1
|
Chakraborty S, Wenzlitschke N, Anderson MJ, Eraso A, Baudic M, Thompson JJ, Evans AA, Shatford-Adams LM, Chari R, Awasthi P, Dale RK, Lewandoski M, Petros TJ, Rocha PP. Structural perturbation of chromatin domains with multiple developmental regulators can severely impact gene regulation and development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606480. [PMID: 39372737 PMCID: PMC11451586 DOI: 10.1101/2024.08.03.606480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Chromatin domain boundaries delimited by CTCF motifs can restrict the range of enhancer action. However, disruption of domain structure often results in mild gene dysregulation and thus predicting the impact of boundary rearrangements on animal development remains challenging. Here, we tested whether structural perturbation of a chromatin domain with multiple developmental regulators can result in more acute gene dysregulation and severe developmental phenotypes. We targeted clusters of CTCF motifs in a domain of the mouse genome containing three FGF ligand genes-Fgf3, Fgf4, and Fgf15-that regulate several developmental processes. Deletion of the 23.9kb cluster that defines the centromeric boundary of this domain resulted in ectopic interactions of the FGF genes with enhancers located across the deleted boundary that are active in the developing brain. This caused strong induction of FGF expression and perinatal lethality with encephalocele and orofacial cleft phenotypes. Heterozygous boundary deletion was sufficient to cause these fully penetrant phenotypes, and strikingly, loss of a single CTCF motif within the cluster also recapitulated ectopic FGF expression and caused encephalocele. However, such phenotypic sensitivity to perturbation of domain structure did not extend to all CTCF clusters of this domain, nor to all developmental processes controlled by these three FGF genes-for example, the ability to undergo lineage specification in the blastocyst and pre-implantation development were not affected. By tracing the impact of different chromosomal rearrangements throughout mouse development, we start to uncover the determinants of phenotypic robustness and sensitivity to perturbation of chromatin boundaries. Our data show how small sequence variants at certain domain boundaries can have a surprisingly outsized effect and must be considered as potential sources of gene dysregulation during development and disease.
Collapse
Affiliation(s)
- Shreeta Chakraborty
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Wenzlitschke
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew J. Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 20892 USA
| | - Ariel Eraso
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manon Baudic
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joyce J. Thompson
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alicia A. Evans
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lilly M. Shatford-Adams
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD, 21702, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD, 21702, USA
| | - Ryan K. Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 20892 USA
| | - Timothy J. Petros
- Unit on Cellular and Molecular Neurodevelopment, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro P. Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- National C ancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Chandwani R, Fang TC, Dewell S, Tarakhovsky A. Control of enhancer and promoter activation in the type I interferon response by the histone demethylase Kdm4d/JMJD2d. Front Immunol 2023; 14:1146699. [PMID: 37275914 PMCID: PMC10236313 DOI: 10.3389/fimmu.2023.1146699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Transcriptional activation depends on the interplay of chromatin modifiers to establish a permissive epigenetic landscape. While histone 3 lysine 9 (H3K9) methylation has long been associated with gene repression, there is limited evidence to support a role for H3K9 demethylases in gene activation. Methods We leveraged knockdown and overexpression of JMJD2d / Kdm4d in mouse embryonic fibroblasts, coupled with extensive epigenomic analysesm to decipher the role of histone 3 lysine 9 demethylases in the innate immune response. Results Here we describe the H3K9 demethylase Kdm4d/JMJD2d as a positive regulator of type I interferon responses. In mouse embryonic fibroblasts (MEFs), depletion of JMJD2d attenuates the transcriptional response, conferring increased viral susceptibility, while overexpression of the demethylase results in more robust IFN activation. We find that the underlying mechanism of JMJD2d in type I interferon responses consists of an effect both on the transcription of enhancer RNAs (eRNAs) and on dynamic H3K9me2 at associated promoters. In support of these findings, we establish that JMJD2d is associated with enhancer regions throughout the genome prior to stimulation but is redistributed to inducible promoters in conjunction with transcriptional activation. Discussion Taken together, our data reveal JMJD2d as a chromatin modifier that connects enhancer transcription with promoter demethylation to modulate transcriptional responses.
Collapse
Affiliation(s)
- Rohit Chandwani
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY, United States
| | - Terry C. Fang
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY, United States
| | - Scott Dewell
- Genomics Resource Facility, The Rockefeller University, New York, NY, United States
| | - Alexander Tarakhovsky
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY, United States
| |
Collapse
|
3
|
Richer S, Tian Y, Schoenfelder S, Hurst L, Murrell A, Pisignano G. Widespread allele-specific topological domains in the human genome are not confined to imprinted gene clusters. Genome Biol 2023; 24:40. [PMID: 36869353 PMCID: PMC9983196 DOI: 10.1186/s13059-023-02876-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND There is widespread interest in the three-dimensional chromatin conformation of the genome and its impact on gene expression. However, these studies frequently do not consider parent-of-origin differences, such as genomic imprinting, which result in monoallelic expression. In addition, genome-wide allele-specific chromatin conformation associations have not been extensively explored. There are few accessible bioinformatic workflows for investigating allelic conformation differences and these require pre-phased haplotypes which are not widely available. RESULTS We developed a bioinformatic pipeline, "HiCFlow," that performs haplotype assembly and visualization of parental chromatin architecture. We benchmarked the pipeline using prototype haplotype phased Hi-C data from GM12878 cells at three disease-associated imprinted gene clusters. Using Region Capture Hi-C and Hi-C data from human cell lines (1-7HB2, IMR-90, and H1-hESCs), we can robustly identify the known stable allele-specific interactions at the IGF2-H19 locus. Other imprinted loci (DLK1 and SNRPN) are more variable and there is no "canonical imprinted 3D structure," but we could detect allele-specific differences in A/B compartmentalization. Genome-wide, when topologically associating domains (TADs) are unbiasedly ranked according to their allele-specific contact frequencies, a set of allele-specific TADs could be defined. These occur in genomic regions of high sequence variation. In addition to imprinted genes, allele-specific TADs are also enriched for allele-specific expressed genes. We find loci that have not previously been identified as allele-specific expressed genes such as the bitter taste receptors (TAS2Rs). CONCLUSIONS This study highlights the widespread differences in chromatin conformation between heterozygous loci and provides a new framework for understanding allele-specific expressed genes.
Collapse
Affiliation(s)
- Stephen Richer
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Yuan Tian
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- UCL Cancer Institute, University College London, Paul O'Gorman Building, London, UK
| | | | - Laurence Hurst
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Adele Murrell
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Giuseppina Pisignano
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
4
|
Chakraborty S, Kopitchinski N, Zuo Z, Eraso A, Awasthi P, Chari R, Mitra A, Tobias IC, Moorthy SD, Dale RK, Mitchell JA, Petros TJ, Rocha PP. Enhancer-promoter interactions can bypass CTCF-mediated boundaries and contribute to phenotypic robustness. Nat Genet 2023; 55:280-290. [PMID: 36717694 PMCID: PMC10758292 DOI: 10.1038/s41588-022-01295-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
How enhancers activate their distal target promoters remains incompletely understood. Here we dissect how CTCF-mediated loops facilitate and restrict such regulatory interactions. Using an allelic series of mouse mutants, we show that CTCF is neither required for the interaction of the Sox2 gene with distal enhancers, nor for its expression. Insertion of various combinations of CTCF motifs, between Sox2 and its distal enhancers, generated boundaries with varying degrees of insulation that directly correlated with reduced transcriptional output. However, in both epiblast and neural tissues, enhancer contacts and transcriptional induction could not be fully abolished, and insertions failed to disrupt implantation and neurogenesis. In contrast, Sox2 expression was undetectable in the anterior foregut of mutants carrying the strongest boundaries, and these animals fully phenocopied loss of SOX2 in this tissue. We propose that enhancer clusters with a high density of regulatory activity can better overcome physical barriers to maintain faithful gene expression and phenotypic robustness.
