1
|
Sirini C, De Rossi L, Moresco MA, Casucci M. CAR T cells in solid tumors and metastasis: paving the way forward. Cancer Metastasis Rev 2024; 43:1279-1296. [PMID: 39316265 DOI: 10.1007/s10555-024-10213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
CAR T cell therapy, hailed as a breakthrough in cancer treatment due to its remarkable outcomes in hematological malignancies, encounters significant hurdles when applied to solid tumors. While notable responses to CAR T cells remain sporadic in these patients, challenges persist due to issues such as on-target off-tumor toxicity, difficulties in their trafficking and infiltration into the tumor, and the presence of a hostile and immunosuppressive microenvironment. This review aims to explore recent endeavors aimed at overcoming these obstacles in CAR T cell therapy for solid tumors. Specifically, we will delve into promising strategies for enhancing tumor specificity through antigen targeting, addressing tumor heterogeneity, overcoming physical barriers, and counteracting the immune-suppressive microenvironment.
Collapse
Affiliation(s)
- Camilla Sirini
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Laura De Rossi
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Angiola Moresco
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
2
|
Uchida S, Sugino T. Insights into E-Cadherin Impairment in CDH1-Unaltered Invasive Lobular Carcinoma: A Comprehensive Bioinformatic Study. Int J Mol Sci 2024; 25:8961. [PMID: 39201647 PMCID: PMC11354486 DOI: 10.3390/ijms25168961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Invasive lobular carcinoma exhibits unique morphological features frequently associated with alterations in CDH1. Although some studies have identified abnormalities in adhesion factors other than E-cadherin, the molecular mechanisms underlying E-cadherin abnormalities in CDH1-unaltered invasive lobular carcinoma remain poorly understood. In this study, we investigated the molecular underpinnings of E-cadherin dysregulation in invasive lobular carcinoma in the absence of CDH1 gene alterations, using comprehensive bioinformatic analyses. We conducted a comparative study of CDH1-mutated and non-mutated invasive lobular carcinoma and evaluated the differences in mRNA levels, reverse-phase protein array, methylation, and miRNAs. We observed that invasive lobular carcinoma cases without CDH1 alterations exhibited a significantly higher incidence of the Claudin-low subtype (p < 0.01). The results of the reverse-phase protein array indicate no significant difference in E-cadherin expression between CDH1-mutated and non-mutated cases. Therefore, abnormalities in E-cadherin production also exist in CDH1 non-mutated invasive lobular carcinoma. Considering that there are no differences in mRNA levels and methylation status, post-translational modifications are the most plausible explanation for the same. Hence, future studies should focus on elucidating the mechanism underlying E-cadherin inactivation via post-translational modifications in CDH1 non-mutated invasive lobular carcinoma.
Collapse
Affiliation(s)
- Shiro Uchida
- Division of Diagnostic Pathology, Kikuna Memorial Hospital, 4-4-27, Kikuna, Kohoku-ku, Yokohama 222-0011, Japan
- Division of Pathology, Shizuoka Cancer Center, Shizuoka 411-8777, Japan;
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center, Shizuoka 411-8777, Japan;
| |
Collapse
|
3
|
Taha SR, Boulos F. E-cadherin staining in the diagnosis of lobular versus ductal neoplasms of the breast: the emperor has no clothes. Histopathology 2024. [PMID: 39138705 DOI: 10.1111/his.15295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Categorizing breast neoplasia as ductal or lobular is a daily exercise that relies on a combination of histologic and immunohistochemical tools. The historically robust link between loss of the E-cadherin molecule and lobular neoplasia has rendered staining for E-cadherin by immunohistochemistry a staple of this diagnostic process. Unfortunately, discordances between E-cadherin expression and histomorphology, and variations in E-cadherin staining patterns and intensities abound in clinical practice, but are often neglected in favour of a binary interpretation of the E-cadherin result. In this article, we highlight the complexities of E-cadherin expression through a review of the E-cadherin protein and its associated gene (CDH1), the mechanisms leading to aberrant/absent E-cadherin expression, and the implications of these factors on the reliability of the E-cadherin immunohistochemical stain in the classification of ductal versus lobular mammary neoplasia.
Collapse
Affiliation(s)
- Seyed R Taha
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fouad Boulos
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Wang H, Zheng J, Ma Q, Zhang J, Li Y. GLT8D2 is a prognostic biomarker and regulator of immune cell infiltration in gastric cancer. Front Immunol 2024; 15:1370367. [PMID: 38840920 PMCID: PMC11150579 DOI: 10.3389/fimmu.2024.1370367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Because of the considerable tumor heterogeneity in gastric cancer (GC), only a limited group of patients experiences positive outcomes from immunotherapy. Herein, we aim to develop predictive models related to glycosylation genes to provide a more comprehensive understanding of immunotherapy for GC. RNA sequencing (RNA-seq) data and corresponding clinical outcomes were obtained from GEO and TCGA databases, and glycosylation-related genes were obtained from GlycoGene DataBase. We identified 48 differentially expressed glycosylation-related genes and established a prognostic model (seven prognosis genes including GLT8D2, GALNT6, ST3GAL6, GALNT15, GBGT1, FUT2, GXYLT2) based on these glycosylation-related genes using the results from Cox regression analysis. We found that these glycosylation-related genes revealed a robust correlation with the abundance of Tumor Infiltrating Lymphocytes (TILs), especially the GLT8D2 which is associated with many TILs. Finally, we employed immunohistochemistry and Multiplex Immunohistochemical to discover that GLT8D2 serves as a valuable prognostic biomarker in GC and is closely associated with macrophage-related markers. Collectively, we established a prognostic model based on glycosylation-related genes to provide a more comprehensive understanding of prediction for GC prognosis, and identified that GLT8D2 is closely correlated with adverse prognosis and may underscore its role in regulating immune cell infiltration in GC patients.
Collapse
Affiliation(s)
- Han Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qingyang Ma
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Junchang Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Xu X, Yin K, Wu R. Systematic Investigation of the Trafficking of Glycoproteins on the Cell Surface. Mol Cell Proteomics 2024; 23:100761. [PMID: 38593903 PMCID: PMC11087972 DOI: 10.1016/j.mcpro.2024.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Glycoproteins located on the cell surface play a pivotal role in nearly every extracellular activity. N-glycosylation is one of the most common and important protein modifications in eukaryotic cells, and it often regulates protein folding and trafficking. Glycosylation of cell-surface proteins undergoes meticulous regulation by various enzymes in the endoplasmic reticulum (ER) and the Golgi, ensuring their proper folding and trafficking to the cell surface. However, the impacts of protein N-glycosylation, N-glycan maturity, and protein folding status on the trafficking of cell-surface glycoproteins remain to be explored. In this work, we comprehensively and site-specifically studied the trafficking of cell-surface glycoproteins in human cells. Integrating metabolic labeling, bioorthogonal chemistry, and multiplexed proteomics, we investigated 706 N-glycosylation sites on 396 cell-surface glycoproteins in monocytes, either by inhibiting protein N-glycosylation, disturbing N-glycan maturation, or perturbing protein folding in the ER. The current results reveal their distinct impacts on the trafficking of surface glycoproteins. The inhibition of protein N-glycosylation dramatically suppresses the trafficking of many cell-surface glycoproteins. The N-glycan immaturity has more substantial effects on proteins with high N-glycosylation site densities, while the perturbation of protein folding in the ER exerts a more pronounced impact on surface glycoproteins with larger sizes. Furthermore, for N-glycosylated proteins, their trafficking to the cell surface is related to the secondary structures and adjacent amino acid residues of glycosylation sites. Systematic analysis of surface glycoprotein trafficking advances our understanding of the mechanisms underlying protein secretion and surface presentation.
Collapse
Affiliation(s)
- Xing Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kejun Yin
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
6
|
Benesova I, Nenutil R, Urminsky A, Lattova E, Uhrik L, Grell P, Kokas FZ, Halamkova J, Zdrahal Z, Vojtesek B, Novotny MV, Hernychova L. N-glycan profiling of tissue samples to aid breast cancer subtyping. Sci Rep 2024; 14:320. [PMID: 38172220 PMCID: PMC10764792 DOI: 10.1038/s41598-023-51021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer is a highly heterogeneous disease. Its intrinsic subtype classification for diagnosis and choice of therapy traditionally relies on the presence of characteristic receptors. Unfortunately, this classification is often not sufficient for precise prediction of disease prognosis and treatment efficacy. The N-glycan profiles of 145 tumors and 10 healthy breast tissues were determined using Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry. The tumor samples were classified into Mucinous, Lobular, No-Special-Type, Human Epidermal Growth Factor 2 + , and Triple-Negative Breast Cancer subtypes. Statistical analysis was conducted using the reproducibility-optimized test statistic software package in R, and the Wilcoxon rank sum test with continuity correction. In total, 92 N-glycans were detected and quantified, with 59 consistently observed in over half of the samples. Significant variations in N-glycan signals were found among subtypes. Mucinous tumor samples exhibited the most distinct changes, with 28 significantly altered N-glycan signals. Increased levels of tri- and tetra-antennary N-glycans were notably present in this subtype. Triple-Negative Breast Cancer showed more N-glycans with additional mannose units, a factor associated with cancer progression. Individual N-glycans differentiated Human Epidermal Growth Factor 2 + , No-Special-Type, and Lobular cancers, whereas lower fucosylation and branching levels were found in N-glycans significantly increased in Luminal subtypes (Lobular and No-Special-Type tumors). Clinically normal breast tissues featured a higher abundance of signals corresponding to N-glycans with bisecting moiety. This research confirms that histologically distinct breast cancer subtypes have a quantitatively unique set of N-glycans linked to clinical parameters like tumor size, proliferative rate, lymphovascular invasion, and metastases to lymph nodes. The presented results provide novel information that N-glycan profiling could accurately classify human breast cancer samples, offer stratification of patients, and ongoing disease monitoring.
Collapse
Affiliation(s)
- Iva Benesova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Rudolf Nenutil
- Department of Pathology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Adam Urminsky
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Erika Lattova
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lukas Uhrik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Peter Grell
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Filip Zavadil Kokas
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Jana Halamkova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Zbynek Zdrahal
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Milos V Novotny
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA.
