1
|
Conduit SE, Pearce W, Bhamra A, Bilanges B, Bozal-Basterra L, Foukas LC, Cobbaut M, Castillo SD, Danesh MA, Adil M, Carracedo A, Graupera M, McDonald NQ, Parker PJ, Cutillas PR, Surinova S, Vanhaesebroeck B. A class I PI3K signalling network regulates primary cilia disassembly in normal physiology and disease. Nat Commun 2024; 15:7181. [PMID: 39168978 PMCID: PMC11339396 DOI: 10.1038/s41467-024-51354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Primary cilia are antenna-like organelles which sense extracellular cues and act as signalling hubs. Cilia dysfunction causes a heterogeneous group of disorders known as ciliopathy syndromes affecting most organs. Cilia disassembly, the process by which cells lose their cilium, is poorly understood but frequently observed in disease and upon cell transformation. Here, we uncover a role for the PI3Kα signalling enzyme in cilia disassembly. Genetic PI3Kα-hyperactivation, as observed in PIK3CA-related overgrowth spectrum (PROS) and cancer, induced a ciliopathy-like phenotype during mouse development. Mechanistically, PI3Kα and PI3Kβ produce the PIP3 lipid at the cilia transition zone upon disassembly stimulation. PI3Kα activation initiates cilia disassembly through a kinase signalling axis via the PDK1/PKCι kinases, the CEP170 centrosomal protein and the KIF2A microtubule-depolymerising kinesin. Our data suggest diseases caused by PI3Kα-activation may be considered 'Disorders with Ciliary Contributions', a recently-defined subset of ciliopathies in which some, but not all, of the clinical manifestations result from cilia dysfunction.
Collapse
Affiliation(s)
- Sarah E Conduit
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Wayne Pearce
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Benoit Bilanges
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Lazaros C Foukas
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Mathias Cobbaut
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Mohammad Amin Danesh
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Mahreen Adil
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Translational Prostate Cancer Research Laboratory, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080, Bilbao, Spain
| | - Mariona Graupera
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, Spain
| | - Neil Q McDonald
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Peter J Parker
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- King's College London, Guy's Campus, London, UK
| | - Pedro R Cutillas
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Bart Vanhaesebroeck
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Yamada M, Mizuno S, Inaba M, Uehara T, Inagaki H, Suzuki H, Miya F, Takenouchi T, Kurahashi H, Kosaki K. Truncating variants of the sterol recognition region of SHH cause hypertelorism phenotype rather than hypotelorism-holoprosencephaly. Am J Med Genet A 2024; 194:e63614. [PMID: 38562108 DOI: 10.1002/ajmg.a.63614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Sonic hedgehog signaling molecule (SHH) is a key molecule in the cilia-mediated signaling pathway and a critical morphogen in embryogenesis. The association between loss-of-function variants of SHH and holoprosencephaly is well established. In mice experiments, reduced or increased signaling of SHH have been shown to be associated with narrowing or excessive expansion of the facial midline, respectively. Herein, we report two unrelated patients with de novo truncating variants of SHH presenting with hypertelorism rather than hypotelorism. The first patient was a 13-year-old girl. Her facial features included hypertelorism, strabismus, telecanthus, malocclusion, frontal bossing, and wide widow's peak. She had borderline developmental delay and agenesis of the corpus callosum. She had a nonsense variant of SHH: Chr7(GRCh38):g.155802987C > T, NM_000193.4:c.1302G > A, p.(Trp434*). The second patient was a 25-year-old girl. Her facial features included hypertelorism and wide widow's peak. She had developmental delay and agenesis of the corpus callosum. She had a frameshift variant of SHH: Chr7(GRCh38):g.155803072_155803074delCGGinsT, NM_000193.4:c.1215_1217delCCGinsA, p.(Asp405Glufs*92). The hypertelorism phenotype contrasts sharply with the prototypical hypotelorism-holoprosencephaly phenotype associated with loss-of-function of SHH. We concluded that a subset of truncating variants of SHH could be associated with hypertelorism rather than hypotelorism.
