1
|
Veltra D, Marinakis NM, Kotsios I, Delaporta P, Kekou K, Kosma K, Traeger-Synodinos J, Sofocleous C. Lethal Complications and Complex Genotypes in Shwachman Diamond Syndrome: Report of a Family with Recurrent Neonatal Deaths and a Case-Based Brief Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2024; 11:705. [PMID: 38929284 PMCID: PMC11201973 DOI: 10.3390/children11060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Shwachman Diamond Syndrome (SDS) is a multi-system disease characterized by exocrine pancreatic insufficiency with malabsorption, infantile neutropenia and aplastic anemia. Life-threatening complications include progression to acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS), critical deep-tissue infections and asphyxiating thoracic dystrophy. In most patients, SDS results from biallelic pathogenic variants in the SBDS gene, different combinations of which contribute to heterogenous clinical presentations. Null variants are not well tolerated, supporting the theory that the loss of SBDS expression is likely lethal in both mice and humans. A novel complex genotype (SBDS:c.[242C>G;258+2T>C];[460-1G>A]/WFS1:c.[2327A>T];[1371G>T]) was detected in a family with recurrent neonatal deaths. A female neonate died three hours after birth with hemolytic anemia, and a male neonate with severe anemia, thrombocytopenia and neutropenia succumbed on day 40 after Staphylococcus epidermidis infection. A subsequent review of the literature focused on fatal complications, complex SBDS genotypes and/or unusual clinical presentations and disclosed rare cases, of which some had unexpected combinations of genetic and clinical findings. The impact of pathogenic variants and associated phenotypes is discussed in the context of data sharing towards expanding scientific expert networks, consolidating knowledge and advancing an understanding of novel underlying genotypes and complex phenotypes, facilitating informed clinical decisions and disease management.
Collapse
Affiliation(s)
- Danai Veltra
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
- Research University Institute for the Study of Genetic and Malignant Disease of Childhood, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Nikolaos M. Marinakis
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
- Research University Institute for the Study of Genetic and Malignant Disease of Childhood, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Ioannis Kotsios
- Neonatal Intensive Care Unit, “Hippocration” General Hospital, 54642 Thessaloniki, Greece
| | - Polyxeni Delaporta
- Thalassemia Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Kyriaki Kekou
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Konstantina Kosma
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| |
Collapse
|
2
|
Kawashima N, Bezzerri V, Corey SJ. The Molecular and Genetic Mechanisms of Inherited Bone Marrow Failure Syndromes: The Role of Inflammatory Cytokines in Their Pathogenesis. Biomolecules 2023; 13:1249. [PMID: 37627314 PMCID: PMC10452082 DOI: 10.3390/biom13081249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) include Fanconi anemia, Diamond-Blackfan anemia, Shwachman-Diamond syndrome, dyskeratosis congenita, severe congenital neutropenia, and other rare entities such as GATA2 deficiency and SAMD9/9L mutations. The IBMFS monogenic disorders were first recognized by their phenotype. Exome sequencing has validated their classification, with clusters of gene mutations affecting DNA damage response (Fanconi anemia), ribosome structure (Diamond-Blackfan anemia), ribosome assembly (Shwachman-Diamond syndrome), or telomere maintenance/stability (dyskeratosis congenita). The pathogenetic mechanisms of IBMFSs remain to be characterized fully, but an overarching hypothesis states that different stresses elicit TP53-dependent growth arrest and apoptosis of hematopoietic stem, progenitor, and precursor cells. Here, we review the IBMFSs and propose a role for pro-inflammatory cytokines, such as TGF-β, IL-1β, and IFN-α, in mediating the cytopenias. We suggest a pathogenic role for cytokines in the transformation to myeloid neoplasia and hypothesize a role for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Nozomu Kawashima
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Seth J. Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
3
|
Ohlson MB, Eitson JL, Wells AI, Kumar A, Jang S, Ni C, Xing C, Buszczak M, Schoggins JW. Genome-Scale CRISPR Screening Reveals Host Factors Required for Ribosome Formation and Viral Replication. mBio 2023; 14:e0012723. [PMID: 36809113 PMCID: PMC10128003 DOI: 10.1128/mbio.00127-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
Viruses are known to co-opt host machinery for translation initiation, but less is known about which host factors are required for the formation of ribosomes used to synthesize viral proteins. Using a loss-of-function CRISPR screen, we show that synthesis of a flavivirus-encoded fluorescent reporter depends on multiple host factors, including several 60S ribosome biogenesis proteins. Viral phenotyping revealed that two of these factors, SBDS, a known ribosome biogenesis factor, and the relatively uncharacterized protein SPATA5, were broadly required for replication of flaviviruses, coronaviruses, alphaviruses, paramyxoviruses, an enterovirus, and a poxvirus. Mechanistic studies revealed that loss of SPATA5 caused defects in rRNA processing and ribosome assembly, suggesting that this human protein may be a functional ortholog of yeast Drg1. These studies implicate specific ribosome biogenesis proteins as viral host dependency factors that are required for synthesis of virally encoded protein and accordingly, optimal viral replication. IMPORTANCE Viruses are well known for their ability to co-opt host ribosomes to synthesize viral proteins. The specific factors involved in translation of viral RNAs are not fully described. In this study, we implemented a unique genome-scale CRISPR screen to identify previously uncharacterized host factors that are important for the synthesis of virally encoded protein. We found that multiple genes involved in 60S ribosome biogenesis were required for viral RNA translation. Loss of these factors severely impaired viral replication. Mechanistic studies on the AAA ATPase SPATA5 indicate that this host factor is required for a late step in ribosome formation. These findings reveal insight into the identity and function of specific ribosome biogenesis proteins that are critical for viral infections.
Collapse
Affiliation(s)
- Maikke B. Ohlson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jennifer L. Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexandra I. Wells
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Seoyeon Jang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
SBDS interacts with RNF2 and is degraded through RNF2-dependent ubiquitination. Biochem Biophys Res Commun 2022; 598:119-123. [DOI: 10.1016/j.bbrc.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/05/2022] [Indexed: 11/20/2022]
|
5
|
Alsavaf MB, Verboon JM, Dogan ME, Azizoglu ZB, Okus FZ, Ozcan A, Dundar M, Eken A, Donmez-Altuntas H, Sankaran VG, Unal E. A novel missense mutation outside the DNAJ domain of DNAJC21 is associated with Shwachman-Diamond syndrome. Br J Haematol 2022; 197:e88-e93. [PMID: 35298850 DOI: 10.1111/bjh.18112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Bilal Alsavaf
- Division of Pediatric Hematology, Oncology & HSCT Center, Department of Pediatrics, Erciyes University, Faculty of Medicine, Kayseri, Turkey.,Gevher Nesibe Genome and Stem Cell Institution, Betul Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Jeffrey M Verboon
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Muhammet E Dogan
- Department of Medical Genetic, Erciyes University, Kayseri, Turkey
| | - Zehra Busra Azizoglu
- Gevher Nesibe Genome and Stem Cell Institution, Betul Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Faculty of Medicine, Kayseri, Turkey.,Department of Medical Biology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Fatma Zehra Okus
- Division of Pediatric Hematology, Oncology & HSCT Center, Department of Pediatrics, Erciyes University, Faculty of Medicine, Kayseri, Turkey.,University College of London, Institute of Immunity and Transplantation, Royal Free Hospital, London, UK
| | - Alper Ozcan
- Division of Pediatric Hematology, Oncology & HSCT Center, Department of Pediatrics, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Munis Dundar
- Department of Medical Genetic, Erciyes University, Kayseri, Turkey
| | - Ahmet Eken
- Gevher Nesibe Genome and Stem Cell Institution, Betul Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Faculty of Medicine, Kayseri, Turkey.,Department of Medical Biology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | | | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ekrem Unal
- Division of Pediatric Hematology, Oncology & HSCT Center, Department of Pediatrics, Erciyes University, Faculty of Medicine, Kayseri, Turkey.,Gevher Nesibe Genome and Stem Cell Institution, Betul Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Faculty of Medicine, Kayseri, Turkey.,Department of Blood Banking and Transfusion Medicine, Health Science Institution, Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
Genome-wide whole-blood transcriptome profiling across inherited bone marrow failure subtypes. Blood Adv 2021; 5:5360-5371. [PMID: 34625797 PMCID: PMC9153011 DOI: 10.1182/bloodadvances.2021005360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022] Open
Abstract
Gene expression profiling has long been used in understanding the contribution of genes and related pathways in disease pathogenesis and susceptibility. We have performed whole-blood transcriptomic profiling in a subset of patients with inherited bone marrow failure (IBMF) whose diseases are clinically and genetically characterized as Fanconi anemia (FA), Shwachman-Diamond syndrome (SDS), and dyskeratosis congenita (DC). We hypothesized that annotating whole-blood transcripts genome wide will aid in understanding the complexity of gene regulation across these IBMF subtypes. Initial analysis of these blood-derived transcriptomes revealed significant skewing toward upregulated genes in patients with FA when compared with controls. Patients with SDS or DC also showed similar skewing profiles in their transcriptional status revealing a common pattern across these different IBMF subtypes. Gene set enrichment analysis revealed shared pathways involved in protein translation and elongation (ribosome constituents), RNA metabolism (nonsense-mediated decay), and mitochondrial function (electron transport chain). We further identified a discovery set of 26 upregulated genes at stringent cutoff (false discovery rate < 0.05) that appeared as a unified signature across the IBMF subtypes. Subsequent transcriptomic analysis on genetically uncharacterized patients with BMF revealed a striking overlap of genes, including 22 from the discovery set, which indicates a unified transcriptional drive across the classic (FA, SDS, and DC) and uncharacterized BMF subtypes. This study has relevance in disease pathogenesis, for example, in explaining the features (including the BMF) common to all patients with IBMF and suggests harnessing this transcriptional signature for patient benefit.