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
7
|
Huang N, He HW, He YY, Gu W, Xu MJ, Liu L. Xiaotan Sanjie recipe, a compound Chinese herbal medicine, inhibits gastric cancer metastasis by regulating GnT-V-mediated E-cadherin glycosylation. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:561-574. [PMID: 37980180 DOI: 10.1016/j.joim.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/02/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVE Xiaotan Sanjie recipe (XTSJ), a Chinese herbal compound medicine, exerts a significant inhibitory effect on gastric cancer (GC) metastasis. This work investigated the mechanism underlying the XTSJ-mediated inhibition of GC metastasis. METHODS The effect of XTSJ on GC metastasis and the associated mechanism were investigated in vitro, using GC cell lines, and in vivo, using a GC mouse model, by focusing on the expression of Glc-N-Ac-transferase V (GnT-V; encoded by MGAT5). RESULTS The migration and invasion ability of GC cells decreased significantly after XTSJ administration, which confirmed the efficacy of XTSJ in treating GC in vitro. XTSJ increased the accumulation of E-cadherin at junctions between GC cells, which was reversed by MGAT5 overexpression. XTSJ administration and MGAT5 knockdown alleviated the structural abnormality of the cell-cell junctions, while MGAT5 overexpression had the opposite effect. MGAT5 knockdown and XTSJ treatment also significantly increased the accumulation of proteins associated with the E-cadherin-mediated adherens junction complex. Furthermore, the expression of MGAT5 was significantly lower in the lungs of BGC-823-MGAT5 + XTSJ mice than in those of BGC-823-MGAT5 + solvent mice, indicating that the ability of gastric tumors to metastasize to the lung was decreased in vivo following XTSJ treatment. CONCLUSION XTSJ prevented GC metastasis by inhibiting the GnT-V-mediated E-cadherin glycosylation and promoting the E-cadherin accumulation at cell-cell junctions. Please cite this article as: Huang N, He HW, He YY, Gu W, Xu MJ, Liu L. Xiaotan Sanjie recipe, a compound Chinese herbal medicine, inhibits gastric cancer metastasis by regulating GnT-V-mediated E-cadherin glycosylation. J Integr Med. 2023; 21(6): 561-574.
Collapse
Affiliation(s)
- Nian Huang
- Department of Integrative Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200433, China
| | - Hai-Wei He
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yu-Yu He
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Wei Gu
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Ming-Juan Xu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Long Liu
- Department of Traditional Chinese Medicine, Tianyou Hospital, Tongji University, Shanghai 200333, China.
| |
Collapse
|
8
|
Ghosh P, K M M, Pandey N, Basavan D. Jackfruit waste: an invented anticancer therapy using Jacalin lectin from jackfruit seed. Anticancer Drugs 2023; 34:1085-1093. [PMID: 37823283 DOI: 10.1097/cad.0000000000001447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Every food source contains both edible and inedible waste components. Millions of tonnes of trash from the food business are made from fruits, and these wastes are containing higher-value medicinal components, such as alkaloids, flavonoids, phenolic contents, a huge amount of proteins and secondary metabolites. These bioactive phytoconstituents are being used for the treatment of many serious fatal diseases. So, utilizing the recovered bioactive molecules from food wastes as functional ingredients offers a long-term alternative source of therapeutically active components that will lead to the discovery of novel phytoconstituents or novel treatment approaches. The goal of this systematic study is to provide an overview of the jackfruit (Artocarpus heterophyllus Lam, Moraceae) edible byproducts, such as jackfruit seeds that are largely neglected. This seed contains numerous bioactive lead molecules, such as carbohydrate-binding protein jacalin, which exhibits potent anticancer activity against colon cancer, blood cancer and breast cancer as well as can enlighten the new possible treatment approaches in targeted therapy and photodynamic chemotherapy. Moreover, jackfruit waste seed can be taken as a dietary food, which is having property to prevent and treat cancer and other lifestyle diseases. The works that have been carried out to utilize jackfruit waste other than the juicy edible bulbs have been reviewed in this article.
Collapse
Affiliation(s)
- Puja Ghosh
- Department of Pharmacognosy, JSS College of Pharmacy, Ooty, Tamilnadu
| | - Muhasina K M
- Department of Pharmacognosy, JSS College of Pharmacy, Ooty, Tamilnadu
| | - Neelaxi Pandey
- Department of Zoology, Faculty of Science, Motherhood University, Roorkee, Uttarakhand, India
| | | |
Collapse
|
9
|
Liang D, Gao Q, Meng Z, Li W, Song J, Xue K. Glycosylation in breast cancer progression and mammary development: Molecular connections and malignant transformations. Life Sci 2023; 326:121781. [PMID: 37207809 DOI: 10.1016/j.lfs.2023.121781] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
INTRODUCTION The cellular behavior in normal mammary gland development and the progression of breast cancer is like the relationship between an object and its mirror image: they may appear similar, but their essence is completely different. Breast cancer can be considered as temporal and spatial aberrations of normal development in mammary gland. Glycans have been shown to regulate key pathophysiological steps during mammary development and breast cancer progression, and the glycoproteins that play a key role in both processes can affect the normal differentiation and development of mammary cells, and even cause malignant transformation or accelerate tumorigenesis due to differences in their type and level of glycosylation. KEY FINDINGS In this review, we summarize the roles of glycan alterations in essential cellular behaviors during breast cancer progression and mammary development, and also highlight the importance of key glycan-binding proteins such as epidermal growth factor receptor, transforming growth factor β receptors and other proteins, which are pivotal in the modulation of cellular signaling in mammary gland. Our review takes an overall view of the molecular interplay, signal transduction and cellular behaviors in mammary gland development and breast cancer progression from a glycobiological perspective. SIGNIFICANCE This review will give a better understanding of the similarities and differences in glycosylation between mammary gland development and breast cancer progression, laying the foundation for elucidating the key molecular mechanisms of glycobiology underlying the malignant transformation of mammary cells.
Collapse
Affiliation(s)
- Dongyang Liang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Qian Gao
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Zixuan Meng
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Jiazhe Song
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China.
| | - Kai Xue
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China.
| |
Collapse
|
10
|
Yale AR, Kim E, Gutierrez B, Hanamoto JN, Lav NS, Nourse JL, Salvatus M, Hunt RF, Monuki ES, Flanagan LA. Regulation of neural stem cell differentiation and brain development by MGAT5-mediated N-glycosylation. Stem Cell Reports 2023:S2213-6711(23)00141-8. [PMID: 37172586 DOI: 10.1016/j.stemcr.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Undifferentiated neural stem and progenitor cells (NSPCs) encounter extracellular signals that bind plasma membrane proteins and influence differentiation. Membrane proteins are regulated by N-linked glycosylation, making it possible that glycosylation plays a critical role in cell differentiation. We assessed enzymes that control N-glycosylation in NSPCs and found that loss of the enzyme responsible for generating β1,6-branched N-glycans, N-acetylglucosaminyltransferase V (MGAT5), led to specific changes in NSPC differentiation in vitro and in vivo. Mgat5 homozygous null NSPCs in culture formed more neurons and fewer astrocytes compared with wild-type controls. In the brain cerebral cortex, loss of MGAT5 caused accelerated neuronal differentiation. Rapid neuronal differentiation led to depletion of cells in the NSPC niche, resulting in a shift in cortical neuron layers in Mgat5 null mice. Glycosylation enzyme MGAT5 plays a critical and previously unrecognized role in cell differentiation and early brain development.
Collapse
Affiliation(s)
- Andrew R Yale
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Estelle Kim
- Department of Neurology, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Brenda Gutierrez
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - J Nicole Hanamoto
- Department of Neurology, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Nicole S Lav
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Jamison L Nourse
- Department of Neurology, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Marc Salvatus
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Robert F Hunt
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Edwin S Monuki
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Lisa A Flanagan
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
11
|
Madunić K, Luijkx YMCA, Mayboroda OA, Janssen GMC, van Veelen PA, Strijbis K, Wennekes T, Lageveen-Kammeijer GSM, Wuhrer M. O-Glycomic and Proteomic Signatures of Spontaneous and Butyrate-Stimulated Colorectal Cancer Cell Line Differentiation. Mol Cell Proteomics 2023; 22:100501. [PMID: 36669592 PMCID: PMC9999233 DOI: 10.1016/j.mcpro.2023.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Gut microbiota of the gastrointestinal tract provide health benefits to the human host via bacterial metabolites. Bacterial butyrate has beneficial effects on intestinal homeostasis and is the preferred energy source of intestinal epithelial cells, capable of inducing differentiation. It was previously observed that changes in the expression of specific proteins as well as protein glycosylation occur with differentiation. In this study, specific mucin O-glycans were identified that mark butyrate-induced epithelial differentiation of the intestinal cell line CaCo-2 (Cancer Coli-2), by applying porous graphitized carbon nano-liquid chromatography with electrospray ionization tandem mass spectrometry. Moreover, a quantitative proteomic approach was used to decipher changes in the cell proteome. It was found that the fully differentiated butyrate-stimulated cells are characterized by a higher expression of sialylated O-glycan structures, whereas fucosylation is downregulated with differentiation. By performing an integrative approach, we generated hypotheses about the origin of the observed O-glycome changes. These insights pave the way for future endeavors to study the dynamic O-glycosylation patterns in the gut, either produced via cellular biosynthesis or through the action of bacterial glycosidases as well as the functional role of these patterns in homeostasis and dysbiosis at the gut-microbiota interface.
Collapse
Affiliation(s)
- K Madunić
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - Y M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - O A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - G M C Janssen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - P A van Veelen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - K Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - T Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - M Wuhrer
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands.
| |
Collapse
|
12
|
Yang J, Guo F, Chin HS, Chen GB, Ang CH, Lin Q, Hong W, Fu NY. Sequential genome-wide CRISPR-Cas9 screens identify genes regulating cell-surface expression of tetraspanins. Cell Rep 2023; 42:112065. [PMID: 36724073 DOI: 10.1016/j.celrep.2023.112065] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
Tetraspanins, a superfamily of membrane proteins, mediate diverse biological processes through tetraspanin-enriched microdomains in the plasma membrane. However, how their cell-surface presentation is controlled remains unclear. To identify the regulators of tetraspanin trafficking, we conduct sequential genome-wide loss-of-function CRISPR-Cas9 screens based on cell-surface expression of a tetraspanin member, TSPAN8. Several genes potentially involved in endoplasmic reticulum (ER) targeting, different biological processes in the Golgi apparatus, and protein trafficking are identified and functionally validated. Importantly, we find that biantennary N-glycans generated by MGAT1/2, but not more complex glycan structures, are important for cell-surface tetraspanin expression. Moreover, we unravel that SPPL3, a Golgi intramembrane-cleaving protease reported previously to act as a sheddase of multiple glycan-modifying enzymes, controls cell-surface tetraspanin expression through a mechanism associated with lacto-series glycolipid biosynthesis. Our study provides critical insights into the molecular regulation of cell-surface presentation of tetraspanins with implications for strategies to manipulate their functions, including cancer cell invasion.