Collapse
Affiliation(s)
- Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Japan
| | - Mie Inaba
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Japan
| | - Tomoko Uehara
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Japan
| | - Hidehito Inagaki
- Division of Molecular Genetics, Center for Medical Science, Fujita Health University, Toyoake, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Center for Medical Science, Fujita Health University, Toyoake, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Brooks EC, Han SJY, Bonatto Paese CL, Lewis AA, Aarnio-Peterson M, Brugmann SA. The ciliary protein C2cd3 is required for mandibular musculoskeletal tissue patterning. Differentiation 2024; 138:100782. [PMID: 38810379 PMCID: PMC11227401 DOI: 10.1016/j.diff.2024.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The mandible is composed of several musculoskeletal tissues including bone, cartilage, and tendon that require precise patterning to ensure structural and functional integrity. Interestingly, most of these tissues are derived from one multipotent cell population called cranial neural crest cells (CNCCs). How CNCCs are properly instructed to differentiate into various tissue types remains nebulous. To better understand the mechanisms necessary for the patterning of mandibular musculoskeletal tissues we utilized the avian mutant talpid2 (ta2) which presents with several malformations of the facial skeleton including dysplastic tendons, mispatterned musculature, and bilateral ectopic cartilaginous processes extending off Meckel's cartilage. We found an ectopic epithelial BMP signaling domain in the ta2 mandibular prominence (MNP) that correlated with the subsequent expansion of SOX9+ cartilage precursors. These findings were validated with conditional murine models suggesting an evolutionarily conserved mechanism for CNCC-derived musculoskeletal patterning. Collectively, these data support a model in which cilia are required to define epithelial signal centers essential for proper musculoskeletal patterning of CNCC-derived mesenchyme.
Collapse
Affiliation(s)
- Evan C Brooks
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Simon J Y Han
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Amya A Lewis
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Megan Aarnio-Peterson
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
4
|
Liu Z, Sa G, Zhang Z, Wu Q, Zhou J, Yang X. Regulatory role of primary cilia in oral and maxillofacial development and disease. Tissue Cell 2024; 88:102389. [PMID: 38714113 DOI: 10.1016/j.tice.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
Primary cilia have versatile functions, such as receiving signals from the extracellular microenvironment, mediating signaling transduction, and transporting ciliary substances, in tissue and organ development and clinical disease pathogenesis. During early development (embryos within 10 weeks) in the oral and maxillofacial region, defects in the structure and function of primary cilia can result in severe craniofacial malformations. For example, mice with mutations in the cilia-related genes Kif3a and IFT88 exhibit midline expansion and cleft lip/palate, which occur due to abnormalities in the fusion of the single frontonasal prominence and maxillary prominences. In the subsequent development of the oral and maxillofacial region, we discussed the regulatory role of primary cilia in the development of the maxilla, mandible, Meckel cartilage, condylar cartilage, lip, tongue, and tooth, among others. Moreover, primary cilia are promising regulators in some oral and maxillofacial diseases, such as tumors and malocclusion. We also summarize the regulatory mechanisms of primary cilia in oral and maxillofacial development and related diseases, including their role in various signaling transduction pathways. For example, aplasia of submandibular glands in the Kif3a mutant mice is associated with a decrease in SHH signaling within the glands. This review summarizes the similarities and specificities of the role of primary cilia in tissue and organ development and disease progression in the oral and maxillofacial region, which is expected to contribute several ideas for the treatment of primary cilia-related diseases.