Collapse
|
7
|
Kawamoto M, Kohi S, Abe T, Dbouk M, Macgregor-Das A, Koi C, Song KB, Borges M, Sugimine R, Laheru D, Hruban RH, Roberts N, Klein AP, Goggins M. Endoplasmic stress-inducing variants in CPB1 and CPA1 and risk of pancreatic cancer: A case-control study and meta-analysis. Int J Cancer 2021; 150:1123-1133. [PMID: 34817877 DOI: 10.1002/ijc.33883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
Gene variants that encode pancreatic enzymes with impaired secretion can induce pancreatic acinar endoplasmic reticulum (ER) stress, cellular injury and pancreatitis. The role of such variants in pancreatic cancer risk has received little attention. We compared the prevalence of ER stress-inducing variants in CPA1 and CPB1 in patients with pancreatic ductal adenocarcinoma (PDAC cases), enrolled in the National Familial Pancreas Tumor Registry, to their prevalence in noncancer controls in the Genome Aggregation Database (gnomAD). Variants of unknown significance were expressed and variants with reduced secretion assessed for ER stress induction. In vitro assessments were compared with software predictions of variant function. Protein variant software was used to assess variants found in only one gnomAD control ("n-of-one" variants). A meta-analysis of prior PDAC case/control studies was also performed. Of the 1385 patients with PDAC, 0.65% were found to harbor an ER stress-inducing variant in CPA1 or CPB1, compared to 0.17% of the 64 026 controls (odds ratio [OR]: 3.80 [1.92-7.51], P = .0001). ER stress-inducing variants in the CPA1 gene were identified in 4 of 1385 PDAC cases vs 77 of 64 026 gnomAD controls (OR: 2.4 [0.88-6.58], P = .087), and variants in CPB1 were detected in 5 of 1385 cases vs 33 of 64 026 controls (OR: 7.02 [2.74-18.01], P = .0001). Meta-analysis demonstrated strong associations for pancreatic cancer and ER-stress inducing variants for both CPA1 (OR: 3.65 [1.58-8.39], P < .023) and CPB1 (OR: 9.51 [3.46-26.15], P < .001). Rare variants in CPB1 and CPA1 that induce ER stress are associated with increased odds of developing pancreatic cancer.
Collapse
Affiliation(s)
- Makoto Kawamoto
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Shiro Kohi
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Toshiya Abe
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Mohamad Dbouk
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Anne Macgregor-Das
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Chiho Koi
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Ki-Byung Song
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Michael Borges
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Ryo Sugimine
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Daniel Laheru
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Nicholas Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Alison P Klein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Bloomberg School of Public Health, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Michael Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021; 52:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Frédérique Maczkowiak-Chartois
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
9
|
Juaire KD, Lapouge K, Becker MMM, Kotova I, Michelhans M, Carapito R, Wild K, Bahram S, Sinning I. Structural and Functional Impact of SRP54 Mutations Causing Severe Congenital Neutropenia. Structure 2020; 29:15-28.e7. [PMID: 33053321 DOI: 10.1016/j.str.2020.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 01/12/2023]
Abstract
The SRP54 GTPase is a key component of co-translational protein targeting by the signal recognition particle (SRP). Point mutations in SRP54 have been recently shown to lead to a form of severe congenital neutropenia displaying symptoms overlapping with those of Shwachman-Diamond syndrome. The phenotype includes severe neutropenia, exocrine pancreatic deficiency, and neurodevelopmental as well as skeletal disorders. Using a combination of X-ray crystallography, hydrogen-deuterium exchange coupled to mass spectrometry and complementary biochemical and biophysical methods, we reveal extensive structural defects in three disease-causing SRP54 variants resulting in critical protein destabilization. GTP binding is mostly abolished as a consequence of an altered GTPase core. The mutations located in conserved sequence fingerprints of SRP54 eliminate targeting complex formation with the SRP receptor as demonstrated in yeast and human cells. These specific defects critically influence the entire SRP pathway, thereby causing this life-threatening disease.
Collapse
Affiliation(s)
- Keven D Juaire
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Matthias M M Becker
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Irina Kotova
- BIOMICA SAS, 4 rue Boussingault, 67000 Strasbourg, France
| | - Michelle Michelhans
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, 4 rue Kirschleger, 67085 Strasbourg, France
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, 4 rue Kirschleger, 67085 Strasbourg, France
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Jain A, Nilatawong P, Mamak N, Jensen LT, Jensen AN. Disruption in iron homeostasis and impaired activity of iron-sulfur cluster containing proteins in the yeast model of Shwachman-Diamond syndrome. Cell Biosci 2020; 10:105. [PMID: 32944219 PMCID: PMC7488397 DOI: 10.1186/s13578-020-00468-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Shwachman-Diamond syndrome (SDS) is a congenital disease that affects the bone marrow, skeletal system, and pancreas. The majority of patients with SDS have mutations in the SBDS gene, involved in ribosome biogenesis as well as other processes. A Saccharomyces cerevisiae model of SDS, lacking Sdo1p the yeast orthologue of SBDS, was utilized to better understand the molecular pathogenesis in the development of this disease. RESULTS Deletion of SDO1 resulted in a three-fold over-accumulation of intracellular iron. Phenotypes associated with impaired iron-sulfur (ISC) assembly, up-regulation of the high affinity iron uptake pathway, and reduced activities of ISC containing enzymes aconitase and succinate dehydrogenase, were observed in sdo1∆ yeast. In cells lacking Sdo1p, elevated levels of reactive oxygen species (ROS) and protein oxidation were reduced with iron chelation, using a cell impermeable iron chelator. In addition, the low activity of manganese superoxide dismutase (Sod2p) seen in sdo1∆ cells was improved with iron chelation, consistent with the presence of reactive iron from the ISC assembly pathway. In yeast lacking Sdo1p, the mitochondrial voltage-dependent anion channel (VDAC) Por1p is over-expressed and its deletion limits iron accumulation and increases activity of aconitase and succinate dehydrogenase. CONCLUSIONS We propose that oxidative stress from POR1 over-expression, resulting in impaired activity of ISC containing proteins and disruptions in iron homeostasis, may play a role in disease pathogenesis in SDS patients.
Collapse
Affiliation(s)
- Ayushi Jain
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400 Thailand
| | - Phubed Nilatawong
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400 Thailand
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190 Thailand
| | - Narinrat Mamak
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Laran T. Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Amornrat Naranuntarat Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400 Thailand
- Pathology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok, Thailand
| |
Collapse
|
11
|
Hamabata T, Umeda K, Kouzuki K, Tanaka T, Daifu T, Nodomi S, Saida S, Kato I, Baba S, Hiramatsu H, Osawa M, Niwa A, Saito MK, Kamikubo Y, Adachi S, Hashii Y, Shimada A, Watanabe H, Osafune K, Okita K, Nakahata T, Watanabe K, Takita J, Heike T. Pluripotent stem cell model of Shwachman-Diamond syndrome reveals apoptotic predisposition of hemoangiogenic progenitors. Sci Rep 2020; 10:14859. [PMID: 32908229 PMCID: PMC7481313 DOI: 10.1038/s41598-020-71844-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/11/2020] [Indexed: 11/09/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS), an autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities, is caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene, which plays a role in ribosome biogenesis. Although the causative genes of congenital disorders frequently involve regulation of embryogenesis, the role of the SBDS gene in early hematopoiesis remains unclear, primarily due to the lack of a suitable experimental model for this syndrome. In this study, we established induced pluripotent stem cells (iPSCs) from patients with SDS (SDS-iPSCs) and analyzed their in vitro hematopoietic and endothelial differentiation potentials. SDS-iPSCs generated hematopoietic and endothelial cells less efficiently than iPSCs derived from healthy donors, principally due to the apoptotic predisposition of KDR+CD34+ common hemoangiogenic progenitors. By contrast, forced expression of SBDS gene in SDS-iPSCs or treatment with a caspase inhibitor reversed the deficiency in hematopoietic and endothelial development, and decreased apoptosis of their progenitors, mainly via p53-independent mechanisms. Patient-derived iPSCs exhibited the hematological abnormalities associated with SDS even at the earliest hematopoietic stages. These findings will enable us to dissect the pathogenesis of multiple disorders associated with ribosomal dysfunction.
Collapse
Affiliation(s)
- Takayuki Hamabata
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kagehiro Kouzuki
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takayuki Tanaka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoo Daifu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Seishiro Nodomi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shiro Baba
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidefumi Hiramatsu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhiko Kamikubo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yoshiko Hashii
- Department of Cancer Immunotherapy, Osaka University School of Medicine, Suita, 565-0871, Japan
| | - Akira Shimada
- Department of Pediatric Hematology/Oncology, Okayama University, Okayama, 700-8558, Japan
| | - Hiroyoshi Watanabe
- Department of Pediatrics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8501, Japan
| | - Kenji Osafune
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Keisuke Okita
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Tatsutoshi Nakahata
- Drug Discovery Technology Development Office, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, 420-8660, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
12
|
Oyarbide U, Shah AN, Amaya-Mejia W, Snyderman M, Kell MJ, Allende DS, Calo E, Topczewski J, Corey SJ. Loss of Sbds in zebrafish leads to neutropenia and pancreas and liver atrophy. JCI Insight 2020; 5:134309. [PMID: 32759502 PMCID: PMC7526460 DOI: 10.1172/jci.insight.134309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/29/2020] [Indexed: 01/29/2023] Open
Abstract
Shwachman-Diamond syndrome (SDS) is characterized by exocrine pancreatic insufficiency, neutropenia, and skeletal abnormalities. Biallelic mutations in SBDS, which encodes a ribosome maturation factor, are found in 90% of SDS cases. Sbds–/– mice are embryonic lethal. Using CRISPR/Cas9 editing, we created sbds-deficient zebrafish strains. Sbds protein levels progressively decreased and became undetectable at 10 days postfertilization (dpf). Polysome analysis revealed decreased 80S ribosomes. Homozygous mutant fish developed normally until 15 dpf. Mutant fish subsequently had stunted growth and showed signs of atrophy in pancreas, liver, and intestine. In addition, neutropenia occurred by 5 dpf. Upregulation of tp53 mRNA did not occur until 10 dpf, and inhibition of proliferation correlated with death by 21 dpf. Transcriptome analysis showed tp53 activation through upregulation of genes involved in cell cycle arrest, cdkn1a and ccng1, and apoptosis, puma and mdm2. However, elimination of Tp53 function did not prevent lethality. Because of growth retardation and atrophy of intestinal epithelia, we studied the effects of starvation on WT fish. Starved WT fish showed intestinal atrophy, zymogen granule loss, and tp53 upregulation — similar to the mutant phenotype. In addition, there was reduction in neutral lipid storage and ribosomal protein amount, similar to the mutant phenotype. Thus, loss of Sbds in zebrafish phenocopies much of the human disease and is associated with growth arrest and tissue atrophy, particularly of the gastrointestinal system, at the larval stage. A variety of stress responses, some associated with Tp53, contribute to pathophysiology of SDS. Loss of ribosome maturation factor sbds in the zebrafish phenocopies human Shwachman-Diamond syndrome and is associated with p53 activation, but lethality cannot be rescued by p53 mutation.