Collapse
Affiliation(s)
- Jicheng Yang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Fusheng Guo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Hui San Chin
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Gao Bin Chen
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Chow Hiang Ang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Physiology, National University of Singapore, Singapore 117593, Singapore; Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
13
|
Fernandes Â, Azevedo CM, Silva MC, Faria G, Dantas CS, Vicente MM, Pinho SS. Glycans as shapers of tumour microenvironment: A sweet driver of T-cell-mediated anti-tumour immune response. Immunology 2023; 168:217-232. [PMID: 35574724 DOI: 10.1111/imm.13494] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
Essentially all cells are covered with a dense coat of different glycan structures/sugar chains, giving rise to the so-called glycocalyx. Changes in cellular glycosylation are a hallmark of cancer, affecting most of the pathophysiological processes associated with malignant transformation, including tumour immune responses. Glycans are chief macromolecules that define T-cell development, differentiation, fate, activation and signalling. Thus, the diversity of glycans expressed at the surface of T cells constitutes a fundamental molecular interface with the microenvironment by regulating the bilateral interactions between T-cells and cancer cells, fine-tuning the anti-tumour immune response. In this review, we will introduce the power of glycans as orchestrators of T-cell-mediated immune response in physiological conditions and in cancer. We discuss how glycans modulate the glyco-metabolic landscape in the tumour microenvironment, and whether glycans can synergize with immunotherapy as a way of rewiring T-cell effector functions against cancer cells.
Collapse
Affiliation(s)
- Ângela Fernandes
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Mariana C Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Guilherme Faria
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina S Dantas
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuel M Vicente
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
14
|
de-Souza-Ferreira M, Ferreira ÉE, de-Freitas-Junior JCM. Aberrant N-glycosylation in cancer: MGAT5 and β1,6-GlcNAc branched N-glycans as critical regulators of tumor development and progression. Cell Oncol 2023; 46:481-501. [PMID: 36689079 DOI: 10.1007/s13402-023-00770-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Changes in protein glycosylation are widely observed in tumor cells. N-glycan branching through adding β1,6-linked N-acetylglucosamine (β1,6-GlcNAc) to an α1,6-linked mannose, which is catalyzed by the N-acetylglucosaminyltransferase V (MGAT5 or GnT-V), is one of the most frequently observed tumor-associated glycan structure formed. Increased levels of this branching structure play a pro-tumoral role in various ways, for example, through the stabilization of growth factor receptors, the destabilization of intercellular adhesion, or the acquisition of a migratory phenotype. CONCLUSION In this review, we provide an updated and comprehensive summary of the physiological and pathophysiological roles of MGAT5 and β1,6-GlcNAc branched N-glycans, including their regulatory mechanisms. Specific emphasis is given to the role of MGAT5 and β1,6-GlcNAc branched N-glycans in cellular mechanisms that contribute to the development and progression of solid tumors. We also provide insight into possible future clinical implications, such as the use of MGAT5 as a prognostic biomarker.
Collapse
Affiliation(s)
- Michelle de-Souza-Ferreira
- Cellular and Molecular Oncobiology Program, Cancer Glycobiology Group, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Érika Elias Ferreira
- Cellular and Molecular Oncobiology Program, Cancer Glycobiology Group, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Julio Cesar Madureira de-Freitas-Junior
- Cellular and Molecular Oncobiology Program, Cancer Glycobiology Group, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, Rio de Janeiro, RJ, 20231-050, Brazil.
| |
Collapse
|
15
|
Ferreira RM, Figueiredo J, Pinto-Ribeiro I, Gullo I, Sgouras DN, Carreto L, Castro P, Santos MA, Carneiro F, Seruca R, Figueiredo C. Activation of Laminin γ2 by Helicobacter pylori Promotes Invasion and Survival of Gastric Cancer Cells With E-Cadherin Defects. J Infect Dis 2022; 226:2226-2237. [PMID: 36173814 DOI: 10.1093/infdis/jiac397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Helicobacter pylori infection induces cellular phenotypes relevant for cancer progression, namely cell motility and invasion. We hypothesized that the extracellular matrix (ECM) could be involved in these deleterious effects. METHODS Microarrays were used to uncover ECM interactors in cells infected with H. pylori. LAMC2, encoding laminin γ2, was selected as a candidate gene and its expression was assessed in vitro and in vivo. The role of LAMC2 was investigated by small interference RNA (siRNA) combined with a set of functional assays. Laminin γ2 and E-cadherin expression patterns were evaluated in gastric cancer cases. RESULTS Laminin γ2 was found significantly overexpressed in gastric cancer cells infected with H. pylori. This finding was validated in vitro by infection with clinical isolates and in vivo by using gastric biopsies of infected and noninfected individuals. We showed that laminin γ2 overexpression is dependent on the bacterial type IV secretion system and on the CagA. Functionally, laminin γ2 promotes cell invasion and resistance to apoptosis, through modulation of Src, JNK, and AKT activity. These effects were abrogated in cells with functional E-cadherin. CONCLUSIONS These data highlight laminin γ2 and its downstream effectors as potential therapeutic targets, and the value of H. pylori eradication to delay gastric cancer onset and progression.
Collapse
Affiliation(s)
- Rui M Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Joana Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ines Pinto-Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Irene Gullo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar Universitário São João, Porto, Portugal
| | | | - Laura Carreto
- Department of Biology, University of Aveiro, Aveiro, Portugal.,Centre of Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Patricia Castro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Manuel A Santos
- Institute of Biomedicine, University of Aveiro, Aveiro, Portugal.,Multidisciplinary Institute of Ageing, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Fatima Carneiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Raquel Seruca
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ceu Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Leite-Gomes E, Dias AM, Azevedo CM, Santos-Pereira B, Magalhães M, Garrido M, Amorim R, Lago P, Marcos-Pinto R, Pinho SS. Bringing to Light the Risk of Colorectal Cancer in Inflammatory Bowel Disease: Mucosal Glycosylation as a Key Player. Inflamm Bowel Dis 2022; 28:947-962. [PMID: 34849933 DOI: 10.1093/ibd/izab291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Colitis-associated cancer is a major complication of inflammatory bowel disease remaining an important clinical challenge in terms of diagnosis, screening, and prognosis. Inflammation is a driving factor both in inflammatory bowel disease and cancer, but the mechanism underlying the transition from colon inflammation to cancer remains to be defined. Dysregulation of mucosal glycosylation has been described as a key regulatory mechanism associated both with colon inflammation and colorectal cancer development. In this review, we discuss the major molecular mechanisms of colitis-associated cancer pathogenesis, highlighting the role of glycans expressed at gut epithelial cells, at lamina propria T cells, and in serum proteins in the regulation of intestinal inflammation and its progression to colon cancer, further discussing its potential clinical and therapeutic applications.
Collapse
Affiliation(s)
- Eduarda Leite-Gomes
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana M Dias
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Mariana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Mónica Garrido
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Rita Amorim
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Pediatrics Department, Centro Hospitalar e Universitário São João, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Lago
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Ricardo Marcos-Pinto
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Centre for Research in Health Technologies and Information Systems, University of Porto, Portugal
| | - Salomé S Pinho
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Glycosyltransferases in Cancer: Prognostic Biomarkers of Survival in Patient Cohorts and Impact on Malignancy in Experimental Models. Cancers (Basel) 2022; 14:cancers14092128. [PMID: 35565254 PMCID: PMC9100214 DOI: 10.3390/cancers14092128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Glycosylation changes are a main feature of cancer. Some carbohydrate epitopes and expression levels of glycosyltransferases have been used or proposed as prognostic markers, while many experimental works have investigated the role of glycosyltransferases in malignancy. Using the transcriptomic data of the 21 TCGA cohorts, we correlated the expression level of 114 glycosyltransferases with the overall survival of patients. Methods: Using the Oncolnc website, we determined the Kaplan−Meier survival curves for the patients falling in the 15% upper or lower percentile of mRNA expression of each glycosyltransferase. Results: Seventeen glycosyltransferases involved in initial steps of N- or O-glycosylation and of glycolipid biosynthesis, in chain extension and sialylation were unequivocally associated with bad prognosis in a majority of cohorts. Four glycosyltransferases were associated with good prognosis. Other glycosyltransferases displayed an extremely high predictive value in only one or a few cohorts. The top were GALNT3, ALG6 and B3GNT7, which displayed a p < 1 × 10−9 in the low-grade glioma (LGG) cohort. Comparison with published experimental data points to ALG3, GALNT2, B4GALNT1, POFUT1, B4GALT5, B3GNT5 and ST3GAL2 as the most consistently malignancy-associated enzymes. Conclusions: We identified several cancer-associated glycosyltransferases as potential prognostic markers and therapeutic targets.
Collapse
|
18
|
Advances in the Immunomodulatory Properties of Glycoantigens in Cancer. Cancers (Basel) 2022; 14:cancers14081854. [PMID: 35454762 PMCID: PMC9032556 DOI: 10.3390/cancers14081854] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Simple Summary This work reviews the role of aberrant glycosylation in cancer cells during tumour growth and spreading, as well as in immune evasion. The interaction of tumour-associated glycans with the immune system through C-type lectin receptors can favour immune escape but can also provide opportunities to develop novel tumour immunotherapy strategies. This work highlights the main findings in this area and spotlights the challenges that remain to be investigated. Abstract Aberrant glycosylation in tumour progression is currently a topic of main interest. Tumour-associated carbohydrate antigens (TACAs) are expressed in a wide variety of epithelial cancers, being both a diagnostic tool and a potential treatment target, as they have impact on patient outcome and disease progression. Glycans affect both tumour-cell biology properties as well as the antitumor immune response. It has been ascertained that TACAs affect cell migration, invasion and metastatic properties both when expressed by cancer cells or by their extracellular vesicles. On the other hand, tumour-associated glycans recognized by C-type lectin receptors in immune cells possess immunomodulatory properties which enable tumour growth and immune response evasion. Yet, much remains unknown, concerning mechanisms involved in deregulation of glycan synthesis and how this affects cell biology on a major level. This review summarises the main findings to date concerning how aberrant glycans influence tumour growth and immunity, their application in cancer treatment and spotlights of unanswered challenges remaining to be solved.
