is associated with specific procedures used in ART or biological factors that are intrinsic to infertility has been the subject of much debate, as has the mechanism by which ART or infertility might influence this risk. The potential effect of ART clinical and laboratory procedures on the gamete and embryo epigenomes heads the list of mechanistic candidates that might explain the association between ART and undesirable clinical outcomes. The reason for this focus is that the developmental time points at which ART clinical and laboratory procedures are implemented are precisely the time points at which large-scale reorganization of the epigenome takes place during normal development. In this manuscript, we review the many human studies comparing the epigenomes of ART children with children conceived in vivo, as well as assess the potential of individual ART clinical and laboratory procedures to alter the epigenome.
Collapse
Affiliation(s)
- Sneha Mani
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayashri Ghosh
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, USA
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, USA
| | - Monica Mainigi
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Chang HY, Hwu WL, Chen CH, Hou CY, Cheng W. Children Conceived by Assisted Reproductive Technology Prone to Low Birth Weight, Preterm Birth, and Birth Defects: A Cohort Review of More Than 50,000 Live Births During 2011-2017 in Taiwan. Front Pediatr 2020; 8:87. [PMID: 32232018 PMCID: PMC7082315 DOI: 10.3389/fped.2020.00087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/21/2020] [Indexed: 01/08/2023] Open
Abstract
Objectives: The use of assisted reproductive technology (ART) has increased rapidly in Taiwan. The purpose of this study is to discuss the risks of low birth weight, preterm birth, and birth defect for children conceived by assisted reproductive technology in Taiwan. Methods: Both National ART report database and National birth reports were obtained from the Health Promotion Administration in the Ministry of Health and Welfare in Taiwan. The cohort included live births (n = 1,405,625) and children conceived by ART (n = 50,988/172,818 cycles) from 2011 to 2017. The prevalence of low birth weight, preterm birth, and birth defect were compared between the ART and natural pregnancy groups. Results: Children conceived by ART displayed a higher rate of low birth weight as compared to those in the natural pregnancy group (p < 0.001), even when analyses were restricted to singleton births (p < 0.001). A higher rate of preterm birth (p < 0.001) was also observed in children conceived by ART even when analyses were restricted to singleton births (p < 0.05). A significant increased rate of birth defects was noted from children conceived by ART (p < 0.05). Conclusions: With the increasing need for and use of ART-conceptions, the likelihood of risks induced or related to Assistant Reproductive Technology (ART) has drawn considerable attention in recent years. Taiwan, as one of the leading countries with outstanding ART performances and modern medical care, the result of the current study suggests that further consideration and tighter regulations and policy are needed with regard to the use of ART.
Collapse
Affiliation(s)
- Heng-Yu Chang
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hui Chen
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan.,Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Yin Hou
- Department of Family Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Wei Cheng
- Department of Pathology, Kee-Lung Hospital, Ministry of Health and Welfare, Keelung City, Taiwan.,Department of Nursing, Ching Kuo Institute of Management and Health, Keelung City, Taiwan.,School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
43
|
Kindsfather AJ, Czekalski MA, Pressimone CA, Erisman MP, Mann MRW. Perturbations in imprinted methylation from assisted reproductive technologies but not advanced maternal age in mouse preimplantation embryos. Clin Epigenetics 2019; 11:162. [PMID: 31767035 PMCID: PMC6878706 DOI: 10.1186/s13148-019-0751-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Over the last several decades, the average age of first-time mothers has risen steadily. With increasing maternal age comes a decrease in fertility, which in turn has led to an increase in the use of assisted reproductive technologies by these women. Assisted reproductive technologies (ARTs), including superovulation and embryo culture, have been shown separately to alter imprinted DNA methylation maintenance in blastocysts. However, there has been little investigation on the effects of advanced maternal age, with or without ARTs, on genomic imprinting. We hypothesized that ARTs and advanced maternal age, separately and together, alter imprinted methylation in mouse preimplantation embryos. For this study, we examined imprinted methylation at three genes, Snrpn, Kcnq1ot1, and H19, which in humans are linked to ART-associated methylation errors that lead to imprinting disorders. Results Our data showed that imprinted methylation acquisition in oocytes was unaffected by increasing maternal age. Furthermore, imprinted methylation was normally acquired when advanced maternal age was combined with superovulation. Analysis of blastocyst-stage embryos revealed that imprinted methylation maintenance was also not affected by increasing maternal age. In a comparison of ARTs, we observed that the frequency of blastocysts with imprinted methylation loss was similar between the superovulation only and the embryo culture only groups, while the combination of superovulation and embryo culture resulted in a higher frequency of mouse blastocysts with maternal imprinted methylation perturbations than superovulation alone. Finally, the combination of increasing maternal age with ARTs had no additional effect on the frequency of imprinted methylation errors. Conclusion Collectively, increasing maternal age with or without superovulation had no effect of imprinted methylation acquisition at Snrpn, Kcnq1ot1, and H19 in oocytes. Furthermore, during preimplantation development, while ARTs generated perturbations in imprinted methylation maintenance in blastocysts, advanced maternal age did not increase the burden of imprinted methylation errors at Snrpn, Kcnq1ot1, and H19 when combined with ARTs. These results provide cautious optimism that advanced maternal age is not a contributing factor to imprinted methylation errors in embryos produced in the clinic. Furthermore, our data on the effects of ARTs strengthen the need to advance clinical methods to reduce imprinted methylation errors in in vitro-produced embryos.