Collapse
Affiliation(s)
- Usua Oyarbide
- Departments of Pediatrics, Immunology, and Human and Molecular Genetics, Children's Hospital of Richmond and Massey Cancer Center at Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Pediatrics, Stanley Manne Children's Research Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.,Departments of Pediatrics, Cancer Biology, and Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Arish N Shah
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wilmer Amaya-Mejia
- Departments of Pediatrics, Immunology, and Human and Molecular Genetics, Children's Hospital of Richmond and Massey Cancer Center at Virginia Commonwealth University, Richmond, Virginia, USA
| | - Matthew Snyderman
- Departments of Pediatrics, Cancer Biology, and Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Margaret J Kell
- Department of Pediatrics, Stanley Manne Children's Research Institute, Northwestern University School of Medicine, Chicago, Illinois, USA
| | | | - Eliezer Calo
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jacek Topczewski
- Department of Pediatrics, Stanley Manne Children's Research Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Seth J Corey
- Departments of Pediatrics, Immunology, and Human and Molecular Genetics, Children's Hospital of Richmond and Massey Cancer Center at Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Pediatrics, Stanley Manne Children's Research Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.,Departments of Pediatrics, Cancer Biology, and Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Tan S, Kermasson L, Hoslin A, Jaako P, Faille A, Acevedo-Arozena A, Lengline E, Ranta D, Poirée M, Fenneteau O, Ducou le Pointe H, Fumagalli S, Beaupain B, Nitschké P, Bôle-Feysot C, de Villartay JP, Bellanné-Chantelot C, Donadieu J, Kannengiesser C, Warren AJ, Revy P. EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome. Blood 2019; 134:277-290. [PMID: 31151987 PMCID: PMC6754720 DOI: 10.1182/blood.2018893404] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS) is a recessive disorder typified by bone marrow failure and predisposition to hematological malignancies. SDS is predominantly caused by deficiency of the allosteric regulator Shwachman-Bodian-Diamond syndrome that cooperates with elongation factor-like GTPase 1 (EFL1) to catalyze release of the ribosome antiassociation factor eIF6 and activate translation. Here, we report biallelic mutations in EFL1 in 3 unrelated individuals with clinical features of SDS. Cellular defects in these individuals include impaired ribosomal subunit joining and attenuated global protein translation as a consequence of defective eIF6 eviction. In mice, Efl1 deficiency recapitulates key aspects of the SDS phenotype. By identifying biallelic EFL1 mutations in SDS, we define this leukemia predisposition disorder as a ribosomopathy that is caused by corruption of a fundamental, conserved mechanism, which licenses entry of the large ribosomal subunit into translation.
Collapse
Affiliation(s)
- Shengjiang Tan
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Laëtitia Kermasson
- INSERM Unité Mixte de Recherche 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le cancer, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Angela Hoslin
- Medical Research Council Mammalian Genetics Unit, Harwell, United Kingdom
| | - Pekka Jaako
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Alexandre Faille
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Abraham Acevedo-Arozena
- Medical Research Council Mammalian Genetics Unit, Harwell, United Kingdom
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas, La Laguna, Spain
| | - Etienne Lengline
- Department of Hematology, CRNMR Aplasie Médullaire, Saint-Louis University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dana Ranta
- Department of Haematology, Centre Hospitalier Universitaire de Nancy, Nancy, France
| | - Maryline Poirée
- Department of Pediatric Hematology-Oncology, Centre Hospitalier Universitaire Lenval, Nice, France
| | - Odile Fenneteau
- Assistance Publique-Hôpitaux de Paris, Laboratory of Hematology, Robert Debré University Hospital, Paris, France
| | - Hubert Ducou le Pointe
- Radiology Department, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Department of Pediatric Imaging, Armand Trousseau Hospital, Sorbonne Universités, Pierre et Marie Curie-Paris University, Paris, France
| | - Stefano Fumagalli
- Institut Necker Enfants Malades, Paris, France
- INSERM, U1151, Université Paris Descartes Sorbonne Cité, Paris, France
| | - Blandine Beaupain
- French Neutropenia Registry, Assistance Publique-Hôpitaux de Paris, Trousseau Hospital, Paris, France
| | - Patrick Nitschké
- INSERM Unité Mixte de Recherche 1163, Bioinformatics Platform, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Christine Bôle-Feysot
- INSERM Unité Mixte de Recherche 1163, Genomics Platform, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Pierre de Villartay
- INSERM Unité Mixte de Recherche 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le cancer, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Christine Bellanné-Chantelot
- Department of Genetics, Hospital Pitié Salpétriére Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Jean Donadieu
- Service d'Hémato-Oncologie Pédiatrique, Assistance Publique-Hôpitaux de Paris Hôpital Trousseau, Registre des neutropénies-Centre de référence des neutropénies chroniques, Paris, France
| | - Caroline Kannengiesser
- Assistance Publique-Hôpitaux de Paris Service de Génétique, Hôpital Bichat, Paris, France; and
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Revy
- INSERM Unité Mixte de Recherche 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le cancer, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
14
|
Ruiz-Gutierrez M, Bölükbaşı ÖV, Alexe G, Kotini AG, Ballotti K, Joyce CE, Russell DW, Stegmaier K, Myers K, Novina CD, Papapetrou EP, Shimamura A. Therapeutic discovery for marrow failure with MDS predisposition using pluripotent stem cells. JCI Insight 2019; 5:125157. [PMID: 31039138 DOI: 10.1172/jci.insight.125157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Monosomy 7 or deletion of 7q (del(7q)) are common clonal cytogenetic abnormalities associated with high grade myelodysplastic syndrome (MDS) arising in inherited and acquired bone marrow failure. Current non-transplant approaches to treat marrow failure may be complicated by stimulation of clonal outgrowth. To study the biological consequences of del(7q) within the context of a failing marrow, we generated induced pluripotent stem cells (iPSCs) derived from patients with Shwachman Diamond Syndrome (SDS), a bone marrow failure disorder with MDS predisposition, and genomically engineered a 7q deletion. The TGFβ pathway was the top differentially regulated pathway in transcriptomic analysis of SDS versus SDSdel(7q) iPSCs. SMAD2 phosphorylation was increased in SDS relative to wild type cells consistent with hyperactivation of the TGFbeta pathway in SDS. Phospho-SMAD2 levels were reduced following 7q deletion in SDS cells and increased upon restoration of 7q diploidy. Inhibition of the TGFbeta pathway rescued hematopoiesis in SDS-iPSCs and in bone marrow hematopoietic cells from SDS patients while it had no impact on the SDSdel(7q) cells. These results identified a potential targetable vulnerability to improve hematopoiesis in an MDS-predisposition syndrome, and highlight the importance of the germline context of somatic alterations to inform precision medicine approaches to therapy.
Collapse
Affiliation(s)
- Melisa Ruiz-Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Özge Vargel Bölükbaşı
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gabriela Alexe
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, USA
| | - Adriana G Kotini
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kaitlyn Ballotti
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Cailin E Joyce
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David W Russell
- Division of Hematology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kimberly Stegmaier
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kasiani Myers
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Carl D Novina
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Akiko Shimamura
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Nelson AS, Myers KC. Diagnosis, Treatment, and Molecular Pathology of Shwachman-Diamond Syndrome. Hematol Oncol Clin North Am 2018; 32:687-700. [DOI: 10.1016/j.hoc.2018.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Núñez Villacís L, Wong MS, Ferguson LL, Hein N, George AJ, Hannan KM. New Roles for the Nucleolus in Health and Disease. Bioessays 2018; 40:e1700233. [PMID: 29603296 DOI: 10.1002/bies.201700233] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/02/2018] [Indexed: 12/31/2022]
Abstract
Over the last decade, our appreciation of the importance of the nucleolus for cellular function has progressed from the ordinary to the extraordinary. We no longer think of the nucleolus as simply the site of ribosome production, or a dynamic subnuclear body noted by pathologists for its changes in size and shape with malignancy. Instead, the nucleolus has emerged as a key controller of many cellular processes that are fundamental to normal cell homeostasis and the target for dysregulation in many human diseases; in some cases, independent of its functions in ribosome biogenesis. These extra-nucleolar or new functions, which we term "non-canonical" to distinguish them from the more traditional role of the nucleolus in ribosome synthesis, are the focus of this review. In particular, we explore how these non-canonical functions may provide novel insights into human disease and in some cases new targets for therapeutic development.
Collapse
Affiliation(s)
- Lorena Núñez Villacís
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia
| | - Mei S Wong
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia.,Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Center, Melbourne, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Laura L Ferguson
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia
| | - Amee J George
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia.,School of Biomedical Sciences, University of Queensland, St Lucia, 4067, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, 3010, Australia
| | - Katherine M Hannan
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia.,Department of Biochemistry, The University of Melbourne, Parkville, 3010, Australia
| |
Collapse
|
17
|
Warren AJ. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome. Adv Biol Regul 2018; 67:109-127. [PMID: 28942353 PMCID: PMC6710477 DOI: 10.1016/j.jbior.2017.09.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
Mutations that target the ubiquitous process of ribosome assembly paradoxically cause diverse tissue-specific disorders (ribosomopathies) that are often associated with an increased risk of cancer. Ribosomes are the essential macromolecular machines that read the genetic code in all cells in all kingdoms of life. Following pre-assembly in the nucleus, precursors of the large 60S and small 40S ribosomal subunits are exported to the cytoplasm where the final steps in maturation are completed. Here, I review the recent insights into the conserved mechanisms of ribosome assembly that have come from functional characterisation of the genes mutated in human ribosomopathies. In particular, recent advances in cryo-electron microscopy, coupled with genetic, biochemical and prior structural data, have revealed that the SBDS protein that is deficient in the inherited leukaemia predisposition disorder Shwachman-Diamond syndrome couples the final step in cytoplasmic 60S ribosomal subunit maturation to a quality control assessment of the structural and functional integrity of the nascent particle. Thus, study of this fascinating disorder is providing remarkable insights into how the large ribosomal subunit is functionally activated in the cytoplasm to enter the actively translating pool of ribosomes.