Collapse
|
19
|
Boyaval F, Dalebout H, Van Zeijl R, Wang W, Fariña-Sarasqueta A, Lageveen-Kammeijer GSM, Boonstra JJ, McDonnell LA, Wuhrer M, Morreau H, Heijs B. High-Mannose N-Glycans as Malignant Progression Markers in Early-Stage Colorectal Cancer. Cancers (Basel) 2022; 14:1552. [PMID: 35326703 PMCID: PMC8945895 DOI: 10.3390/cancers14061552] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
The increase incidence of early colorectal cancer (T1 CRC) last years is mainly due to the introduction of population-based screening for CRC. T1 CRC staging based on histological criteria remains challenging and there is high variability among pathologists in the scoring of these criteria. It is crucial to unravel the biology behind the progression of adenoma into T1 CRC. Glycomic studies have reported extensively on alterations of the N-glycomic pattern in CRC; therefore, investigating these alterations may reveal new insights into the development of T1 CRC. We used matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) to spatially profile the N-glycan species in a cohort of pT1 CRC using archival formalin-fixed and paraffin-embedded (FFPE) material. To generate structural information on the observed N-glycans, CE-ESI-MS/MS was used in conjunction with MALDI-MSI. Relative intensities and glycosylation traits were calculated based on a panel of 58 N-glycans. Our analysis showed pronounced differences between normal epithelium, dysplastic, and carcinoma regions. High-mannose-type N-glycans were higher in the dysplastic region than in carcinoma, which correlates to increased proliferation of the cells. We observed changes in the cancer invasive front, including higher expression of α2,3-linked sialic acids which followed the glycosylation pattern of the carcinoma region.
Collapse
Affiliation(s)
- Fanny Boyaval
- Department of Pathology, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands;
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands; (H.D.); (R.V.Z.); (W.W.); (G.S.M.L.-K.); (M.W.)
| | - Hans Dalebout
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands; (H.D.); (R.V.Z.); (W.W.); (G.S.M.L.-K.); (M.W.)
| | - René Van Zeijl
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands; (H.D.); (R.V.Z.); (W.W.); (G.S.M.L.-K.); (M.W.)
| | - Wenjun Wang
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands; (H.D.); (R.V.Z.); (W.W.); (G.S.M.L.-K.); (M.W.)
| | - Arantza Fariña-Sarasqueta
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Guinevere S. M. Lageveen-Kammeijer
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands; (H.D.); (R.V.Z.); (W.W.); (G.S.M.L.-K.); (M.W.)
| | - Jurjen J. Boonstra
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands;
| | - Liam A. McDonnell
- Fondazione Pisana per la Scienza ONLUS, Via Ferruccio Giovannini, 56017 San Giuliano Terme, Italy;
| | - Manfred Wuhrer
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands; (H.D.); (R.V.Z.); (W.W.); (G.S.M.L.-K.); (M.W.)
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands;
| | - Bram Heijs
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands; (H.D.); (R.V.Z.); (W.W.); (G.S.M.L.-K.); (M.W.)
| |
Collapse
|
20
|
Resistance to cisplatin in human lung adenocarcinoma cells: effects on the glycophenotype and epithelial to mesenchymal transition markers. Glycoconj J 2022; 39:247-259. [DOI: 10.1007/s10719-022-10042-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
|
21
|
Rosa-Fernandes L, Oba-Shinjo SM, Macedo-da-Silva J, Marie SKN, Palmisano G. Aberrant Protein Glycosylation in Brain Cancers, with Emphasis on Glioblastoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:39-70. [DOI: 10.1007/978-3-031-05460-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
22
|
Suppression of MGAT3 expression and the epithelial–mesenchymal transition of lung cancer cells by miR-188-5p. Biomed J 2021; 44:678-685. [PMID: 35166206 PMCID: PMC8847825 DOI: 10.1016/j.bj.2020.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background To investigate the effect of miR-188-5p overexpression on the invasion and migration of cultured lung cancer cells, and on related cellular mechanisms that underlie epithelial mesenchymal transition (EMT). Methods Human lung cancer cell line 95D was transfected with miR-188-5p mimic. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to quantify the expression levels of genes including E-cadherin, Snail, α-SMA, and MGAT3. Changes in cell motility, invasion and proliferation were studied using scratch migration assay, transwell invasion assay, and colony formation assay, respectively. The expression levels of EMT-related proteins and MGAT3 protein were also determined via immunofluorescent staining. The ability of miR-188-5p to regulate its target gene, MGAT3, was assessed using dual luciferase activity assay. Results Lung cancer cell line 95D showed the lowest miR-188-5p expression level thus was used in this study. Transfection with miR-188-5p mimic significantly suppressed migration, invasion and clonal formation potency of 95D cells. Dual luciferase activity assay implicated that miR-188-5p exerts its negative regulatory effect on MGAT3 expression through recognizing the 3′ untranslated region (3′UTR) of the MGAT3 gene. Over-expression of miR-188-5p in 95D cells also remarkably increased E-cadherin protein expression and decreased the expression levels of Snail and α-SMA, which suppressed the EMT process. Conclusion MiR-188-5p reduces the expression of MGAT3 and inhibits the metastatic properties of a highly invasive lung cancer cell line, probably via targeted regulation of EMT process. Further research to explore the potential therapeutic value of miR-188-5p, both as a biomarker and as a drug candidate for the management of metastatic lung cancer may be warranted.
Collapse
|
23
|
Fujihira H, Takakura D, Matsuda A, Abe M, Miyazaki M, Nakagawa T, Kajino K, Denda-Nagai K, Noji M, Hino O, Irimura T. Bisecting-GlcNAc on Asn388 is characteristic to ERC/mesothelin expressed on epithelioid mesothelioma cells. J Biochem 2021; 170:317-326. [PMID: 33792699 PMCID: PMC8510291 DOI: 10.1093/jb/mvab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/27/2021] [Indexed: 11/13/2022] Open
Abstract
Mesothelioma is a highly aggressive tumour associated with asbestos exposure and is histologically classified into three types: epithelioid-type, sarcomatoid-type and biphasic-type. The prognosis of mesothelioma patients is poor and there is no effective molecular-targeting therapy as yet. ERC/mesothelin is a glycoprotein that is highly expressed on several types of cancers including epithelioid mesothelioma, but also expressed on normal mesothelial cells. This is a predicted reason why there is no clinically approved therapeutic antibody targeting ERC/mesothelin. In the present study, we focussed on the differential glycosylation between ERC/mesothelin present on epithelioid mesothelioma and that on normal mesothelial cells and aimed to reveal a distinct feature of epithelioid mesothelioma cells. Lectin microarray analysis of ERC/mesothelin using cells and patient specimens showed significantly stronger binding of PHA-E4 lectin, which recognizes complex-type N-glycans having a so-called bisecting-GlcNAc structure, to ERC/mesothelin from epithelioid mesothelioma cells than that from normal mesothelial cells. Further, liquid chromatography/mass spectrometry analysis on ERC/mesothelin from epithelioid mesothelioma cells confirmed the presence of a bisecting-GlcNAc attached to Asn388 of ERC/mesothelin. These results suggest that this glycoproteome could serve as a potential target for the generation of a highly selective and safe therapeutic antibody for epithelioid mesothelioma.
Collapse
Affiliation(s)
- Haruhiko Fujihira
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Glycometabolic Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198, Japan
| | - Daisuke Takakura
- Project for utilizing glycans in the development of innovative drug discovery technologies, Japan Bioindustry Association (JBA), Tokyo 104-0032, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan
| | - Atsushi Matsuda
- Department of Biochemistry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Masaaki Abe
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Michiyo Miyazaki
- Project for utilizing glycans in the development of innovative drug discovery technologies, Japan Bioindustry Association (JBA), Tokyo 104-0032, Japan
| | - Tomomi Nakagawa
- Project for utilizing glycans in the development of innovative drug discovery technologies, Japan Bioindustry Association (JBA), Tokyo 104-0032, Japan
| | - Kazunori Kajino
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan.,Department of Human Pathology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Kaori Denda-Nagai
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Miki Noji
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Okio Hino
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Tatsuro Irimura
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
24
|
You X, Wang Y, Meng J, Han S, Liu L, Sun Y, Zhang J, Sun S, Li X, Sun W, Dong Y, Zhang Y. Exosomal miR‑663b exposed to TGF‑β1 promotes cervical cancer metastasis and epithelial‑mesenchymal transition by targeting MGAT3. Oncol Rep 2021; 45:12. [PMID: 33649791 PMCID: PMC7877003 DOI: 10.3892/or.2021.7963] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor (TGF)‑β1 is a key cytokine affecting the pathogenesis and progression of cervical cancer. Tumor‑derived exosomes contain microRNAs (miRNAs/miRs) that interact with cancer and stromal cells, thereby contributing to tissue remodeling in the tumor microenvironment (TME). The present study was designed to clarify how TGF‑β1 affects tumor biological functions through exosomes released by cervical cancer cells. Deep RNA sequencing found that TGF‑β1 stimulated cervical cancer cells to secrete more miR‑663b‑containing exosomes, which could be transferred into new target cells to promote metastasis. Further studies have shown that miR‑663b directly targets the 3'-untranslated regions (3'‑UTR) of mannoside acetylglucosaminyltransferase 3 (MGAT3) and is involved in the epithelial‑mesenchymal transition (EMT) process. Remarkably, the overexpression of MGAT3 suppressed cervical cancer cell metastasis promoted by exosomal miR‑663b, causing increased expression of epithelial differentiation marker E‑cadherin and decreased expression of mesenchymal markers N‑cadherin and β‑catenin. Throughout our study, online bioinformation tools and dual luciferase reporter assay were applied to identify MGAT3 as a novel direct target of miR‑663b. Exosome PKH67‑labeling experiment verified that exosomal miR‑663b could be endocytosed by cervical cancer cells and subsequently influence its migration and invasion functions which were measured by wound healing and Transwell assays. The expression of miR‑663b and MGAT3 and the regulation of the EMT pathway caused by MGAT3 were detected by quantitative real‑time transcription‑polymerase chain reaction (qPCR) and western blot analysis. These results, thus, provide evidence that cancer cell‑derived exosomal miR‑663b is endocytosed by cervical cancer cells adjacent or distant after TGF‑β1 exposure and inhibits the expression of MGAT3, thereby accelerating the EMT process and ultimately promoting local and distant metastasis.