Collapse
Affiliation(s)
- Audrey J Kindsfather
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Megan A Czekalski
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Catherine A Pressimone
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Margaret P Erisman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Mellissa R W Mann
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA. .,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
44
|
Menelaou K, Prater M, Tunster S, Blake G, Geary Joo C, Cross JC, Hamilton R, Watson E. Blastocyst transfer in mice alters the placental transcriptome and growth. Reproduction 2019; 159:115-132. [PMID: 31751309 PMCID: PMC6993209 DOI: 10.1530/rep-19-0293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
Abstract
Assisted reproduction technologies (ART) are becoming increasingly common. Therefore, how these procedures influence gene regulation and feto-placental development are important to explore. Here, we assess the effects of blastocyst transfer on mouse placental growth and transcriptome. C57Bl/6 blastocysts were transferred into uteri of B6D2F1 pseudopregnant females and dissected at embryonic day 10.5 for analysis. Compared to non-transferred controls, placentas from transferred conceptuses weighed less even though the embryos were larger on average. This suggested a compensatory increase in placental efficiency. RNA-sequencing of whole male placentas revealed 543 differentially expressed genes (DEGs) after blastocyst transfer: 188 and 355 genes were down-regulated and up-regulated, respectively. DEGs were independently validated in male and female placentas. Bioinformatic analyses revealed that DEGs represented expression in all major placental cell types and included genes that are critical for placenta development and/or function. Furthermore, the direction of transcriptional change in response to blastocyst transfer implied an adaptive response to improve placental function to maintain fetal growth. Our analysis revealed that CpG methylation at regulatory regions of two DEGs was unchanged in female transferred placentas and that DEGs had fewer gene-associated CpG islands (within ~20 kb region) compared to the larger genome. These data suggested that altered methylation at proximal promoter regions might not lead to transcriptional disruption in transferred placentas. Genomic clustering of some DEGs warrants further investigation of long-range, cis-acting epigenetic mechanisms including histone modifications together with DNA methylation. We conclude that embryo transfer, a protocol required for ART, significantly impacts the placental transcriptome and growth.
Collapse
Affiliation(s)
- Katerina Menelaou
- K Menelaou, Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Malwina Prater
- M Prater, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Simon Tunster
- S Tunster, Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Georgina Blake
- G Blake, Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Colleen Geary Joo
- C Geary Joo, Clara Christie Centre for Mouse Genomics, University of Calgary, Calgary, Canada
| | - James C Cross
- J Cross, Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Russell Hamilton
- R Hamilton, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Erica Watson
- E Watson, Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
45
|
Dong J, Wen L, Guo X, Xiao X, Jiang F, Li B, Jin N, Wang J, Wang X, Chen S, Wang X. The increased expression of glucose transporters in human full-term placentas from assisted reproductive technology without changes of mTOR signaling. Placenta 2019; 86:4-10. [DOI: 10.1016/j.placenta.2019.08.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/18/2019] [Accepted: 08/28/2019] [Indexed: 01/04/2023]
|
46
|
Chen S, Zhang M, Li L, Wang M, Shi Y, Zhang H, Kang B, Tang N, Li B. Loss of methylation of H19-imprinted gene derived from assisted reproductive technologies can be mitigated by cleavage-stage embryo transfer in mice. J Assist Reprod Genet 2019; 36:2259-2269. [PMID: 31515683 DOI: 10.1007/s10815-019-01575-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/28/2019] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Studies on rodents have shown that assisted reproductive technologies (ARTs) are associated with perturbation of genomic imprinting in blastocyst-stage embryos. However, the vulnerable developmental window for ART influence on the genomic imprinting of embryos is still undetermined. The purpose of this study was to establish the specific embryonic development stage at which the loss of methylation of H19 imprinting control regions (ICRs) was caused by ART occurrence. Additionally, we explored protocols to safeguard against possible negative impacts of ART on embryo H19 imprinting. METHODS Mouse embryos were generated under four different experimental conditions, divided into four groups: control, in vitro culture (IVC), in vitro fertilization (IVF), and intracytoplasmic sperm injection (ICSI). The methylation levels of H19 ICR of the grouped or individual embryos were analyzed by bisulfite-sequencing PCR. RESULTS Our data showed that the loss of methylation of H19 ICR in mouse blastocysts was inflicted to a similar extent by IVC, IVF, and ICSI. Specifically, we observed a significant loss of methylation of H19 ICR between the mouse 8-cell and morula stages. In addition, we revealed that the transfer of mouse embryos generated by ARTs in the uterus at the 8-cell stage induced the occurrence of methylation patterns in the blastocysts closer to the in vivo ones. CONCLUSIONS Our findings indicate that the loss of methylation of H19 ICR caused by ARTs occurs between the 8-cell and the morula stages, and the transfer of cleavage embryos to the uterus mitigates the loss methylation of H19 derived by mice ARTs.