Collapse
MESH Headings
- Bone Marrow Diseases/metabolism
- Bone Marrow Diseases/pathology
- Cryoelectron Microscopy
- Exocrine Pancreatic Insufficiency/metabolism
- Exocrine Pancreatic Insufficiency/pathology
- Humans
- Lipomatosis/metabolism
- Lipomatosis/pathology
- Mutation
- Proteins/genetics
- Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Shwachman-Diamond Syndrome
Collapse
Affiliation(s)
- Alan J Warren
- Cambridge Institute for Medical Research, Cambridge, UK; The Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Sulima SO, Hofman IJF, De Keersmaecker K, Dinman JD. How Ribosomes Translate Cancer. Cancer Discov 2017; 7:1069-1087. [PMID: 28923911 PMCID: PMC5630089 DOI: 10.1158/2159-8290.cd-17-0550] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
A wealth of novel findings, including congenital ribosomal mutations in ribosomopathies and somatic ribosomal mutations in various cancers, have significantly increased our understanding of the relevance of ribosomes in oncogenesis. Here, we explore the growing list of mechanisms by which the ribosome is involved in carcinogenesis-from the hijacking of ribosomes by oncogenic factors and dysregulated translational control, to the effects of mutations in ribosomal components on cellular metabolism. Of clinical importance, the recent success of RNA polymerase inhibitors highlights the dependence on "onco-ribosomes" as an Achilles' heel of cancer cells and a promising target for further therapeutic intervention.Significance: The recent discovery of somatic mutations in ribosomal proteins in several cancers has strengthened the link between ribosome defects and cancer progression, while also raising the question of which cellular mechanisms such defects exploit. Here, we discuss the emerging molecular mechanisms by which ribosomes support oncogenesis, and how this understanding is driving the design of novel therapeutic strategies. Cancer Discov; 7(10); 1069-87. ©2017 AACR.
Collapse
Affiliation(s)
- Sergey O Sulima
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium
| | - Isabel J F Hofman
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium.
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland.
| |
Collapse
|
19
|
Affiliation(s)
- Roberto Valli
- Medical Genetic Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Frattini
- UOS Milano, Institute of Genetics and Biomedical Research, National Research Council, Milano, Italy
- Department of Medicine and Surgery, University of Insubria, Milano, Italy
| | - Antonella Minelli
- Medical Genetic Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Calamita P, Miluzio A, Russo A, Pesce E, Ricciardi S, Khanim F, Cheroni C, Alfieri R, Mancino M, Gorrini C, Rossetti G, Peluso I, Pagani M, Medina DL, Rommens J, Biffo S. SBDS-Deficient Cells Have an Altered Homeostatic Equilibrium due to Translational Inefficiency Which Explains their Reduced Fitness and Provides a Logical Framework for Intervention. PLoS Genet 2017; 13:e1006552. [PMID: 28056084 PMCID: PMC5249248 DOI: 10.1371/journal.pgen.1006552] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/20/2017] [Accepted: 12/24/2016] [Indexed: 12/26/2022] Open
Abstract
Ribosomopathies are a family of inherited disorders caused by mutations in genes necessary for ribosomal function. Shwachman-Diamond Bodian Syndrome (SDS) is an autosomal recessive disease caused, in most patients, by mutations of the SBDS gene. SBDS is a protein required for the maturation of 60S ribosomes. SDS patients present exocrine pancreatic insufficiency, neutropenia, chronic infections, and skeletal abnormalities. Later in life, patients are prone to myelodisplastic syndrome and acute myeloid leukemia (AML). It is unknown why patients develop AML and which cellular alterations are directly due to the loss of the SBDS protein. Here we derived mouse embryonic fibroblast lines from an SbdsR126T/R126T mouse model. After their immortalization, we reconstituted them by adding wild type Sbds. We then performed a comprehensive analysis of cellular functions including colony formation, translational and transcriptional RNA-seq, stress and drug sensitivity. We show that: 1. Mutant Sbds causes a reduction in cellular clonogenic capability and oncogene-induced transformation. 2. Mutant Sbds causes a marked increase in immature 60S subunits, limited impact on mRNA specific initiation of translation, but reduced global protein synthesis capability. 3. Chronic loss of SBDS activity leads to a rewiring of gene expression with reduced ribosomal capability, but increased lysosomal and catabolic activity. 4. Consistently with the gene signature, we found that SBDS loss causes a reduction in ATP and lactate levels, and increased susceptibility to DNA damage. Combining our data, we conclude that a cell-specific fragile phenotype occurs when SBDS protein drops below a threshold level, and propose a new interpretation of the disease. Shwachman Diamond syndrome (SDS) is an inherited disease. SDS presents, as hallmarks, exocrine pancreatic insufficiency, increased rate of infections, and higher incidence of leukemia. Most cases are due to mutations in the SBDS gene. SBDS encodes for a ribosome maturation factor. In this study, we immortalized mouse fibroblasts carrying one of the most common mutation of SDS patients and performed a thorough analysis of their properties. We show that the loss of SBDS activity causes a rewiring of gene expression and cellular metabolism. Overall we find a reduction of protein synthesis capability, a lower energy status, and increased lysosomal capability. SBDS mutant cells have an increased susceptibility to various forms of stress, but are strikingly resistant to oncogene-induced transformation. We propose a model that explains the complex phenotype of SDS patients and suggests roads for a rationale treatment.
Collapse
Affiliation(s)
- Piera Calamita
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
- * E-mail: (SB); (PC)
| | - Annarita Miluzio
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Arianna Russo
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
- DiSIT, University of Eastern Piedmont, Alessandria, Italy
| | - Elisa Pesce
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Sara Ricciardi
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Farhat Khanim
- School of Biosciences, University of Birmingham Edgbaston Birmingham, United Kingdom
| | - Cristina Cheroni
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Roberta Alfieri
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Marilena Mancino
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Chiara Gorrini
- Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Grazisa Rossetti
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Ivana Peluso
- Telethon Institute of Genetics and Medicine (TIGEM)-Fondazione Telethon, Pozzuoli, Italy
| | - Massimiliano Pagani
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Diego L. Medina
- Telethon Institute of Genetics and Medicine (TIGEM)-Fondazione Telethon, Pozzuoli, Italy
| | | | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
- DBS, Università degli Studi di Milano, Milan, Italy
- * E-mail: (SB); (PC)
| |
Collapse
|
21
|
Zambetti N, Ping Z, Chen S, Kenswil K, Mylona M, Sanders M, Hoogenboezem R, Bindels E, Adisty M, Van Strien P, van der Leije C, Westers T, Cremers E, Milanese C, Mastroberardino P, van Leeuwen J, van der Eerden B, Touw I, Kuijpers T, Kanaar R, van de Loosdrecht A, Vogl T, Raaijmakers M. Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia. Cell Stem Cell 2016; 19:613-627. [DOI: 10.1016/j.stem.2016.08.021] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 07/06/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022]
|
22
|
Ravera S, Dufour C, Cesaro S, Bottega R, Faleschini M, Cuccarolo P, Corsolini F, Usai C, Columbaro M, Cipolli M, Savoia A, Degan P, Cappelli E. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome. Sci Rep 2016; 6:25441. [PMID: 27146429 PMCID: PMC4857091 DOI: 10.1038/srep25441] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/12/2016] [Indexed: 02/07/2023] Open
Abstract
Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca(2+)]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials.
Collapse
Affiliation(s)
- Silvia Ravera
- DIFAR-Biochemistry Lab., Department of Pharmacy, University of Genova, 16132 Genova, Italy
| | - Carlo Dufour
- Haematology Unit, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Simone Cesaro
- Oncoematologia Pediatrica, Azienda Ospedaleira universitaria Integrata, Verona, Italy
| | - Roberta Bottega
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Michela Faleschini
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
| | - Paola Cuccarolo
- S. C. Mutagenesis, IRCCS AOU San Martino – IST (Istituto Nazionale per la Ricerca sul Cancro), CBA Torre A2, 16123 Genova, Italy
| | - Fabio Corsolini
- Centro Diagnostica Genetica e Biochimica Malattie Metaboliche, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, 16149 Genova, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - Marco Cipolli
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria, Piazzale Stefani, 1-37126 Verona, Italy
| | - Anna Savoia
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Paolo Degan
- S. C. Mutagenesis, IRCCS AOU San Martino – IST (Istituto Nazionale per la Ricerca sul Cancro), CBA Torre A2, 16123 Genova, Italy
| | - Enrico Cappelli
- Haematology Unit, Istituto Giannina Gaslini, 16148 Genova, Italy
| |
Collapse
|
23
|
Ma C, Yan K, Tan D, Li N, Zhang Y, Yuan Y, Li Z, Dong MQ, Lei J, Gao N. Structural dynamics of the yeast Shwachman-Diamond syndrome protein (Sdo1) on the ribosome and its implication in the 60S subunit maturation. Protein Cell 2016; 7:187-200. [PMID: 26850260 PMCID: PMC4791427 DOI: 10.1007/s13238-015-0242-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/14/2015] [Indexed: 12/16/2022] Open
Abstract
The human Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease caused by mutations in a highly conserved ribosome assembly factor SBDS. The functional role of SBDS is to cooperate with another assembly factor, elongation factor 1-like (Efl1), to promote the release of eukaryotic initiation factor 6 (eIF6) from the late-stage cytoplasmic 60S precursors. In the present work, we characterized, both biochemically and structurally, the interaction between the 60S subunit and SBDS protein (Sdo1p) from yeast. Our data show that Sdo1p interacts tightly with the mature 60S subunit in vitro through its domain I and II, and is capable of bridging two 60S subunits to form a stable 2:2 dimer. Structural analysis indicates that Sdo1p bind to the ribosomal P-site, in the proximity of uL16 and uL5, and with direct contact to H69 and H38. The dynamic nature of Sdo1p on the 60S subunit, together with its strategic binding position, suggests a surveillance role of Sdo1p in monitoring the conformational maturation of the ribosomal P-site. Altogether, our data support a conformational signal-relay cascade during late-stage 60S maturation, involving uL16, Sdo1p, and Efl1p, which interrogates the functional P-site to control the departure of the anti-association factor eIF6.