Collapse
Affiliation(s)
- Xuewu You
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Jinyu Meng
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yu Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Junhua Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuqin Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xinyue Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenxiong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yajie Dong
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
25
|
Boyaval F, van Zeijl R, Dalebout H, Holst S, van Pelt G, Fariña-Sarasqueta A, Mesker W, Tollenaar R, Morreau H, Wuhrer M, Heijs B. N-Glycomic Signature of Stage II Colorectal Cancer and Its Association With the Tumor Microenvironment. Mol Cell Proteomics 2021; 20:100057. [PMID: 33581319 PMCID: PMC7973300 DOI: 10.1074/mcp.ra120.002215] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The choice for adjuvant chemotherapy in stage II colorectal cancer is controversial as many patients are cured by surgery alone and it is difficult to identify patients with high risk of recurrence of the disease. There is a need for better stratification of this group of patients. Mass spectrometry imaging could identify patients at risk. We report here the N-glycosylation signatures of the different cell populations in a group of stage II colorectal cancer tissue samples. The cancer cells, compared with normal epithelial cells, have increased levels of sialylation and high-mannose glycans, as well as decreased levels of fucosylation and highly branched N-glycans. When looking at the interface between cancer and its microenvironment, it seems that the cancer N-glycosylation signature spreads into the surrounding stroma at the invasive front of the tumor. This finding was more outspoken in patients with a worse outcome within this sample group.
Collapse
Affiliation(s)
- Fanny Boyaval
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands; Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - René van Zeijl
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Dalebout
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Stephanie Holst
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gabi van Pelt
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Arantza Fariña-Sarasqueta
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Wilma Mesker
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Bram Heijs
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
26
|
Zhang J, Ten Dijke P, Wuhrer M, Zhang T. Role of glycosylation in TGF-β signaling and epithelial-to-mesenchymal transition in cancer. Protein Cell 2021; 12:89-106. [PMID: 32583064 PMCID: PMC7862465 DOI: 10.1007/s13238-020-00741-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
Glycosylation is a common posttranslational modification on membrane-associated and secreted proteins that is of pivotal importance for regulating cell functions. Aberrant glycosylation can lead to uncontrolled cell proliferation, cell-matrix interactions, migration and differentiation, and has been shown to be involved in cancer and other diseases. The epithelial-to-mesenchymal transition is a key step in the metastatic process by which cancer cells gain the ability to invade tissues and extravasate into the bloodstream. This cellular transformation process, which is associated by morphological change, loss of epithelial traits and gain of mesenchymal markers, is triggered by the secreted cytokine transforming growth factor-β (TGF-β). TGF-β bioactivity is carefully regulated, and its effects on cells are mediated by its receptors on the cell surface. In this review, we first provide a brief overview of major types of glycans, namely, N-glycans, O-glycans, glycosphingolipids and glycosaminoglycans that are involved in cancer progression. Thereafter, we summarize studies on how the glycosylation of TGF-β signaling components regulates TGF-β secretion, bioavailability and TGF-β receptor function. Then, we review glycosylation changes associated with TGF-β-induced epithelial-to-mesenchymal transition in cancer. Identifying and understanding the mechanisms by which glycosylation affects TGF-β signaling and downstream biological responses will facilitate the identification of glycans as biomarkers and enable novel therapeutic approaches.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Zhao L, Liu H, Luo S, Moorman PG, Walsh KM, Li W, Wei Q. Associations between genetic variants of KIF5B, FMN1, and MGAT3 in the cadherin pathway and pancreatic cancer risk. Cancer Med 2020; 9:9620-9631. [PMID: 33200553 PMCID: PMC7774717 DOI: 10.1002/cam4.3603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Because the cadherin-mediated signaling pathway promotes cancer progression, we assessed associations between genetic variants in 109 cadherin-related genes and risk of pancreatic cancer (PanC) by using genotyping data from publically available genome-wide association studies (GWAS) datasets comprising 15,423 individuals of European ancestry. After initial single-locus analyses and subsequent meta-analysis with multiple testing correction for 29,963 single-nucleotide polymorphisms (SNPs), 11 SNPs remained statistically significant (p < 0.05). In the stepwise logistic regression analysis, three independent PanC risk-associated SNPs (KIF5B rs211304 C > G, FMN1 rs117648907 C > T, and MGAT3 rs34943118 T > C) remained statistically significant (p < 0.05), with odds ratios of 0.89 (95% confidence interval = 0.82-0.95 and p = 6.93 × 10-4 ), 1.33 (1.13-1.56 and 2.11 × 10-4 ), and 1.11 (1.05-1.17 and 8.10 × 10-5 ), respectively. Combined analysis of unfavorable genotypes of these three independent SNPs showed an upward trend in the genotype-risk association (ptrend < 0.001). Expression quantitative trait loci analyses indicated that the rs211304 G and rs34943118 C alleles were associated with increased mRNA expression levels of KIF5B and MGAT3, respectively (all p < 0.05). Additional bioinformatics prediction suggested that these three SNPs may affect enhancer histone marks that likely have an epigenetic effect on the genes. Our findings provide biological clues for these PanC risk-associated SNPs in cadherin-related genes in European ancestry populations, possibly by regulating the expression of the affected genes. However, our findings need to be validated in additional population, molecular and mechanistic investigations.
Collapse
Affiliation(s)
- Lingling Zhao
- Cancer CenterThe First Hospital of Jilin UniversityChangchunJilinChina
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of MedicineDuke University School of MedicineDurhamNCUSA
| | - Hongliang Liu
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of MedicineDuke University School of MedicineDurhamNCUSA
| | - Sheng Luo
- Department of Biostatistics and BioinformaticsDuke University School of MedicineDurhamNCUSA
| | - Patricia G. Moorman
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of Family Medicine and Community HealthDuke University Medical CenterNCUSA
| | - Kyle M. Walsh
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of NeurosurgeryDuke University School of MedicineDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
| | - Wei Li
- Cancer CenterThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Qingyi Wei
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of MedicineDuke University School of MedicineDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
| |
Collapse
|
28
|
El Rami FE, Barsoumian HB, Khneizer GW. Hereditary diffuse gastric cancer therapeutic roadmap: current and novel approaches in a nutshell. Ther Adv Med Oncol 2020; 12:1758835920967238. [PMID: 33193828 PMCID: PMC7607792 DOI: 10.1177/1758835920967238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022] Open
Abstract
Hereditary diffuse gastric cancer (HDGC) is a rare malignancy characterized by autosomal dominant inheritance of pathological variants of the CDH1 gene encoding E-cadherin, which is involved in cell–cell adhesion, maintenance of epithelial architecture, tumor suppression, and regulation of intracellular signaling pathways. Late-stage recognition of HDGC is typically associated with a poor clinical outcome due to its metastatic potential and risk of lobular breast cancer (LBC) development. The American College of Gastroenterology issued guidelines to evaluate HDGC, test for CDH1 genetic variants, and recommend prophylactic gastrectomy for carriers of CDH1 mutations. If surgery is not pursued, endoscopy is a surveillance alternative, although it carries a limited ability to detect malignant foci. As part of clinical research efforts, novel endoscopy advances are currently studied, and a center of excellence for HDGC was created for a comprehensive multidisciplinary team approach. Within this review, we cover current conventional treatment modalities such as gastrectomy and chemotherapy, as the mainstay treatments, in addition to Pembrolizumab, an immune checkpoint inhibitor, as the last therapeutic resort. We also shed light on novel and promising approaches with emphasis on immunotherapy to treat HDGC. We further break down the therapeutic paradigms to utilize molecular tools, antibodies against checkpoint inhibitors, TGF-β and tyrosine kinase inhibitors, cell-based adoptive therapies, and oncolytic viral therapies. We aim to expand the understanding on how to modulate the tumor microenvironment to tip the balance towards an anti-tumor phenotype, prevent metastasis of the primary disease, and potentially alter the therapeutic landscape for HDGC.
Collapse
Affiliation(s)
- Fadi E El Rami
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Gebran W Khneizer
- Department of Internal Medicine, Indiana University Hospital, 550 N University Blvd, Suite 1501, Indianapolis, IN 46202, USA
| |
Collapse
|
29
|
Taniguchi N, Ohkawa Y, Maeda K, Harada Y, Nagae M, Kizuka Y, Ihara H, Ikeda Y. True significance of N-acetylglucosaminyltransferases GnT-III, V and α1,6 fucosyltransferase in epithelial-mesenchymal transition and cancer. Mol Aspects Med 2020; 79:100905. [PMID: 33010941 DOI: 10.1016/j.mam.2020.100905] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
It is well known that numerous cancer-related changes occur in glycans that are attached to glycoproteins, glycolipids and proteoglycans on the cell surface and these changes in structure and the expression of the glycans are largely regulated by glycosyl-transferases, glycosidases, nucleotide sugars and their related genes. Such structural changes in glycans on cell surface proteins may accelerate the progression, invasion and metastasis of cancer cells. Among the over 200 known glycosyltransferases and related genes, β 1,6 N-acetylglucosaminyltransferase V (GnT-V) (the MGAT5 gene) and α 1,6 fucosyltransferase (FUT8) (the FUT8 gene) are representative enzymes in this respect because changes in glycans caused by these genes appear to be related to cancer metastasis and invasion in vitro as well as in vivo, and a number of reports on these genes in related to epithelial-mesenchymal transition (EMT) have also appeared. Another enzyme, one of the N-glycan branching enzymes, β1,4 N-acetylglucosaminyltransferase III (GnT-III) (the MGAT3 gene) has been reported to suppress EMT. However, there are intermediate states between EMT and mesenchymal-epithelial transition (MET) and some of these genes have been implicated in both EMT and MET and are also probably in an intermediate state. Therefore, it would be difficult to clearly define which specific glycosyltransferase is involved in EMT or MET or an intermediate state. The significance of EMT and N-glycan branching glycosyltransferases needs to be reconsidered and the inhibition of their corresponding genes would also be desirable in therapeutics. This review mainly focuses on GnT-III, GnT-V and FUT8, major players as N-glycan branching enzymes in cancer in relation to EMT programs, and also discusses the catalytic mechanisms of GnT-V and FUT8 whose crystal structures have now been obtained.