Collapse
Affiliation(s)
- Shreeta Chakraborty
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nina Kopitchinski
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Zhenyu Zuo
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ariel Eraso
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ian C Tobias
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Sakthi D Moorthy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Juan AM, Foong YH, Thorvaldsen JL, Lan Y, Leu NA, Rurik JG, Li L, Krapp C, Rosier CL, Epstein JA, Bartolomei MS. Tissue-specific Grb10/Ddc insulator drives allelic architecture for cardiac development. Mol Cell 2022; 82:3613-3631.e7. [PMID: 36108632 PMCID: PMC9547965 DOI: 10.1016/j.molcel.2022.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Allele-specific expression of imprinted gene clusters is governed by gametic DNA methylation at master regulators called imprinting control regions (ICRs). Non-gametic or secondary differentially methylated regions (DMRs) at promoters and exonic regions reinforce monoallelic expression but do not control an entire cluster. Here, we unveil an unconventional secondary DMR that is indispensable for tissue-specific imprinting of two previously unlinked genes, Grb10 and Ddc. Using polymorphic mice, we mapped an intronic secondary DMR at Grb10 with paternal-specific CTCF binding (CBR2.3) that forms contacts with Ddc. Deletion of paternal CBR2.3 removed a critical insulator, resulting in substantial shifting of chromatin looping and ectopic enhancer-promoter contacts. Destabilized gene architecture precipitated abnormal Grb10-Ddc expression with developmental consequences in the heart and muscle. Thus, we redefine the Grb10-Ddc imprinting domain by uncovering an unconventional intronic secondary DMR that functions as an insulator to instruct the tissue-specific, monoallelic expression of multiple genes-a feature previously ICR exclusive.
Collapse
Affiliation(s)
- Aimee M Juan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yee Hoon Foong
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanne L Thorvaldsen
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolae A Leu
- Department of Biomedical Sciences, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Joel G Rurik
- Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Krapp
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Casey L Rosier
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Epstein
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Matsuzaki H, Miyajima Y, Fukamizu A, Tanimoto K. Orientation of mouse H19 ICR affects imprinted H19 gene expression through promoter methylation-dependent and -independent mechanisms. Commun Biol 2021; 4:1410. [PMID: 34921234 PMCID: PMC8683476 DOI: 10.1038/s42003-021-02939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
The mouse Igf2/H19 locus is regulated by genomic imprinting, in which the paternally methylated H19 imprinting control region (ICR) plays a critical role in mono-allelic expression of the genes in the locus. Although the maternal allele-specific insulator activity of the H19 ICR in regulating imprinted Igf2 expression has been well established, the detailed mechanism by which the H19 ICR controls mono-allelic H19 gene expression has not been fully elucidated. In this study, we evaluated the effect of H19 ICR orientation on imprinting regulation in mutant mice in which the H19 ICR sequence was inverted at the endogenous locus. When the inverted-ICR allele was paternally inherited, the methylation level of the H19 promoter was decreased and the H19 gene was derepressed, suggesting that methylation of the H19 promoter is essential for complete repression of H19 gene expression. Unexpectedly, when the inverted allele was maternally inherited, the expression level of the H19 gene was lower than that of the WT allele, even though the H19 promoter remained fully hypomethylated. These observations suggested that the polarity of the H19 ICR is involved in controlling imprinted H19 gene expression on each parental allele, dependent or independent on DNA methylation of the H19 promoter.
Collapse
Affiliation(s)
- Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Yu Miyajima
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Varrault A, Dubois E, Le Digarcher A, Bouschet T. Quantifying Genomic Imprinting at Tissue and Cell Resolution in the Brain. EPIGENOMES 2020; 4:21. [PMID: 34968292 PMCID: PMC8594728 DOI: 10.3390/epigenomes4030021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Imprinted genes are a group of ~150 genes that are preferentially expressed from one parental allele owing to epigenetic marks asymmetrically distributed on inherited maternal and paternal chromosomes. Altered imprinted gene expression causes human brain disorders such as Prader-Willi and Angelman syndromes and additional rare brain diseases. Research data principally obtained from the mouse model revealed how imprinted genes act in the normal and pathological brain. However, a better understanding of imprinted gene functions calls for building detailed maps of their parent-of-origin-dependent expression and of associated epigenetic signatures. Here we review current methods for quantifying genomic imprinting at tissue and cell resolutions, with a special emphasis on methods to detect parent-of-origin dependent expression and their applications to the brain. We first focus on bulk RNA-sequencing, the main method to detect parent-of-origin-dependent expression transcriptome-wide. We discuss the benefits and caveats of bulk RNA-sequencing and provide a guideline to use it on F1 hybrid mice. We then review methods for detecting parent-of-origin-dependent expression at cell resolution, including single-cell RNA-seq, genetic reporters, and molecular probes. Finally, we provide an overview of single-cell epigenomics technologies that profile additional features of genomic imprinting, including DNA methylation, histone modifications and chromatin conformation and their combination into sc-multimodal omics approaches, which are expected to yield important insights into genomic imprinting in individual brain cells.
Collapse
Affiliation(s)
- Annie Varrault
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France; (A.V.); (A.L.D.)
| | - Emeric Dubois
- Montpellier GenomiX (MGX), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France;
| | - Anne Le Digarcher
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France; (A.V.); (A.L.D.)
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France; (A.V.); (A.L.D.)
| |
Collapse
|
8
|
Vander Roest M, Krapp C, Thorvaldsen JL, Bartolomei MS, Merryman WD. H19 is not hypomethylated or upregulated with age or sex in the aortic valves of mice. Physiol Rep 2019; 7:e14244. [PMID: 31609547 PMCID: PMC6778597 DOI: 10.14814/phy2.14244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/24/2022] Open
Abstract
Epigenetic dysregulation of long noncoding RNA H19 was recently found to be associated with calcific aortic valve disease (CAVD) in humans by repressing NOTCH1 transcription. This finding offers a possible epigenetic explanation for the abundance of cases of CAVD that are not explained by any clear genetic mutation. In this study, we examined the effect of age and sex on epigenetic dysregulation of H19 and subsequent aortic stenosis. Cohorts of littermate, wild-type C57BL/6 mice were studied at developmental ages analogous to human middle age through advanced age. Cardiac and aortic valve function were assessed with M-mode echocardiography and pulsed wave Doppler ultrasound, respectively. Bisulfite sequencing was used to determine methylation-based epigenetic regulation of H19, and RT-PCR was used to determine changes in gene expression profiles. Male mice were found to have higher peak systolic velocities than females, with several of the oldest mice showing signs of early aortic stenosis. The imprinting control region of H19 was not hypomethylated with age, and H19 expression was lower in the aortic valves of older mice than in the youngest group. These results suggest that age-related upregulation of H19 is not observed in murine aortic valves and that other factors may initiate H19-related CAVD in humans.
Collapse
Affiliation(s)
| | - Christopher Krapp
- Epigenetics InstituteDepartment of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | - Joanne L. Thorvaldsen
- Epigenetics InstituteDepartment of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | - Marisa S. Bartolomei
- Epigenetics InstituteDepartment of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | | |
Collapse
|
9
|
Benabdallah NS, Williamson I, Illingworth RS, Kane L, Boyle S, Sengupta D, Grimes GR, Therizols P, Bickmore WA. Decreased Enhancer-Promoter Proximity Accompanying Enhancer Activation. Mol Cell 2019; 76:473-484.e7. [PMID: 31494034 PMCID: PMC6838673 DOI: 10.1016/j.molcel.2019.07.038] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 05/08/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Abstract
Enhancers can regulate the promoters of their target genes over very large genomic distances. It is widely assumed that mechanisms of enhancer action involve the reorganization of three-dimensional chromatin architecture, but this is poorly understood. The predominant model involves physical enhancer-promoter interaction by looping out the intervening chromatin. However, studying the enhancer-driven activation of the Sonic hedgehog gene (Shh), we have identified a change in chromosome conformation that is incompatible with this simple looping model. Using super-resolution 3D-FISH and chromosome conformation capture, we observe a decreased spatial proximity between Shh and its enhancers during the differentiation of embryonic stem cells to neural progenitors. We show that this can be recapitulated by synthetic enhancer activation, is impeded by chromatin-bound proteins located between the enhancer and the promoter, and appears to involve the catalytic activity of poly (ADP-ribose) polymerase. Our data suggest that models of enhancer-promoter communication need to encompass chromatin conformations other than looping. Super-resolution microscopy reveals increased enhancer-promoter separation upon activation Synthetic enhancer activation supports decreased enhancer-promoter proximity Enhancer-promoter separation can be driven by poly(ADP-ribose) polymerase 1
Collapse
Affiliation(s)
- Nezha S Benabdallah
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Robert S Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Lauren Kane
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Dipta Sengupta
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Pierre Therizols
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; UMR INSERM 944, CNRS 7212, Bâtiment Jean Bernard, Hôpital Saint Louis, Paris, France
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
10
|
Mawhinney MT, Liu R, Lu F, Maksimoska J, Damico K, Marmorstein R, Lieberman PM, Urbanc B. CTCF-Induced Circular DNA Complexes Observed by Atomic Force Microscopy. J Mol Biol 2018; 430:759-776. [PMID: 29409905 DOI: 10.1016/j.jmb.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 11/26/2022]
Abstract
The CTCF protein has emerged as a key architectural protein involved in genome organization. Although hypothesized to initiate DNA looping, direct evidence of CTCF-induced DNA loop formation is still missing. Several studies have shown that the 11 zinc finger (11 ZF) domain of CTCF is actively involved in DNA binding. We here use atomic force microscopy to examine the effect of the 11 ZF domain comprising residues 266-579 (11 ZF CTCF) and the 3 ZF domain comprising residues 402-494 (6-8 ZF CTCF) of human CTCF on the DNA morphology. Our results show that both domains alter the DNA architecture from the relaxed morphology observed in control DNA samples to compact circular complexes, meshes, and networks, offering important insights into the multivalent character of the 11 ZF CTCF domain. Atomic force microscopy images reveal quasi-circular DNA/CTCF complexes, which are destabilized upon replacing the 11 ZF CTCF by the 6-8 ZF CTCF domain, highlighting the role of the 11 ZF motif in loop formation. Intriguingly, the formation of circular DNA/CTCF complexes is dominated by non-specific binding, whereby contour length and height profiles suggest a single DNA molecule twice wrapped around the protein.