Collapse
Affiliation(s)
- Chengying Ma
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaige Yan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dan Tan
- National Institute of Biological Sciences, Beijing, 102206, China.,Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ningning Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yixiao Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi Yuan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhifei Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China.,Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jianlin Lei
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ning Gao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
24
|
In K, Zaini MA, Müller C, Warren AJ, von Lindern M, Calkhoven CF. Shwachman-Bodian-Diamond syndrome (SBDS) protein deficiency impairs translation re-initiation from C/EBPα and C/EBPβ mRNAs. Nucleic Acids Res 2016; 44:4134-46. [PMID: 26762974 PMCID: PMC4872075 DOI: 10.1093/nar/gkw005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/31/2015] [Indexed: 01/24/2023] Open
Abstract
Mutations in the Shwachman–Bodian–Diamond Syndrome (SBDS) gene cause Shwachman–Diamond Syndrome (SDS), a rare congenital disease characterized by bone marrow failure with neutropenia, exocrine pancreatic dysfunction and skeletal abnormalities. The SBDS protein is important for ribosome maturation and therefore SDS belongs to the ribosomopathies. It is unknown, however, if loss of SBDS functionality affects the translation of specific mRNAs and whether this could play a role in the development of the clinical features of SDS. Here, we report that translation of the C/EBPα and -β mRNAs, that are indispensible regulators of granulocytic differentiation, is altered by SBDS mutations or knockdown. We show that SBDS function is specifically required for efficient translation re-initiation into the protein isoforms C/EBPα-p30 and C/EBPβ-LIP, which is controlled by a single cis-regulatory upstream open reading frame (uORF) in the 5′ untranslated regions (5′ UTRs) of both mRNAs. Furthermore, we show that as a consequence of the C/EBPα and -β deregulation the expression of MYC is decreased with associated reduction in proliferation, suggesting that failure of progenitor proliferation contributes to the haematological phenotype of SDS. Therefore, our study provides the first indication that disturbance of specific translation by loss of SBDS function may contribute to the development of the SDS phenotype.
Collapse
Affiliation(s)
- Kyungmin In
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Mohamad A Zaini
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany European Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD, Groningen, The Netherlands
| | - Christine Müller
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany European Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD, Groningen, The Netherlands
| | - Alan J Warren
- Cambridge Institute for Medical Research, Wellcome Trust-Medical Research Council Stem Cell Institute, the Department of Haematology, University of Cambridge, CB2 0XY, Cambridge, UK
| | - Marieke von Lindern
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, 1066 CX Amsterdam, The Netherlands
| | - Cornelis F Calkhoven
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany European Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD, Groningen, The Netherlands
| |
Collapse
|
25
|
Kanprasoet W, Jensen LT, Sriprach S, Thitiananpakorn K, Rattanapornsompong K, Jensen AN. Deletion of Mitochondrial Porin Alleviates Stress Sensitivity in the Yeast Model of Shwachman-Diamond Syndrome. J Genet Genomics 2015; 42:671-84. [DOI: 10.1016/j.jgg.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
26
|
Morini J, Babini G, Mariotti L, Baiocco G, Nacci L, Maccario C, Rößler U, Minelli A, Savio M, Gomolka M, Kulka U, Ottolenghi A, Danesino C. Radiosensitivity in lymphoblastoid cell lines derived from Shwachman-Diamond syndrome patients. RADIATION PROTECTION DOSIMETRY 2015; 166:95-100. [PMID: 25870433 DOI: 10.1093/rpd/ncv152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Shwachman-Diamond syndrome is an autosomal-recessive disorder characterised by bone marrow failure and a cumulative risk of progression to acute myeloid leukaemia. The Shwachman-Bodian-Diamond syndrome (SBDS) gene, the only gene known to be causative of the pathology, is involved in ribosomal biogenesis, stress responses and DNA repair, and the lack of SBDS sensitises cells to many stressors and leads to mitotic spindle destabilisation. The effect of ionising radiation on SBDS-deficient cells was investigated using immortalised lymphocytes from SDS patients in comparison with positive and negative controls in order to test whether, in response to ionising radiation exposure, any impairment in the DNA repair machinery could be observed. After irradiating cells with different doses of X-rays or gamma-rays, DNA repair kinetics and the residual damages using the alkaline COMET assay and the γ-H2AX assay were assessed, respectively. In this work, preliminary data about the comparison between ionising radiation effects in different patients-derived cells and healthy control cells are presented.
Collapse
Affiliation(s)
- J Morini
- Department of Molecular Medicine, Biology and Medical Genetics Unit, University of Pavia, Pavia, Italy Department of Physics, University of Pavia, Pavia, Italy INFN National Institute of Nuclear Physics, Section of Pavia, Pavia, Italy
| | - G Babini
- Department of Physics, University of Pavia, Pavia, Italy INFN National Institute of Nuclear Physics, Section of Pavia, Pavia, Italy
| | - L Mariotti
- Department of Physics, University of Pavia, Pavia, Italy INFN National Institute of Nuclear Physics, Section of Pavia, Pavia, Italy Gray Institute for Radiation Oncology and Biology, Oxford, UK
| | - G Baiocco
- Department of Physics, University of Pavia, Pavia, Italy INFN National Institute of Nuclear Physics, Section of Pavia, Pavia, Italy
| | - L Nacci
- Department of Molecular Medicine, Biology and Medical Genetics Unit, University of Pavia, Pavia, Italy
| | - C Maccario
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - U Rößler
- Department of Radiation Protection and Health, Federal Office for Radiation Protection, Germany
| | - A Minelli
- Department of Molecular Medicine, Biology and Medical Genetics Unit, University of Pavia, Pavia, Italy
| | - M Savio
- Department of Radiation Protection and Health, Federal Office for Radiation Protection, Germany
| | - M Gomolka
- Department of Radiation Protection and Health, Federal Office for Radiation Protection, Germany
| | - U Kulka
- Department of Radiation Protection and Health, Federal Office for Radiation Protection, Germany
| | - A Ottolenghi
- Department of Physics, University of Pavia, Pavia, Italy INFN National Institute of Nuclear Physics, Section of Pavia, Pavia, Italy
| | - C Danesino
- Department of Molecular Medicine, Biology and Medical Genetics Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
27
|
Tourlakis ME, Zhang S, Ball HL, Gandhi R, Liu H, Zhong J, Yuan JS, Guidos CJ, Durie PR, Rommens JM. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency. PLoS Genet 2015; 11:e1005288. [PMID: 26057580 PMCID: PMC4461263 DOI: 10.1371/journal.pgen.1005288] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/18/2015] [Indexed: 01/01/2023] Open
Abstract
Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to be p53-dependent. Our findings therefore point to cell/tissue-specific responses to p53-activation that include distinction between apoptosis and senescence pathways, in the context of translation disruption. Growth of all living things relies on protein synthesis. Failure of components of the complex protein synthesis machinery underlies a growing list of inherited and acquired multi—organ syndromes referred to as ribosomopathies. While ribosomes, the critical working components of the protein synthesis machinery, are required in all cell types to translate the genetic code, only certain organs manifest clinical symptoms in ribosomopathies, indicating specific cell-type features of protein synthesis control. Further, many of these diseases result in cancer despite an inherent deficit in growth. Here we report a range of consequences of protein synthesis insufficiency with loss of a broadly expressed ribosome factor, leading to growth impairment and cell cycle arrest at different stages. Apparent induction of p53-dependent cell death and arrest pathways included apoptosis in the fetal brain and senescence in the mature exocrine pancreas. The senescence, considered a tumour suppression mechanism, was accompanied by the expression of biomarkers associated with early stages of malignant transformation. These findings inform how cancer may initiate when growth is compromised and provide new insights into cell-type specific consequences of protein synthesis insufficiency.
Collapse
Affiliation(s)
- Marina E. Tourlakis
- Program in Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Siyi Zhang
- Program in Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Heather L. Ball
- Program in Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Rikesh Gandhi
- Program in Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Hongrui Liu
- Program in Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jian Zhong
- Program in Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Julie S. Yuan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Department of Immunology, University of Toronto, Toronto, Canada
| | - Cynthia J. Guidos
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Department of Immunology, University of Toronto, Toronto, Canada
| | - Peter R. Durie
- Program in Physiology & Experimental Medicine, Research Institute, Division of Gastroenterology & Nutrition, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Johanna M. Rommens
- Program in Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
28
|
Zhou T, Chen P, Gu J, Bishop AJR, Scott LM, Hasty P, Rebel VI. Potential relationship between inadequate response to DNA damage and development of myelodysplastic syndrome. Int J Mol Sci 2015; 16:966-89. [PMID: 25569081 PMCID: PMC4307285 DOI: 10.3390/ijms16010966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for the continuous regeneration of all types of blood cells, including themselves. To ensure the functional and genomic integrity of blood tissue, a network of regulatory pathways tightly controls the proliferative status of HSCs. Nevertheless, normal HSC aging is associated with a noticeable decline in regenerative potential and possible changes in other functions. Myelodysplastic syndrome (MDS) is an age-associated hematopoietic malignancy, characterized by abnormal blood cell maturation and a high propensity for leukemic transformation. It is furthermore thought to originate in a HSC and to be associated with the accrual of multiple genetic and epigenetic aberrations. This raises the question whether MDS is, in part, related to an inability to adequately cope with DNA damage. Here we discuss the various components of the cellular response to DNA damage. For each component, we evaluate related studies that may shed light on a potential relationship between MDS development and aberrant DNA damage response/repair.
Collapse
Affiliation(s)
- Ting Zhou
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Peishuai Chen
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Jian Gu
- Department of Hematology, Northern Jiangsu People's Hospital, Yangzhou 225001, China.
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Linda M Scott
- The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Paul Hasty
- The Cancer Therapy Research Center, UTHSCSA, 7979 Wurzbach Road, San Antonio, TX 78229, USA.
| | - Vivienne I Rebel
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Shwachman-Diamond syndrome (SDS) is an inherited bone marrow failure and cancer predisposition syndrome that affects multiple organ systems. Mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene are found in the majority of patients, but the molecular function of the SBDS protein product remains unclear. In this article, we review recent progress in the clinical and molecular characterization of SDS. RECENT FINDINGS Emerging data support a multifunctional role for the SBDS protein. Current studies indicate that SBDS functions in 60S large ribosomal subunit maturation and in mitotic spindle stabilization. Recent data suggest that it may also affect actin polymerization, vacuolar pH regulation, and DNA metabolism. SBDS loss results in both hematopoietic cell-intrinsic defects as well as marrow stromal abnormalities. SUMMARY SDS is a multisystemic disease arising from defects in a protein that participates in several essential cellular processes. Elucidating the molecular function of SBDS will provide important insights into how defects in ribosome biogenesis and mitotic spindle stabilization result in hematopoietic failure, cancer predisposition, and abnormalities.