Collapse
Affiliation(s)
- Zhan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Guoliang Sa
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Zhuoyu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Qingwei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Jing Zhou
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuewen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Wuhan University, Wuhan, PR China.
| |
Collapse
|
5
|
Chatzi D, Kyriakoudi SA, Dermitzakis I, Manthou ME, Meditskou S, Theotokis P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J Clin Med 2024; 13:2223. [PMID: 38673496 PMCID: PMC11050951 DOI: 10.3390/jcm13082223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neurocristopathies (NCPs) encompass a spectrum of disorders arising from issues during the formation and migration of neural crest cells (NCCs). NCCs undergo epithelial-mesenchymal transition (EMT) and upon key developmental gene deregulation, fetuses and neonates are prone to exhibit diverse manifestations depending on the affected area. These conditions are generally rare and often have a genetic basis, with many following Mendelian inheritance patterns, thus making them perfect candidates for precision medicine. Examples include cranial NCPs, like Goldenhar syndrome and Axenfeld-Rieger syndrome; cardiac-vagal NCPs, such as DiGeorge syndrome; truncal NCPs, like congenital central hypoventilation syndrome and Waardenburg syndrome; and enteric NCPs, such as Hirschsprung disease. Additionally, NCCs' migratory and differentiating nature makes their derivatives prone to tumors, with various cancer types categorized based on their NCC origin. Representative examples include schwannomas and pheochromocytomas. This review summarizes current knowledge of diseases arising from defects in NCCs' specification and highlights the potential of precision medicine to remedy a clinical phenotype by targeting the genotype, particularly important given that those affected are primarily infants and young children.
Collapse
Affiliation(s)
| | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (S.A.K.); (I.D.); (M.E.M.); (S.M.)
| |
Collapse
|
6
|
Nguyen TT, Mitchell JM, Kiel MD, Kenny CP, Li H, Jones KL, Cornell RA, Williams TJ, Nichols JT, Van Otterloo E. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway. Development 2024; 151:dev202095. [PMID: 38063857 PMCID: PMC10820886 DOI: 10.1242/dev.202095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underlies facial shape variation, yet how those networks in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest, even during the late migratory phase, results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both TFAP2 family members dysregulates numerous midface GRN components involved in midface morphogenesis, patterning and differentiation. Notably, Alx1, Alx3 and Alx4 (ALX) transcript levels are reduced, whereas ChIP-seq analyses suggest TFAP2 family members directly and positively regulate ALX gene expression. Tfap2a, Tfap2b and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish implies conservation of this regulatory axis across vertebrates. Consistent with this notion, tfap2a zebrafish mutants present with abnormal alx3 expression patterns, Tfap2a binds ALX loci and tfap2a-alx3 genetic interactions are observed. Together, these data demonstrate TFAP2 paralogs regulate vertebrate midfacial development in part by activating expression of ALX transcription factor genes.
Collapse
Affiliation(s)
- Timothy T. Nguyen
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Jennyfer M. Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michaela D. Kiel
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Colin P. Kenny
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L. Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Robert A. Cornell
- Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA 98195, USA
| | - Trevor J. Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Moura E, Tasqueti UI, Prado AMRB, Franco AJS, Pimpão CT. Symmetrical parapagus diprosopus: A comparative, computed tomographic, and pathoanatomical study of a new case in domestic pig. Birth Defects Res 2023; 115:1923-1935. [PMID: 37802762 DOI: 10.1002/bdr2.2256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Parapagus diprosopus are conjoined twins characterized by craniofacial duplication and only one body, representing one of the rarest types of these twins. Their occurrence has been recorded in different species of vertebrates, including humans, but few cases have been studied in domestic pigs. CASE A pair of conjoined twin pigs was studied using x-rays, computed tomography, and necropsy. The abnormalities found were compared with those of the rare swine cases presented in the literature as well as with other species, and the different etiopathogenetic possibilities were addressed. The degree of duplication of the head bones decreased caudally, as did that of the structures of the central nervous system. In the two oral cavities, there was a complete cleft palate. All the cervical vertebrae and thoracic vertebrae up to T3 were partially duplicated. The heart and great vessels were normal, as were the other thoracic and abdominal organs. CONCLUSIONS The conjoined twin pigs of this study are a case of parapagus diprosopus tetraophthalmus triotus, presenting the same pattern of abnormalities of human diprosopus and that of other species. The scarcity of detailed studies on craniofacial duplication in pigs and the lack of a definitive explanation on the etiology and pathogenesis of conjoined twins shows the need for further research and the publication of more cases.
