1
|
Engelhardt D, Petersen JR, Martyr C, Kuhn-Gale H, Niswander LA. Moderate levels of folic acid benefit outcomes for cilia based neural tube defects. Dev Biol 2025; 520:62-74. [PMID: 39755226 DOI: 10.1016/j.ydbio.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Folic acid (FA) supplementation is a potent tool to reduce devastating birth defects known as neural tube defects (NTDs). Though effective, questions remain how FA achieves its protective effect and which gene mutations are sensitive to folic acid levels. We explore the relationship between FA dosage and NTD rates using NTD mouse models. We demonstrate that NTD rates in mouse models harboring mutations in cilia genes depend on FA dosage. Cilia mutant mouse models demonstrate reductions in NTD rates when exposed to moderate levels of FA that are not observed at higher fortified levels of FA. This trend continues with a moderate level of FA being beneficial for primary and motile cilia formation. We present a mechanism through which fortified FA levels reduce basal levels of reactive oxygen species (ROS) which in turn reduces ROS-sensitive GTPase activity required for ciliogenesis. Our data indicates that genes involved in cilia formation and function represent a FA sensitive category of mutations and a possible avenue for further reducing NTD and ciliopathy incidences.
Collapse
Affiliation(s)
- David Engelhardt
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Juliette R Petersen
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Cara Martyr
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Hannah Kuhn-Gale
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Lee A Niswander
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
2
|
Rísová V, Saade R, Jakuš V, Gajdošová L, Varga I, Záhumenský J. Preconceptional and Periconceptional Folic Acid Supplementation in the Visegrad Group Countries for the Prevention of Neural Tube Defects. Nutrients 2024; 17:126. [PMID: 39796560 PMCID: PMC11723246 DOI: 10.3390/nu17010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Neural tube defects (NTDs) are malformations of the central nervous system that represent the second most common cause of congenital morbidity and mortality, following cardiovascular abnormalities. Maternal nutrition, particularly folic acid, a B vitamin, is crucial in the etiology of NTDs. FA plays a key role in DNA methylation, synthesis, and repair, acting as a cofactor in one-carbon transfer reactions essential for neural tube development. Randomized trials have shown that FA supplementation during preconceptional and periconceptional periods reduces the incidence of NTDs by nearly 80%. Consequently, it is recommended that all women of reproductive age take 400 µg of FA daily. Many countries have introduced FA fortification of staple foods to prevent NTDs, addressing the high rate of unplanned pregnancies. These policies have increased FA intake and decreased NTD incidence. Although the precise mechanisms by which FA protects against NTDs remain unclear, compelling evidence supports its efficacy in preventing most NTDs, leading to national recommendations for FA supplementation in women. This review focuses on preconceptional and periconceptional FA supplementation in the female population of the Visegrad Group countries (Slovakia, Czech Republic, Poland, and Hungary). Our findings emphasize the need for a comprehensive approach to NTDs, including FA supplementation programs, tailored counseling, and effective national-level policies.
Collapse
Affiliation(s)
- Vanda Rísová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.R.); (I.V.)
| | - Rami Saade
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.R.); (I.V.)
- 2nd Department of Gynecology and Obstetrics, University Hospital Bratislava and Comenius University, 821 01 Bratislava, Slovakia;
| | - Vladimír Jakuš
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.J.); (L.G.)
| | - Lívia Gajdošová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.J.); (L.G.)
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.R.); (I.V.)
| | - Jozef Záhumenský
- 2nd Department of Gynecology and Obstetrics, University Hospital Bratislava and Comenius University, 821 01 Bratislava, Slovakia;
| |
Collapse
|
3
|
Aguayo-Gómez A, Luna-Muñoz L, Svyryd Y, Muñoz-Téllez LÁ, Mutchinick OM. Bayesian polygenic risk estimation approach to nuclear families with discordant sib-pairs for myelomeningocele. PLoS One 2024; 19:e0316378. [PMID: 39774454 PMCID: PMC11684611 DOI: 10.1371/journal.pone.0316378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Myelomeningocele (MMC) is the most severe and disabling form of spina bifida with chronic health multisystem complications and social and economic family and health systems burden. In the present study, we aimed to investigate the genetic risk estimate for MMC in a cohort of 203 Mexican nuclear families with discordant siblings for the defect. Utilizing a custom Illumina array, we analyzed 656 single nucleotide polymorphisms (SNPs) of 395 candidate genes to identify a polygenic risk profile for MMC. Through a family-based analysis employing the transmission disequilibrium test (TDT) and Bayesian analysis, we assessed risk alleles transmission and calculated conditional probabilities estimating a polygenic risk for MMC. Our findings reveal significant associations of six genes related to neural tube closure (PSMB4, ATIC, DKK2, PSEN2, C2CD3, and PLCB2), showing differences in risk allele transmission between affected and unaffected siblings. Bayesian analysis identified changes in the risk profile after initiating folic acid fortification in Mexico, showing an evident decline in the conditional risk from 1/156 to 1/304 respectively. Despite the decline, this represents a 5.84-fold increase in risk before fortification and a 2.99-fold increase post-fortification compared to the baseline risk level (1/910). Our study highlights the advantage of incorporating a Bayesian analytical methodology in families with discordant sib-pairs, offering insights into the polygenic risk estimate for MMC and, most probably, for other congenital malformations.
Collapse
Affiliation(s)
- Adolfo Aguayo-Gómez
- Department of Genetics, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Leonora Luna-Muñoz
- Department of Genetics, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Yevgeniya Svyryd
- Department of Genetics, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Luis Ángel Muñoz-Téllez
- Department of Genetics, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Osvaldo M. Mutchinick
- Department of Genetics, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| |
Collapse
|
4
|
LaPointe S, Beagle LE, Zheng X, Kancherla V, Mutic A, Chang HH, Gaskins AJ. Associations between exposure to extreme ambient heat and neural tube defects in Georgia, USA: A population-based case-control study. ENVIRONMENTAL RESEARCH 2024; 261:119756. [PMID: 39117054 PMCID: PMC11390300 DOI: 10.1016/j.envres.2024.119756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION The association between extreme ambient heat exposures during pregnancy and neural tube defects (NTDs) in offspring remains unclear. This study sought to estimate the association between exposure to extreme ambient heat during periconception and NTDs. METHODS This population-based case-control study in Georgia, USA (1994-2017) included 825 isolated NTD cases (473 anencephaly, 352 spina bifida) and 3,300 controls matched 1:4 on county of residence and time period of delivery. Daily ambient temperature data were linked to fetal death and birth records by county of residence. Extreme ambient heat exposure was defined as the number of consecutive days the daily apparent temperature exceeded the county-specific 95th percentile (derived over 1980-2010) during an eight-week periconception period. We calculated adjusted odds ratios (aORs) and 95% confidence intervals (CI) using conditional logistic regression models adjusted for maternal age, education, and ethnicity and month and year of last menstrual period. RESULTS The aORs for NTDs were 1.09 (95% CI 1.01, 1.17), 1.18 (95% CI 1.03, 1.36), and 1.29 (95% CI 1.04, 1.58) for exposure to 1-2, 3-5, and 6 or more consecutive days with apparent ambient temperatures exceeding the county-specific 95th percentile during periconception, respectively, compared to no days of extreme ambient heat exposure. Weekly analysis of extreme heat exposure indicated consistently elevated odds of offspring NTDs during periconception. These results were largely driven by spina bifida cases. CONCLUSIONS Our results highlight potential health threats posed by increasing global average temperatures for pregnant people with implications for increased risk of neural tube defects in their offspring.
Collapse
Affiliation(s)
- Sarah LaPointe
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lauren E Beagle
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Xiaping Zheng
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Vijaya Kancherla
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Abby Mutic
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Wei CF, Tindula G, Mukherjee SK, Wang X, Ekramullah SM, Arman DM, Islam MJ, Azim M, Rahman A, Afreen S, Ziaddin M, Warf BC, Weisskopf MG, Christiani DC, Liang L, Mazumdar M. Maternal arsenic exposure modifies associations between arsenic, folate and arsenic metabolism gene variants, and spina bifida risk: A case‒control study in Bangladesh. ENVIRONMENTAL RESEARCH 2024; 261:119714. [PMID: 39094898 PMCID: PMC11460318 DOI: 10.1016/j.envres.2024.119714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Spina bifida is a type of neural tube defect (NTD); NTDs are developmental malformations of the spinal cord that result from failure of neural tube closure during embryogenesis and are likely caused by interactions between genetic and environmental factors. Arsenic induces NTDs in animal models, and studies demonstrate that mice with genetic defects related to folate metabolism are more susceptible to arsenic's effects. We sought to determine whether 25 single-nucleotide polymorphisms (SNPs) in genes involved in folate and arsenic metabolism modified the associations between maternal arsenic exposure and risk of spina bifida (a common NTD) among a hospital-based case-control study population in Bangladesh. METHODS We used data from 262 mothers and 220 infants who participated in a case‒control study at the National Institutes of Neurosciences & Hospital and Dhaka Shishu Hospital in Dhaka, Bangladesh. Neurosurgeons assessed infants using physical examinations, review of imaging, and we collected histories using questionnaires. We assessed arsenic from mothers' toenails using inductively coupled plasma mass spectrometry (ICP-MS), and we genotyped participants using the Illumina Global Screening Array v1.0. We chose candidate genes and SNPs through a review of the literature. We assessed SNP-environment interactions using interaction terms and stratified models, and we assessed gene-environment interactions using interaction sequence/SNP-set kernel association tests (iSKAT). RESULTS The median toenail arsenic concentration was 0.42 μg/g (interquartile range [IQR]: 0.27-0.86) among mothers of cases and 0.47 μg/g (IQR: 0.30-0.97) among mothers of controls. We found an two SNPs in the infants' AS3MT gene (rs11191454 and rs7085104) and one SNP in mothers' DNMT1 gene (rs2228611) were associated with increased odds of spina bifida in the setting of high arsenic exposure (rs11191454, OR 3.01, 95% CI: 1.28-7.09; rs7085104, OR 2.33, 95% CI: 1.20-4.and rs2228611, OR 2.11, 95% CI: 1.11-4.01), along with significant SNP-arsenic interactions. iSKAT analyses revealed significant interactions between mothers' toenail concentrations and infants' AS3MT and MTR genes (p = 0.02), and mothers' CBS gene (p = 0.05). CONCLUSIONS Our results support the hypothesis that arsenic increases spina bifida risk via interactions with folate and arsenic metabolic pathways and suggests that individuals in the population who have certain genetic polymorphisms in genes involved with arsenic and folate metabolism may be more susceptible than others to the arsenic teratogenicity.
Collapse
Affiliation(s)
- Chih-Fu Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gwen Tindula
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA, USA
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Xingyan Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Md Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | | | - Asifur Rahman
- Department of Neurosurgery, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Shamantha Afreen
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Md Ziaddin
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Jacinto JGP, Letko A, Häfliger IM, Drögemüller C, Agerholm JS. Congenital syndromic Chiari-like malformation (CSCM) in Holstein cattle: towards unravelling of possible genetic causes. Acta Vet Scand 2024; 66:29. [PMID: 38965607 PMCID: PMC11229497 DOI: 10.1186/s13028-024-00752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Chiari malformation type II (CMII) was originally reported in humans as a rare disorder characterized by the downward herniation of the hindbrain and towering cerebellum. The congenital brain malformation is usually accompanied by spina bifida, a congenital spinal anomaly resulting from incomplete closure of the dorsal aspect of the spinal neural tube, and occasionally by other lesions. A similar disorder has been reported in several animal species, including cattle, particularly as a congenital syndrome. A cause of congenital syndromic Chiari-like malformation (CSCM) in cattle has not been reported to date. We collected a series of 14 CSCM-affected Holstein calves (13 purebred, one Red Danish Dairy F1 cross) and performed whole-genome sequencing (WGS). WGS was performed on 33 cattle, including eight cases with parents (trio-based; group 1), three cases with one parent (group 2), and three single cases (solo-based; group 3). RESULTS Sequencing-based genome-wide association study of the 13 Holstein calves with CSCM and 166 controls revealed no significantly associated genome region. Assuming a single Holstein breed-specific recessive allele, no region of shared homozygosity was detected suggesting heterogeneity. Subsequent filtering for protein-changing variants that were only homozygous in the genomes of the individual cases allowed the identification of two missense variants affecting different genes, SHC4 in case 4 in group 1 and WDR45B in case 13 in group 3. Furthermore, these two variants were only observed in Holstein cattle when querying WGS data of > 5,100 animals. Alternatively, potential de novo mutational events were assessed in each case. Filtering for heterozygous private protein-changing variants identified one DYNC1H1 frameshift variant as a candidate causal dominant acting allele in case 12 in group 3. Finally, the presence of larger structural DNA variants and chromosomal abnormalities was investigated in all cases. Depth of coverage analysis revealed two different partial monosomies of chromosome 2 segments in cases 1 and 7 in group 1 and a trisomy of chromosome 12 in the WDR45B homozygous case 13 in group 3. CONCLUSIONS This study presents for the first time a detailed genomic evaluation of CSCM in Holstein cattle and suggests an unexpected genetic and allelic heterogeneity considering the mode of inheritance, as well as the type of variant. For the first time, we propose candidate causal variants that may explain bovine CSCM in a certain proportion of affected calves. We present cattle as a large animal model for human CMII and propose new genes and genomic variants as possible causes for related diseases in both animals and humans.