Collapse
Affiliation(s)
- Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Kento Maeda
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Masamichi Nagae
- Department of Molecular Immunology, RIMD, Osaka University, Osaka, Japan.
| | - Yasuhiko Kizuka
- Glyco-biochemistry Laboratory, G-Chain, Gifu University, Gifu, Japan.
| | - Hideyuki Ihara
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan.
| | - Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan.
| |
Collapse
|
30
|
da Fonseca LM, Calvalhan DM, Previato JO, Mendonça Previato L, Freire-de-Lima L. Resistance to paclitaxel induces glycophenotype changes and mesenchymal-to-epithelial transition activation in the human prostate cancer cell line PC-3. Tumour Biol 2020; 42:1010428320957506. [PMID: 32914709 DOI: 10.1177/1010428320957506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The development of the multidrug resistance phenotype is one of the major challenges faced in the treatment of cancer. The multidrug resistance phenotype is characterized by cross-resistance to drugs with different chemical structures and mechanisms of action. In this work, we hypothesized that the acquisition of resistance in cancer is accompanied by activation of the epithelial-to-mesenchymal transition process, where the tumor cell acquires a more mobile and invasive phenotype; a fundamental step in tumor progression and in promoting the invasion of other organs and tissues. In addition, it is known that atypical glycosylations are characteristic of tumor cells, being used as biomarkers. We believe that the acquisition of the multidrug resistance phenotype and the activation of epithelial-to-mesenchymal transition provoke alterations in the cell glycophenotype, which can be used as glycomarkers for chemoresistance and epithelial-to-mesenchymal transition processes. Herein, we induced the multidrug resistance phenotype in the PC-3 human prostate adenocarcinoma line through the continuous treatment with the drug paclitaxel. Our results showed that the induced cell multidrug resistance phenotype (1) acquired a mixed profile between epithelial and mesenchymal phenotypes and (2) modified the glycophenotype, showing an increase in the level of sialylation and in the number of branched glycans. Both mechanisms are described as indicators of poor prognosis.
Collapse
Affiliation(s)
| | - Danilo Macedo Calvalhan
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucia Mendonça Previato
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Silva MC, Fernandes Â, Oliveira M, Resende C, Correia A, de-Freitas-Junior JC, Lavelle A, Andrade-da-Costa J, Leander M, Xavier-Ferreira H, Bessa J, Pereira C, Henrique RM, Carneiro F, Dinis-Ribeiro M, Marcos-Pinto R, Lima M, Lepenies B, Sokol H, Machado JC, Vilanova M, Pinho SS. Glycans as Immune Checkpoints: Removal of Branched N-glycans Enhances Immune Recognition Preventing Cancer Progression. Cancer Immunol Res 2020; 8:1407-1425. [PMID: 32933968 DOI: 10.1158/2326-6066.cir-20-0264] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/03/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
Tumor growth is accompanied with dramatic changes in the cellular glycome, such as the aberrant expression of complex branched N-glycans. However, the role of this protumoral N-glycan in immune evasion and whether its removal contributes to enhancement of immune recognition and to unleashing an antitumor immune response remain elusive. We demonstrated that branched N-glycans are used by colorectal cancer cells to escape immune recognition, instructing the creation of immunosuppressive networks through inhibition of IFNγ. The removal of this "glycan-mask" exposed immunogenic mannose glycans that potentiated immune recognition by DC-SIGN-expressing immune cells, resulting in an effective antitumor immune response. We revealed a glycoimmune checkpoint in colorectal cancer, highlighting the therapeutic efficacy of its deglycosylation to potentiate immune recognition and, thus, improving cancer immunotherapy.
Collapse
Affiliation(s)
- Mariana C Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ângela Fernandes
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Maria Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Carlos Resende
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Alexandra Correia
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Julio C de-Freitas-Junior
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Aonghus Lavelle
- Sorbonne Université, INSERM, Saint-Antoine Research Center (CRSA), Paris, France
| | - Jéssica Andrade-da-Costa
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Magdalena Leander
- Department of Hematology, Hospital Center of Porto, Porto, Portugal.,Multidisciplinary Unit for Biomedical Research, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Helena Xavier-Ferreira
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - José Bessa
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Carina Pereira
- CINTESIS - Centre for Health Technology and Services Research, University of Porto, Porto, Portugal.,Molecular Oncology and Viral Pathology Group, IPO Porto Research Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Rui M Henrique
- Department of Pathology and Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Fátima Carneiro
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Department of Pathology, Hospital Center of São João, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Mário Dinis-Ribeiro
- CINTESIS - Centre for Health Technology and Services Research, University of Porto, Porto, Portugal.,Department of Gastroenterology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Ricardo Marcos-Pinto
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Department of Gastroenterology, Hospital Center of Porto, Porto, Portugal.,Medical Faculty, Centre for Research in Health Technologies and Information Systems, Porto, Portugal
| | - Margarida Lima
- Department of Hematology, Hospital Center of Porto, Porto, Portugal.,Multidisciplinary Unit for Biomedical Research, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harry Sokol
- Sorbonne Université, INSERM, Saint-Antoine Research Center (CRSA), Paris, France.,INRA, UMR1319 Micalis, AgroParisTech, Jouy-en-Josas, France.,Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique - Hopitaux de Paris, Sorbonne Universités, Paris, France
| | - José C Machado
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuel Vilanova
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal. .,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Suppression of G6PD induces the expression and bisecting GlcNAc-branched N-glycosylation of E-Cadherin to block epithelial-mesenchymal transition and lymphatic metastasis. Br J Cancer 2020; 123:1315-1325. [PMID: 32719549 PMCID: PMC7555552 DOI: 10.1038/s41416-020-1007-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/10/2020] [Accepted: 07/07/2020] [Indexed: 01/06/2023] Open
Abstract
Background As the rate-limit enzyme of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD) plays important roles in tumour progression, but the exact mechanism through which G6PD controls cancer metastasis remains unclear. Methods G6PD expression in resected oral squamous cell carcinoma (OSCC) samples was analysed by immunohistochemistry. The effects and mechanism of G6PD suppression on OSCC cell lines were measured by transwell assay, wound healing assay, western and lectin blot, mass spectrometer analysis, ChIP-PCR, and luciferase reporter assay. BALB/c-nude mice were used to establish orthotopic xenograft model. Results G6PD expression in the tumours of 105 OSCC patients was associated with lymphatic metastasis and prognosis. In vitro cellular study suggested that G6PD suppression impaired cell migration, invasion, and epithelial-mesenchymal transition. Furtherly, G6PD knockdown activated the JNK pathway, which then blocked the AKT/GSK-3β/Snail axis to induce E-Cadherin expression and transcriptionally regulated MGAT3 expression to promote bisecting GlcNAc-branched N-glycosylation of E-Cadherin. An orthotopic xenograft model further confirmed that dehydroepiandrosterone reduced lymphatic metastatic rate of OSCC, which was partially reversed by JNK inhibition. Conclusions Suppression of G6PD promoted the expression and bisecting GlcNAc-branched N-glycosylation of E-Cadherin via activating the JNK pathway, which thus acted on OSCC metastasis.
Collapse
|
33
|
Chen Q, Tan Z, Guan F, Ren Y. The Essential Functions and Detection of Bisecting GlcNAc in Cell Biology. Front Chem 2020; 8:511. [PMID: 32719771 PMCID: PMC7350706 DOI: 10.3389/fchem.2020.00511] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
The N-glycans of mammalian glycoproteins vary greatly in structure, and the biological importance of these variations is mostly unknown. It is widely acknowledged that the bisecting N-acetylglucosamine (GlcNAc) structure, a β1,4-linked GlcNAc attached to the core β-mannose residue, represents a special type of N-glycosylated modification, and it has been reported to be involved in various biological processes, such as cell adhesion, fertilization and fetal development, neuritogenesis, and tumor development. In particular, the occurrence of N-glycans with a bisecting GlcNAc modification on proteins has been proven, with many implications for immune biology. Due to the essential functions of bisecting GlcNAc structures, analytical approaches to this modification are highly required. The traditional approach that has been used for bisecting GlcNAc determinations is based on the lectin recognition of Phaseolus vulgaris erythroagglutinin (PHA-E); however, poor binding specificity hinders the application of this method. With the development of mass spectrometry (MS) with high resolution and improved sensitivity and accuracy, MS-based glycomic analysis has provided precise characterization and quantification for glycosylation modification. In this review, we first provide an overview of the bisecting GlcNAc structure and its biological importance in neurological systems, immune tolerance, immunoglobulin G (IgG), and tumor metastasis and development and then summarize approaches to its determination by MS for performing precise functional studies. This review is valuable for those readers who are interested in the importance of bisecting GlcNAc in cell biology.