Collapse
Affiliation(s)
- Enio Moura
- Service of Medical Genetics, Course of Veterinary Medicine, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Ubirajara Iobe Tasqueti
- Service of Diagnostic Imaging, Course of Veterinary Medicine, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Antonia Maria R B Prado
- Laboratory of Veterinary Anatomy, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Acir Jose S Franco
- Laboratory of Veterinary Anatomy, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Claudia Turra Pimpão
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| |
Collapse
|
8
|
Xu J, Iyyanar PPR, Lan Y, Jiang R. Sonic hedgehog signaling in craniofacial development. Differentiation 2023; 133:60-76. [PMID: 37481904 PMCID: PMC10529669 DOI: 10.1016/j.diff.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Mutations in SHH and several other genes encoding components of the Hedgehog signaling pathway have been associated with holoprosencephaly syndromes, with craniofacial anomalies ranging in severity from cyclopia to facial cleft to midfacial and mandibular hypoplasia. Studies in animal models have revealed that SHH signaling plays crucial roles at multiple stages of craniofacial morphogenesis, from cranial neural crest cell survival to growth and patterning of the facial primordia to organogenesis of the palate, mandible, tongue, tooth, and taste bud formation and homeostasis. This article provides a summary of the major findings in studies of the roles of SHH signaling in craniofacial development, with emphasis on recent advances in the understanding of the molecular and cellular mechanisms regulating the SHH signaling pathway activity and those involving SHH signaling in the formation and patterning of craniofacial structures.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
9
|
Ouchi T, Nakagawa T. Cellular Signaling for Dental Physiological Functions. Biomolecules 2023; 13:1177. [PMID: 37627242 PMCID: PMC10452277 DOI: 10.3390/biom13081177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Teeth are unique and multifaceted tissues that are necessary for routine functions, such as crushing food and constructing articulated sounds, as well as for esthetic symbols [...].
Collapse
Affiliation(s)
- Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
10
|
Nguyen TT, Mitchell JM, Kiel MD, Jones KL, Williams TJ, Nichols JT, Van Otterloo E. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545376. [PMID: 37398373 PMCID: PMC10312788 DOI: 10.1101/2023.06.16.545376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underly facial shape variation, yet how those in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest even during the late migratory phase results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both Tfap2 members dysregulated numerous midface GRN components involved in midface fusion, patterning, and differentiation. Notably, Alx1/3/4 (Alx) transcript levels are reduced, while ChIP-seq analyses suggest TFAP2 directly and positively regulates Alx gene expression. TFAP2 and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish further implies conservation of this regulatory axis across vertebrates. Consistent with this notion, tfap2a mutant zebrafish present abnormal alx3 expression patterns, and the two genes display a genetic interaction in this species. Together, these data demonstrate a critical role for TFAP2 in regulating vertebrate midfacial development in part through ALX transcription factor gene expression.
Collapse
Affiliation(s)
- Timothy T Nguyen
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
| | - Jennyfer M Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michaela D Kiel
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Trevor J Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James T Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
- Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
11
|
Tian Y, Lin J, Li X, Zhu G, Fan L, Lou S, Li D, Pan Y. Mechanical dissection and culture of mouse cranial neural crest cells. Birth Defects Res 2023; 115:417-429. [PMID: 36621938 DOI: 10.1002/bdr2.2148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023]
Abstract
Owing to the contribution of cranial neural crest cells (CNCCs) to the majority of craniofacial structures, they have been studied extensively for the pathogenesis of craniofacial diseases. To investigate and summarize how to isolate and culture the CNCCs from wild-type mice, a literature search was performed in online databases (PubMed and Web of Science) using optimized keywords "mouse," "cranial neural crest cell" and "culture." The literature was checked by two investigators according to the screening and exclusion criteria. Initially, 197 studies were retrieved from PubMed and 169 from Web of Science, and after excluding replicate studies, 293 articles were considered. Finally, 17 studies met all the criteria and were included in this review. The results showed that obtaining purified stem cells and balancing the need to promote cell growth and prevent unwanted early cell differentiation were the two key points in the isolation and culture of CNCCs. However, no standard criteria are available for answering these questions. Thus, it is important to emphasize the necessity for standardization of CNCC isolation, culture, and identification in research on craniofacial diseases.