Collapse
Affiliation(s)
- Joana Goncalves Pontes Jacinto
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Irene Monika Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland.
| | - Jørgen Steen Agerholm
- Department of Veterinary Clinical Sciences, University of Copenhagen, Højbakkegaard Allé 5A, Taastrup, 2630, Denmark
| |
Collapse
|
7
|
Okpara SE, Iloabachie IC, Mbanugo TH, Onyia EE, Okpara AC, Mbaeri IC, Mathew M, Uche EO. Seasonal trend in the occurrence of myelomeningocele in nigeria: a hypothesis of climate-induced oxidative stress. Childs Nerv Syst 2024; 40:707-713. [PMID: 37947860 DOI: 10.1007/s00381-023-06211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE Myelomeningocele is the most severe birth defect compatible with long-term survival. It accounts for 5.7% of neurological surgeries in Nigeria. However, the exact cause of this neural tube defect remains unidentified. This study aims to determine if seasonal variation is a potential environmental contributor. METHOD This study prospectively recruited 242 children diagnosed with myelomeningocele at the University of Nigeria Teaching Hospital (UNTH), Enugu, Nigeria, between January 2010 and December 2022. Our primary outcome was the seasonal occurrence of myelomeningocele, while covariates included gender, birth order, maternal folic acid supplementation (FAS), and parental age. The estimated month of conception was derived from the mother's last menstrual period (LMP), and the occurrence of myelomeningocele across the various seasons in which these babies were conceived was assessed using the Lorenz curve and the Gini coefficient. RESULTS 242 patients were studied with a male-to-female ratio of 1.26. The majority of cases were lumbosacral (93.4%), and none of the mothers commenced FAS before conception. The highest proportion of cases (39.7%) occurred during the hottest period of the dry season (January-March), while the lowest proportion (15.7%) occurred during the early wet season (April-June). The Gini index of 0.29, and the Gini coefficient derived from 100,000 Monte Carlo simulations of 0.24, indicate a significant variation in the distribution of myelomeningocele cases across different seasons of conception. CONCLUSION The seasonal occurrence of myelomeningocele with a peak in January-March suggests a potential association with environmental factors including oxidative stress induced by solar radiation.
Collapse
Affiliation(s)
- Samuel E Okpara
- Neurosurgery Division, Department of Surgery, University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla, Enugu, Nigeria
- Neurosurgery Division, Department of Surgery, Alex Ekwueme Federal University Teaching Hospital, Abakaliki (AEFUTHA), Ebonyi, Nigeria
| | - Izuchukwu C Iloabachie
- Neurosurgery Division, Department of Surgery, University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla, Enugu, Nigeria.
| | - Tochukwu H Mbanugo
- Neurosurgery Division, Department of Surgery, University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla, Enugu, Nigeria
| | - Ephraim E Onyia
- Neurosurgery Division, Department of Surgery, University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla, Enugu, Nigeria
| | - Amarachi C Okpara
- Department of Ophthalmology, Alex Ekwueme Federal University Teaching Hospital, Abakaliki (AEFUTHA), Ebonyi, Nigeria
| | - Ikechi C Mbaeri
- Neurosurgery Division, Department of Surgery, University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla, Enugu, Nigeria
- Neurosurgery Division, Department of Surgery, Alex Ekwueme Federal University Teaching Hospital, Abakaliki (AEFUTHA), Ebonyi, Nigeria
| | - Mesi Mathew
- Department of Neurosurgery, Hull Royal Infirmary, Hull University Teaching Hospitals, Cottingham, UK
| | - Enoch O Uche
- Neurosurgery Division, Department of Surgery, University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla, Enugu, Nigeria
| |
Collapse
|
8
|
Tindula G, Issac B, Mukherjee SK, Ekramullah SM, Arman DM, Islam J, Suchanda HS, Sun L, Rockowitz S, Christiani DC, Warf BC, Mazumdar M. Genome-wide analysis of spina bifida risk variants in a case-control study from Bangladesh. Birth Defects Res 2024; 116:e2331. [PMID: 38526198 PMCID: PMC10963057 DOI: 10.1002/bdr2.2331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Human studies of genetic risk factors for neural tube defects, severe birth defects associated with long-term health consequences in surviving children, have predominantly been restricted to a subset of candidate genes in specific biological pathways including folate metabolism. METHODS In this study, we investigated the association of genetic variants spanning the genome with risk of spina bifida (i.e., myelomeningocele and meningocele) in a subset of families enrolled from December 2016 through December 2022 in a case-control study in Bangladesh, a population often underrepresented in genetic studies. Saliva DNA samples were analyzed using the Illumina Global Screening Array. We performed genetic association analyses to compare allele frequencies between 112 case and 121 control children, 272 mothers, and 128 trios. RESULTS In the transmission disequilibrium test analyses with trios only, we identified three novel exonic spina bifida risk loci, including rs140199800 (SULT1C2, p = 1.9 × 10-7), rs45580033 (ASB2, p = 4.2 × 10-10), and rs75426652 (LHPP, p = 7.2 × 10-14), after adjusting for multiple hypothesis testing. Association analyses comparing cases and controls, as well as models that included their mothers, did not identify genome-wide significant variants. CONCLUSIONS This study identified three novel single nucleotide polymorphisms involved in biological pathways not previously associated with neural tube defects. The study warrants replication in larger groups to validate findings and to inform targeted prevention strategies.
Collapse
Affiliation(s)
- Gwen Tindula
- Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, United States
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, United States
| | - Biju Issac
- Research Computing, Information Technology, Boston Children’s Hospital, Boston, MA, 02115, United States
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - DM Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - Hafiza Sultana Suchanda
- Pediatric Neurosurgery Research Committee, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - Liang Sun
- Research Computing, Information Technology, Boston Children’s Hospital, Boston, MA, 02115, United States
| | - Shira Rockowitz
- Research Computing, Information Technology, Boston Children’s Hospital, Boston, MA, 02115, United States
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, United States
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| | - Benjamin C. Warf
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, United States
| | - Maitreyi Mazumdar
- Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, United States
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| |
Collapse
|
9
|
Luo H, Lao L, Au KS, Northrup H, He X, Forget D, Gauthier MS, Coulombe B, Bourdeau I, Shi W, Gagliardi L, Fragoso MCBV, Peng J, Wu J. ARMC5 controls the degradation of most Pol II subunits, and ARMC5 mutation increases neural tube defect risks in mice and humans. Genome Biol 2024; 25:19. [PMID: 38225631 PMCID: PMC10789052 DOI: 10.1186/s13059-023-03147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are caused by genetic and environmental factors. ARMC5 is part of a novel ubiquitin ligase specific for POLR2A, the largest subunit of RNA polymerase II (Pol II). RESULTS We find that ARMC5 knockout mice have increased incidence of NTDs, such as spina bifida and exencephaly. Surprisingly, the absence of ARMC5 causes the accumulation of not only POLR2A but also most of the other 11 Pol II subunits, indicating that the degradation of the whole Pol II complex is compromised. The enlarged Pol II pool does not lead to generalized Pol II stalling or a generalized decrease in mRNA transcription. In neural progenitor cells, ARMC5 knockout only dysregulates 106 genes, some of which are known to be involved in neural tube development. FOLH1, critical in folate uptake and hence neural tube development, is downregulated in the knockout intestine. We also identify nine deleterious mutations in the ARMC5 gene in 511 patients with myelomeningocele, a severe form of spina bifida. These mutations impair the interaction between ARMC5 and Pol II and reduce Pol II ubiquitination. CONCLUSIONS Mutations in ARMC5 increase the risk of NTDs in mice and humans. ARMC5 is part of an E3 controlling the degradation of all 12 subunits of Pol II under physiological conditions. The Pol II pool size might have effects on NTD pathogenesis, and some of the effects might be via the downregulation of FOLH1. Additional mechanistic work is needed to establish the causal effect of the findings on NTD pathogenesis.
Collapse
Affiliation(s)
- Hongyu Luo
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| | - Linjiang Lao
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Kit Sing Au
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Xiao He
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Diane Forget
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Marie-Soleil Gauthier
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Benoit Coulombe
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Bourdeau
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
- Division of Endocrinology, CHUM, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Wei Shi
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Lucia Gagliardi
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
- Endocrine and Diabetes Unit, Queen Elizabeth Hospital, Adelaide, Australia
| | - Maria Candida Barisson Villares Fragoso
- Unidade de Suprarrenal Disciplina de Endocrinologia E Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Junzheng Peng
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Jiangping Wu
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.
- Division of Nephrology, CHUM, Montreal, QC, Canada.
| |
Collapse
|
10
|
Waddington SN, Peranteau WH, Rahim AA, Boyle AK, Kurian MA, Gissen P, Chan JKY, David AL. Fetal gene therapy. J Inherit Metab Dis 2024; 47:192-210. [PMID: 37470194 PMCID: PMC10799196 DOI: 10.1002/jimd.12659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Fetal gene therapy was first proposed toward the end of the 1990s when the field of gene therapy was, to quote the Gartner hype cycle, at its "peak of inflated expectations." Gene therapy was still an immature field but over the ensuing decade, it matured and is now a clinical and market reality. The trajectory of treatment for several genetic diseases is toward earlier intervention. The ability, capacity, and the will to diagnose genetic disease early-in utero-improves day by day. A confluence of clinical trials now signposts a trajectory toward fetal gene therapy. In this review, we recount the history of fetal gene therapy in the context of the broader field, discuss advances in fetal surgery and diagnosis, and explore the full ambit of preclinical gene therapy for inherited metabolic disease.
Collapse
Affiliation(s)
- Simon N Waddington
- EGA Institute for Women's Health, University College London, London, UK
- Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, Johannesburg, South Africa
| | - William H Peranteau
- The Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, UK
| | - Ashley K Boyle
- EGA Institute for Women's Health, University College London, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, GOS-Institute of Child Health, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Paul Gissen
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
- Experimental Fetal Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anna L David
- EGA Institute for Women's Health, University College London, London, UK
| |
Collapse
|
11
|
Li X, Pei P, Shen J, Yu J, Wang F, Wang L, Liu C, Wang S. Folate deficiency reduced aberrant level of DOT1L-mediated histone H3K79 methylation causes disruptive SHH gene expression involved in neural tube defects. Epigenetics Chromatin 2023; 16:50. [PMID: 38093377 PMCID: PMC10720071 DOI: 10.1186/s13072-023-00517-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/16/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are one of the most severe congenital abnormalities characterized by failures of the neural tube to close during early embryogenesis. Maternal folate deficiency could impact the occurrence of NTDs, however, the mechanisms involved in the cause of NTDs are poorly defined. RESULTS Here, we report that histone H3 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) expression was significantly downregulated, and low levels of H3K79me2 were found in the corresponding NTDs samples with their maternal serum folate under low levels. Using ChIP-seq assays, we found that a decrease of H3K79me2 downregulates the expression of Shh and Sufu in mouse embryonic stem cells (mESC) under folate deficiency. Interestingly, folate antagonist methotrexate treatment led to attenuation of H3K79me2 due to Dot1l, affecting Shh and Sufu genes regulation. Upon further analysis, we find that the genes Shh and Sufu are both downregulated in the brain tissues of mice and humans with NTDs. There was a positive correlation between the transcription levels of Shh, Sufu and the protein levels of DOT1L by Pearson correlation analysis. CONCLUSION Our results indicate that abnormal Shh and Sufu genes expression reduced by aberrant Dot1l-mediated H3K79me2 levels could be the cause of NTDs occurrence.
Collapse
Affiliation(s)
- Xue Li
- Weifang People's Hospital, Weifang, 261041, Shandong, China
- School of Clinical Medical, Weifang Medical University, Weifang, 261053, Shandong, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Pei Pei
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jinying Shen
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Juan Yu
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, 046000, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Changyun Liu
- School of Clinical Medical, Weifang Medical University, Weifang, 261053, Shandong, China.