Collapse
|
30
|
Ruggero D, Shimamura A. Marrow failure: a window into ribosome biology. Blood 2014; 124:2784-92. [PMID: 25237201 PMCID: PMC4215310 DOI: 10.1182/blood-2014-04-526301] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/27/2014] [Indexed: 12/16/2022] Open
Abstract
Diamond-Blackfan anemia, Shwachman-Diamond syndrome, and dyskeratosis congenita are inherited syndromes characterized by marrow failure, congenital anomalies, and cancer predisposition. Genetic and molecular studies have uncovered distinct abnormalities in ribosome biogenesis underlying each of these 3 disorders. How defects in ribosomes, the essential organelles required for protein biosynthesis in all cells, cause tissue-specific abnormalities in human disease remains a question of fundamental scientific and medical importance. Here we review the overlapping and distinct clinical features of these 3 syndromes and discuss current knowledge regarding the ribosomal pathways disrupted in each of these disorders. We also explore the increasing complexity of ribosome biology and how this informs our understanding of developmental biology and human disease.
Collapse
Affiliation(s)
- Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Akiko Shimamura
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Pediatric Hematology/Oncology, Seattle Children's Hospital, Seattle, WA; and Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
31
|
Nakhoul H, Ke J, Zhou X, Liao W, Zeng SX, Lu H. Ribosomopathies: mechanisms of disease. PLASMATOLOGY 2014; 7:7-16. [PMID: 25512719 PMCID: PMC4251057 DOI: 10.4137/cmbd.s16952] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/03/2014] [Accepted: 07/16/2014] [Indexed: 01/05/2023]
Abstract
Ribosomopathies are diseases caused by alterations in the structure or function of ribosomal components. Progress in our understanding of the role of the ribosome in translational and transcriptional regulation has clarified the mechanisms of the ribosomopathies and the relationship between ribosomal dysfunction and other diseases, especially cancer. This review aims to discuss these topics with updated information.
Collapse
Affiliation(s)
- Hani Nakhoul
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Jiangwei Ke
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA. ; Department of Laboratory Medicine, Jiangxi Children's Hospital, Nanchang, Jiangxi, China
| | - Xiang Zhou
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Wenjuan Liao
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| |
Collapse
|
32
|
MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-Box RNA helicase DDX24. Mol Cell Biol 2014; 34:3321-40. [PMID: 24980433 DOI: 10.1128/mcb.00320-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MDM2 mediates the ubiquitylation and thereby triggers the proteasomal degradation of the tumor suppressor protein p53. However, genetic evidence suggests that MDM2 contributes to multiple regulatory networks independently of p53 degradation. We have now identified the DEAD-box RNA helicase DDX24 as a nucleolar protein that interacts with MDM2. DDX24 was found to bind to the central region of MDM2, resulting in the polyubiquitylation of DDX24 both in vitro and in vivo. Unexpectedly, however, the polyubiquitylation of DDX24 did not elicit its proteasomal degradation but rather promoted its association with preribosomal ribonucleoprotein (pre-rRNP) processing complexes that are required for the early steps of pre-rRNA processing. Consistently with these findings, depletion of DDX24 in cells impaired pre-rRNA processing and resulted both in abrogation of MDM2 function and in consequent p53 stabilization. Our results thus suggest an unexpected role of MDM2 in the nonproteolytic ubiquitylation of DDX24, which may contribute to the regulation of pre-rRNA processing.
Collapse
|
33
|
Myers KC, Davies SM, Shimamura A. Clinical and molecular pathophysiology of Shwachman-Diamond syndrome: an update. Hematol Oncol Clin North Am 2012; 27:117-28, ix. [PMID: 23351992 DOI: 10.1016/j.hoc.2012.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Shwachman-Diamond syndrome (SDS) is an inherited neutropenia syndrome associated with a significant risk of aplastic anemia and malignant transformation. Multiple additional organ systems, including the pancreas, liver, and skeletal and central nervous systems, are affected. Mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene are present in most patients. There is growing evidence that SBDS functions in ribosomal biogenesis and other cellular processes. This article summarizes the clinical phenotype of SDS, diagnostic and treatment approaches, and novel advances in our understanding of the molecular pathophysiology of this disease.
Collapse
Affiliation(s)
- Kasiani C Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, MLC 7015, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
34
|
Abstract
Shwachman-Diamond syndrome (SDS) is an autosomal-recessive marrow failure syndrome with a predisposition to leukemia. SDS patients harbor biallelic mutations in the SBDS gene, resulting in low levels of SBDS protein. Data from nonhuman models demonstrate that the SBDS protein facilitates the release of eIF6, a factor that prevents ribosome joining. The complete abrogation of Sbds expression in these models results in severe cellular and lethal physiologic abnormalities that differ from the human disease phenotype. Because human SDS cells are characterized by partial rather than complete loss of SBDS expression, we interrogated SDS patient cells for defects in ribosomal assembly. SDS patient cells exhibit altered ribosomal profiles and impaired association of the 40S and 60S subunits. Introduction of a wild-type SBDS cDNA into SDS patient cells corrected the ribosomal association defect, while patient-derived SBDS point mutants only partially improved subunit association. Knockdown of eIF6 expression improved ribosomal subunit association but did not correct the hematopoietic defect of SBDS-deficient cells. In summary, we demonstrate an SBDS-dependent ribosome maturation defect in SDS patient cells. The role of ribosomal subunit joining in marrow failure warrants further investigation.
Collapse
|
35
|
Tourlakis ME, Zhong J, Gandhi R, Zhang S, Chen L, Durie PR, Rommens JM. Deficiency of Sbds in the mouse pancreas leads to features of Shwachman-Diamond syndrome, with loss of zymogen granules. Gastroenterology 2012; 143:481-92. [PMID: 22510201 DOI: 10.1053/j.gastro.2012.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 04/01/2012] [Accepted: 04/10/2012] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Shwachman-Diamond syndrome (SDS) is the second leading cause of hereditary exocrine pancreatic dysfunction. More than 90% of patients with SDS have biallelic loss-of-function mutations in the Shwachman-Bodian Diamond syndrome (SBDS) gene, which encodes a factor involved in ribosome function. We investigated whether mutations in Sbds lead to similar pancreatic defects in mice. METHODS Pancreas-specific knock-out mice were generated using a floxed Sbds allele and bred with mice carrying a null or disease-associated missense Sbds allele. Cre recombinase, regulated by the pancreatic transcription factor 1a promoter, was used to disrupt Sbds specifically in the pancreas. Models were assessed for pancreatic dysfunction and growth impairment. RESULTS Disruption of Sbds in the mouse pancreas was sufficient to recapitulate SDS phenotypes. Pancreata of mice with Sbds mutations had decreased mass, fat infiltration, but general preservation of ductal and endocrine compartments. Pancreatic extracts from mutant mice had defects in formation of the 80S ribosomal complex. The exocrine compartment of mutant mice was hypoplastic and individual acini produced few zymogen granules. The null Sbds allele resulted in an earlier onset of phenotypes as well as endocrine impairment. Mutant mice had reduced serum levels of digestive enzymes and overall growth impairment. CONCLUSIONS We developed a mouse model of SDS with pancreatic phenotypes similar to those of the human disease. This model could be used to investigate organ-specific consequences of Sbds-associated ribosomopathy. Sbds genotypes correlated with phenotypes. Defects developed specifically in the pancreata of mice, reducing growth of mice and production of digestive enzymes. SBDS therefore appears to be required for normal pancreatic development and function.
Collapse
Affiliation(s)
- Marina E Tourlakis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Simabuco FM, Morello LG, Aragão AZB, Paes Leme AF, Zanchin NIT. Proteomic characterization of the human FTSJ3 preribosomal complexes. J Proteome Res 2012; 11:3112-26. [PMID: 22540864 DOI: 10.1021/pr201106n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In eukaryotes, ribosome biogenesis involves excision of transcribed spacer sequences from the preribosomal RNA, base and ribose covalent modification at specific sites, assembly of ribosomal proteins, and transport of subunits from the nucleolus to the cytoplasm where mature ribosomes engage in mRNA translation. The biochemical reactions throughout ribosome synthesis are mediated by factors that associate transiently to the preribosomal complexes. In this work, we describe the complexes containing the human protein FTSJ3. This protein functions in association with NIP7 in ribosome synthesis and contains a putative RNA-methyl-transferase domain (FtsJ) in the N-terminal region and two uncharacterized domains in the central (DUF3381) and C-terminal (Spb1_C) regions. FLAG-tagged FTSJ3 coimmunoprecipitates both RPS and RPL proteins, ribosome synthesis factors, and proteins whose function in ribosome synthesis has not been demonstrated yet. A similar set of proteins coimmunoprecipitates with the Spb1_C domain, suggesting that FTSJ3 interaction with the preribosome complexes is mediated by the Spb1_C domain. Approximately 50% of the components of FTSJ3 complexes are shared by complexes described for RPS19, Par14, nucleolin, and NOP56. A significant number of factors are also found in complexes described for nucleophosmin, SBDS, ISG20L2, and NIP7. These findings provide information on the dynamics of preribosome complexes in human cells.