Collapse
Affiliation(s)
- Yu Tian
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junyan Lin
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaofeng Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guirong Zhu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liwen Fan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Shu Lou
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Dandan Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Yongchu Pan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.,Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
12
|
Janečková E, Feng J, Guo T, Han X, Ghobadi A, Araujo-Villalba A, Rahman MS, Ziaei H, Ho TV, Pareek S, Alvarez J, Chai Y. Canonical Wnt signaling regulates soft palate development by mediating ciliary homeostasis. Development 2023; 150:dev201189. [PMID: 36825984 PMCID: PMC10108707 DOI: 10.1242/dev.201189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Craniofacial morphogenesis requires complex interactions involving different tissues, signaling pathways, secreted factors and organelles. The details of these interactions remain elusive. In this study, we have analyzed the molecular mechanisms and homeostatic cellular activities governing soft palate development to improve regenerative strategies for individuals with cleft palate. We have identified canonical Wnt signaling as a key signaling pathway primarily active in cranial neural crest (CNC)-derived mesenchymal cells surrounding soft palatal myogenic cells. Using Osr2-Cre;β-cateninfl/fl mice, we show that Wnt signaling is indispensable for mesenchymal cell proliferation and subsequently for myogenesis through mediating ciliogenesis. Specifically, we have identified that Wnt signaling directly regulates expression of the ciliary gene Ttll3. Impaired ciliary disassembly leads to differentiation defects in mesenchymal cells and indirectly disrupts myogenesis through decreased expression of Dlk1, a mesenchymal cell-derived pro-myogenesis factor. Moreover, we show that siRNA-mediated reduction of Ttll3 expression partly rescues mesenchymal cell proliferation and myogenesis in the palatal explant cultures from Osr2-Cre;β-cateninfl/fl embryos. This study highlights the role of Wnt signaling in palatogenesis through the control of ciliary homeostasis, which establishes a new mechanism for Wnt-regulated craniofacial morphogenesis.
Collapse
Affiliation(s)
- Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Aileen Ghobadi
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Angelita Araujo-Villalba
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Md Shaifur Rahman
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Heliya Ziaei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Siddhika Pareek
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jasmine Alvarez
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
13
|
Boschen KE, Steensen MC, Simon JM, Parnell SE. Short-term transcriptomic changes in the mouse neural tube induced by an acute alcohol exposure. Alcohol 2023; 106:1-9. [PMID: 36202274 PMCID: PMC11096843 DOI: 10.1016/j.alcohol.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023]
Abstract
Alcohol exposure during the formation and closure of the neural tube, or neurulation (embryonic day [E] 8-10 in mice; ∼4th week of human pregnancy), perturbs development of midline brain structures and significantly disrupts gene expression in the rostroventral neural tube (RVNT). Previously, alcohol exposure during neurulation was found to alter gene pathways related to cell proliferation, p53 signaling, ribosome biogenesis, immune signaling, organogenesis, and cell migration 6 or 24 h after administration. Our current study expands upon this work by investigating short-term gene expression changes in the RVNT following a single binge-like alcohol exposure during neurulation. Female C57BL/6J mice were administered a single dose of 2.9 g/kg alcohol or vehicle on E9.0 to target mid-neurulation. The RVNTs of stage-matched embryos were collected 2 or 4 h after exposure and processed for RNA-seq. Functional profiling was performed with g:Profiler, as well as with the CiliaCarta and DisGeNet databases. Two hours following E9.0 alcohol exposure, 650 genes in the RVNT were differentially expressed. Functional enrichment analysis revealed that pathways related to cellular metabolism, gene expression, cell cycle, organogenesis, and Hedgehog signaling were down-regulated, and pathways related to cellular stress response, p53 signaling, and hypoxia were up-regulated by alcohol. Four hours after alcohol exposure, 225 genes were differentially expressed. Biological processes related to metabolism, RNA binding, ribosome biogenesis, and methylation were down-regulated, while protein localization and binding, autophagy, and intracellular signaling pathways were up-regulated. Two hours after alcohol exposure, the differentially expressed genes were associated with disease terms related to eye and craniofacial development and anoxia. These data provide further information regarding the biological functions targeted by alcohol exposure during neurulation in regions of the neural tube that give rise to alcohol-sensitive midline brain structures. Disruption of these gene pathways contributes to the craniofacial and brain malformations associated with prenatal alcohol exposure.