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
12
|
Lee JH, Shaker MR, Park SH, Sun W. Transcriptional Signature of Valproic Acid-Induced Neural Tube Defects in Human Spinal Cord Organoids. Int J Stem Cells 2023; 16:385-393. [PMID: 37643760 PMCID: PMC10686804 DOI: 10.15283/ijsc23012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 08/31/2023] Open
Abstract
In vertebrates, the entire central nervous system is derived from the neural tube, which is formed through a conserved early developmental morphogenetic process called neurulation. Although the perturbations in neurulation caused by genetic or environmental factors lead to neural tube defects (NTDs), the most common congenital malformation and the precise molecular pathological cascades mediating NTDs are not well understood. Recently, we have developed human spinal cord organoids (hSCOs) that recapitulate some aspects of human neurulation and observed that valproic acid (VPA) could cause neurulation defects in an organoid model. In this study, we identified and verified the significant changes in cell-cell junctional genes/proteins in VPA-treated organoids using transcriptomic and immunostaining analysis. Furthermore, VPA-treated mouse embryos exhibited impaired gene expression and NTD phenotypes, similar to those observed in the hSCO model. Collectively, our data demonstrate that hSCOs provide a valuable biological resource for dissecting the molecular pathways underlying the currently unknown human neurulation process using destructive biological analysis tools.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Mohammed R. Shaker
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Si-Hyung Park
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Rai S, Leydier L, Sharma S, Katwala J, Sahu A. A quest for genetic causes underlying signaling pathways associated with neural tube defects. Front Pediatr 2023; 11:1126209. [PMID: 37284286 PMCID: PMC10241075 DOI: 10.3389/fped.2023.1126209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 06/08/2023] Open
Abstract
Neural tube defects (NTDs) are serious congenital deformities of the nervous system that occur owing to the failure of normal neural tube closures. Genetic and non-genetic factors contribute to the etiology of neural tube defects in humans, indicating the role of gene-gene and gene-environment interaction in the occurrence and recurrence risk of neural tube defects. Several lines of genetic studies on humans and animals demonstrated the role of aberrant genes in the developmental risk of neural tube defects and also provided an understanding of the cellular and morphological programs that occur during embryonic development. Other studies observed the effects of folate and supplementation of folic acid on neural tube defects. Hence, here we review what is known to date regarding altered genes associated with specific signaling pathways resulting in NTDs, as well as highlight the role of various genetic, and non-genetic factors and their interactions that contribute to NTDs. Additionally, we also shine a light on the role of folate and cell adhesion molecules (CAMs) in neural tube defects.
Collapse
Affiliation(s)
- Sunil Rai
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Larissa Leydier
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Shivani Sharma
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Jigar Katwala
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Anurag Sahu
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
14
|
Ávila-González D, Gidi-Grenat MÁ, García-López G, Martínez-Juárez A, Molina-Hernández A, Portillo W, Díaz-Martínez NE, Díaz NF. Pluripotent Stem Cells as a Model for Human Embryogenesis. Cells 2023; 12:1192. [PMID: 37190101 PMCID: PMC10136597 DOI: 10.3390/cells12081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Pluripotent stem cells (PSCs; embryonic stem cells and induced pluripotent stem cells) can recapitulate critical aspects of the early stages of embryonic development; therefore, they became a powerful tool for the in vitro study of molecular mechanisms that underlie blastocyst formation, implantation, the spectrum of pluripotency and the beginning of gastrulation, among other processes. Traditionally, PSCs were studied in 2D cultures or monolayers, without considering the spatial organization of a developing embryo. However, recent research demonstrated that PSCs can form 3D structures that simulate the blastocyst and gastrula stages and other events, such as amniotic cavity formation or somitogenesis. This breakthrough provides an unparalleled opportunity to study human embryogenesis by examining the interactions, cytoarchitecture and spatial organization among multiple cell lineages, which have long remained a mystery due to the limitations of studying in utero human embryos. In this review, we will provide an overview of how experimental embryology currently utilizes models such as blastoids, gastruloids and other 3D aggregates derived from PSCs to advance our understanding of the intricate processes involved in human embryo development.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Mikel Ángel Gidi-Grenat
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Alejandro Martínez-Juárez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Néstor Emmanuel Díaz-Martínez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| |
Collapse
|
15
|
Escuin S, Rose Raza-Knight S, Savery D, Gaston-Massuet C, Galea GL, Greene NDE, Copp AJ. Dual mechanism underlying failure of neural tube closure in the Zic2 mutant mouse. Dis Model Mech 2023; 16:297163. [PMID: 36916392 PMCID: PMC10073009 DOI: 10.1242/dmm.049858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023] Open
Abstract
Understanding the molecular mechanisms that lead to birth defects is an important step towards improved primary prevention. Mouse embryos homozygous for the Kumba (Ku) mutant allele of Zic2 develop severe spina bifida with complete lack of dorsolateral hinge points (DLHPs) in the neuroepithelium. Bone morphogenetic protein (BMP) signalling is overactivated in Zic2Ku/Ku embryos, and the BMP inhibitor dorsomorphin partially rescues neural tube closure in cultured embryos. RhoA signalling is also overactivated, with accumulation of actomyosin in the Zic2Ku/Ku neuroepithelium, and the myosin inhibitor Blebbistatin partially normalises neural tube closure. However, dorsomorphin and Blebbistatin differ in their effects at tissue and cellular levels: DLHP formation is rescued by dorsomorphin but not Blebbistatin, whereas abnormal accumulation of actomyosin is rescued by Blebbistatin but not dorsomorphin. These findings suggest a dual mechanism of spina bifida origin in Zic2Ku/Ku embryos: faulty BMP-dependent formation of DLHPs and RhoA-dependent F-actin accumulation in the neuroepithelium. Hence, we identify a multi-pathway origin of spina bifida in a mammalian system that may provide a developmental basis for understanding the corresponding multifactorial human defects.
Collapse
Affiliation(s)
- Sarah Escuin
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Saba Rose Raza-Knight
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Dawn Savery
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Carles Gaston-Massuet
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
16
|
Wang Y, Zhang K, Guo J, Yang S, Shi X, Pan J, Sun Z, Zou J, Li Y, Li Y, Fan T, Song W, Cheng F, Zeng C, Li J, Zhang T, Sun ZS. Loss-of-Function of p21-Activated Kinase 2 Links BMP Signaling to Neural Tube Patterning Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204018. [PMID: 36504449 PMCID: PMC9896034 DOI: 10.1002/advs.202204018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Closure of the neural tube represents a highly complex and coordinated process, the failure of which constitutes common birth defects. The serine/threonine kinase p21-activated kinase 2 (PAK2) is a critical regulator of cytoskeleton dynamics; however, its role in the neurulation and pathogenesis of neural tube defects (NTDs) remains unclear. Here, the results show that Pak2-/- mouse embryos fail to develop dorsolateral hinge points (DLHPs) and exhibit craniorachischisis, a severe phenotype of NTDs. Pak2 knockout activates BMP signaling that involves in vertebrate bone formation. Single-cell transcriptomes reveal abnormal differentiation trajectories and transcriptional events in Pak2-/- mouse embryos during neural tube development. Two nonsynonymous and one recurrent splice-site mutations in the PAK2 gene are identified in five human NTD fetuses, which exhibit attenuated PAK2 expression and upregulated BMP signaling in the brain. Mechanistically, PAK2 regulates Smad9 phosphorylation to inhibit BMP signaling and ultimately induce DLHP formation. Depletion of pak2a in zebrafish induces defects in the neural tube, which are partially rescued by the overexpression of wild-type, but not mutant PAK2. The findings demonstrate the conserved role of PAK2 in neurulation in multiple vertebrate species, highlighting the molecular pathogenesis of PAK2 mutations in NTDs.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Kaifan Zhang
- Institute of Genomic MedicineWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Shuyan Yang
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Xiaohui Shi
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jinrong Pan
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Zheng Sun
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jizhen Zou
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Yi Li
- Institute of Genomic MedicineWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yuanyuan Li
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianda Fan
- Institute of Genomic MedicineWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Wei Song
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Fang Cheng
- Institute of Genomic MedicineWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Cheng Zeng
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jinchen Li
- Bioinformatics Center & National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410078China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Zhong Sheng Sun
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
- Institute of Genomic MedicineWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Integrated Management of Pest Insects and RodentsChinese Academy of SciencesBeijing100101China
| |
Collapse
|
17
|
Plessis AMD, Wessels Q, Schoor AV, Keough N. Congenital malformations in the vertebral column: associations and possible embryologic origins. Anat Cell Biol 2022; 55:399-405. [PMID: 36071544 PMCID: PMC9747346 DOI: 10.5115/acb.22.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/01/2022] [Accepted: 07/05/2022] [Indexed: 01/02/2023] Open
Abstract
Cases of associations between random spinal congenital defects have previously been reported, yet several questions remain unanswered. Firstly, why are associations between what seems to be random combinations of vertebral malformations observed? Secondly, is there a common event or pattern that connects the associated defects? Therefore, this study aimed to identify congenital defects in the vertebral column and also to determine whether any associations, if present, between vertebral malformations exist. This article consequently discusses the possible embryological disruptions that may lead to the formation of various defects in the vertebral column. A random skeletal sample (n=187) was selected from the Pretoria Bone Collection housed in the Department of Anatomy, University of Pretoria (Ethics 678/2018). The sample was evaluated to determine the frequencies of spinal congenital defects in each set of remains. Identifiable congenital malformations were observed in 48.1% (n=90/187) of the sample. The results demonstrated a high probability of association between the different defects observed in the vertebral column. Findings are of value as they provide a reasonable explanation to why seemingly random cases of associations have been reported by several authors. This study is clinically relevant as severe spinal defects have been shown to have high morbidity in patients and mortality in infants.
Collapse
Affiliation(s)
- Anneli M. Du Plessis
- Department of Anatomy, Health Science Campus, University of Pretoria, South Africa,Department Anatomy, School of Medicine, University of Namibia, Windhoek, Namibia,Corresponding author: Anneli M. Du Plessis, Department of Anatomy, School of Medicine, University of Namibia, Windhoek 9000, Namibia, E-mail: /
| | - Quenton Wessels
- Department Anatomy, School of Medicine, University of Namibia, Windhoek, Namibia
| | - Albert Van Schoor
- Department of Anatomy, Health Science Campus, University of Pretoria, South Africa
| | - Natalie Keough
- Department of Anatomy, Health Science Campus, University of Pretoria, South Africa,Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Han X, Cao X, Aguiar-Pulido V, Yang W, Karki M, Ramirez PAP, Cabrera RM, Lin YL, Wlodarczyk BJ, Shaw GM, Ross ME, Zhang C, Finnell RH, Lei Y. CIC missense variants contribute to susceptibility for spina bifida. Hum Mutat 2022; 43:2021-2032. [PMID: 36054333 PMCID: PMC9772115 DOI: 10.1002/humu.24460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023]
Abstract
Neural tube defects (NTDs) are congenital malformations resulting from abnormal embryonic development of the brain, spine, or spinal column. The genetic etiology of human NTDs remains poorly understood despite intensive investigation. CIC, homolog of the Capicua transcription repressor, has been reported to interact with ataxin-1 (ATXN1) and participate in the pathogenesis of spinocerebellar ataxia type 1. Our previous study demonstrated that CIC loss of function (LoF) variants contributed to the cerebral folate deficiency syndrome by downregulating folate receptor 1 (FOLR1) expression. Given the importance of folate transport in neural tube formation, we hypothesized that CIC variants could contribute to increased risk for NTDs by depressing embryonic folate concentrations. In this study, we examined CIC variants from whole-genome sequencing (WGS) data of 140 isolated spina bifida cases and identified eight missense variants of CIC gene. We tested the pathogenicity of the observed variants through multiple in vitro experiments. We determined that CIC variants decreased the FOLR1 protein level and planar cell polarity (PCP) pathway signaling in a human cell line (HeLa). In a murine cell line (NIH3T3), CIC loss of function variants downregulated PCP signaling. Taken together, this study provides evidence supporting CIC as a risk gene for human NTD.