Collapse
Affiliation(s)
- Fernando M Simabuco
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais , Rua Giuseppe Maximo Scolfaro 10000, P.O. Box 6192, CEP 13083-970, Campinas SP, Brazil
| | | | | | | | | |
Collapse
|
37
|
Necchi V, Minelli A, Sommi P, Vitali A, Caruso R, Longoni D, Frau MR, Nasi C, De Gregorio F, Zecca M, Ricci V, Danesino C, Solcia E. Ubiquitin-proteasome-rich cytoplasmic structures in neutrophils of patients with Shwachman-Diamond syndrome. Haematologica 2012; 97:1057-63. [PMID: 22271888 DOI: 10.3324/haematol.2011.048462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Shwachman-Diamond syndrome is an autosomal recessive disorder in which severe bone marrow dysfunction causes neutropenia and an increased risk of leukemia. Recently, novel particulate cytoplasmic structures, rich in ubiquitinated and proteasomal proteins, have been detected in epithelial cells and neutrophils from patients with Helicobacter pylori gastritis and several epithelial neoplasms. DESIGN AND METHODS Blood neutrophils from 13 cases of Shwachman-Diamond syndrome - ten with and three without SBDS gene mutation - and ten controls were investigated by confocal microscopy and ultrastructural immunocytochemistry using antibodies against ubiquitinated proteins, proteasomes, p62 protein, and Helicobacter pylori VacA, urease and outer membrane proteins. RESULTS Many extensively disseminated particulate cytoplasmic structures, accounting for 22.78 ± 5.57% (mean ± standard deviation) of the total cytoplasm, were found in blood neutrophils from mutated Shwachman-Diamond syndrome patients. The particulate cytoplasmic structures showed immunoreactivity for polyubiquitinated proteins and proteasomes, but no reactivity for Helicobacter pylori products, which are present in particulate cytoplasmic structures of Helicobacter pylori-positive gastritis. Neutrophils from patients with Shwachman-Diamond syndrome frequently showed p62-positive autophagic vacuoles and apoptotic changes in 5% of cells. No particulate cytoplasmic structures were observed in most control neutrophils; however, in a few cells from two cases we noted focal development of minute particulate cytoplasmic structures, accounting for 0.74 ± 0.56% of the total cytoplasm (P<0.001 versus particulate cytoplasmic structures from mutated Shwachman-Diamond syndrome patients). Neutrophils from non-mutated Shwachman-Diamond-syndrome-like patients resembled controls in two cases, and a third case showed particulate cytoplasmic structure patterns intermediate between those in controls and those in mutated Shwachman-Diamond syndrome patients. CONCLUSIONS Particulate cytoplasmic structures are a prominent feature of neutrophils from patients with Shwachman-Diamond syndrome. They may help us to understand the mechanism of granulocyte dysfunction and the neoplastic risk of the disease.
Collapse
Affiliation(s)
- Vittorio Necchi
- Department of Human Pathology and Genetics, University of Pavia and Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Burwick N, Shimamura A, Liu JM. Non-Diamond Blackfan anemia disorders of ribosome function: Shwachman Diamond syndrome and 5q- syndrome. Semin Hematol 2011; 48:136-43. [PMID: 21435510 DOI: 10.1053/j.seminhematol.2011.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A number of human disorders, dubbed ribosomopathies, are linked to impaired ribosome biogenesis or function. These include but are not limited to Diamond Blackfan anemia (DBA), Shwachman Diamond syndrome (SDS), and the 5q- myelodysplastic syndrome (MDS). This review focuses on the latter two non-DBA disorders of ribosome function. Both SDS and 5q- syndrome lead to impaired hematopoiesis and a predisposition to leukemia. SDS, due to bi-allelic mutations of the SBDS gene, is a multi-system disorder that also includes bony abnormalities, and pancreatic and neurocognitive dysfunction. SBDS associates with the 60S subunit in human cells and has a role in subunit joining and translational activation in yeast models. In contrast, 5q- syndrome is associated with acquired haplo-insufficiency of RPS14, a component of the small 40S subunit. RPS14 is critical for 40S assembly in yeast models, and depletion of RPS14 in human CD34(+) cells is sufficient to recapitulate the 5q- erythroid defect. Both SDS and the 5q- syndrome represent important models of ribosome function and may inform future treatment strategies for the ribosomopathies.
Collapse
Affiliation(s)
- Nicholas Burwick
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | |
Collapse
|
39
|
Abstract
Shwachman-Diamond syndrome (SDS), a recessive leukemia predisposition disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, skeletal abnormalities and poor growth, is caused by mutations in the highly conserved SBDS gene. Here, we test the hypothesis that defective ribosome biogenesis underlies the pathogenesis of SDS. We create conditional mutants in the essential SBDS ortholog of the ancient eukaryote Dictyostelium discoideum using temperature-sensitive, self-splicing inteins, showing that mutant cells fail to grow at the restrictive temperature because ribosomal subunit joining is markedly impaired. Remarkably, wild type human SBDS complements the growth and ribosome assembly defects in mutant Dictyostelium cells, but disease-associated human SBDS variants are defective. SBDS directly interacts with the GTPase elongation factor-like 1 (EFL1) on nascent 60S subunits in vivo and together they catalyze eviction of the ribosome antiassociation factor eukaryotic initiation factor 6 (eIF6), a prerequisite for the translational activation of ribosomes. Importantly, lymphoblasts from SDS patients harbor a striking defect in ribosomal subunit joining whose magnitude is inversely proportional to the level of SBDS protein. These findings in Dictyostelium and SDS patient cells provide compelling support for the hypothesis that SDS is a ribosomopathy caused by corruption of an essential cytoplasmic step in 60S subunit maturation.
Collapse
|
40
|
Finch AJ, Hilcenko C, Basse N, Drynan LF, Goyenechea B, Menne TF, González Fernández A, Simpson P, D'Santos CS, Arends MJ, Donadieu J, Bellanné-Chantelot C, Costanzo M, Boone C, McKenzie AN, Freund SMV, Warren AJ. Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome. Genes Dev 2011; 25:917-29. [PMID: 21536732 DOI: 10.1101/gad.623011] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Removal of the assembly factor eukaryotic initiation factor 6 (eIF6) is critical for late cytoplasmic maturation of 60S ribosomal subunits. In mammalian cells, the current model posits that eIF6 release is triggered following phosphorylation of Ser 235 by activated protein kinase C. In contrast, genetic studies in yeast indicate a requirement for the ortholog of the SBDS (Shwachman-Bodian-Diamond syndrome) gene that is mutated in the inherited leukemia predisposition disorder Shwachman-Diamond syndrome (SDS). Here, by isolating late cytoplasmic 60S ribosomal subunits from Sbds-deleted mice, we show that SBDS and the GTPase elongation factor-like 1 (EFL1) directly catalyze eIF6 removal in mammalian cells by a mechanism that requires GTP binding and hydrolysis by EFL1 but not phosphorylation of eIF6 Ser 235. Functional analysis of disease-associated missense variants reveals that the essential role of SBDS is to tightly couple GTP hydrolysis by EFL1 on the ribosome to eIF6 release. Furthermore, complementary NMR spectroscopic studies suggest unanticipated mechanistic parallels between this late step in 60S maturation and aspects of bacterial ribosome disassembly. Our findings establish a direct role for SBDS and EFL1 in catalyzing the translational activation of ribosomes in all eukaryotes, and define SDS as a ribosomopathy caused by uncoupling GTP hydrolysis from eIF6 release.
Collapse
Affiliation(s)
- Andrew J Finch
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Orelio C, van der Sluis RM, Verkuijlen P, Nethe M, Hordijk PL, van den Berg TK, Kuijpers TW. Altered intracellular localization and mobility of SBDS protein upon mutation in Shwachman-Diamond syndrome. PLoS One 2011; 6:e20727. [PMID: 21695142 PMCID: PMC3113850 DOI: 10.1371/journal.pone.0020727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Accepted: 05/09/2011] [Indexed: 11/18/2022] Open
Abstract
Shwachman-Diamond Syndrome (SDS) is a rare inherited disease caused by mutations in the SBDS gene. Hematopoietic defects, exocrine pancreas dysfunction and short stature are the most prominent clinical features. To gain understanding of the molecular properties of the ubiquitously expressed SBDS protein, we examined its intracellular localization and mobility by live cell imaging techniques. We observed that SBDS full-length protein was localized in both the nucleus and cytoplasm, whereas patient-related truncated SBDS protein isoforms localize predominantly to the nucleus. Also the nucleo-cytoplasmic trafficking of these patient-related SBDS proteins was disturbed. Further studies with a series of SBDS mutant proteins revealed that three distinct motifs determine the intracellular mobility of SBDS protein. A sumoylation motif in the C-terminal domain, that is lacking in patient SBDS proteins, was found to play a pivotal role in intracellular motility. Our structure-function analyses provide new insight into localization and motility of the SBDS protein, and show that patient-related mutant proteins are altered in their molecular properties, which may contribute to the clinical features observed in SDS patients.
Collapse
Affiliation(s)
- Claudia Orelio
- Sanquin Research and Landsteiner Laboratory of the Academic Medical Center (AMC), Department of Blood Cell Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Renée M. van der Sluis
- Sanquin Research and Landsteiner Laboratory of the Academic Medical Center (AMC), Department of Blood Cell Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Verkuijlen
- Sanquin Research and Landsteiner Laboratory of the Academic Medical Center (AMC), Department of Blood Cell Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Micha Nethe
- Sanquin Research and Landsteiner Laboratory of the Academic Medical Center (AMC), Department of Molecular Cell Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter L. Hordijk
- Sanquin Research and Landsteiner Laboratory of the Academic Medical Center (AMC), Department of Molecular Cell Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K. van den Berg
- Sanquin Research and Landsteiner Laboratory of the Academic Medical Center (AMC), Department of Blood Cell Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W. Kuijpers
- Sanquin Research and Landsteiner Laboratory of the Academic Medical Center (AMC), Department of Blood Cell Research, University of Amsterdam, Amsterdam, The Netherlands
- Emma Children's Hospital, Academic Medical Center (AMC), Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
42
|
Leung R, Cuddy K, Wang Y, Rommens J, Glogauer M. Sbds is required for Rac2-mediated monocyte migration and signaling downstream of RANK during osteoclastogenesis. Blood 2011; 117:2044-53. [PMID: 21084708 DOI: 10.1182/blood-2010-05-282574] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS) results from mutations in the SBDS gene, characterized by exocrine pancreatic insufficiency and hematologic and skeletal abnormalities. Neutropenia and neutrophil dysfunction are hallmark features of SDS; however, causes for the bone defects are unknown. Dysfunction of bone-resorbing osteoclasts, formed by the fusion of monocytic progenitors derived from the same granulocytic precursors as neutrophils, could be responsible. We report that Sbds is required for in vitro and in vivo osteoclastogenesis (OCG). Sbds-null murine monocytes formed osteoclasts of reduced number and size because of impaired migration and fusion required for OCG. Phenotypically, Sbds-null mice exhibited low-turnover osteoporosis consistent with findings in SDS patients. Western blotting of Rho GTPases that control actin dynamics and migration showed a 5-fold decrease in Rac2, whereas Rac1, Cdc42, and RhoA were unchanged or only mildly reduced. Although migration was rescued on Rac2 supplementation, OCG was not. This was attributed to impaired signaling downstream of receptor activator of nuclear factor-κB (RANK) and reduced expression of the RANK-ligand-dependent fusion receptor DC-STAMP. We conclude that Sbds is required for OCG by regulating monocyte migration via Rac2 and osteoclast differentiation signaling downstream of RANK. Impaired osteoclast formation could disrupt bone homeostasis, resulting in skeletal abnormalities seen in SDS patients.