Collapse
Affiliation(s)
- Shuqiang Chen
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Meizi Zhang
- Reproductive Medicine Center, Tianjin Frist Central Hospital, Tianjin, 300192, China
| | - Li Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Ming Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Yongqian Shi
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Hengde Zhang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Bin Kang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Na Tang
- Shaanxi Institute for Food and Drug Control, Xi'an, 710038, People's Republic of China.
| | - Bo Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
47
|
Zuo Z, Niu Z, Liu Z, Ma J, Qu P, Qiao F, Su J, Zhang Y, Wang Y. The effects of glycine-glutamine dipeptide replaced l-glutamine on bovine parthenogenetic and IVF embryo development. Theriogenology 2019; 141:82-90. [PMID: 31518732 DOI: 10.1016/j.theriogenology.2019.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/17/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Abstract
Relative to alanine and serine amino acid levels, glutamine is highly abundant in follicular fluid, and is an important source of energy required for oocyte maturation and embryo development. Thus, glutamine is an essential component of in vitro embryo culture media. However, glutamine has poor stability and degrades spontaneously in solution to form ammonia and pyrrolidonecarboxylic acid. In the present study, we aimed to explore the effect of substituting l-glutamine with glycine-glutamine, a more stable glutamine, on development of early parthenogenetic embryos and in vitro fertilization (IVF) embryos in bovine. Results revealed that glycine-glutamine can significantly increase cleavage rate (parthenogenetic embryos:87.24% vs. 72.61%, IVF embryos:89.33% vs. 83.79%, P < 0.01), blastocyst number (parthenogenetic embryos:24.98% vs. 18.07%, IVF embryos:33.53% vs. 27.29%, P < 0.01), and blastocyst number (parthenogenetic embryos:96 vs. 76, IVF embryos:114 vs. 109, P < 0.01), reduce blastocyst apoptosis (parthenogenetic embryos:3.72% vs. 6.65%, IVF embryos:2.53% vs.6.23%, P < 0.01), alleviate embryo ammonia toxicity, and reduce the content of reactive oxygen species (ROS) compared with the l-glutamine. In addition, glycine-glutamine can alter epigenetic reprogramming by increasing the expression of HDAC1 (Histone Deacetylase 1) and decreasing the relative expression levels of H3K9 acetylation in early parthenogenetic embryos and IVF embryos. From our present study, we concluded that glycine-glutamine is an effective substitute of glutamine in modified synthetic oviduct fluid with amino acids (mSOFaa).
Collapse
Affiliation(s)
- Zhenzi Zuo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhihan Niu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhengqing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jukui Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Pengxiang Qu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, PR China
| | - Fang Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
48
|
Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nat Commun 2019; 10:3922. [PMID: 31477727 PMCID: PMC6718382 DOI: 10.1038/s41467-019-11929-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
More than 7 million individuals have been conceived by Assisted Reproductive Technologies (ART) and there is clear evidence that ART is associated with a range of adverse early life outcomes, including rare imprinting disorders. The periconception period and early embryogenesis are associated with widespread epigenetic remodeling, which can be influenced by ART, with effects on the developmental trajectory in utero, and potentially on health throughout life. Here we profile genome-wide DNA methylation in blood collected in the newborn period and in adulthood (age 22–35 years) from a unique longitudinal cohort of ART-conceived individuals, previously shown to have no differences in health outcomes in early adulthood compared with non-ART-conceived individuals. We show evidence for specific ART-associated variation in methylation around birth, most of which occurred independently of embryo culturing. Importantly, ART-associated epigenetic variation at birth largely resolves by adulthood with no direct evidence that it impacts on development and health. Use of Assisted Reproductive Technologies (ART) is increasing globally but their impact on long term health remains unclear. Here the authors show that ART-conceived individuals show variation in epigenetic profile at birth that largely resolves by adulthood, with no evidence of an impact on long term outcomes.