Collapse
Affiliation(s)
- Xiao Han
- Department of Reproductive Medicine Center, Henan
Provincial People’s Hospital, People’s Hospital of Zhengzhou
University, Zhengzhou, Henan Province, People’s Republic of China
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Vanessa Aguiar-Pulido
- Center for Neurogenetics, Brain and Mind Research
Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Computer Science, University of Miami, Coral
Gables, FL 33146, USA
| | - Wei Yang
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, CA, USA
| | - Menuka Karki
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Paula Andrea Pimienta Ramirez
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Robert M. Cabrera
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, CA, USA
| | - M. Elizabeth Ross
- Center for Neurogenetics, Brain and Mind Research
Institute, Weill Cornell Medicine, New York, NY, USA
| | - Cuilian Zhang
- Department of Reproductive Medicine Center, Henan
Provincial People’s Hospital, People’s Hospital of Zhengzhou
University, Zhengzhou, Henan Province, People’s Republic of China
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
- Departments of Molecular and Human Genetics and Medicine,
Baylor College of Medicine, Houston, TX 77031, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| |
Collapse
|
19
|
Engelhardt DM, Martyr CA, Niswander L. Pathogenesis of neural tube defects: The regulation and disruption of cellular processes underlying neural tube closure. WIREs Mech Dis 2022; 14:e1559. [PMID: 35504597 PMCID: PMC9605354 DOI: 10.1002/wsbm.1559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022]
Abstract
Neural tube closure (NTC) is crucial for proper development of the brain and spinal cord and requires precise morphogenesis from a sheet of cells to an intact three-dimensional structure. NTC is dependent on successful regulation of hundreds of genes, a myriad of signaling pathways, concentration gradients, and is influenced by epigenetic and environmental cues. Failure of NTC is termed a neural tube defect (NTD) and is a leading class of congenital defects in the United States and worldwide. Though NTDs are all defined as incomplete closure of the neural tube, the pathogenesis of an NTD determines the type, severity, positioning, and accompanying phenotypes. In this review, we survey pathogenesis of NTDs relating to disruption of cellular processes arising from genetic mutations, altered epigenetic regulation, and environmental influences by micronutrients and maternal condition. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Engelhardt
- Molecular Cellular Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Cara A Martyr
- Molecular Cellular Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Lee Niswander
- Molecular Cellular Developmental Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
20
|
Leibovitz Z, Lerman-Sagie T, Haddad L. Fetal Brain Development: Regulating Processes and Related Malformations. Life (Basel) 2022; 12:life12060809. [PMID: 35743840 PMCID: PMC9224903 DOI: 10.3390/life12060809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
This paper describes the contemporary state of knowledge regarding processes that regulate normal development of the embryonic–fetal central nervous system (CNS). The processes are described according to the developmental timetable: dorsal induction, ventral induction, neurogenesis, neuronal migration, post-migration neuronal development, and cortical organization. We review the current literature on CNS malformations associated with these regulating processes. We specifically address neural tube defects, holoprosencephaly, malformations of cortical development (including microcephaly, megalencephaly, lissencephaly, cobblestone malformations, gray matter heterotopia, and polymicrogyria), disorders of the corpus callosum, and posterior fossa malformations. Fetal ventriculomegaly, which frequently accompanies these disorders, is also reviewed. Each malformation is described with reference to the etiology, genetic causes, prenatal sonographic imaging, associated anomalies, differential diagnosis, complimentary diagnostic studies, clinical interventions, neurodevelopmental outcome, and life quality.
Collapse
Affiliation(s)
- Zvi Leibovitz
- Obstetrics-Gynecology Ultrasound Unit, Department of Obstetrics and Gynecology, Fetal Neurology Clinic, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 5822012, Israel;
- Obstetrics-Gynecology Ultrasound Unit, Bnai-Zion Medical Center, Rappaport Faculty of Medicine, The Technion, Haifa 31048, Israel;
- Correspondence:
| | - Tally Lerman-Sagie
- Obstetrics-Gynecology Ultrasound Unit, Department of Obstetrics and Gynecology, Fetal Neurology Clinic, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 5822012, Israel;
- Pediatric Neurology Unit, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 5822012, Israel
| | - Leila Haddad
- Obstetrics-Gynecology Ultrasound Unit, Bnai-Zion Medical Center, Rappaport Faculty of Medicine, The Technion, Haifa 31048, Israel;
| |
Collapse
|
21
|
Eph and Ephrin Variants in Malaysian Neural Tube Defect Families. Genes (Basel) 2022; 13:genes13060952. [PMID: 35741713 PMCID: PMC9222557 DOI: 10.3390/genes13060952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Neural tube defects (NTDs) are common birth defects with a complex genetic etiology. Mouse genetic models have indicated a number of candidate genes, of which functional mutations in some have been found in human NTDs, usually in a heterozygous state. This study focuses on Ephs-ephrins as candidate genes of interest owing to growing evidence of the role of this gene family during neural tube closure in mouse models. Eph-ephrin genes were analyzed in 31 Malaysian individuals comprising seven individuals with sporadic spina bifida, 13 parents, one twin-sibling and 10 unrelated controls. Whole exome sequencing analysis and bioinformatic analysis were performed to identify variants in 22 known Eph-ephrin genes. We reported that three out of seven spina bifida probands and three out of thirteen family members carried a variant in either EPHA2 (rs147977279), EPHB6 (rs780569137) or EFNB1 (rs772228172). Analysis of public databases shows that these variants are rare. In exome datasets of the probands and parents of the probands with Eph-ephrin variants, the genotypes of spina bifida-related genes were compared to investigate the probability of the gene–gene interaction in relation to environmental risk factors. We report the presence of Eph-ephrin gene variants that are prevalent in a small cohort of spina bifida patients in Malaysian families.
Collapse
|
22
|
Lee JH, Shin H, Shaker MR, Kim HJ, Park SH, Kim JH, Lee N, Kang M, Cho S, Kwak TH, Kim JW, Song MR, Kwon SH, Han DW, Lee S, Choi SY, Rhyu IJ, Kim H, Geum D, Cho IJ, Sun W. Production of human spinal-cord organoids recapitulating neural-tube morphogenesis. Nat Biomed Eng 2022; 6:435-448. [PMID: 35347276 DOI: 10.1038/s41551-022-00868-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
Human spinal-cord-like tissues induced from human pluripotent stem cells are typically insufficiently mature and do not mimic the morphological features of neurulation. Here, we report a three-dimensional culture system and protocol for the production of human spinal-cord-like organoids (hSCOs) recapitulating the neurulation-like tube-forming morphogenesis of the early spinal cord. The hSCOs exhibited neurulation-like tube-forming morphogenesis, cellular differentiation into the major types of spinal-cord neurons as well as glial cells, and mature synaptic functional activities, among other features of the development of the spinal cord. We used the hSCOs to screen for antiepileptic drugs that can cause neural-tube defects. hSCOs may also facilitate the study of the development of the human spinal cord and the modelling of diseases associated with neural-tube defects.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyogeun Shin
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mohammed R Shaker
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Si-Hyung Park
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Hoan Kim
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Namwon Lee
- InterMinds Inc., Seongnam, Republic of Korea
| | - Minjin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Subin Cho
- Department of Bio-Information Science, Ewha Womans University, Seoul, Republic of Korea
| | - Tae Hwan Kwak
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jong Woon Kim
- Department of Obstetrics and Gynecology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Seung-Hae Kwon
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sanghyuk Lee
- Department of Bio-Information Science, Ewha Womans University, Seoul, Republic of Korea.,Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Im Joo Rhyu
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dongho Geum
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,School of Electrical and Electronics Engineering, Yonsei University, Seoul, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Seelan RS, Pisano MM, Greene RM. MicroRNAs as Biomarkers for Birth Defects. Microrna 2022; 11:2-11. [PMID: 35168515 DOI: 10.2174/2211536611666220215123423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
It is estimated that 2-4% of live births will have a birth defect (BD). The availability of biomarkers for the prenatal detection of BDs will facilitate early risk assessment, prompt medical intervention and ameliorating disease severity. miRNA expression levels are often found to be altered in many diseases. There is, thus, a growing interest in determining whether miRNAs, particularly extracellular miRNAs, can predict, diagnose, or monitor BDs. These miRNAs, typically encapsulated in exosomes, are released by cells (including those of the fetus and placenta) into the extracellular milieu, such as blood, urine, saliva and cerebrospinal fluid, thereby enabling interaction with target cells. Exosomal miRNAs are stable, protected from degradation, and retain functionality. The observation that placental and fetal miRNAs can be detected in maternal serum, provides a strong rationale for adopting miRNAs as noninvasive prenatal biomarkers for BDs. In this mini-review, we examine the current state of research involving the use of miRNAs as prognostic and diagnostic biomarkers for BD.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, University of Louisville, Louisville, KY 40202, USA
| | - M Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, University of Louisville, Louisville, KY 40202, USA
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
24
|
Simon F, Tissir F, Michel V, Lahlou G, Deans M, Beraneck M. Implication of Vestibular Hair Cell Loss of Planar Polarity for the Canal and Otolith-Dependent Vestibulo-Ocular Reflexes in Celsr1-/- Mice. Front Neurosci 2021; 15:750596. [PMID: 34790090 PMCID: PMC8591238 DOI: 10.3389/fnins.2021.750596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction: Vestibular sensory hair cells are precisely orientated according to planar cell polarity (PCP) and are key to enable mechanic-electrical transduction and normal vestibular function. PCP is found on different scales in the vestibular organs, ranging from correct hair bundle orientation, coordination of hair cell orientation with neighboring hair cells, and orientation around the striola in otolithic organs. Celsr1 is a PCP protein and a Celsr1 KO mouse model showed hair cell disorganization in all vestibular organs, especially in the canalar ampullae. The objective of this work was to assess to what extent the different vestibulo-ocular reflexes were impaired in Celsr1 KO mice. Methods: Vestibular function was analyzed using non-invasive video-oculography. Semicircular canal function was assessed during sinusoidal rotation and during angular velocity steps. Otolithic function (mainly utricular) was assessed during off-vertical axis rotation (OVAR) and during static and dynamic head tilts. Results: The vestibulo-ocular reflex of 10 Celsr1 KO and 10 control littermates was analyzed. All KO mice presented with spontaneous nystagmus or gaze instability in dark. Canalar function was reduced almost by half in KO mice. Compared to control mice, KO mice had reduced angular VOR gain in all tested frequencies (0.2–1.5 Hz), and abnormal phase at 0.2 and 0.5 Hz. Concerning horizontal steps, KO mice had reduced responses. Otolithic function was reduced by about a third in KO mice. Static ocular-counter roll gain and OVAR bias were both significantly reduced. These results demonstrate that canal- and otolith-dependent vestibulo-ocular reflexes are impaired in KO mice. Conclusion: The major ampullar disorganization led to an important reduction but not to a complete loss of angular coding capacities. Mildly disorganized otolithic hair cells were associated with a significant loss of otolith-dependent function. These results suggest that the highly organized polarization of otolithic hair cells is a critical factor for the accurate encoding of the head movement and that the loss of a small fraction of the otolithic hair cells in pathological conditions is likely to have major functional consequences. Altogether, these results shed light on how partial loss of vestibular information encoding, as often encountered in pathological situations, translates into functional deficits.