Collapse
Affiliation(s)
| | - Runcong Liu
- Department of Physics, Drexel University, Philadelphia, PA 19104, USA
| | - Fang Lu
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jasna Maksimoska
- The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Damico
- The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronen Marmorstein
- The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, PA 19104, USA; Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
11
|
Hur SK, Freschi A, Ideraabdullah F, Thorvaldsen JL, Luense LJ, Weller AH, Berger SL, Cerrato F, Riccio A, Bartolomei MS. Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver-Russell syndrome phenotypes. Proc Natl Acad Sci U S A 2016; 113:10938-43. [PMID: 27621468 PMCID: PMC5047210 DOI: 10.1073/pnas.1603066113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin-specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19(hIC1) We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19(+/hIC1) mice will elucidate the molecular mechanisms that may underlie SRS.
Collapse
Affiliation(s)
- Stella K Hur
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Andrea Freschi
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Folami Ideraabdullah
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Joanne L Thorvaldsen
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Lacey J Luense
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Angela H Weller
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Flavia Cerrato
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy;
| | - Andrea Riccio
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy; Institute of Genetics and Biophysics A. Buzzati-Traverso, 80131 Naples, Italy
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104;
| |
Collapse
|
12
|
Bohne F, Langer D, Martiné U, Eider CS, Cencic R, Begemann M, Elbracht M, Bülow L, Eggermann T, Zechner U, Pelletier J, Zabel BU, Enklaar T, Prawitt D. Kaiso mediates human ICR1 methylation maintenance and H19 transcriptional fine regulation. Clin Epigenetics 2016; 8:47. [PMID: 27152123 PMCID: PMC4857248 DOI: 10.1186/s13148-016-0215-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/26/2016] [Indexed: 11/21/2022] Open
Abstract
Background Genomic imprinting evolved in a common ancestor to marsupials and eutherian mammals and ensured the transcription of developmentally important genes from defined parental alleles. The regulation of imprinted genes is often mediated by differentially methylated imprinting control regions (ICRs) that are bound by different proteins in an allele-specific manner, thus forming unique chromatin loops regulating enhancer-promoter interactions. Factors that maintain the allele-specific methylation therefore are essential for the proper transcriptional regulation of imprinted genes. Binding of CCCTC-binding factor (CTCF) to the IGF2/H19-ICR1 is thought to be the key regulator of maternal ICR1 function. Disturbances of the allele-specific CTCF binding are causative for imprinting disorders like the Silver-Russell syndrome (SRS) or the Beckwith-Wiedemann syndrome (BWS), the latter one being associated with a dramatically increased risk to develop nephroblastomas. Methods Kaiso binding to the human ICR1 was detected and analyzed by chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSA). The role of Kaiso-ICR1 binding on DNA methylation was tested by lentiviral Kaiso knockdown and CRISPR/Cas9 mediated editing of a Kaiso binding site. Results We find that another protein, Kaiso (ZBTB33), characterized as binding to methylated CpG repeats as well as to unmethylated consensus sequences, specifically binds to the human ICR1 and its unmethylated Kaiso binding site (KBS) within the ICR1. Depletion of Kaiso transcription as well as deletion of the ICR1-KBS by CRISPR/Cas9 genome editing results in reduced methylation of the paternal ICR1. Additionally, Kaiso affects transcription of the lncRNA H19 and specifies a role for ICR1 in the transcriptional regulation of this imprinted gene. Conclusions Kaiso binding to unmethylated KBS in the human ICR1 is necessary for ICR1 methylation maintenance and affects transcription rates of the lncRNA H19. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0215-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Bohne
- Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany
| | - David Langer
- Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Ursula Martiné
- Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Claudia S Eider
- Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Regina Cencic
- Department of Biochemistry and the Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6 Canada
| | - Matthias Begemann
- Institute of Human Genetics, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Luzie Bülow
- Institute of Human Genetics, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Jerry Pelletier
- Department of Biochemistry and the Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6 Canada
| | - Bernhard Ulrich Zabel
- Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Mathildenstr. 1, 79106 Freiburg, Germany
| | - Thorsten Enklaar
- Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Dirk Prawitt
- Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany.,Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Obere Zahlbacher Str. 63, 55131 Mainz, Germany
| |
Collapse
|
13
|
Influence of a CTCF-Dependent Insulator on Multiple Aspects of Enhancer-Mediated Chromatin Organization. Mol Cell Biol 2015; 35:3504-16. [PMID: 26240285 DOI: 10.1128/mcb.00514-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/24/2015] [Indexed: 01/07/2023] Open
Abstract
Developmental stage-specific enhancer-promoter-insulator interactions regulate the chromatin configuration necessary for transcription at various loci and additionally for VDJ recombination at antigen receptor loci that encode immunoglobulins and T-cell receptors. To investigate these regulatory interactions, we analyzed the epigenetic landscape of the murine T-cell receptor β (TCRβ) locus in the presence and absence of an ectopic CTCF-dependent enhancer-blocking insulator, H19-ICR, in genetically manipulated mice. Our analysis demonstrated the ability of the H19-ICR insulator to restrict several aspects of enhancer-based chromatin alterations that are observed during activation of the TCRβ locus for transcription and recombination. The H19-ICR insulator abrogated enhancer-promoter contact-dependent chromatin alterations and additionally prevented Eβ-mediated histone modifications that have been suggested to be independent of enhancer-promoter interaction. Observed enhancer-promoter-insulator interactions, in conjunction with the chromatin structure of the Eβ-regulated domain at the nucleosomal level, provide useful insights regarding the activity of the regulatory elements in addition to supporting the accessibility hypothesis of VDJ recombination. Analysis of H19-ICR in the heterologous context of the developmentally regulated TCRβ locus suggests that different mechanisms proposed for CTCF-dependent insulator action might be manifested simultaneously or selectively depending on the genomic context and the nature of enhancer activity being curtailed.
Collapse
|
14
|
Lesne A, Foray N, Cathala G, Forné T, Wong H, Victor JM. Chromatin fiber allostery and the epigenetic code. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064114. [PMID: 25563208 DOI: 10.1088/0953-8984/27/6/064114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The notion of allostery introduced for proteins about fifty years ago has been extended since then to DNA allostery, where a locally triggered DNA structural transition remotely controls other DNA-binding events. We further extend this notion and propose that chromatin fiber allosteric transitions, induced by histone-tail covalent modifications, may play a key role in transcriptional regulation. We present an integrated scenario articulating allosteric mechanisms at different scales: allosteric transitions of the condensed chromatin fiber induced by histone-tail acetylation modify the mechanical constraints experienced by the embedded DNA, thus possibly controlling DNA-binding of allosteric transcription factors or further allosteric mechanisms at the linker DNA level. At a higher scale, different epigenetic constraints delineate different statistically dominant subsets of accessible chromatin fiber conformations, which each favors the assembly of dedicated regulatory complexes, as detailed on the emblematic example of the mouse Igf2-H19 gene locus and its parental imprinting. This physical view offers a mechanistic and spatially structured explanation of the observed correlation between transcriptional activity and histone modifications. The evolutionary origin of allosteric control supports to speak of an 'epigenetic code', by which events involved in transcriptional regulation are encoded in histone modifications in a context-dependent way.