Collapse
Affiliation(s)
- Qiushi Chen
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Zengqi Tan
- Joint International Research Laboratory of Glycobiology and Medical Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medical Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Yan Ren
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
34
|
Li J, Xu J, Li L, Ianni A, Kumari P, Liu S, Sun P, Braun T, Tan X, Xiang R, Yue S. MGAT3-mediated glycosylation of tetraspanin CD82 at asparagine 157 suppresses ovarian cancer metastasis by inhibiting the integrin signaling pathway. Am J Cancer Res 2020; 10:6467-6482. [PMID: 32483464 PMCID: PMC7255015 DOI: 10.7150/thno.43865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Tetraspanins constitute a family of transmembrane spanning proteins that function mainly by organizing the plasma membrane into micro-domains. CD82, a member of tetraspanins, is a potent inhibitor of cancer metastasis in numerous malignancies. CD82 is a highly glycosylated protein, however, it is still unknown whether and how this post-translational modification affects CD82 function and cancer metastasis. Methods: The glycosylation of CD82 profiles are checked in the paired human ovarian primary and metastatic cancer tissues. The functional studies on the various glycosylation sites of CD82 are performed in vitro and in vivo. Results: We demonstrate that CD82 glycosylation at Asn157 is necessary for CD82-mediated inhibition of ovarian cancer cells migration and metastasis in vitro and in vivo. Mechanistically, we discover that CD82 glycosylation is pivotal to disrupt integrin α5β1-mediated cellular adhesion to the abundant extracellular matrix protein fibronectin. Thereby the glycosylated CD82 inhibits the integrin signaling pathway responsible for the induction of the cytoskeleton rearrangements required for cellular migration. Furthermore, we reveal that the glycosyltransferase MGAT3 is responsible for CD82 glycosylation in ovarian cancer cells. Metastatic ovarian cancers express reduced levels of MGAT3 which in turn may result in impaired CD82 glycosylation. Conclusions: Our work implicates a pathway for ovarian cancers metastasis regulation via MGAT3 mediated glycosylation of tetraspanin CD82 at asparagine 157.
Collapse
|
35
|
Corso G, Figueiredo J, De Angelis SP, Corso F, Girardi A, Pereira J, Seruca R, Bonanni B, Carneiro P, Pravettoni G, Guerini Rocco E, Veronesi P, Montagna G, Sacchini V, Gandini S. E-cadherin deregulation in breast cancer. J Cell Mol Med 2020; 24:5930-5936. [PMID: 32301282 PMCID: PMC7294130 DOI: 10.1111/jcmm.15140] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
E‐cadherin protein (CDH1 gene) integrity is fundamental to the process of epithelial polarization and differentiation. Deregulation of the E‐cadherin function plays a crucial role in breast cancer metastases, with worse prognosis and shorter overall survival. In this narrative review, we describe the inactivating mechanisms underlying CDH1 gene activity and its possible translation to clinical practice as a prognostic biomarker and as a potential targeted therapy.
Collapse
Affiliation(s)
- Giovanni Corso
- Division of Breast Surgery, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy
| | - Joana Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Federica Corso
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Antonia Girardi
- Division of Breast Surgery, European Institute of Oncology IRCCS, Milan, Italy
| | - Joana Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Raquel Seruca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Patricia Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy.,Division of Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Guerini Rocco
- Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy.,Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Paolo Veronesi
- Division of Breast Surgery, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy
| | - Giacomo Montagna
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Virgilio Sacchini
- Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy.,Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
36
|
Verhelst X, Dias AM, Colombel JF, Vermeire S, Van Vlierberghe H, Callewaert N, Pinho SS. Protein Glycosylation as a Diagnostic and Prognostic Marker of Chronic Inflammatory Gastrointestinal and Liver Diseases. Gastroenterology 2020; 158:95-110. [PMID: 31626754 DOI: 10.1053/j.gastro.2019.08.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/03/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Glycans are sequences of carbohydrates that are added to proteins or lipids to modulate their structure and function. Glycans modify proteins required for regulation of immune cells, and alterations have been associated with inflammatory conditions. For example, specific glycans regulate T-cell activation, structures, and functions of immunoglobulins; interactions between microbes and immune and epithelial cells; and malignant transformation in the intestine and liver. We review the effects of protein glycosylation in regulation of gastrointestinal and liver functions, and how alterations in glycosylation serve as diagnostic or prognostic factors, or as targets for therapy.
Collapse
Affiliation(s)
- Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Ana M Dias
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | | | - Severine Vermeire
- Translational Research in Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Nico Callewaert
- Vlaams Instituut voor Biotechnologie-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Salomé S Pinho
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal.
| |
Collapse
|
37
|
Peixoto A, Relvas-Santos M, Azevedo R, Santos LL, Ferreira JA. Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks. Front Oncol 2019; 9:380. [PMID: 31157165 PMCID: PMC6530332 DOI: 10.3389/fonc.2019.00380] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Decades of research have disclosed a plethora of alterations in protein glycosylation that decisively impact in all stages of disease and ultimately contribute to more aggressive cell phenotypes. The biosynthesis of cancer-associated glycans and its reflection in the glycoproteome is driven by microenvironmental cues and these events act synergistically toward disease evolution. Such intricate crosstalk provides the molecular foundations for the activation of relevant oncogenic pathways and leads to functional alterations driving invasion and disease dissemination. However, it also provides an important source of relevant glyco(neo)epitopes holding tremendous potential for clinical intervention. Therefore, we highlight the transversal nature of glycans throughout the currently accepted cancer hallmarks, with emphasis on the crosstalk between glycans and the tumor microenvironment stromal components. Focus is also set on the pressing need to include glycans and glycoconjugates in comprehensive panomics models envisaging molecular-based precision medicine capable of improving patient care. We foresee that this may provide the necessary rationale for more comprehensive studies and molecular-based intervention.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Tumour and Microenvironment Interactions Group, INEB-Institute for Biomedical Engineering, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center, Porto, Portugal
| |
Collapse
|
38
|
Wang M, Zhu J, Lubman DM, Gao C. Aberrant glycosylation and cancer biomarker discovery: a promising and thorny journey. Clin Chem Lab Med 2019; 57:407-416. [PMID: 30138110 PMCID: PMC6785348 DOI: 10.1515/cclm-2018-0379] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/15/2018] [Indexed: 12/12/2022]
Abstract
Glycosylation is among the most important post-translational modifications for proteins and is of intrinsic complex character compared with DNAs and naked proteins. Indeed, over 50%-70% of proteins in circulation are glycosylated, and the "sweet attachments" have versatile structural and functional implications. Both the configuration and composition of the attached glycans affect the biological activities of consensus proteins significantly. Glycosylation is generated by complex biosynthetic pathways comprising hundreds of glycosyltransferases, glycosidases, transcriptional factors, transporters and the protein backbone. In addition, lack of direct genetic templates and glyco-specific antibodies such as those commonly used in DNA amplification and protein capture makes research on glycans and glycoproteins even more difficult, thus resulting in sparse knowledge on the pathophysiological implications of glycosylation. Fortunately, cutting-edge technologies have afforded new opportunities and approaches for investigating cancer-related glycosylation. Thus, glycans as well as aberrantly glycosylated protein-based cancer biomarkers have been increasingly recognized. This mini-review highlights the most recent developments in glyco-biomarker studies in an effort to discover clinically relevant cancer biomarkers using advanced analytical methodologies such as mass spectrometry, high-performance liquid chromatographic/ultra-performance liquid chromatography, capillary electrophoresis, and lectin-based technologies. Recent clinical-centered glycobiological studies focused on determining the regulatory mechanisms and the relation with diagnostics, prognostics and even therapeutics are also summarized. These studies indicate that glycomics is a treasure waiting to be mined where the growth of cancer-related glycomics and glycoproteomics is the next great challenge after genomics and proteomics.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| |
Collapse
|
39
|
N-Acetylglucosaminyltransferase III (GnT-III) but not N-Acetylgalactosaminyltransferase-6 and 8 are Differentially Expressed in Invasive and In Situ Ductal Carcinoma of the Breast. Pathol Oncol Res 2019; 25:759-768. [PMID: 30689164 DOI: 10.1007/s12253-019-00593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
Abstract
Mammary carcinoma is the most common malignant tumor in women, and it is the leading cause of mortality. In tumor context, glycosylation promotes post translational modifications necessary for cell progression, emerging as a relevant tumor hallmarker. This study aimed to analyze the association between polypeptide N-acetylgalactosaminyltransferase-6 (ppGalNAc-T6), -T8, N-acetylglucosaminyltransferase III (GnT-III) expression, Phaseolus vulgaris-leucoagglutinin (PHA-L), wheat germ agglutinin (WGA) and peanut agglutinin (PNA) staining with clinic-histopathological factors from patients with pure ductal carcinoma in situ (DCIS) and DCIS with invasive ductal carcinoma (DCIS-IDC) of breast. Formalin-fixed and paraffin-embedded samples (n = 109) were analyzed. In pure DCIS samples GnT-III was over-expressed in comedo lesions (p = 0.007). In DCIS-IDC, GnT-III expression was associated with high nuclear grade tumors (p = 0.039) while the presence of PHA-L and WGA were inversely related to HER-2 expression (p = 0.001; p = 0.036, respectively). These findings pointed to possible involvement of GnT-III, ppGalNAc-T8, L-PHA and WGA as probes in prognostic evaluation of DCIS.
Collapse
|
40
|
Buettner MJ, Shah SR, Saeui CT, Ariss R, Yarema KJ. Improving Immunotherapy Through Glycodesign. Front Immunol 2018; 9:2485. [PMID: 30450094 PMCID: PMC6224361 DOI: 10.3389/fimmu.2018.02485] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/08/2018] [Indexed: 01/04/2023] Open
Abstract
Immunotherapy is revolutionizing health care, with the majority of high impact "drugs" approved in the past decade falling into this category of therapy. Despite considerable success, glycosylation-a key design parameter that ensures safety, optimizes biological response, and influences the pharmacokinetic properties of an immunotherapeutic-has slowed the development of this class of drugs in the past and remains challenging at present. This article describes how optimizing glycosylation through a variety of glycoengineering strategies provides enticing opportunities to not only avoid past pitfalls, but also to substantially improve immunotherapies including antibodies and recombinant proteins, and cell-based therapies. We cover design principles important for early stage pre-clinical development and also discuss how various glycoengineering strategies can augment the biomanufacturing process to ensure the overall effectiveness of immunotherapeutics.