Collapse
Affiliation(s)
- François Simon
- Université de Paris, INCC UMR 8002, CNRS, Paris, France.,Service d'ORL et de Chirurgie Cervico-Faciale Pédiatrique, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Fadel Tissir
- Institut de Neuroscience, Université Catholique de Louvain, Brussels, Belgium.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Vincent Michel
- Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Ghizlene Lahlou
- Institut de l'Audition/Institut Pasteur, Technologies et thérapie génique pour la surdité, Paris, France.,Service d'ORL et de Chirurgie Cervico-Faciale Pédiatrique, APHP, Sorbonne Université, Hôpital Pitié-Salpétrière, Paris, France
| | - Michael Deans
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT, United States.,Division of Otolaryngology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | | |
Collapse
|
25
|
Sun Y, Zhang J, Wang Y, Wang L, Song M, Khan A, Zhang L, Niu B, Zhao H, Li M, Luo T, He Q, Xie X, Liu Z, Xie J. miR-222-3p is involved in neural tube closure by directly targeting Ddit4 in RA induced NTDs mouse model. Cell Cycle 2021; 20:2372-2386. [PMID: 34779712 DOI: 10.1080/15384101.2021.1982506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Previously our results showed miR-222-3p was significantly downregulated in retinoic acid-induced neural tube defect (NTD) mouse model through transcriptome. Down-regulation of miR-222-3p may be a causative biomarker in NTDs. In this study, RNA was extracted from mouse embryos at E8.5, E9.5 and E10.5, and the expression level of miR-222-3p was measured by quantitative real-time PCR analysis. The preliminary mechanism of miR-222-3p in NTDs involved in cell proliferation, apoptosis and migration was investigated in mouse HT-22 cell line. The expression of miR-222-3p was significantly decreased at E8.5, E9.5 and E10.5 developed in mouse embryos which were consistent with our transcriptome sequencing. Suppression of miR-222-3p in HT-22 cells resulted in the inhibition of cell proliferation and migration, cell cycle and apoptosis. Moreover, DNA damage transcript 4 (Ddit4) was identified as a direct and functional target of miR-222-3p. miR-222-3p is negatively regulated by Ddit4. The mutation of binding site of Ddit4 3'UTR abrogated the responsiveness of luciferase reporters to miR-222-3p and showed that Ddit4 expression partially attenuated the function of miR-222-3p. We preliminatively confirmed that low expression of miR-222-3p has reduced the expression of β-catenin, TCF4 and other related genes in the Wnt/β-catenin signaling pathway.Collectively, these results demonstrated that miR-222-3p regulates the Wnt/β-catenin signaling pathway through Ddit4 inhibition in HT-22 cells, resulted in cell proliferation and apoptosis imbalance, and thus led to neural tube defects.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yufei Wang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lei Wang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meiyan Song
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ajab Khan
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bo Niu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meining Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tiane Luo
- Department of Statistics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiwei He
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xianghui Xie
- Municipal Key Laboratory of Child Development and Nutriomic, Capital Institute of Pediatrics, Beijing, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
26
|
Deans MR. Conserved and Divergent Principles of Planar Polarity Revealed by Hair Cell Development and Function. Front Neurosci 2021; 15:742391. [PMID: 34733133 PMCID: PMC8558554 DOI: 10.3389/fnins.2021.742391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Planar polarity describes the organization and orientation of polarized cells or cellular structures within the plane of an epithelium. The sensory receptor hair cells of the vertebrate inner ear have been recognized as a preeminent vertebrate model system for studying planar polarity and its development. This is principally because planar polarity in the inner ear is structurally and molecularly apparent and therefore easy to visualize. Inner ear planar polarity is also functionally significant because hair cells are mechanosensors stimulated by sound or motion and planar polarity underlies the mechanosensory mechanism, thereby facilitating the auditory and vestibular functions of the ear. Structurally, hair cell planar polarity is evident in the organization of a polarized bundle of actin-based protrusions from the apical surface called stereocilia that is necessary for mechanosensation and when stereociliary bundle is disrupted auditory and vestibular behavioral deficits emerge. Hair cells are distributed between six sensory epithelia within the inner ear that have evolved unique patterns of planar polarity that facilitate auditory or vestibular function. Thus, specialized adaptations of planar polarity have occurred that distinguish auditory and vestibular hair cells and will be described throughout this review. There are also three levels of planar polarity organization that can be visualized within the vertebrate inner ear. These are the intrinsic polarity of individual hair cells, the planar cell polarity or coordinated orientation of cells within the epithelia, and planar bipolarity; an organization unique to a subset of vestibular hair cells in which the stereociliary bundles are oriented in opposite directions but remain aligned along a common polarity axis. The inner ear with its complement of auditory and vestibular sensory epithelia allows these levels, and the inter-relationships between them, to be studied using a single model organism. The purpose of this review is to introduce the functional significance of planar polarity in the auditory and vestibular systems and our contemporary understanding of the developmental mechanisms associated with organizing planar polarity at these three cellular levels.
Collapse
Affiliation(s)
- Michael R Deans
- Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
27
|
Garcia-Bonilla M, McAllister JP, Limbrick DD. Genetics and Molecular Pathogenesis of Human Hydrocephalus. Neurol India 2021; 69:S268-S274. [PMID: 35102976 DOI: 10.4103/0028-3886.332249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Hydrocephalus is a neurological disorder with an incidence of 80-125 per 100,000 live births in the United States. The molecular pathogenesis of this multidimensional disorder is complex and has both genetic and environmental influences. This review aims to discuss the genetic and molecular alterations described in human hydrocephalus, from well-characterized, heritable forms of hydrocephalus (e.g., X-linked hydrocephalus from L1CAM variants) to those affecting cilia motility and other complex pathologies such as neural tube defects and Dandy-Walker syndrome. Ventricular zone disruption is one key pattern among congenital and acquired forms of hydrocephalus, with abnormalities in cadherins, which mediate neuroepithelium/ependymal cell junctions and contribute to the pathogenesis and severity of the disease. Given the relationship between hydrocephalus pathogenesis and neurodevelopment, future research should elucidate the genetic and molecular mechanisms that regulate ventricular zone integrity and stem cell biology.
Collapse
Affiliation(s)
- Maria Garcia-Bonilla
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - James P McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Yan Y, Wang G, Luo X, Zhang P, Peng S, Cheng X, Wang M, Yang X. Endoplasmic reticulum stress-related calcium imbalance plays an important role on Zinc oxide nanoparticles-induced failure of neural tube closure during embryogenesis. ENVIRONMENT INTERNATIONAL 2021; 152:106495. [PMID: 33730632 DOI: 10.1016/j.envint.2021.106495] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been increasingly and widely utilized in various fields, such as agriculture, food and cosmetics. However, various levels of adverse impacts of ZnO NPs on the ecological environment and public health have been associated with each stage of their production, use and disposal. ZnO NPs can be ingested by pregnant women and transferred to developing embryos/foetus through the placental barrier, however, the potential toxicity of ZnO NPs to embryonic and foetal development is largely unclear. In this study, we discovered that ZnO NPs exposure caused growth proportional failure of neural tube closure in mouse and chicken embryos and a simultaneous increase in apoptosis in the developing neural tubes of chicken embryos, which was verified in an in vitro experiment using the SH-SY5Y cell line. Furthermore, removal of free Zn2+ ions with EDTA or inhibition of Zn2+ ion absorption by CaCl2 partially alleviated the neurotoxicity induced by ZnO NPs, implying that ZnO NPs-induced developmental neurotoxicity is probably due to both ZnO NPs and the Zn2+ ions released from ZnO NPs. In addition, we found that ZnO NPs exposure caused endoplasmic reticulum stress-mediated apoptosis driven mainly by an increase in intracellular calcium (Ca2+) concentrations, rather than by the activation of three membrane protein receptors (ATF6, IRE-1 and PERK). Thus, Ca2+ imbalance-mediated apoptosis in the context of ZnO NPs exposure may lead to cellular dysfunctions in developing neural precursors, such as, abnormalities involved in neural tube closure, ultimately leading to neural tube defects (NTDs) during embryogenesis. In sum, our results revealed that ZnO NPs exposure greatly increases the risk of failure of neural tube closure through endoplasmic reticulum stress-mediated neural cell death in the developing embryos, which may further lead to the NTD in fetal stage, including failure of neural tube closure.
Collapse
Affiliation(s)
- Yu Yan
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China; School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guang Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Xin Luo
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Ping Zhang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Shuang Peng
- Department of Pathophysiology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xin Cheng
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Mengwei Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Xuesong Yang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
29
|
Singh BK, Maria A, Bandyopadhyay T, Choudhary SK. Clinico-epidemiological profile and outcomes of babies with neural tube defects in a tertiary care center in Northern India. J Matern Fetal Neonatal Med 2021; 35:7052-7057. [PMID: 34121591 DOI: 10.1080/14767058.2021.1937102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Neural tube defects constitute a major source of disability among children. Proper management requires accurate diagnosis, an assessment of the severity of the lesion, a decision whether intervention is warranted, the nature of the intervention, and educating the family of the need for lifelong medical care. But to do so, reliable data regarding presentation and outcome is very crucial. AIM OF THE STUDY To discuss the clinical epidemiological profile and outcome of babies admitted with neural tube defects (NTDs). MATERIAL AND METHODS Retrospective observational study was done by extracting data from case notes and follow-up files in Department of Neonatology, PGIMER and Dr. RML Hospital, New Delhi over a period from March 2015 to July 2020. RESULTS A total of 25 babies were included in the study. Majority of babies were born to mother at a median age group of 24 (19-36) yrs and nearly one-third of them were illiterate. The history of maternal periconceptional folic acid intake was seen in only five babies (21%). Two third of babies were male (64%) and the median age at admission was at 9 (1-27) days of life. Majority of the cases were open types of NTDs with most common type being meningomyelocele (88%) followed by occipital encephalocele (12%) and there was one case of closed type of neural tube defect having lipomeningomyelocele (4%). The most common associated anomaly was hydrocephalus (76%) followed by Arnold chiari malformation (56%). Motor weakness in form of paraparesis or paraplegia was present in 21 (84%) babies and sensory deficit was present in 44% babies. Bowel and bladder dysfuntion was present in 48% of cases. Ventriculitis was the most common associated morbidity (38%). Meningomyelocele (MMC) repair was the most commonly performed primary surgery (33%) followed by Ventriculo-peritoneal (VP) shunt repair (24%). Twelve babies (48%) were discharged while 2 (8%) expired and 11 (44%) babies left against medical advice. CONCLUSION Neural tube defect is a congenital disorder with significant morbidity. The clinical severity of the NTDs and the uncertainty in their cause makes this a priority for further research. National policies for prevention, in utero diagnosis, and early surgical intervention are required for a better prognosis.
Collapse
Affiliation(s)
- Bhawana Komal Singh
- Department of Neonatology, Dr Ram Manohar Lohia Hospital and Post Graduate Institute of Medical Education and Research, New Delhi, India, Atal Bihari Vajpayi Institute of Medical Sciences (ABVIMS) and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Arti Maria
- Department of Neonatology, Dr Ram Manohar Lohia Hospital and Post Graduate Institute of Medical Education and Research, New Delhi, India, Atal Bihari Vajpayi Institute of Medical Sciences (ABVIMS) and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Tapas Bandyopadhyay
- Department of Neonatology, Dr Ram Manohar Lohia Hospital and Post Graduate Institute of Medical Education and Research, New Delhi, India, Atal Bihari Vajpayi Institute of Medical Sciences (ABVIMS) and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Sushil Kumar Choudhary
- Department of Neonatology, Dr Ram Manohar Lohia Hospital and Post Graduate Institute of Medical Education and Research, New Delhi, India, Atal Bihari Vajpayi Institute of Medical Sciences (ABVIMS) and Dr Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
30
|
Jaffe E, Niswander L. Loss of Grhl3 is correlated with altered cellular protrusions in the non-neural ectoderm during neural tube closure. Dev Dyn 2021; 250:732-744. [PMID: 33378081 DOI: 10.1002/dvdy.292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The transcription factor Grainyhead-like 3 (GRHL3) has multiple roles in a variety of tissues during development including epithelial patterning and actin cytoskeletal regulation. During neural tube closure (NTC) in the mouse embryo, GRHL3 is expressed and functions in the non-neural ectoderm (NNE). Two important functions of GRHL3 are regulating the actin cytoskeleton during NTC and regulating the boundary between the NNE and neural ectoderm. However, an open question that remains is whether these functions explain the caudally restricted neural tube defect (NTD) of spina bifida observed in Grhl3 mutants. RESULTS Using scanning electron microscopy and immunofluorescence based imaging on Grhl3 mutants and wildtype controls, we show that GRHL3 is dispensable for NNE identity or epithelial maintenance in the caudal NNE but is needed for regulation of cellular protrusions during NTC. Grhl3 mutants have decreased lamellipodia relative to wildtype embryos during caudal NTC, first observed at the onset of delays when lamellipodia become prominent in wildtype embryos. At the axial level of NTD, half of the mutants show increased and disorganized filopodia and half lack cellular protrusions. CONCLUSION These data suggest that altered cellular protrusions during NTC contribute to the etiology of NTD in Grhl3 mutants.
Collapse
Affiliation(s)
- Eric Jaffe
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lee Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
31
|
Oumer M, Tazebew A, Silamsaw M. Birth prevalence of neural tube defects and associated risk factors in Africa: a systematic review and meta-analysis. BMC Pediatr 2021; 21:190. [PMID: 33882899 PMCID: PMC8058994 DOI: 10.1186/s12887-021-02653-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background Neural tube defects are common congenital anomalies that result from early malformation in the development of the spinal cord and brain. It is related to substantial mortality, morbidity, disability, and psychological and economic costs. The aim of this review is to determine the pooled birth prevalence of neural tube defects and associated risk factors in Africa. Methods The first outcome of this review was the pooled birth prevalence of the neural tube defects and the second outcome was the pooled measure of association between neural tube defects and associated risk factors in Africa. We systematically searched PubMed, PubMed Central, Joanna Briggs Institute, Google Scopus, Cochrane Library, African Journals Online, Web of Science, Science Direct, Google Scholar, and Medline databases. The heterogeneity of studies was assessed using the Cochrane Q test statistic, I2 test statistic, and, visually, using Forest and Galbraith’s plots. A random-effect model was applied to get the pooled birth prevalence of neural tube defects. Subgroup, sensitivity, meta-regression, time-trend, and meta-cumulative analyses were undertaken. The fixed-effect model was used to analyze the association between neural tube defects and associated risk factors. Results Forty-three studies with a total of 6086,384 participants were included in this systematic review and meta-analysis. The pooled birth prevalence of the neural tube defects was 21.42 (95% CI (Confidence Interval): 19.29, 23.56) per 10,000 births. A high pooled birth prevalence of neural tube defects was detected in Algeria 75 (95% CI: 64.98, 85.02), Ethiopia 61.43 (95% CI: 46.70, 76.16), Eritrea 39 (95% CI: 32.88, 45.12), and Nigeria 32.77 (95% CI: 21.94, 43.59) per 10,000 births. The prevalence of neural tube defects has increased over time. Taking folic acid during early pregnancy, consanguineous marriage, male sex, and substance abuse during pregnancy were assessed and none of them was significant. Conclusions The pooled birth prevalence of neural tube defects in Africa was found to be high. The risk factors evaluated were not found significant. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02653-9.