Collapse
|
49
|
Zhao P, Li S, Wang H, Dang Y, Wang L, Liu T, Wang S, Li X, Zhang K. Sin3a regulates the developmental progression through morula-to-blastocyst transition via Hdac1. FASEB J 2019; 33:12541-12553. [PMID: 31450981 DOI: 10.1096/fj.201901213r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Suppressor interacting 3a (Sin3a) is a scaffold component of the chromatin repressive complex Sin3/histone deacetylase (Hdac). Sin3a has been shown as a hub gene driving preimplantation development in both mice and humans. However, its precise functions during preimplantation development remain unclear. Here, we show that the embryos arrested at morula stage upon specific depletion of Sin3a in mouse early embryos. Given the reduced cell number in Sin3a-depleted embryos, blocked cell proliferation is observed, likely because of the increased level of Trp53 acetylation at lysine 379. Moreover, we found that Sin3a depletion reduces Cdx2 and Tir Na Nog (Nanog), suggesting a failure of the first cell fate decision. In addition, we noted a striking increase of genome-wide DNA methylation, likely attributed to the increased nuclear DNA methyltransferase 1 observed in Sin3a-depleted embryos. Notably, RNA sequencing analyses showed 717 genes are differentially expressed, and Gene Ontology analysis of down-regulated genes (e.g., Hdac1) revealed top enriched terms involving protein deacetylation. Consistently, we confirmed a significant decrease of Hdac1 mRNA and protein abundance. Importantly, the development and Trp53 acetylation in Sin3a-depleted embryos could be rescued by expression of Hdac1 but not Hdac2. In summary, our results indicate a vital role of Sin3a in safeguarding the developmental progression through the morula-to-blastocyst transition via Hdac1.-Zhao, P., Li, S., Wang, H., Dang, Y., Wang, L., Liu, T., Wang, S., Li, X., Zhang, K. Sin3a regulates the developmental progression through morula-to-blastocyst transition via Hdac1.
Collapse
Affiliation(s)
- Panpan Zhao
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Li
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huanan Wang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanna Dang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lefeng Wang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tong Liu
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shaohua Wang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhong Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Kun Zhang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
50
|
La Rovere M, Franzago M, Stuppia L. Epigenetics and Neurological Disorders in ART. Int J Mol Sci 2019; 20:ijms20174169. [PMID: 31454921 PMCID: PMC6747212 DOI: 10.3390/ijms20174169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
About 1–4% of children are currently generated by Assisted Reproductive Technologies (ART) in developed countries. These babies show only a slightly increased risk of neonatal malformations. However, follow-up studies have suggested a higher susceptibility to multifactorial, adult onset disorders like obesity, diabetes and cardiovascular diseases in ART offspring. It has been suggested that these conditions could be the consequence of epigenetic, alterations, due to artificial manipulations of gametes and embryos potentially able to alter epigenetic stability during zygote reprogramming. In the last years, epigenetic alterations have been invoked as a possible cause of increased risk of neurological disorders, but at present the link between epigenetic modifications and long-term effects in terms of neurological diseases in ART children remains unclear, due to the short follow up limiting retrospective studies. In this review, we summarize the current knowledge about neurological disorders promoted by epigenetics alterations in ART. Based on data currently available, it is possible to conclude that little, if any, evidence of an increased risk of neurological disorders in ART conceived children is provided. Most important, the large majority of reports appears to be limited to epidemiological studies, not providing any experimental evidence about epigenetic modifications responsible for an increased risk.
Collapse
Affiliation(s)
- Marina La Rovere
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University, 66100 Chieti-Pescara, Italy
| | - Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. d'Annunzio" University, 66100 Chieti-Pescara, Italy
- Aging Center Studies-Translational Medicine (CeSI-Met), "G. d'Annunzio" University, 66100 Chieti-Pescara, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University, 66100 Chieti-Pescara, Italy.
- Aging Center Studies-Translational Medicine (CeSI-Met), "G. d'Annunzio" University, 66100 Chieti-Pescara, Italy.
| |
Collapse
|