Collapse
Affiliation(s)
- Annick Lesne
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, UPMC Université Paris 06, Sorbonne Universités, F-75005, Paris, France. Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Université de Montpellier, F-34293, Montpellier, France. CNRS GDR 3536, UPMC Université Paris 06, F-75005, Paris, France
| | | | | | | | | | | |
Collapse
|
15
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Li MJ, Yan B, Sham PC, Wang J. Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression. Brief Bioinform 2014; 16:393-412. [PMID: 24916300 DOI: 10.1093/bib/bbu018] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/23/2014] [Indexed: 12/13/2022] Open
Abstract
Understanding the genetic basis of human traits/diseases and the underlying mechanisms of how these traits/diseases are affected by genetic variations is critical for public health. Current genome-wide functional genomics data uncovered a large number of functional elements in the noncoding regions of human genome, providing new opportunities to study regulatory variants (RVs). RVs play important roles in transcription factor bindings, chromatin states and epigenetic modifications. Here, we systematically review an array of methods currently used to map RVs as well as the computational approaches in annotating and interpreting their regulatory effects, with emphasis on regulatory single-nucleotide polymorphism. We also briefly introduce experimental methods to validate these functional RVs.
Collapse
|
17
|
Plasschaert RN, Vigneau S, Tempera I, Gupta R, Maksimoska J, Everett L, Davuluri R, Mamorstein R, Lieberman PM, Schultz D, Hannenhalli S, Bartolomei MS. CTCF binding site sequence differences are associated with unique regulatory and functional trends during embryonic stem cell differentiation. Nucleic Acids Res 2013; 42:774-89. [PMID: 24121688 PMCID: PMC3902912 DOI: 10.1093/nar/gkt910] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CTCF (CCCTC-binding factor) is a highly conserved multifunctional DNA-binding protein with thousands of binding sites genome-wide. Our previous work suggested that differences in CTCF’s binding site sequence may affect the regulation of CTCF recruitment and its function. To investigate this possibility, we characterized changes in genome-wide CTCF binding and gene expression during differentiation of mouse embryonic stem cells. After separating CTCF sites into three classes (LowOc, MedOc and HighOc) based on similarity to the consensus motif, we found that developmentally regulated CTCF binding occurs preferentially at LowOc sites, which have lower similarity to the consensus. By measuring the affinity of CTCF for selected sites, we show that sites lost during differentiation are enriched in motifs associated with weaker CTCF binding in vitro. Specifically, enrichment for T at the 18th position of the CTCF binding site is associated with regulated binding in the LowOc class and can predictably reduce CTCF affinity for binding sites. Finally, by comparing changes in CTCF binding with changes in gene expression during differentiation, we show that LowOc and HighOc sites are associated with distinct regulatory functions. Our results suggest that the regulatory control of CTCF is dependent in part on specific motifs within its binding site.
Collapse
Affiliation(s)
- Robert N Plasschaert
- Department of Cell & Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA, Program of Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA 19104, USA, Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zimmerman DL, Boddy CS, Schoenherr CS. Aberrant methylation of the H19 imprinting control region may increase the risk of spontaneous abortion. Epigenomics 2013; 8:e81962. [PMID: 24324735 PMCID: PMC3855764 DOI: 10.1371/journal.pone.0081962] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/18/2013] [Indexed: 12/02/2022] Open
Abstract
A central question in genomic imprinting is how parental-specific DNA methylation of imprinting control regions (ICR) is established during gametogenesis and maintained after fertilization. At the imprinted Igf2/H19 locus, CTCF binding maintains the unmethylated state of the maternal ICR after the blastocyst stage. In addition, evidence from Beckwith-Wiedemann patients and cultured mouse cells suggests that two Sox-Oct binding motifs within the Igf2/H19 ICR also participate in maintaining hypomethylation of the maternal allele. We found that the Sox and octamer elements from both Sox-Oct motifs were required to drive hypomethylation of integrated transgenes in mouse embryonic carcinoma cells. Oct4 and Sox2 showed cooperative binding to the Sox-Oct motifs, and both were present at the endogenous ICR. Using a mouse with mutations in the Oct4 binding sites, we found that maternally transmitted mutant ICRs acquired partial methylation in somatic tissues, but there was little effect on imprinted expression of H19 and Igf2. A subset of mature oocytes also showed partial methylation of the mutant ICR, which suggested that the Sox-Oct motifs provide some protection from methylation during oogenesis. The Sox-Oct motifs, however, were not required for erasure of paternal methylation in primordial germ cells, which indicated that the oocyte methylation was acquired post-natally. Maternally inherited mutant ICRs were unmethylated in blastocysts, which suggested that at least a portion of the methylation in somatic tissues occurred after implantation. These findings provide evidence that Sox-Oct motifs contribute to ICR hypomethylation in post-implantation embryos and maturing oocytes and link imprinted DNA methylation with key stem cell/germline transcription factors.
Collapse
Affiliation(s)
- David L. Zimmerman
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Biology Department, College of the Ozarks, Point Lookout, Missouri, United States of America
- * E-mail:
| | - Craig S. Boddy
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Division of Medical Education, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Christopher S. Schoenherr
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
19
|
Li T, Chen H, Li W, Cui J, Wang G, Hu X, Hoffman AR, Hu J. Promoter histone H3K27 methylation in the control of IGF2 imprinting in human tumor cell lines. Hum Mol Genet 2013; 23:117-28. [PMID: 23962719 DOI: 10.1093/hmg/ddt405] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aberrant imprinting of the insulin-like growth factor II (IGF2) gene is a molecular hallmark of many tumors. Reactivation of the normally suppressed maternal allele leads to upregulation of the growth factor that promotes tumor growth. However, the mechanisms underlying the loss of imprinting (LOI) remain poorly defined. We examined the epigenotypes at the gene promoters that control IGF2 allelic expression. Using chromatin immunoprecipitation, we found that in cells characterized by maintenance of IGF2 imprinting, three IGF2 promoters were differentially modified, with the suppressed allele heavily methylated at histone H3K27 while the active allele was unmethylated. In the LOI tumors, however, both alleles were unmethylated, and correspondingly there was no binding of SUZ12, the docking factor of the polycomb repressive complex 2 (PRC2), and of the zinc finger-containing transcription factor (CTCF) that recruits the PRC2. Using chromatin conformation capture, we found that the CTCF-orchestrated intrachromosomal loop between the IGF2 promoters and the imprinting control region was abrogated in cells with LOI. SUZ12, which docks the PRC2 to IGF2 promoters for H3K27 methylation, was downregulated in LOI cells. These data reveal a new epigenetic control pathway related to the loss of IGF2 imprinting in tumors.
Collapse
Affiliation(s)
- Tao Li
- Shenzhen Beike Cell Engineering Research Institute, Shenzhen, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Negrón-Pérez VM, Echevarría FD, Huffman SR, Rivera RM. Determination of Allelic Expression of H19 in Pre- and Peri-Implantation Mouse Embryos1. Biol Reprod 2013; 88:97. [DOI: 10.1095/biolreprod.112.105882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Faure AJ, Schmidt D, Watt S, Schwalie PC, Wilson MD, Xu H, Ramsay RG, Odom DT, Flicek P. Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules. Genome Res 2012; 22:2163-75. [PMID: 22780989 PMCID: PMC3483546 DOI: 10.1101/gr.136507.111] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 07/09/2012] [Indexed: 12/16/2022]
Abstract
The cohesin protein complex contributes to transcriptional regulation in a CTCF-independent manner by colocalizing with master regulators at tissue-specific loci. The regulation of transcription involves the concerted action of multiple transcription factors (TFs) and cohesin's role in this context of combinatorial TF binding remains unexplored. To investigate cohesin-non-CTCF (CNC) binding events in vivo we mapped cohesin and CTCF, as well as a collection of tissue-specific and ubiquitous transcriptional regulators using ChIP-seq in primary mouse liver. We observe a positive correlation between the number of distinct TFs bound and the presence of CNC sites. In contrast to regions of the genome where cohesin and CTCF colocalize, CNC sites coincide with the binding of master regulators and enhancer-markers and are significantly associated with liver-specific expressed genes. We also show that cohesin presence partially explains the commonly observed discrepancy between TF motif score and ChIP signal. Evidence from these statistical analyses in wild-type cells, and comparisons to maps of TF binding in Rad21-cohesin haploinsufficient mouse liver, suggests that cohesin helps to stabilize large protein-DNA complexes. Finally, we observe that the presence of mirrored CTCF binding events at promoters and their nearby cohesin-bound enhancers is associated with elevated expression levels.