Collapse
Affiliation(s)
- Mohammed Oumer
- Department of Human Anatomy, College of Medicine and Health Sciences, School of Medicine, University of Gondar, Gondar, Amhara, Ethiopia. .,Department of Epidemiology, College of Medicine and Health Sciences, Institute of Public Health, University of Gondar, Gondar, Amhara, Ethiopia.
| | - Ashenafi Tazebew
- Departments of Pediatrics and Child Health, College of Medicine and Health Sciences, School of Medicine, University of Gondar, Gondar, Amhara, Ethiopia
| | - Mezgebu Silamsaw
- Department of Internal Medicine, College of Medicine and Health Sciences, School of Medicine, University of Gondar, Gondar, Amhara, Ethiopia
| |
Collapse
|
32
|
Genetic Polymorphisms in DNA Repair Gene APE1/Ref-1 and the Risk of Neural Tube Defects in a High-Risk Area of China. Reprod Sci 2021; 28:2592-2601. [PMID: 33761125 DOI: 10.1007/s43032-021-00537-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1/redox-factor 1 (APE1/Ref-1) gene encodes a multifunctional protein involved in the DNA base excision repair (BER) pathway, which initiates repair of apurinic/apyrimidinic (AP) sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone. APE1/Ref-1 polymorphisms are related to the occurrence of neural tube defects (NTDs), but the association between APE1/Ref-1 polymorphisms and NTDs is not reported in Chinese Han population. The aim of the present study was to evaluate the association of APE1/Ref-1 polymorphism and the risk of NTD occurrence for Han population in a high-risk area of China. APE1/Ref-1 genotypes were determined by iPLEX Gold SNP genotyping. AP sites and folate level of brain tissues were measured. The results showed that three polymorphisms (rs3136817, rs77794916, and rs1760944) of APE1/Ref-1 were statistically associated with NTD subtypes. Allele C of rs3136817, allele T of rs77794916, and allele G of rs1760944 were associated with an increased risk for encephalocele (OR = 2.52, 95% CI [1.25-5.07], P < 0.01; OR = 1.80, 95% CI [1.04-3.12], P = 0.04; and OR = 1.96, 95% CI [1.12-3.45], P = 0.02), compared with those harboring the alleles T, C, and T, respectively. The folate level in NTDs was lower than that in controls. DNA AP sites in the encephalocele were significantly higher than the control (P < 0.01). The three polymorphisms of APE1/Ref-1 were significantly related to NTD occurrence, which indicated that APE1/Ref-1 might be a potential genetic risk factor for encephalocele in a high-risk area of NTDs in China.
Collapse
|
33
|
Yacob A, Carr CJ, Foote J, Scullen T, Werner C, Mathkour M, Bui CJ, Dumont AS. The Global Burden of Neural Tube Defects and Disparities in Neurosurgical Care. World Neurosurg 2021; 149:e803-e820. [PMID: 33540098 DOI: 10.1016/j.wneu.2021.01.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Despite the success of folic acid fortification programs, neural tube defects (NTDs) such as spina bifida, encephalocele, and anencephaly remain among the most substantial causes of childhood morbidity and mortality worldwide. Although these are complicated conditions that require an interdisciplinary approach to care, definitive treatment of survivable NTDs is often neurosurgical. METHODS Using Global Burden of Disease data, we examined the global burden of NTDs as related to a nation's wealth, health care quality, and access to neurosurgical care. We abstracted data for death by cause, years lived with disability (YLD), gross domestic product (GDP), United Nations geoscheme, Food Fortification Initiative participation, and Healthcare Access and Quality Index. We compared means using 1-way analysis of variance and proportions using Fisher exact tests, with statistical significance as α = 0.05. RESULTS Seventeen of 20 (85%) nations with the most deaths caused by NTDs (P < 0.0001) and 15/20 (75%) nations with the highest YLD (P < 0.0001) were in the lowest GDP quartile. Deaths and YLD were negatively correlated with increasing GDP and Healthcare Access and Quality Index (P < 0.0001). The nations with the highest disease burdens also had the fewest neurosurgeons per capita. CONCLUSIONS Despite the success of folic acid fortification programs, greater global public health efforts should be placed on improving access to neurosurgical care in low and middle-income nations through sustainable initiatives such as surgeon exchange programs and the establishment of neurosurgery residency training programs.
Collapse
Affiliation(s)
- Alex Yacob
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Christopher J Carr
- Tulane University-Ochsner Clinic Foundation Program, Department of Neurosurgery, Tulane University Medical Center, New Orleans, Louisiana, USA.
| | - Jake Foote
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Tyler Scullen
- Tulane University-Ochsner Clinic Foundation Program, Department of Neurosurgery, Tulane University Medical Center, New Orleans, Louisiana, USA
| | - Cassidy Werner
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Mansour Mathkour
- Tulane University-Ochsner Clinic Foundation Program, Department of Neurosurgery, Tulane University Medical Center, New Orleans, Louisiana, USA
| | - Cuong J Bui
- Department of Neurosurgery, Ochsner Health System, New Orleans, Louisiana, USA
| | - Aaron S Dumont
- Department of Neurosurgery, Tulane University Medical Center, New Orleans, Louisiana, USA
| |
Collapse
|
34
|
Moussa M, Papatsoris AG, Chakra MA, Fares Y, Dabboucy B, Dellis A. Perspectives on urological care in spina bifida patients. Intractable Rare Dis Res 2021; 10:1-10. [PMID: 33614369 PMCID: PMC7882087 DOI: 10.5582/irdr.2020.03077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/04/2020] [Accepted: 12/12/2020] [Indexed: 02/05/2023] Open
Abstract
Spina bifida (SB) is a neurogenetic disorder with a complex etiology that involves genetic and environmental factors. SB can occur in two major forms of open SB or SB aperta and closed SB or SB occulta. Myelomeningocele (MMC), the most common neural tube defects (NTDs), occurs in approximately 1 in 1,000 births. Considering non-genetic factors, diminished folate status is the best-known factor influencing NTD risk. The methylenetetrahydrofolate reductase (MTHFR) gene has been implicated as a risk factor for NTDs. The primary disorder in the pathogenesis of MMC is failed neural tube closure in the embryonic spinal region. The clinical manifestation of SB depends on clinical type and severity. SB can be detected in the second trimester using ultrasound which will reveal specific cranial signs. The management of MMC traditionally involves surgery within 48 h of birth. Prenatal repair of MMC is recommended for fetuses who meet maternal and fetal Management of Myelomeningocele Study (MOMS) specified criteria. Urological manifestations of SB include urinary incontinence, urolithiasis, sexual dysfunction, renal dysfunction, and urinary tract infection. Renal failure is among the most severe complications of SB. The most important role of the urologist is the management of neurogenic bladder. Medical management with clean intermittent catheterization and anticholinergic treatment is generally considered the gold standard of therapy. However, when this therapy fails surgical reconstruction become the only remaining option. This review will summarize the pathogenesis, risk factors, genetic contribution, diagnostic test, and management of SB. Lastly, the urologic outcomes and therapies are reviewed.
Collapse
Affiliation(s)
- Mohamad Moussa
- Urology Department, Zahraa Hospital, University Medical Center, Lebanese University, Beirut, Lebanon
| | - Athanasios G. Papatsoris
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Mohamad Abou Chakra
- Department of Urology, Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Department of Neurosurgery, Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Baraa Dabboucy
- Department of Neurosurgery, Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | - Athanasios Dellis
- Department of Urology/General Surgery, Areteion Hospital, Athens, Greece
| |
Collapse
|
35
|
Wang Y, Qin Y, Peng R, Wang H. Loss-of-function or gain-of-function variations in VINCULIN (VCL) are risk factors of human neural tube defects. Mol Genet Genomic Med 2021; 9:e1563. [PMID: 33491343 PMCID: PMC8077129 DOI: 10.1002/mgg3.1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 11/12/2022] Open
Abstract
Background Neural tube defects (NTDs) are severe birth defects resulting from the failure of neural tube closure during embryogenesis. Both genetic and environmental factors contribute to the occurrence of NTDs and the heritability of NTDs is approximately 70%. As a key component of focal adhesions, Vinculin (VCL) plays pivotal roles in cell skeleton remodeling and signal transduction. Vcl deficient mice displayed NTD, but how VCL variants contribute to human NTDs has not been addressed yet. Methods We screened VCL variants in a Chinese cohort of 387 NTDs and 244 controls by targeted next‐generation sequencing. Results We identified four case‐specific VCL variations (p.M209L, p.D256fs, p.L555V and p.R586Q). VCL p.D256fs and p.L555V are novel variations that have never been reported. Our analysis revealed that p.D256fs is a loss‐of‐function variant, while p.L555V showed a gain of function in planner cell polarity (PCP) pathway regulation and cell migration, probably due to its enhanced protein stability. Conclusion Our study reports human NTD specific novel variations in VCL and provides the functional evaluation of VCL variants related to the etiology of human NTDs.
Collapse
Affiliation(s)
- Yalan Wang
- Obstetrics & Gynecology Hospital, Institute of Reproduction & Development, Fudan University, Shanghai, China
| | - Yue Qin
- State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Rui Peng
- Obstetrics & Gynecology Hospital, Institute of Reproduction & Development, Fudan University, Shanghai, China
| | - Hongyan Wang
- Obstetrics & Gynecology Hospital, Institute of Reproduction & Development, Fudan University, Shanghai, China.,State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Ortiz-Cruz G, Aguayo-Gómez A, Luna-Muñoz L, Muñoz-Téllez LA, Mutchinick OM. Myelomeningocele genotype-phenotype correlation findings in cilia, HH, PCP, and WNT signaling pathways. Birth Defects Res 2021; 113:371-381. [PMID: 33470056 DOI: 10.1002/bdr2.1872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 01/09/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Myelomeningocele (MMC) is the most severe and frequent type of spina bifida. Its etiology remains poorly understood. The Hedgehog (Hh), Wnt, and planar cell polarity (PCP) signaling pathways are essential for normal tube closure, needing a structural-functional cilium for its adequate function. The present study aimed to investigate the impact of different gene variants (GV) from those pathways on MMC genotype-subphenotype correlations. METHODS The study comprised 500 MMC trios and 500 controls, from 16 Telethon centers of 16 Mexican states. Thirty-four GVs of 29 genes from cilia, Hh, PCP, and Wnt pathways, were analyzed, by an Illumina on design microarray. The total sample (T-MMC) was stratified in High-MMC (H-MMC) when thoracic and Low-MMC (L-MMC) when lumbar-sacral vertebrae affected. STATA/SE-12.1 and PLINK software were used for allelic association, TDT, and gene-gene interaction (GGI) analyses, considering p value <.01 as statistically significant differences (SSD). RESULTS Association analysis showed SSD for COBL-rs10230120, DVL2-rs2074216, PLCB4-rs6077510 GVs in T-MMC and L-MMC, and VANGL2-rs120886448 in T-MMC and H-MMC, and INVS-rs7024375 exclusively in L-MMC. TDT assay showed SSD preferential transmissions of C2CD3-rs826058 in H-MMC, and LRP5-rs3736228, and BBS2-rs1373 in L-MMC. Statistically significant GGI was observed in four in T-MMC, four completely different in L-MMC, and one in H-MMC. Interestingly, no one repeated in subphenotypes. CONCLUSIONS Our results support an association of GVs in Hh, Wnt, PCP, and cilia pathways, with MMC occurrence location, although further validation is needed. Furthermore, present results show a distinctive panel of gene-variants in H-MMC and LMMC subphenotypes, suggesting a feasible genotype-phenotype correlation.