Collapse
Affiliation(s)
- Karen E Boschen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Melina C Steensen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeremy M Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
14
|
Moore ER. Primary Cilia: The New Face of Craniofacial Research. Biomolecules 2022; 12:biom12121724. [PMID: 36551151 PMCID: PMC9776107 DOI: 10.3390/biom12121724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The primary cilium is a solitary, sensory organelle that extends from the surface of nearly every vertebrate cell, including craniofacial cells. This organelle converts chemical and physical external stimuli into intracellular signaling cascades and mediates several well-known signaling pathways simultaneously. Thus, the primary cilium is considered a cellular signaling nexus and amplifier. Primary cilia dysfunction directly results in a collection of diseases and syndromes that typically affect multiple organ systems, including the face and teeth. Despite this direct connection, primary cilia are largely unexplored in craniofacial research. In this review, I briefly summarize craniofacial abnormalities tied to the primary cilium and examine the existing information on primary cilia in craniofacial development and repair. I close with a discussion on preliminary studies that motivate future areas of exploration that are further supported by studies performed in long bone and kidney cells.
Collapse
Affiliation(s)
- Emily R Moore
- Harvard School of Dental Medicine, Department of Developmental Biology, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
15
|
Zhao W, Ye G, Li Q, Zhou Y, Yu X, Li Y, Yu M, Wang H. Pathogenic variant of
DYNC2H1
associated with lingual hamartoma in a Chinese pedigree. J Oral Pathol Med 2022; 51:755-761. [DOI: 10.1111/jop.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Wenquan Zhao
- Department of Oral and Maxillofacial Surgery The First Affiliated Hospital of Zhejiang University School of Medicine, School of Stomatology, and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang China
| | - Guanchen Ye
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Qi Li
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Yu Zhou
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Xiaowen Yu
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Yining Li
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Huiming Wang
- Department of Oral and Maxillofacial Surgery The First Affiliated Hospital of Zhejiang University School of Medicine, School of Stomatology, and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang China
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| |
Collapse
|
16
|
Guo Y, Wu D, Xu Q, Chen W. Inhibition of smoothened receptor by vismodegib leads to micrognathia during embryogenesis. Differentiation 2022; 125:27-34. [DOI: 10.1016/j.diff.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/03/2022]
|
17
|
Nandamuri SP, Lusk S, Kwan KM. Loss of zebrafish dzip1 results in inappropriate recruitment of periocular mesenchyme to the optic fissure and ocular coloboma. PLoS One 2022; 17:e0265327. [PMID: 35286359 PMCID: PMC8920261 DOI: 10.1371/journal.pone.0265327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 01/13/2023] Open
Abstract
Cilia are essential for the development and function of many different tissues. Although cilia machinery is crucial in the eye for photoreceptor development and function, a role for cilia in early eye development and morphogenesis is still somewhat unclear: many zebrafish cilia mutants retain cilia at early stages due to maternal deposition of cilia components. An eye phenotype has been described in the mouse Arl13 mutant, however, zebrafish arl13b is maternally deposited, and an early role for cilia proteins has not been tested in zebrafish eye development. Here we use the zebrafish dzip1 mutant, which exhibits a loss of cilia throughout stages of early eye development, to examine eye development and morphogenesis. We find that in dzip1 mutants, initial formation of the optic cup proceeds normally, however, the optic fissure subsequently fails to close and embryos develop the structural eye malformation ocular coloboma. Further, neural crest cells, which are implicated in optic fissure closure, do not populate the optic fissure correctly, suggesting that their inappropriate localization may be the underlying cause of coloboma. Overall, our results indicate a role for dzip1 in proper neural crest localization in the optic fissure and optic fissure closure.