Collapse
Affiliation(s)
- Andre J. Faure
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Dominic Schmidt
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
- Department of Oncology, Hutchison/MRC Research Centre, Cambridge CB1 9RN, United Kingdom
| | - Stephen Watt
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
- Department of Oncology, Hutchison/MRC Research Centre, Cambridge CB1 9RN, United Kingdom
| | - Petra C. Schwalie
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Michael D. Wilson
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
- Department of Oncology, Hutchison/MRC Research Centre, Cambridge CB1 9RN, United Kingdom
| | - Huiling Xu
- Differentiation and Transcription Laboratory, Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology and Department of Pathology, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Robert G. Ramsay
- Differentiation and Transcription Laboratory, Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology and Department of Pathology, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Duncan T. Odom
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
- Department of Oncology, Hutchison/MRC Research Centre, Cambridge CB1 9RN, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Paul Flicek
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
22
|
Wöhrmann HJP, Gagliardini V, Raissig MT, Wehrle W, Arand J, Schmidt A, Tierling S, Page DR, Schöb H, Walter J, Grossniklaus U. Identification of a DNA methylation-independent imprinting control region at the Arabidopsis MEDEA locus. Genes Dev 2012; 26:1837-50. [PMID: 22855791 DOI: 10.1101/gad.195123.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genomic imprinting is exclusive to mammals and seed plants and refers to parent-of-origin-dependent, differential transcription. As previously shown in mammals, studies in Arabidopsis have implicated DNA methylation as an important hallmark of imprinting. The current model suggests that maternally expressed imprinted genes, such as MEDEA (MEA), are activated by the DNA glycosylase DEMETER (DME), which removes DNA methylation established by the DNA methyltransferase MET1. We report the systematic functional dissection of the MEA cis-regulatory region, resulting in the identification of a 200-bp fragment that is necessary and sufficient to mediate MEA activation and imprinted expression, thus containing the imprinting control region (ICR). Notably, imprinted MEA expression mediated by this ICR is independent of DME and MET1, consistent with the lack of any significant DNA methylation in this region. This is the first example of an ICR without differential DNA methylation, suggesting that factors other than DME and MET1 are required for imprinting at the MEA locus.
Collapse
Affiliation(s)
- Heike J P Wöhrmann
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shrimali S, Srivastava S, Varma G, Grinberg A, Pfeifer K, Srivastava M. An ectopic CTCF-dependent transcriptional insulator influences the choice of Vβ gene segments for VDJ recombination at TCRβ locus. Nucleic Acids Res 2012; 40:7753-65. [PMID: 22718969 PMCID: PMC3439925 DOI: 10.1093/nar/gks556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Insulators regulate transcription as they modulate the interactions between enhancers and promoters by organizing the chromatin into distinct domains. To gain better understanding of the nature of chromatin domains defined by insulators, we analyzed the ability of an insulator to interfere in VDJ recombination, a process that is critically dependent on long-range interactions between diverse types of cis-acting DNA elements. A well-established CTCF-dependent transcriptional insulator, H19 imprint control region (H19-ICR), was inserted in the mouse TCRβ locus by genetic manipulation. Analysis of the mutant mice demonstrated that the insulator retains its CTCF and position-dependent enhancer-blocking potential in this heterologous context in vivo. Remarkably, the inserted H19-ICR appears to have the ability to modulate cis-DNA interactions between recombination signal sequence elements of the TCRβ locus leading to a dramatically altered usage of Vβ segments for Vβ-to-DβJβ recombination in the mutant mice. This reveals a novel ability of CTCF to govern long range cis-DNA interactions other than enhancer-promoter interactions and suggests that CTCF-dependent insulators may play a diverse and complex role in genome organization beyond transcriptional control. Our functional analysis of mutated TCRβ locus supports the emerging role of CTCF in governing VDJ recombination.
Collapse
Affiliation(s)
- Sweety Shrimali
- National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
24
|
Korostowski L, Raval A, Breuer G, Engel N. Enhancer-driven chromatin interactions during development promote escape from silencing by a long non-coding RNA. Epigenetics Chromatin 2011; 4:21. [PMID: 22085535 PMCID: PMC3228667 DOI: 10.1186/1756-8935-4-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/15/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene regulation in eukaryotes is a complex process entailing the establishment of transcriptionally silent chromatin domains interspersed with regions of active transcription. Imprinted domains consist of clusters of genes, some of which exhibit parent-of-origin dependent monoallelic expression, while others are biallelic. The Kcnq1 imprinted domain illustrates the complexities of long-range regulation that coexists with local exceptions. A paternally expressed repressive non-coding RNA, Kcnq1ot1, regulates a domain of up to 750 kb, encompassing 14 genes. We study how the Kcnq1 gene, initially silenced by Kcnq1ot1, undergoes tissue-specific escape from imprinting during development. Specifically, we uncover the role of chromosome conformation during these events. RESULTS We show that Kcnq1 transitions from monoallelic to biallelic expression during mid gestation in the developing heart. This transition is not associated with the loss of methylation on the Kcnq1 promoter. However, by exploiting chromosome conformation capture (3C) technology, we find tissue-specific and stage-specific chromatin loops between the Kcnq1 promoter and newly identified DNA regulatory elements. These regulatory elements showed in vitro activity in a luciferase assay and in vivo activity in transgenic embryos. CONCLUSIONS By exploring the spatial organization of the Kcnq1 locus, our results reveal a novel mechanism by which local activation of genes can override the regional silencing effects of non-coding RNAs.
Collapse
Affiliation(s)
- Lisa Korostowski
- Fels Institute for Cancer Research & Molecular Biology & Department of Biochemistry, Pharmacy Building, Room 201, Temple University School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
25
|
Murrell A. Setting up and maintaining differential insulators and boundaries for genomic imprinting. Biochem Cell Biol 2011; 89:469-78. [PMID: 21936680 DOI: 10.1139/o11-043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is becoming increasingly clear that gene expression is strongly regulated by the surrounding chromatin and nuclear environment. Gene regulatory elements can influence expression over long distances and the genome needs mechanisms whereby transcription can be contained. Our current understanding of the mechanisms whereby insulator/boundary elements organise the genome into active and silent domains is based on chromatin looping models that separate genes and regulatory elements. Imprinted genes have parent-of-origin specific chromatin conformation that seems to be maintained in somatic tissues and reprogrammed in the germline. This review focuses on the proteins found to be present at insulator/boundary sequences at imprinted genes and examines the experimental evidence at the IGF2-H19 locus for a model in which CTCF or other proteins determine primary looping scaffolds that are maintained in most cell lineages and speculates how these loops may enable dynamic secondary associations that can activate or silence genes.
Collapse
|
26
|
Bartolomei MS, Ferguson-Smith AC. Mammalian genomic imprinting. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a002592. [PMID: 21576252 DOI: 10.1101/cshperspect.a002592] [Citation(s) in RCA: 371] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Normal mammalian development requires a maternal and paternal contribution, which is attributed to imprinted genes, or genes that are expressed from a single parental allele. Approximately 100 imprinted genes have been reported in mammals thus far. Imprinted genes are controlled by cis-acting regulatory elements, termed imprinting control regions (ICRs), which have parental-specific epigenetic modifications, including DNA methylation. ICRs are methylated by de novo DNA methyltransferases during germline development; these parental-specific modifications must be maintained following fertilization when the genome is extensively reprogrammed. Many imprinted genes reside in ∼1-megabase clusters, with two major mechanisms of imprinting regulation currently recognized, CTCF-dependent insulators and long noncoding RNAs. Unclustered imprinted genes are generally regulated by germline-derived differential promoter methylation. Here, we describe the identification and functions of imprinted genes, cis-acting control sequences, trans-acting factors, and imprinting mechanisms in clusters. Finally, we define questions that require more extensive research.