Collapse
Affiliation(s)
- Gabriela Ortiz-Cruz
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Adolfo Aguayo-Gómez
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Leonora Luna-Muñoz
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Luis A Muñoz-Téllez
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Osvaldo M Mutchinick
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| |
Collapse
|
37
|
Abstract
Diseases that manifest themselves in the pediatric age group frequently have a more diverse spectrum of abnormalities and a greater rarity than diseases that are primarily seen in adults. The complexity and the relatively small populations with specific diseases are factors that have hindered progress in the treatment of pediatric disorders. Personalized medical therapies that are specifically tailored for individuals with unusual or unique problems have great potential to assist in overcoming these factors that have been a bottleneck to pediatric medical success. Personalization of therapies will necessarily be data driven and will require delineation of the proteomic, genomic, epigenomic, and immune characteristics of patients in comparison to the general population. It follows that there is a need to provide researchers with accessible high-quality pediatric tissue collections to facilitate the acquisition of the molecular information needed to support personalized medicine. Because of the unusual nature of many pediatric diseases, sample pools from individual institutions are often too small to adequately power definitive studies. Thus, etiological and translational research in this area are increasingly relying on biobanking networks to provide investigators with adequate numbers of tissue samples. Several pediatric biobanking networks have been formed, which are aimed at increasing the power of research studies and desired pools of high-quality samples. However, despite the concerted efforts, these multicenter networks and collaborations have met with mixed outcomes owing to increasing complexities and heterogeneity in the biobanking arena. While there have been challenges and roadblocks, there also have been some positive outcomes that have had paradigm impacts on diagnosis, study, and treatment of specific diseases. This article highlights the need for establishing pediatric biobanks, how current efforts in pediatric biobanking are influencing the pediatric research landscape, and attempts to identify practical impediments that continue to hamper advancements for the future.
Collapse
Affiliation(s)
- Lalita Wadhwa
- Department of Congenital Heart Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
38
|
Dean JH, Pauly R, Stevenson RE. Neural Tube Defects and Associated Anomalies before and after Folic Acid Fortification. J Pediatr 2020; 226:186-194.e4. [PMID: 32634404 DOI: 10.1016/j.jpeds.2020.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To examine the prevalence and types of neural tube defects and the types of anomalies co-occurring with neural tube defects in 6 years before fortification of cereal grain flour with folic acid (1992-1998) and 20 years after fortification (1999-2018) in South Carolina, a state with a historically high prevalence of these birth defects. STUDY DESIGN The prevalence of neural tube defects was determined by active and passive surveillance methods in South Carolina since 1992. The types of neural tube defects and co-occurring malformations were determined by prenatal ultrasound and post-delivery examination. RESULTS In the 6 prefortification years, 363 neural tube defects were identified among 279 163 live births and fetal deaths (1/769), 305 (84%) of which were isolated defects of the calvaria or spine. In the 20 fortification years, there were significant reductions in the prevalence and percentage of isolated defects: 938 neural tube defects were identified among 1 165 134 live births and fetal deaths (1/1242), 696 (74.2%) of which were isolated. The current prevalence of neural tube defects in South Carolina (0.56/1000 live births and fetal deaths) is comparable with that nationwide. CONCLUSIONS The continued occurrence of neural tube defects, the majority of which are isolated, after folic acid fortification of cereal grain flours suggests that additional prevention measures are necessary to reduce further the prevalence of these serious defects of the brain and spine.
Collapse
|
39
|
D'Souza SW, Copp AJ, Greene NDE, Glazier JD. Maternal Inositol Status and Neural Tube Defects: A Role for the Human Yolk Sac in Embryonic Inositol Delivery? Adv Nutr 2020; 12:212-222. [PMID: 32892218 PMCID: PMC7849949 DOI: 10.1093/advances/nmaa100] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/10/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Supplementation with myo-inositol during the periconceptional period of pregnancy may ameliorate the recurrence risk of having a fetus affected by a neural tube defect (NTD; e.g., spina bifida). This could be of particular importance in providing a means for preventing NTDs that are unresponsive to folic acid. This review highlights the characteristics of inositol and describes the role of myo-inositol in the prevention of NTDs in rodent studies and the evidence for its efficacy in reducing NTD risk in human pregnancy. The possible reduction in NTD risk by maternal myo-inositol implies functional and developmentally important maternal-embryonic inositol interrelationships and also suggests that embryonic uptake of myo-inositol is crucial for embryonic development. The establishment of active myo-inositol cellular uptake mechanisms in the embryonic stages of human pregnancy, when the neural tube is closing, is likely to be an important determinant of normal development. We draw attention to the generation of materno-fetal inositol concentration gradients and relationships, and outline a transport pathway by which myo-inositol may be delivered to the early developing human embryo. These considerations provide novel insights into the mechanisms that may underpin inositol's ability to confer embryonic developmental benefit.
Collapse
Affiliation(s)
- Stephen W D'Souza
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | |
Collapse
|
40
|
Ibrahim O, Sutherland HG, Maksemous N, Smith R, Haupt LM, Griffiths LR. Exploring Neuronal Vulnerability to Head Trauma Using a Whole Exome Approach. J Neurotrauma 2020; 37:1870-1879. [PMID: 32233732 PMCID: PMC7462038 DOI: 10.1089/neu.2019.6962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain injuries are associated with oxidative stress and a need to restore neuronal homeostasis. Mutations in ion channel genes, in particular CACNA1A, have been implicated in familial hemiplegic migraine (FHM) and in the development of concussion-related symptoms in response to trivial head trauma. The aim of this study was to explore the potential role of variants in other ion channel genes in the development of such responses. We conducted whole exome sequencing (WES) on16 individuals who developed a range of neurological and concussion-related symptoms following minor or trivial head injuries. All individuals were initially tested and shown to be negative for mutations in known FHM genes. Variants identified from the WES results were filtered to identify rare variants (minor allele frequency [MAF] <0.01) in genes related to neural processes as well as genes highly expressed in the brain using a combination of in silico prediction tools (SIFT, PolyPhen, PredictSNP, Mutation Taster, and Mutation Assessor). Rare (MAF <0.001) or novel heterozygous variants in 7 ion channel genes were identified in 37.5% (6/16) of the cases (CACNA1I, CACNA1C, ATP10A, ATP7B, KCNAB1, KCNJ10, and SLC26A4), rare variants in neurotransmitter genes were found in 2 cases (GABRG1 and GRIK1), and rare variants in 3 ubiquitin-related genes identified in 4 cases (SQSTM1, TRIM2, and HECTD1). In this study, the largest proportion of potentially pathogenic variants in individuals with severe responses to minor head trauma were identified in genes previously implicated in migraine and seizure-related autosomal recessive neurological disorders. Together with results implicating variants in the hemiplegic migraine genes, CACNA1A and ATP1A2, in severe head trauma response, our results support a role for heterozygous deleterious mutations in genes implicated in neurological dysfunction and potentially increasing the risk of poor response to trivial head trauma.
Collapse
Affiliation(s)
- Omar Ibrahim
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Neven Maksemous
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Robert Smith
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| |
Collapse
|
41
|
Sadhukhan S, Maity S, Chakraborty S, Paul S, Munian D, Kumar Pattanayak A, Jana B, Das M. Structural insight into the effect of polymorphic variation on the functional dynamics of methionine synthase reductase: Implications in neural tube defects. Chem Biol Drug Des 2020; 97:283-292. [PMID: 32812692 DOI: 10.1111/cbdd.13780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/26/2020] [Accepted: 08/09/2020] [Indexed: 12/31/2022]
Abstract
Neural tube defects (NTDs), one of the most common birth defects, are strongly associated with the variations of several single nucleotide polymorphisms (SNPs) in the MTRR gene. The gene codes a key enzyme that is involved in the rejuvenation of methionine synthase activity. An allelic variant of the protein leads to missense mutation at 49th position from isoleucine to methionine (I49M) is associated with higher disease prevalence in different populations. Here, extensive molecular dynamics simulations and interaction network analysis reveal that the 49th isoleucine is a crucial residue that allosterically regulates the dynamics between the flavin mononucleotide (FMN) and NADP(H) binding domains. I49M variation alters the functional dynamics in a way that might impede the electron transport chain along the NADP(H) → flavin adenine dinucleotide → FMN pathway. The present study provides functional insights into the effect of the genetic variations of the MTRR gene on the NTDs disease pathogenesis.
Collapse
Affiliation(s)
| | - Subhajit Maity
- Department of Zoology, University of Calcutta, Kolkata, India.,Department of Endocrinology, Institute of Post Graduate Medical Education Research (IPGMER), Kolkata, India
| | | | - Silpita Paul
- Department of Zoology, University of Calcutta, Kolkata, India.,Department of Molecular Medicine, Bose Institute, Kolkata, India
| | - Dinesh Munian
- Department of Neonatology, Institute of Post Graduate Medical Education Research (IPGMER), Kolkata, India
| | | | - Biman Jana
- School of Chemical Sciences, Indian Association for Cultivation of Science, Kolkata, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, Kolkata, India
| |
Collapse
|
42
|
Asai S, Sanges R, Lauritano C, Lindeque PK, Esposito F, Ianora A, Carotenuto Y. De Novo Transcriptome Assembly and Gene Expression Profiling of the Copepod Calanus helgolandicus Feeding on the PUA-Producing Diatom Skeletonema marinoi. Mar Drugs 2020; 18:md18080392. [PMID: 32727111 PMCID: PMC7460014 DOI: 10.3390/md18080392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
Diatoms are the dominant component of the marine phytoplankton. Several diatoms produce secondary metabolites, namely oxylipins, with teratogenic effects on their main predators, crustacean copepods. Our study reports the de novo assembled transcriptome of the calanoid copepod Calanus helgolandicus feeding on the oxylipin-producing diatom Skeletonema marinoi. Differential expression analysis was also performed between copepod females exposed to the diatom and the control flagellate Prorocentrum minimum, which does not produce oxylipins. Our results showed that transcripts involved in carbohydrate, amino acid, folate and methionine metabolism, embryogenesis, and response to stimulus were differentially expressed in the two conditions. Expression of 27 selected genes belonging to these functional categories was also analyzed by RT-qPCR in C. helgolandicus females exposed to a mixed solution of the oxylipins heptadienal and octadienal at the concentration of 10 µM, 15 µM, and 20 µM. The results confirmed differential expression analysis, with up-regulation of genes involved in stress response and down-regulation of genes associated with folate and methionine metabolism, embryogenesis, and signaling. Overall, we offer new insights on the mechanism of action of oxylipins on maternally-induced embryo abnormality. Our results may also help identify biomarker genes associated with diatom-related reproductive failure in the natural copepod population at sea.
Collapse
Affiliation(s)
- Sneha Asai
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (S.A.); (R.S.)
| | - Remo Sanges
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (S.A.); (R.S.)
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (C.L.); (F.E.); (A.I.)
| | | | - Francesco Esposito
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (C.L.); (F.E.); (A.I.)
| | - Adrianna Ianora
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (C.L.); (F.E.); (A.I.)
| | - Ylenia Carotenuto
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (S.A.); (R.S.)
- Correspondence:
| |
Collapse
|
43
|
Zou J, Wang F, Yang X, Wang H, Niswander L, Zhang T, Li H. Association between rare variants in specific functional pathways and human neural tube defects multiple subphenotypes. Neural Dev 2020; 15:8. [PMID: 32650820 PMCID: PMC7353782 DOI: 10.1186/s13064-020-00145-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are failure of neural tube closure, which includes multiple central nervous system phenotypes. More than 300 mouse mutant strains exhibits NTDs phenotypes and give us some clues to establish association between biological functions and subphenotypes. However, the knowledge about association in human remains still very poor. METHODS High throughput targeted genome DNA sequencing were performed on 280 neural tube closure-related genes in 355 NTDs cases and 225 ethnicity matched controls, RESULTS: We explored that potential damaging rare variants in genes functioning in chromatin modification, apoptosis, retinoid metabolism and lipid metabolism are associated with human NTDs. Importantly, our data indicate that except for planar cell polarity pathway, craniorachischisis is also genetically related with chromatin modification and retinoid metabolism. Furthermore, single phenotype in cranial or spinal regions displays significant association with specific biological function, such as anencephaly is associated with potentially damaging rare variants in genes functioning in chromatin modification, encephalocele is associated with apoptosis, retinoid metabolism and one carbon metabolism, spina bifida aperta and spina bifida cystica are associated with apoptosis; lumbar sacral spina bifida aperta and spina bifida occulta are associated with lipid metabolism. By contrast, complex phenotypes in both cranial and spinal regions display association with various biological functions given the different phenotypes. CONCLUSIONS Our study links genetic variant to subphenotypes of human NTDs and provides a preliminary but direct clue to investigate pathogenic mechanism for human NTDs.