Collapse
Affiliation(s)
- Matthew J Buettner
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Sagar R Shah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States.,Pharmacology/Toxicology Branch I, Division of Clinical Evaluation and Pharmacology/Toxicology, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, United States
| | - Ryan Ariss
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
41
|
Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cell Immunol 2018; 333:46-57. [DOI: 10.1016/j.cellimm.2018.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 01/20/2023]
|
42
|
Yale AR, Nourse JL, Lee KR, Ahmed SN, Arulmoli J, Jiang AYL, McDonnell LP, Botten GA, Lee AP, Monuki ES, Demetriou M, Flanagan LA. Cell Surface N-Glycans Influence Electrophysiological Properties and Fate Potential of Neural Stem Cells. Stem Cell Reports 2018; 11:869-882. [PMID: 30197120 PMCID: PMC6178213 DOI: 10.1016/j.stemcr.2018.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 01/10/2023] Open
Abstract
Understanding the cellular properties controlling neural stem and progenitor cell (NSPC) fate choice will improve their therapeutic potential. The electrophysiological measure whole-cell membrane capacitance reflects fate bias in the neural lineage but the cellular properties underlying membrane capacitance are poorly understood. We tested the hypothesis that cell surface carbohydrates contribute to NSPC membrane capacitance and fate. We found NSPCs differing in fate potential express distinct patterns of glycosylation enzymes. Screening several glycosylation pathways revealed that the one forming highly branched N-glycans differs between neurogenic and astrogenic populations of cells in vitro and in vivo. Enhancing highly branched N-glycans on NSPCs significantly increases membrane capacitance and leads to the generation of more astrocytes at the expense of neurons with no effect on cell size, viability, or proliferation. These data identify the N-glycan branching pathway as a significant regulator of membrane capacitance and fate choice in the neural lineage.
Collapse
Affiliation(s)
- Andrew R Yale
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Jamison L Nourse
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Kayla R Lee
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Syed N Ahmed
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Janahan Arulmoli
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Alan Y L Jiang
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Lisa P McDonnell
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Giovanni A Botten
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Abraham P Lee
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Edwin S Monuki
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael Demetriou
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Lisa A Flanagan
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
43
|
Metabolic control of T cell immune response through glycans in inflammatory bowel disease. Proc Natl Acad Sci U S A 2018; 115:E4651-E4660. [PMID: 29720442 DOI: 10.1073/pnas.1720409115] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
) exhibited increased susceptibility to severe forms of colitis and early-onset disease. Importantly, the treatment of these mice with GlcNAc reduced disease severity and suppressed disease progression due to a controlled T cell-mediated immune response at the intestinal mucosa. In conclusion, our human ex vivo and preclinical results demonstrate the targeted-specific immunomodulatory properties of this simple glycan, proposing a therapeutic approach for patients with UC.
Collapse
|
44
|
O-mannosylation and N-glycosylation: two coordinated mechanisms regulating the tumour suppressor functions of E-cadherin in cancer. Oncotarget 2018; 7:65231-65246. [PMID: 27533452 PMCID: PMC5323151 DOI: 10.18632/oncotarget.11245] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of tumor suppressor protein E-cadherin is an early molecular event in cancer. O-mannosylation profile of E-cadherin is a newly-described post-translational modification crucial for its adhesive functions in homeostasis. However, the role of O-mannosyl glycans in E-cadherin-mediated cell adhesion in cancer and their interplay with N-glycans remains largely unknown. We herein demonstrated that human gastric carcinomas exhibiting a non-functional E-cadherin display a reduced expression of O-mannosyl glycans concomitantly with increased modification with branched complex N-glycans. Accordingly, overexpression of MGAT5-mediated branched N-glycans both in gastric cancer cells and transgenic mice models led to a significant decrease of O-mannosyl glycans attached to E-cadherin that was associated with impairment of its tumour suppressive functions. Importantly, overexpression of protein O-mannosyltransferase 2 (POMT2) induced a reduced expression of branched N-glycans which led to a protective effect of E-cadherin biological functions. Overall, our results reveal a newly identified mechanism of (dys)regulation of E-cadherin that occur through the interplay between O-mannosylation and N-glycosylation pathway.
Collapse
|
45
|
Shi Q, Hashimoto R, Otsubo T, Ikeda K, Todoroki K, Mizuno H, Jin D, Toyo’oka T, Jiang Z, Min JZ. A novel, simplified strategy of relative quantification N-glycan: Quantitative glycomics using electrospray ionization mass spectrometry through the stable isotopic labeling by transglycosylation reaction of mutant enzyme Endo-M-N175Q. J Pharm Biomed Anal 2018; 149:365-373. [DOI: 10.1016/j.jpba.2017.11.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
|
46
|
Munkley J, Elliott DJ. Hallmarks of glycosylation in cancer. Oncotarget 2018; 7:35478-89. [PMID: 27007155 PMCID: PMC5085245 DOI: 10.18632/oncotarget.8155] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/02/2016] [Indexed: 12/12/2022] Open
Abstract
Aberrant glycosylation plays a fundamental role in key pathological steps of tumour development and progression. Glycans have roles in cancer cell signalling, tumour cell dissociation and invasion, cell-matrix interactions, angiogenesis, metastasis and immune modulation. Aberrant glycosylation is often cited as a ‘hallmark of cancer’ but is notably absent from both the original hallmarks of cancer and from the next generation of emerging hallmarks. This review discusses how glycosylation is clearly an enabling characteristic that is causally associated with the acquisition of all the hallmark capabilities. Rather than aberrant glycosylation being itself a hallmark of cancer, another perspective is that glycans play a role in every recognised cancer hallmark.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
47
|
Bhat R, García I, Aznar E, Arnaiz B, Martínez-Bisbal MC, Liz-Marzán LM, Penadés S, Martínez-Máñez R. Lectin-gated and glycan functionalized mesoporous silica nanocontainers for targeting cancer cells overexpressing Lewis X antigen. NANOSCALE 2017; 10:239-249. [PMID: 29210428 DOI: 10.1039/c7nr06415b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gated mesoporous silica nanoparticles can deliver payload upon the application of a predefined stimulus, and therefore are promising drug delivery systems. Despite their important role, relatively low emphasis has been placed on the design of gating systems that actively target carbohydrate tumor cell membrane receptors. We describe herein a new Lewis X (Lex) antigen-targeted delivery system comprising mesoporous silica nanoparticles (MSNs) loaded with ATTO 430LS dye, functionalized with a Lex derivative (1) and capped with a fucose-specific carbohydrate-binding protein (Aleuria aurantia lectin (AAL)). This design takes advantage of the affinity of AAL for Lex overexpressed receptors in certain cancer cells. In the proximity of the cells, AAL is detached from MSNs to bind Lex, and selectins in the cells bind Lex in the gated MSNs, thereby inducing cargo delivery. Gated MSNs are nontoxic to colon cancer DLD-1 cells, and ATTO 430LS dye delivered correlated with the amount of Lex antigen overexpressed at the DLD-1 cell surface. This is one of the few examples of MSNs using biologically relevant glycans for both capping (via interaction with AAL) and targeting (via interaction with overexpressed Lex at the cell membrane).
Collapse
Affiliation(s)
- R Bhat
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
de Freitas Junior JCM, Morgado-Díaz JA. The role of N-glycans in colorectal cancer progression: potential biomarkers and therapeutic applications. Oncotarget 2017; 7:19395-413. [PMID: 26539643 PMCID: PMC4991391 DOI: 10.18632/oncotarget.6283] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Changes in glycosylation, which is one of the most common protein post-translational modifications, are considered to be a hallmark of cancer. N-glycans can modulate cell migration, cell-cell adhesion, cell signaling, growth and metastasis. The colorectal cancer (CRC) is a leading cause of cancer-related mortality and the correlation between CRC progression and changes in the pattern of expression of N-glycans is being considered in the search for new biomarkers. Here, we review the role of N-glycans in CRC cell biology. The perspectives on emerging N-glycan-related anticancer therapies, along with new insights and challenges, are also discussed.
Collapse
Affiliation(s)
| | - José Andrés Morgado-Díaz
- Cellular Biology Program, Structural Biology Group, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
49
|
Glycans as Regulatory Elements of the Insulin/IGF System: Impact in Cancer Progression. Int J Mol Sci 2017; 18:ijms18091921. [PMID: 28880250 PMCID: PMC5618570 DOI: 10.3390/ijms18091921] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022] Open
Abstract
The insulin/insulin-like growth factor (IGF) system in mammals comprises a dynamic network of proteins that modulate several biological processes such as development, cell growth, metabolism, and aging. Dysregulation of the insulin/IGF system has major implications for several pathological conditions such as diabetes and cancer. Metabolic changes also culminate in aberrant glycosylation, which has been highlighted as a hallmark of cancer. Changes in glycosylation regulate every pathophysiological step of cancer progression including tumour cell-cell dissociation, cell migration, cell signaling and metastasis. This review discusses how the insulin/IGF system integrates with glycosylation alterations and impacts on cell behaviour, metabolism and drug resistance in cancer.
Collapse
|
50
|
Liu T, Shang S, Li W, Qin X, Sun L, Zhang S, Liu Y. Assessment of Hepatocellular Carcinoma Metastasis Glycobiomarkers Using Advanced Quantitative N-glycoproteome Analysis. Front Physiol 2017; 8:472. [PMID: 28736531 PMCID: PMC5500640 DOI: 10.3389/fphys.2017.00472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022] Open
Abstract
Hepatocelluar carcinoma (HCC) is one of the most common malignant tumors with high incidence of metastasis. Glycosylation is involved in fundamental molecular and cell biology process occurring in cancer including metastasis formation. In this study, lectin microarray, lectin blotting, lectin affinity chromatography and tandem 18O stable isotope labeling coupled with liquid chromatography-mass spectrometer (LC-MS) analysis were applied to quantify the changes in N-glycosite occupancy for HCC metastasis serum. Firstly, lectin microarray was used to screen glycoforms and Phaseolus vulgaris Leucoagglutinin (PHA-L) reactive structure (β1,6-GlcNAc branched N-glycan) was found to be increased significantly in HCC patients with metastasis compared with those with non-metastasis. Then, PHA-L affinity glycoproteins were enriched followed by N-glycosite occupancy measurement with strategy of tandem 18O stable isotope labeling. 11 glycoproteins with significantly changed N-glycosite occupancy were identified, they were associated with cell migration, invasion and adhesion through p38 mitogen-activated protein kinase signaling pathway and nuclear factor kappa B signaling pathway. Quantification of N-glycosite occupancy for PHA-L reactive glycoproteins could help to discover important glycoproteins of potential clinically significance in terms of HCC etiology. Also, understanding of N-glycosite occupancy alterations will aid the characterization of molecular mechanism of HCC metastasis as well as establishment of novel glycobiomarkers.
Collapse
Affiliation(s)
- Tianhua Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China.,Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Shuxin Shang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Wei Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China.,Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Lu Sun
- Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Shu Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Yinkun Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China.,Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| |
Collapse
|