Collapse
Affiliation(s)
- Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19063, USA.
| | | |
Collapse
|
27
|
Court F, Baniol M, Hagege H, Petit JS, Lelay-Taha MN, Carbonell F, Weber M, Cathala G, Forne T. Long-range chromatin interactions at the mouse Igf2/H19 locus reveal a novel paternally expressed long non-coding RNA. Nucleic Acids Res 2011; 39:5893-906. [PMID: 21478171 PMCID: PMC3152352 DOI: 10.1093/nar/gkr209] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Parental genomic imprinting at the Igf2/H19 locus is controlled by a methylation-sensitive CTCF insulator that prevents the access of downstream enhancers to the Igf2 gene on the maternal chromosome. However, on the paternal chromosome, it remains unclear whether long-range interactions with the enhancers are restricted to the Igf2 promoters or whether they encompass the entire gene body. Here, using the quantitative chromosome conformation capture assay, we show that, in the mouse liver, the endodermal enhancers have low contact frequencies with the Igf2 promoters but display, on the paternal chromosome, strong interactions with the intragenic differentially methylated regions 1 and 2. Interestingly, we found that enhancers also interact with a so-far poorly characterized intergenic region of the locus that produces a novel imprinted long non-coding transcript that we named the paternally expressed Igf2/H19 intergenic transcript (PIHit) RNA. PIHit is expressed exclusively from the paternal chromosome, contains a novel discrete differentially methylated region in a highly conserved sequence and, surprisingly, does not require an intact ICR/H19 gene region for its imprinting. Altogether, our data reveal a novel imprinted domain in the Igf2/H19 locus and lead us to propose a model for chromatin folding of this locus on the paternal chromosome.
Collapse
Affiliation(s)
- Franck Court
- Institut de Génétique Moléculaire de Montpellier, UMR5535 CNRS Universités Montpellier I et Montpellier II, 1919 Route de Mende, 34293 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nativio R, Sparago A, Ito Y, Weksberg R, Riccio A, Murrell A. Disruption of genomic neighbourhood at the imprinted IGF2-H19 locus in Beckwith-Wiedemann syndrome and Silver-Russell syndrome. Hum Mol Genet 2011; 20:1363-74. [PMID: 21282187 PMCID: PMC3049359 DOI: 10.1093/hmg/ddr018] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/12/2011] [Indexed: 12/19/2022] Open
Abstract
Hyper- and hypomethylation at the IGF2-H19 imprinting control region (ICR) result in reciprocal changes in IGF2-H19 expression and the two contrasting growth disorders, Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). DNA methylation of the ICR controls the reciprocal imprinting of IGF2 and H19 by preventing the binding of the insulator protein, CTCF. We here show that local changes in histone modifications and CTCF--cohesin binding at the ICR in BWS and SRS together with DNA methylation correlate with the higher order chromatin structure at the locus. In lymphoblastoid cells from control individuals, we found the repressive histone H3K9me3 and H4K20me3 marks associated with the methylated paternal ICR allele and the bivalent H3K4me2/H3K27me3 mark together with H3K9ac and CTCF--cohesin associated with the non-methylated maternal allele. In patient-derived cell lines, the mat/pat asymmetric distribution of these epigenetic marks was lost with H3K9me3 and H4K20me3 becoming biallelic in the BWS and H3K4me2, H3K27me3 and H3K9ac together with CTCF-cohesin becoming biallelic in the SRS. We further show that in BWS and SRS cells, there is opposing chromatin looping conformation mediated by CTCF--cohesin binding sites surrounding the locus. In normal cells, lack of CTCF--cohesin binding at the paternal ICR is associated with monoallelic interaction between two CTCF sites flanking the locus. CTCF--cohesin binding at the maternal ICR blocks this interaction by associating with the CTCF site downstream of the enhancers. The two alternative chromatin conformations are differently favoured in BWS and SRS likely predisposing the locus to the activation of IGF2 or H19, respectively.
Collapse
Affiliation(s)
- Raffaella Nativio
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, LiKaShing Centre, Cambridge, UK
| | - Angela Sparago
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Yoko Ito
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, LiKaShing Centre, Cambridge, UK
| | - Rosanna Weksberg
- Program in Genetic and Genomic Biology and
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada and
| | - Andrea Riccio
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
- Department of Environmental Science, University of Naples 2, Caserta, Italy
| | - Adele Murrell
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, LiKaShing Centre, Cambridge, UK
| |
Collapse
|
29
|
Abstract
Boundary elements or insulators subdivide eukaryotic chromosomes into a series of structurally and functionally autonomous domains. They ensure that the action of enhancers and silencers is restricted to the domain in which these regulatory elements reside. Three models, the roadblock, sink/decoy, and topological loop, have been proposed to explain the insulating activity of boundary elements. Strong predictions about how boundaries will function in different experimental contexts can be drawn from these models. In the studies reported here, we have designed assays that test these predictions. The results of our assays are inconsistent with the expectations of the roadblock and sink models. Instead, they support the topological loop model.
Collapse
|
30
|
MacPherson MJ, Sadowski PD. The CTCF insulator protein forms an unusual DNA structure. BMC Mol Biol 2010; 11:101. [PMID: 21176138 PMCID: PMC3014928 DOI: 10.1186/1471-2199-11-101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022] Open
Abstract
Background The CTCF insulator protein is a highly conserved zinc finger protein that has been implicated in many aspects of gene regulation and nuclear organization. The protein has been hypothesized to organize the human genome by forming DNA loops. Results In this paper, we report biochemical evidence to support the role for CTCF in forming DNA loops. We have measured DNA bending by CTCF at the chicken HS4 β-globin FII insulator element in vitro and have observed a unique DNA structure with aberrant electrophoretic mobility which we believe to be a DNA loop. CTCF is able to form this unusual DNA structure at two other binding sites: the c-myc P2 promoter and the chicken F1 lysozyme gene silencer. We also demonstrate that the length though not the sequence of the DNA downstream of the binding site is important for the ability of CTCF to form this unusual DNA structure. We hypothesize that a single CTCF protein molecule is able to act as a "looper" possibly through the use of several of its zinc fingers. Conclusions CTCF is able to form an unusual DNA structure through the zinc finger domain of the protein. This unusual DNA structure is formed in a directional manner by the CTCF protein. The findings described in this paper suggest mechanisms by which CTCF is able to form DNA loops, organize the mammalian genome and function as an insulator protein.
Collapse
Affiliation(s)
- Melissa J MacPherson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
31
|
Yao H, Brick K, Evrard Y, Xiao T, Camerini-Otero RD, Felsenfeld G. Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA. Genes Dev 2010; 24:2543-55. [PMID: 20966046 PMCID: PMC2975930 DOI: 10.1101/gad.1967810] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 09/20/2010] [Indexed: 12/25/2022]
Abstract
CCCTC-binding factor (CTCF) is a DNA-binding protein that plays important roles in chromatin organization, although the mechanism by which CTCF carries out these functions is not fully understood. Recent studies show that CTCF recruits the cohesin complex to insulator sites and that cohesin is required for insulator activity. Here we showed that the DEAD-box RNA helicase p68 (DDX5) and its associated noncoding RNA, steroid receptor RNA activator (SRA), form a complex with CTCF that is essential for insulator function. p68 was detected at CTCF sites in the IGF2/H19 imprinted control region (ICR) as well as other genomic CTCF sites. In vivo depletion of SRA or p68 reduced CTCF-mediated insulator activity at the IGF2/H19 ICR, increased levels of IGF2 expression, and increased interactions between the endodermal enhancer and IGF2 promoter. p68/SRA also interacts with members of the cohesin complex. Depletion of either p68 or SRA does not affect CTCF binding to its genomic sites, but does reduce cohesin binding. The results suggest that p68/SRA stabilizes the interaction of cohesin with CTCF by binding to both, and is required for proper insulator function.
Collapse
Affiliation(s)
- Hongjie Yao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Heath, Bethesda, Maryland 20892, USA
| | - Kevin Brick
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Heath, Bethesda, Maryland 20892, USA
| | - Yvonne Evrard
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Heath, Bethesda, Maryland 20892, USA
| | - Tiaojiang Xiao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Heath, Bethesda, Maryland 20892, USA
| | - R. Daniel Camerini-Otero
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Heath, Bethesda, Maryland 20892, USA
| | - Gary Felsenfeld
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Heath, Bethesda, Maryland 20892, USA
| |
Collapse
|
32
|
Abstract
Trinucleotide expansion underlies several human diseases. Expansion occurs during multiple stages of human development in different cell types, and is sensitive to the gender of the parent who transmits the repeats. Repair and replication models for expansions have been described, but we do not know whether the pathway involved is the same under all conditions and for all repeat tract lengths, which differ among diseases. Currently, researchers rely on bacteria, yeast and mice to study expansion, but these models differ substantially from humans. We need now to connect the dots among human genetics, pathway biochemistry and the appropriate model systems to understand the mechanism of expansion as it occurs in human disease.