Collapse
Affiliation(s)
- Jizhen Zou
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xueyan Yang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, Key Lab of Reproduction Regulation of NPFPC in SIPPR, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Lee Niswander
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Huili Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, 80309, USA.
| |
Collapse
|
44
|
Henderson D, Ndossi M, Majige R, Sued M, Shabani H. Understanding the Mothers of Children with Spina Bifida and Hydrocephalus in Tanzania. World Neurosurg 2020; 142:e331-e336. [PMID: 32652272 DOI: 10.1016/j.wneu.2020.06.224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To identify if there are cultural, medical, educational, economic, nutritional and geographic barriers to the prevention and treatment of spina bifida and hydrocephalus. METHODS The mothers of infants with spina bifida and hydrocephalus admitted to Muhimbilli Orthopaedic Institute, Dar Es Salaam, Tanzania, between 2013 and 2014 were asked to complete a questionnaire. A total of 299 infants were identified: 65 with myelomeningoceles, 19 with encephaloceles, and 215 with isolated hydrocephalus. The questionnaire was completed by 294 of the mothers. RESULTS There was a high variation in the geographic origin of the mothers. Approximately 85% traveled from outside of Dar Es Salaam. The mean age was 29 (15-45) years old with a parity of 3 (1-10). The rates of consanguinity, obesity, antiepileptic medication, HIV seropositivity, and family history were 2%, 13%, 0%, 2%, and 2%, respectively. A maize-based diet was found in 84%, and only 3% of woman took folic acid supplementation, despite 61% of mothers stating that they wished to conceive another baby. Unemployment was high (77%), a low level of education was common (76% not attended any school or obtaining a primary level only), and 20% were single mothers. Hospital only was the preferred method of treatment for 94% of the mothers, and 85% of the babies were born in a hospital. CONCLUSIONS Our study highlights some of the cultural, educational, geographic, nutritional, and economic difficulties in the prevention and management of spina bifida and hydrocephalus in Tanzania.
Collapse
Affiliation(s)
| | | | - Rebeca Majige
- Muhimbili Orthopaedic Institute, Dar Es Salaam, Tanzania
| | - Mwanaabas Sued
- Muhimbili Orthopaedic Institute, Dar Es Salaam, Tanzania
| | | |
Collapse
|
45
|
Taiwo TE, Cao X, Cabrera RM, Lei Y, Finnell RH. Approaches to studying the genomic architecture of complex birth defects. Prenat Diagn 2020; 40:1047-1055. [PMID: 32468575 DOI: 10.1002/pd.5760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022]
Abstract
Every year nearly 6 percent of children worldwide are born with a serious congenital malformation, resulting in death or lifelong disability. In the United States, birth defects remain one of the leading causes of infant mortality. Among the common structural congenital defects are conditions known as neural tube defects (NTDs). These are a class of malformation of the brain and spinal cord where the neural tube fails to close during the neurulation. Although NTDs remain among the most pervasive and debilitating of all human developmental anomalies, there is insufficient understanding of their etiology. Previous studies have proposed that complex birth defects like NTDs are likely omnigenic, involving interconnected gene regulatory networks with associated signals throughout the genome. Advances in technologies have allowed researchers to more critically investigate regulatory gene networks in ever increasing detail, informing our understanding of the genetic basis of NTDs. Employing a systematic analysis of these complex birth defects using massively parallel DNA sequencing with stringent bioinformatic algorithms, it is possible to approach a greater level of understanding of the genomic architecture underlying NTDs. Herein, we present a brief overview of different approaches undertaken in our laboratory to dissect out the genetics of susceptibility to NTDs. This involves the use of mouse models to identify candidate genes, as well as large scale whole genome/whole exome (WGS/WES) studies to interrogate the genomic landscape of NTDs. The goal of this research is to elucidate the gene-environment interactions contributing to NTDs, thus encouraging global research efforts in their prevention.
Collapse
Affiliation(s)
- Toluwani E Taiwo
- Rice University, Houston, Texas, USA.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Xuanye Cao
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert M Cabrera
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
46
|
Liu L, Liu W, Shi Y, Li L, Gao Y, Lei Y, Finnell R, Zhang T, Zhang F, Jin L, Li H, Tao W, Wang H. DVL mutations identified from human neural tube defects and Dandy-Walker malformation obstruct the Wnt signaling pathway. J Genet Genomics 2020; 47:301-310. [PMID: 32900645 DOI: 10.1016/j.jgg.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 11/18/2022]
Abstract
Wnt signaling pathways, including the canonical Wnt/β-catenin pathway, planar cell polarity pathway, and Wnt/Ca2+ signaling pathway, play important roles in neural development during embryonic stages. The DVL genes encode the hub proteins for Wnt signaling pathways. The mutations in DVL2 and DVL3 were identified from patients with neural tube defects (NTDs), but their functions in the pathogenesis of human neural diseases remain elusive. Here, we sequenced the coding regions of three DVL genes in 176 stillborn or miscarried fetuses with NTDs or Dandy-Walker malformation (DWM) and 480 adult controls from a Han Chinese population. Four rare mutations were identified: DVL1 p.R558H, DVL1 p.R606C, DVL2 p.R633W, and DVL3 p.R222Q. To assess the effect of these mutations on NTDs and DWM, various functional analyses such as luciferase reporter assay, stress fiber formation, and in vivo teratogenic assay were performed. The results showed that the DVL2 p.R633W mutation destabilized DVL2 protein and upregulated activities for all three Wnt signalings (Wnt/β-catenin signaling, Wnt/planar cell polarity signaling, and Wnt/Ca2+ signaling) in mammalian cells. In contrast, DVL1 mutants (DVL1 p.R558H and DVL1 p.R606C) decreased canonical Wnt/β-catenin signaling but increased the activity of Wnt/Ca2+ signaling, and DVL3 p.R222Q only decreased the activity of Wnt/Ca2+ signaling. We also found that only the DVL2 p.R633W mutant displayed more severe teratogenicity in zebrafish embryos than wild-type DVL2. Our study demonstrates that these four rare DVL mutations, especially DVL2 p.R633W, may contribute to human neural diseases such as NTDs and DWM by obstructing Wnt signaling pathways.
Collapse
Affiliation(s)
- Lingling Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China; NHC Key Lab of Reproduction (Shanghai Institute of Planned Parenthood Research), Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Weiqi Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China; NHC Key Lab of Reproduction (Shanghai Institute of Planned Parenthood Research), Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Yan Shi
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Ling Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Yunqian Gao
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Yunping Lei
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard Finnell
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China; Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ting Zhang
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China; NHC Key Lab of Reproduction (Shanghai Institute of Planned Parenthood Research), Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China; NHC Key Lab of Reproduction (Shanghai Institute of Planned Parenthood Research), Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Huili Li
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Wufan Tao
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China; Insititute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, 200433, China.
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China; NHC Key Lab of Reproduction (Shanghai Institute of Planned Parenthood Research), Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China; Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
47
|
Tian T, Lei Y, Chen Y, Guo Y, Jin L, Finnell RH, Wang L, Ren A. Rare copy number variations of planar cell polarity genes are associated with human neural tube defects. Neurogenetics 2020; 21:217-225. [PMID: 32388773 DOI: 10.1007/s10048-020-00613-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Select single-nucleotide variants in planar cell polarity (PCP) genes are associated with increased risk for neural tube defects (NTDs). However, whether copy number variants (CNVs) in PCP genes contribute to NTDs is unknown. Considering that CNVs are implicated in several human developmental disorders, we hypothesized that CNVs in PCP genes may be causative factors to human NTDs. DNA from umbilical cord tissues of NTD-affected fetuses and parental venous blood samples were collected. We performed a quantitative analysis of copy numbers of all exon regions in the VANGL1, VANGL2, CELSR1, SCRIB, DVL2, DVL3, and PTK7 genes using a CNVplex assay. Quantitative real-time PCR (qPCR) was carried out to confirm the results of CNV analysis. As a result, 16 CNVs were identified among the NTDs. Of these CNVs, 5 loci were identified in 11 NTD probands with CNVs involving DVL2 (exons 1-15), VANGL1 (exons 1-7, exon 8), and VANGL2 (exons 5-8, exons 7 and 8). One CNV (DVL2 exons 1-15) was a duplication and the remaining 15 CNVs were deletions. Eleven CNVs were confirmed by qPCR. One de novo CNV in VANGL1 and one DVL2 were detected from two cases. Compared with unaffected control populations in 1000 Genome, ExAC, MARRVEL, DGV, and dbVar databases, the frequencies of de novo deletion in VANGL1 (1.14%) and de novo duplication in DVL2 (0.57%) were significantly higher in our NTD subjects (p < 0.05). This study demonstrates that de novo CNVs in PCP genes, notably deletions in VANGL1 and gains in DVL2, could contribute to the risk of NTDs.
Collapse
Affiliation(s)
- Tian Tian
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Yunping Lei
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yongyan Chen
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Yinnan Guo
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Richard H Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Linlin Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Aiguo Ren
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
48
|
Tian T, Lei Y, Chen Y, Karki M, Jin L, Finnell RH, Wang L, Ren A. Somatic mutations in planar cell polarity genes in neural tissue from human fetuses with neural tube defects. Hum Genet 2020; 139:1299-1314. [PMID: 32356230 DOI: 10.1007/s00439-020-02172-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/25/2020] [Indexed: 01/26/2023]
Abstract
Extensive studies that have sought causative mutation(s) for neural tube defects (NTDs) have yielded limited positive findings to date. One possible reason for this is that many studies have been confined to analyses of germline mutations and so may have missed other, non-germline mutations in NTD cases. We hypothesize that somatic mutations of planar polarity pathway (PCP) genes may play a role in the development of NTDs. Torrent™ Personal Genome Machine™ (PGM) sequencing was designed for selected PCP genes in paired DNA samples extracted from the tissues of lesion sites and umbilical cord from 48 cases. Sanger sequencing was used to validate the detected mutations. The source and distribution of the validated mutations in tissues from different germ layers were investigated. Subcellular location, western blotting, and luciferase assays were performed to better understand the effects of the mutations on protein localization, protein level, and pathway signaling. ix somatic mutations were identified and validated, which showed diverse distributions in different tissues. Three somatic mutations were novel/rare: CELSR1 p.Gln2125His, FZD6 p.Gln88Glu, and VANGL1 p.Arg374His. FZD6 p.Gln88Glu caused mislocalization of its protein from the cytoplasm to the nucleus, and disrupted the colocalization of CELSR1 and FZD6. This mutation affected non-canonical WNT signaling in luciferase assays. VANGL1 p.Arg374His impaired the co-localization of CELSR1 and VANGL1, increased the protein levels of VANGL1, and influenced cell migration. In all, 7/48 (14.5%) of the studied NTD cases contained somatic PCP mutations. Somatic mutations in PCP genes (e.g., FZD6 and VANGL1) are associated with human NTDs, and they may occur in different stages and regions during embryonic development, resulting in a varied distribution in fetal tissues/organs.
Collapse
Affiliation(s)
- Tian Tian
- Ministry of Health Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yunping Lei
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Yongyan Chen
- Ministry of Health Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Menuka Karki
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Lei Jin
- Ministry of Health Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Richard H Finnell
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Linlin Wang
- Ministry of Health Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, 100191, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| | - Aiguo Ren
- Ministry of Health Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, 100191, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
49
|
Srinivasan ES, Mehta VA, Smith GC, Than KD, Terry AR. Klippel-Feil Syndrome with Cervical Diastematomyelia in an Adult with Extensive Cervicothoracic Fusions: Case Report and Review of the Literature. World Neurosurg 2020; 139:274-280. [PMID: 32339744 DOI: 10.1016/j.wneu.2020.04.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 11/27/2022]
Abstract
Split cord malformation (SCM) is a developmental disorder that is usually symptomatic and diagnosed in childhood. The majority of these lesions are in the thoracic and lumbar spine, with only 1%-3% of cases found in the cervical spine. This is a case report of a 55-year-old female patient with an unremarkable medical history who presented with neck pain. Upon workup, she was found to have extensive developmental anomalies throughout her cervical and thoracic spine, including an incidentally found type 2 SCM and multiple autofused vertebrae. There are only 6 similar studies published in the literature. There was extensive facet degeneration in her cervical spine, which was suspected to be the etiology of her neck pain. This case illustrates the rare finding of asymptomatic adult cervical SCM and the likely significance of her autofused vertebrae causing accelerated symptomatic facet spondylosis.
Collapse
Affiliation(s)
| | - Vikram A Mehta
- Duke University School of Medicine, Durham, North Carolina, U.S.A; Division of Spine, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, U.S.A..
| | - Gabriel C Smith
- Duke University School of Medicine, Durham, North Carolina, U.S.A; Division of Spine, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Khoi D Than
- Duke University School of Medicine, Durham, North Carolina, U.S.A; Division of Spine, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Anna R Terry
- Duke University School of Medicine, Durham, North Carolina, U.S.A; Division of Spine, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, U.S.A
| |
Collapse
|
50
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|