Collapse
Affiliation(s)
- Roland Leung
- Matrix Dynamics Group, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
43
|
Hutson SL, Mui E, Kinsley K, Witola WH, Behnke MS, El Bissati K, Muench SP, Rohrman B, Liu SR, Wollmann R, Ogata Y, Sarkeshik A, Yates JR, McLeod R. T. gondii RP promoters & knockdown reveal molecular pathways associated with proliferation and cell-cycle arrest. PLoS One 2010; 5:e14057. [PMID: 21124925 PMCID: PMC2989910 DOI: 10.1371/journal.pone.0014057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 10/25/2010] [Indexed: 01/16/2023] Open
Abstract
Molecular pathways regulating rapid proliferation and persistence are fundamental for pathogens but are not elucidated fully in Toxoplasma gondii. Promoters of T. gondii ribosomal proteins (RPs) were analyzed by EMSAs and ChIP. One RP promoter domain, known to bind an Apetela 2, bound to nuclear extract proteins. Promoter domains appeared to associate with histone acetyl transferases. To study effects of a RP gene's regulation in T. gondii, mutant parasites (Δrps13) were engineered with integration of tetracycline repressor (TetR) response elements in a critical location in the rps13 promoter and transfection of a yellow fluorescent-tetracycline repressor (YFP-TetR). This permitted conditional knockdown of rps13 expression in a tightly regulated manner. Δrps13 parasites were studied in the presence (+ATc) or absence of anhydrotetracycline (-ATc) in culture. -ATc, transcription of the rps13 gene and expression of RPS13 protein were markedly diminished, with concomitant cessation of parasite replication. Study of Δrps13 expressing Myc-tagged RPL22, -ATc, showed RPL22 diminished but at a slower rate. Quantitation of RNA showed diminution of 18S RNA. Depletion of RPS13 caused arrest of parasites in the G1 cell cycle phase, thereby stopping parasite proliferation. Transcriptional differences ±ATc implicate molecules likely to function in regulation of these processes. In vitro, -ATc, Δrps13 persists for months and the proliferation phenotype can be rescued with ATc. In vivo, however, Δrps13 could only be rescued when ATc was given simultaneously and not at any time after 1 week, even when L-NAME and ATc were administered. Immunization with Δrps13 parasites protects mice completely against subsequent challenge with wildtype clonal Type 1 parasites, and robustly protects mice against wildtype clonal Type 2 parasites. Our results demonstrate that G1 arrest by ribosomal protein depletion is associated with persistence of T. gondii in a model system in vitro and immunization with Δrps13 protects mice against subsequent challenge with wildtype parasites.
Collapse
Affiliation(s)
- Samuel L. Hutson
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Ernest Mui
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Karen Kinsley
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - William H. Witola
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Michael S. Behnke
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Kamal El Bissati
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Stephen P. Muench
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, United Kingdom
| | - Brittany Rohrman
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Susan R. Liu
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Robert Wollmann
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Yuko Ogata
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Ali Sarkeshik
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, California, United States of America
| | - Rima McLeod
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics (Infectious Disease), The University of Chicago, Chicago, Illinois, United States of America
- Committees on Immunology, Molecular Medicine, and Genetics, Institute of Genomics and Systems Biology, The College, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
44
|
Getty AL, Pearce DA. Interactions of the proteins of neuronal ceroid lipofuscinosis: clues to function. Cell Mol Life Sci 2010; 68:453-74. [PMID: 20680390 DOI: 10.1007/s00018-010-0468-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 12/21/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are caused by mutations in eight different genes, are characterized by lysosomal accumulation of autofluorescent storage material, and result in a disease that causes degeneration of the central nervous system (CNS). Although functions are defined for some of the soluble proteins that are defective in NCL (cathepsin D, PPT1, and TPP1), the primary function of the other proteins defective in NCLs (CLN3, CLN5, CLN6, CLN7, and CLN8) remain poorly defined. Understanding the localization and network of interactions for these proteins can offer clues as to the function of the NCL proteins and also the pathways that will be disrupted in their absence. Here, we present a review of the current understanding of the localization, interactions, and function of the proteins associated with NCL.
Collapse
Affiliation(s)
- Amanda L Getty
- Sanford Children's Health Research Center, Sanford Research USD, Sanford School of Medicine of the University of South Dakota, 2301 East 60th Street North, Sioux Falls, SD 57104-0589, USA
| | | |
Collapse
|
45
|
Abstract
The inherited marrow failure syndromes are a diverse set of genetic disorders characterized by hematopoietic aplasia and cancer predisposition. The clinical phenotypes are highly variable and much broader than previously recognized. The medical management of the inherited marrow failure syndromes differs from that of acquired aplastic anemia or malignancies arising in the general population. Diagnostic workup, molecular pathogenesis, and clinical treatment are reviewed.
Collapse
|
46
|
de Oliveira JF, Sforça ML, Blumenschein TMA, Goldfeder MB, Guimarães BG, Oliveira CC, Zanchin NIT, Zeri AC. Structure, dynamics, and RNA interaction analysis of the human SBDS protein. J Mol Biol 2010; 396:1053-69. [PMID: 20053358 DOI: 10.1016/j.jmb.2009.12.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 12/06/2009] [Accepted: 12/18/2009] [Indexed: 12/18/2022]
Abstract
Shwachman-Bodian-Diamond syndrome is an autosomal recessive genetic syndrome with pleiotropic phenotypes, including pancreatic deficiencies, bone marrow dysfunctions with increased risk of myelodysplasia or leukemia, and skeletal abnormalities. This syndrome has been associated with mutations in the SBDS gene, which encodes a conserved protein showing orthologs in Archaea and eukaryotes. The Shwachman-Bodian-Diamond syndrome pleiotropic phenotypes may be an indication of different cell type requirements for a fully functional SBDS protein. RNA-binding activity has been predicted for archaeal and yeast SBDS orthologs, with the latter also being implicated in ribosome biogenesis. However, full-length SBDS orthologs function in a species-specific manner, indicating that the knowledge obtained from model systems may be of limited use in understanding major unresolved issues regarding SBDS function, namely, the effect of mutations in human SBDS on its biochemical function and the specificity of RNA interaction. We determined the solution structure and backbone dynamics of the human SBDS protein and describe its RNA binding site using NMR spectroscopy. Similarly to the crystal structures of Archaea, the overall structure of human SBDS comprises three well-folded domains. However, significant conformational exchange was observed in NMR dynamics experiments for the flexible linker between the N-terminal domain and the central domain, and these experiments also reflect the relative motions of the domains. RNA titrations monitored by heteronuclear correlation experiments and chemical shift mapping analysis identified a classic RNA binding site at the N-terminal FYSH (fungal, Yhr087wp, Shwachman) domain that concentrates most of the mutations described for the human SBDS.
Collapse
Affiliation(s)
- Juliana Ferreira de Oliveira
- Center for Structural Molecular Biology, Brazilian Synchrotron Light Laboratory, LNLS Rua Giuseppe Maximo Scolfaro 10000, PO Box 6192, CEP 13083-970 Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sakamoto KM, Shimamura A, Davies SM. Congenital disorders of ribosome biogenesis and bone marrow failure. Biol Blood Marrow Transplant 2010; 16:S12-7. [PMID: 19770060 PMCID: PMC11292738 DOI: 10.1016/j.bbmt.2009.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diamond Blackfan anemia (DBA) is a congenital bone marrow (BM) failure syndrome that typically results in macrocytic anemia within the first year of life. DBA is also associated with birth defects, increased incidence of cancer, and other cytopenias. Shwachman-Diamond syndrome (SDS) is a multisystem disease characterized by exocrine pancreatic dysfunction, impaired hematopoiesis, and leukemia predisposition. Other clinical features include skeletal, immunologic, hepatic, and cardiac disorders. Treatment for these BM failure syndromes, including stem cell transplantation (SCT), will be discussed in this review.
Collapse
Affiliation(s)
- Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, Los Angeles, California 90095-1752 USA.
| | | | | |
Collapse
|
48
|
Vitiello SP, Benedict JW, Padilla-Lopez S, Pearce DA. Interaction between Sdo1p and Btn1p in the Saccharomyces cerevisiae model for Batten disease. Hum Mol Genet 2009; 19:931-42. [PMID: 20015955 DOI: 10.1093/hmg/ddp560] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Juvenile Batten disease is an autosomal recessive pediatric neurodegenerative disorder caused by mutations in the CLN3 gene. The CLN3 protein primarily resides in the lysosomal membrane, but its function is unknown. We demonstrate that CLN3 interacts with SBDS, the protein mutated in Shwachman-Bodian-Diamond syndrome patients. We demonstrate that this protein-protein interaction is conserved between Btn1p and Sdo1p, the respective yeast Saccharomyces cerevisiae orthologs of CLN3 and SBDS. It was previously shown that deletion of BTN1 results in alterations in vacuolar pH and vacuolar (H(+))-ATPase (V-ATPase)-dependent H(+) transport and ATP hydrolysis. Here, we report that an SDO1 deletion strain has decreased vacuolar pH and V-ATPase-dependent H(+) transport and ATP hydrolysis. These alterations result from decreased V-ATPase subunit expression. Overexpression of BTN1 or the presence of ionophore carbonyl cyanide m-chlorophenil hydrazone (CCCP) causes decreased growth in yeast lacking SDO1. In fact, in normal cells, overexpression of BTN1 mirrors the effect of CCCP, with both resulting in increased vacuolar pH due to alterations in the coupling of V-ATPase-dependent H(+) transport and ATP hydrolysis. Thus, we propose that Sdo1p and SBDS work to regulate Btn1p and CLN3, respectively. This report highlights a novel mechanism for controlling vacuole/lysosome homeostasis by the ribosome maturation pathway that may contribute to the cellular abnormalities associated with juvenile Batten disease and Shwachman-Bodian-Diamond syndrome.
Collapse
Affiliation(s)
- Seasson Phillips Vitiello
- Center for Neural Development and Disease, Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|