Collapse
|
33
|
Pan Y, He B, Li T, Zhu C, Zhang L, Wang B, Xu Y, Qu L, Hoffman AR, Wang S, Hu J. Targeted tumor gene therapy based on loss of IGF2 imprinting. Cancer Biol Ther 2010; 10:290-8. [PMID: 20592487 DOI: 10.4161/cbt.10.3.12442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Loss of imprinting (LOI) of the insulin-like growth factor 2 gene (IGF2) is one of the most common epigenetic abnormalities seen in human neoplasms. LOI may be associated with the lack of Zinc-finger DNA binding protein CTCF-mediated enhancer insulation, presumably due to the gain of methylation on the maternal allele of the differentially methylated domain (DMD) of the imprinting control region. This results in an interaction between the IGF2 promoters and enhancers; and IGF2 is produced from both alleles. In this study we investigated the feasibility of a novel anti-cancer adenovirus (AdDC312-DT-A) driven by H19 enhancer DMD-H19 promoter complex. Cell lines with IGF2 LOI (HCT-8, HT-29 and H-522) that were infected with AdDC312-EGFP produced the EGFP protein. However, in cells in which imprinting was maintained (MOI) (MCF-7 and GES-1), no EGFP protein was produced. The AdDC312-DT-A significantly decreased cell viability and induced apoptosis only in LOI cells in vitro, and suppressed tumour development in HCT-8 xenografts in nude mice. In conclusion, the toxin gene therapy proves effective in inhibiting LOI cell growth in vitro and in vivo and provides a novel option for targeted gene therapy based on loss of IGF2 imprinting.
Collapse
Affiliation(s)
- Yuqin Pan
- Central Laboratory of Nanjing First Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Prazak L, Fujioka M, Gergen JP. Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors. Dev Biol 2010; 344:1048-59. [PMID: 20435028 DOI: 10.1016/j.ydbio.2010.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/08/2010] [Accepted: 04/23/2010] [Indexed: 11/18/2022]
Abstract
The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair-rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from -3.1kb to -2.5kb and from -8.1kb to -7.1kb upstream of the slp1 promoter, respectively, that mediate this early regulation. The proximal element expresses only even-numbered stripes and mediates repression by Even-skipped (Eve) as well as by the combination of Runt and Fushi-tarazu (Ftz). A 272 basepair sub-element of PESE retains an Eve-dependent repression, but is expressed throughout the even-numbered parasegments due to the loss of repression by Runt and Ftz. In contrast, the distal element expresses both odd and even-numbered stripes and also drives inappropriate expression in the anterior half of the odd-numbered parasegments due to an inability to respond to repression by Eve. Importantly, a composite reporter gene containing both early stripe elements recapitulates pair-rule gene-dependent regulation in a manner beyond what is expected from combining their individual patterns. These results indicate that interactions involving distinct cis-elements contribute to the proper integration of pair-rule regulatory information. A model fully accounting for these results proposes that metameric slp1 expression is achieved through the Runt-dependent regulation of interactions between these two pair-rule response elements and the slp1 promoter.
Collapse
Affiliation(s)
- Lisa Prazak
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | |
Collapse
|
35
|
Embryo vitrification affects the methylation of the H19/Igf2 differentially methylated domain and the expression of H19 and Igf2. Fertil Steril 2010; 93:2729-33. [DOI: 10.1016/j.fertnstert.2010.03.025] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 03/05/2010] [Accepted: 03/08/2010] [Indexed: 12/28/2022]
|
36
|
Papantonis A, Cook PR. Genome architecture and the role of transcription. Curr Opin Cell Biol 2010; 22:271-6. [PMID: 20356724 PMCID: PMC2884177 DOI: 10.1016/j.ceb.2010.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/15/2010] [Accepted: 03/03/2010] [Indexed: 02/03/2023]
Abstract
During development or in response to environmental stimuli, eukaryotic genes change both their expression and position in 3D nuclear space. Then, is a gene transcribed because of its position, or is position determined by transcription? Are genes stochastically or deterministically engaged in transcription cycles? Recent results confirm that RNA polymerases and their transcription factors play central roles in genome organization, and that stochastic events can give rise to apparently deterministic expression. As is so often the case in biology, structure both determines function and is influenced by it.
Collapse
Affiliation(s)
- Argyris Papantonis
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
37
|
Boissonnas CC, Abdalaoui HE, Haelewyn V, Fauque P, Dupont JM, Gut I, Vaiman D, Jouannet P, Tost J, Jammes H. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet 2010; 18:73-80. [PMID: 19584898 DOI: 10.1038/ejhg.2009.117] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
DNA methylation marks, a key modification of imprinting, are erased in primordial germ cells and sex specifically re-established during gametogenesis. Abnormal epigenetic programming has been proposed as a possible mechanism compromising male fertility. We analysed by pyrosequencing the DNA methylation status of 47 CpGs located in differentially methylated regions (DMRs), the DMR0 and DMR2 of the IGF2 gene and in the 3rd and 6th CTCF-binding sites of the H19 DMR in human sperm from men with normal semen and patients with teratozoospermia (T) and/or oligo-astheno-teratozoospermia (OAT). All normal semen samples presented the expected high global methylation level for all CpGs analysed. In the teratozoospermia group, 11 of 19 patients presented a loss of methylation at variable CpG positions either in the IGF2 DMR2 or in both the IGF2 DMR2 and the 6th CTCF of the H19 DMR. In the OAT group, 16 of 22 patients presented a severe loss of methylation of the 6th CTCF, closely correlated with sperm concentration. The methylation state of DMR0 and of the 3rd CTCF was never affected by the pathological status of sperm samples. This study demonstrates that epigenetic perturbations of the 6th CTCF site of the H19 DMR might be a relevant biomarker for quantitative defects of spermatogenesis in humans. Moreover, we defined a methylation threshold sustaining the classification of patients in two groups, unmethylated and methylated. Using this new classification of patients, the observed intrinsic imprinting defects of spermatozoa appear not to impair significantly the outcome of assisted reproductive technologies.
Collapse
Affiliation(s)
- Céline Chalas Boissonnas
- Biology of Reproduction-CECOS, Cochin-Saint Vincent de Paul Hospital, AP-HP, Department of Genetics and Development, Cochin Institute, University Paris-Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The multifunctional zinc-finger protein CCCTC-binding factor (CTCF) is a very strong candidate for the role of coordinating the expression level of coding sequences with their three-dimensional position in the nucleus, apparently responding to a "code" in the DNA itself. Dynamic interactions between chromatin fibers in the context of nuclear architecture have been implicated in various aspects of genome functions. However, the molecular basis of these interactions still remains elusive and is a subject of intense debate. Here we discuss the nature of CTCF-DNA interactions, the CTCF-binding specificity to its binding sites and the relationship between CTCF and chromatin, and we examine data linking CTCF with gene regulation in the three-dimensional nuclear space. We discuss why these features render CTCF a very strong candidate for the role and propose a unifying model, the "CTCF code," explaining the mechanistic basis of how the information encrypted in DNA may be interpreted by CTCF into diverse nuclear functions.
Collapse
Affiliation(s)
- Rolf Ohlsson
- Department of Microbiology, Tumor and Cell Biology, Nobels väg 16, Box 280, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Victor Lobanenkov
- Molecular Pathology Section, Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (LIP/NIAID/NIH), Twinbrook Building, Room 1329, MSC-8152, 5640 Fisher Lane, Rockville, MD 20852, USA
| | - Elena Klenova
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
39
|
Vu TH, Nguyen AH, Hoffman AR. Loss of IGF2 imprinting is associated with abrogation of long-range intrachromosomal interactions in human cancer cells. Hum Mol Genet 2009; 19:901-19. [PMID: 20015958 DOI: 10.1093/hmg/ddp558] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nuclear architecture and chromatin geography are important factors in the regulation of gene expression, as these components may play a vital epigenetic role both in normal physiology as well as in the initiation and progression of malignancies. Using a modification of the chromosome conformation capture (3C) technique, we examined long-range chromatin interactions of the imprinted human IGF2 gene. We demonstrate that numerous intrachromosomal interactions occur along both parental alleles in normal tissues, where the IGF2 is paternally expressed, as well as in normal liver where gene expression is biallelic. Long-range and allele-specific interactions occur between the IGF2/H19 imprinting control region-1 (ICR1) and ICR2, a region which regulates an imprinted gene cluster nearly a megabase distant from IGF2. Loss of genomic imprinting is a common epigenetic event in cancer, and long-range interactions have not been examined in malignant cells. In cancer cell lines in which IGF2 imprinting is maintained (MOI), essentially all of the 3C interactions seen in normal cells were preserved. However, in cells in which IGF2 imprinting was lost (LOI), nearly all of the long-range chromatin interactions involving IGF2 were abrogated. A three-dimensional computer model depicts the physical interactions between the IGF2 promoter and ICR1 in MOI cells, while the model of LOI lung cancer cells is flattened with few long-range interactions. This dramatic change in the three-dimension configuration of the chromatin at the IGF2 locus in LOI cancer cells suggests that the loss of imprinting may lead to a variety of changes in gene expression in addition to changes in IGF2 transcription.
Collapse
Affiliation(s)
- Thanh H Vu
- VA Palo Alto Health Care System and Stanford University, Palo Alto, CA 94301, USA
| | | | | |
Collapse
|
40
|
Nativio R, Wendt KS, Ito Y, Huddleston JE, Uribe-Lewis S, Woodfine K, Krueger C, Reik W, Peters JM, Murrell A. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet 2009; 5:e1000739. [PMID: 19956766 PMCID: PMC2776306 DOI: 10.1371/journal.pgen.1000739] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 10/23/2009] [Indexed: 01/09/2023] Open
Abstract
Cohesin is a chromatin-associated protein complex that mediates sister chromatid cohesion by connecting replicated DNA molecules. Cohesin also has important roles in gene regulation, but the mechanistic basis of this function is poorly understood. In mammalian genomes, cohesin co-localizes with CCCTC binding factor (CTCF), a zinc finger protein implicated in multiple gene regulatory events. At the imprinted IGF2-H19 locus, CTCF plays an important role in organizing allele-specific higher-order chromatin conformation and functions as an enhancer blocking transcriptional insulator. Here we have used chromosome conformation capture (3C) assays and RNAi-mediated depletion of cohesin to address whether cohesin affects higher order chromatin conformation at the IGF2-H19 locus in human cells. Our data show that cohesin has a critical role in maintaining CTCF-mediated chromatin conformation at the locus and that disruption of this conformation coincides with changes in IGF2 expression. We show that the cohesin-dependent, higher-order chromatin conformation of the locus exists in both G1 and G2 phases of the cell cycle and is therefore independent of cohesin's function in sister chromatid cohesion. We propose that cohesin can mediate interactions between DNA molecules in cis to insulate genes through the formation of chromatin loops, analogous to the cohesin mediated interaction with sister chromatids in trans to establish cohesion.
Collapse
Affiliation(s)
- Raffaella Nativio
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
| | | | - Yoko Ito
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
| | - Joanna E. Huddleston
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
| | - Santiago Uribe-Lewis
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
| | - Kathryn Woodfine
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
| | - Christel Krueger
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
| | - Wolf Reik
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Adele Murrell
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
| |
Collapse
|
41
|
Abstract
Genomic imprinting refers to an epigenetic mark that distinguishes parental alleles and results in a monoallelic, parental-specific expression pattern in mammals. Few phenomena in nature depend more on epigenetic mechanisms while at the same time evading them. The alleles of imprinted genes are marked epigenetically at discrete elements termed imprinting control regions (ICRs) with their parental origin in gametes through the use of DNA methylation, at the very least. Imprinted gene expression is subsequently maintained using noncoding RNAs, histone modifications, insulators, and higher-order chromatin structure. Avoidance is manifest when imprinted genes evade the genome-wide reprogramming that occurs after fertilization and remain marked with their parental origin. This review summarizes what is known about the establishment and maintenance of imprinting marks and discusses the mechanisms of imprinting in clusters. Additionally, the evolution of imprinted gene clusters is described. While considerable information regarding epigenetic control of imprinting has been obtained recently, much remains to be learned.
Collapse
Affiliation(s)
- Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
42
|
Wendt KS, Peters JM. How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res 2009; 17:201-14. [PMID: 19308701 DOI: 10.1007/s10577-008-9017-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/20/2008] [Accepted: 10/22/2008] [Indexed: 11/30/2022]
Abstract
Cohesin is a DNA-binding protein complex that is essential for sister chromatid cohesion and facilitates the repair of damaged DNA. In addition, cohesin has important roles in regulating gene expression, but the molecular mechanisms of this function are poorly understood. Recent experiments have revealed that cohesin binds to the same sites in mammalian genomes as the zinc finger transcription factor CTCF. At a few loci CTCF has been shown to function as an enhancer-blocking transcriptional insulator, and recent observations indicate that this function depends on cohesin. Here we review what is known about the roles of cohesin and CTCF in regulating gene expression in mammalian cells, and we discuss how cohesin might mediate the insulator function of CTCF.
Collapse
Affiliation(s)
- Kerstin S Wendt
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | |
Collapse
|
43
|
Abou El Hassan M, Bremner R. A rapid simple approach to quantify chromosome conformation capture. Nucleic Acids Res 2009; 37:e35. [PMID: 19181703 PMCID: PMC2655679 DOI: 10.1093/nar/gkp028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chromosome conformation capture (3C) is a powerful tool to study DNA looping. The procedure generates chimeric DNA templates after ligation of restriction enzyme fragments juxtaposed in vivo by looping. These unique ligation products (ULPs) are typically quantified by gel-based methods, which are practically inefficient. Taqman probes may be used, but are expensive. Cycle threshold (Ct) determined using SYBR Green, an inexpensive alternative, is hampered by non-specific products and/or background fluorescence, both due to high template/ULP ratio. SYBR Green melting curve analysis (MCA) is a well-known qualitative tool for assessing PCR specificity. Here we present for the first time MCA as a quantitative tool (qMCA) to compare template concentrations across different samples and apply it to 3C to assess looping among remote elements identified by STAT1 and IRF1 ChIP-chip at the interferon-γ responsive CIITA and SOCS1 loci. This rapid, inexpensive approach provided highly reproducible identification and quantification of ULPs over a significant linear range. Therefore, qMCA is a robust method to assess chromatin looping in vivo, and overcomes several drawbacks associated with other approaches. Our data suggest that basal and induced looping is a involving remote enhancers is a common mechanism at IFNγ-regulated targets.
Collapse
Affiliation(s)
- M Abou El Hassan
- Genetics and Development Division, University Health Network, Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada M5T 2S8
| | | |
Collapse
|
44
|
Ideraabdullah FY, Vigneau S, Bartolomei MS. Genomic imprinting mechanisms in mammals. Mutat Res 2008; 647:77-85. [PMID: 18778719 DOI: 10.1016/j.mrfmmm.2008.08.008] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/31/2008] [Accepted: 08/07/2008] [Indexed: 11/25/2022]
Abstract
Genomic imprinting is a form of epigenetic gene regulation that results in expression from a single allele in a parent-of-origin-dependent manner. This form of monoallelic expression affects a small but growing number of genes and is essential to normal mammalian development. Despite extensive studies and some major breakthroughs regarding this intriguing phenomenon, we have not yet fully characterized the underlying molecular mechanisms of genomic imprinting. This is in part due to the complexity of the system in that the epigenetic markings required for proper imprinting must be established in the germline, maintained throughout development, and then erased before being re-established in the next generation's germline. Furthermore, imprinted gene expression is often tissue or stage-specific. It has also become clear that while imprinted loci across the genome seem to rely consistently on epigenetic markings of DNA methylation and/or histone modifications to discern parental alleles, the regulatory activities underlying these markings vary among loci. Here, we discuss different modes of imprinting regulation in mammals and how perturbations of these systems result in human disease. We focus on the mechanism of genomic imprinting mediated by insulators as is present at the H19/Igf2 locus, and by non-coding RNA present at the Igf2r and Kcnq1 loci. In addition to imprinting mechanisms at autosomal loci, what is known about imprinted X-chromosome inactivation and how it compares to autosomal imprinting is also discussed. Overall, this review summarizes many years of imprinting research, while pointing out exciting new discoveries that further elucidate the mechanism of genomic imprinting, and speculating on areas that require further investigation.
Collapse
Affiliation(s)
- Folami Y Ideraabdullah
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|