Collapse
Affiliation(s)
- Sri Pratima Nandamuri
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Kristen M. Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
18
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
19
|
Delalande JM, Nagy N, McCann CJ, Natarajan D, Cooper JE, Carreno G, Dora D, Campbell A, Laurent N, Kemos P, Thomas S, Alby C, Attié-Bitach T, Lyonnet S, Logan MP, Goldstein AM, Davey MG, Hofstra RMW, Thapar N, Burns AJ. TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human. Front Mol Neurosci 2022; 14:757646. [PMID: 35002618 PMCID: PMC8733242 DOI: 10.3389/fnmol.2021.757646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning.
Collapse
Affiliation(s)
- Jean Marie Delalande
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Julie E Cooper
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Gabriela Carreno
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Alison Campbell
- Department of Paediatric Surgery, Christchurch Hospital, Christchurch, New Zealand
| | - Nicole Laurent
- Génétique et Anomalies du Développement, Université de Bourgogne, Service d'Anatomie Pathologique, Dijon, France
| | - Polychronis Kemos
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France
| | - Caroline Alby
- Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Malcolm P Logan
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan G Davey
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Division of Neurogastroenterology and Motility, Department of Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals International, Inc., Cambridge, MA, United States
| |
Collapse
|
20
|
Wu Y, Kurosaka H, Wang Q, Inubushi T, Nakatsugawa K, Kikuchi M, Ohara H, Tsujimoto T, Natsuyama S, Shida Y, Sandell LL, Trainor PA, Yamashiro T. Retinoic Acid Deficiency Underlies the Etiology of Midfacial Defects. J Dent Res 2022; 101:686-694. [PMID: 35001679 DOI: 10.1177/00220345211062049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Embryonic craniofacial development depends on the coordinated outgrowth and fusion of multiple facial primordia, which are populated with cranial neural crest cells and covered by the facial ectoderm. Any disturbance in these developmental events, their progenitor tissues, or signaling pathways can result in craniofacial deformities such as orofacial clefts, which are among the most common birth defects in humans. In the present study, we show that Rdh10 loss of function leads to a substantial reduction in retinoic acid (RA) signaling in the developing frontonasal process during early embryogenesis, which results in a variety of craniofacial anomalies, including midfacial cleft and ectopic chondrogenic nodules. Elevated apoptosis and perturbed cell proliferation in postmigratory cranial neural crest cells and a substantial reduction in Alx1 and Alx3 transcription in the developing frontonasal process were associated with midfacial cleft in Rdh10-deficient mice. More important, expanded Shh signaling in the ventral forebrain, as well as partial abrogation of midfacial defects in Rdh10 mutants via inhibition of Hh signaling, indicates that misregulation of Shh signaling underlies the pathogenesis of reduced RA signaling-associated midfacial defects. Taken together, these data illustrate the precise spatiotemporal function of Rdh10 and RA signaling during early embryogenesis and their importance in orchestrating molecular and cellular events essential for normal midfacial development.
Collapse
Affiliation(s)
- Y Wu
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - H Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Q Wang
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - T Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - K Nakatsugawa
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - M Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - H Ohara
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - T Tsujimoto
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - S Natsuyama
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Y Shida
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - L L Sandell
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - P A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, USA
| | - T Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| |
Collapse
|
21
|
Abrams SR, Reiter JF. Ciliary Hedgehog signaling regulates cell survival to build the facial midline. eLife 2021; 10:e68558. [PMID: 34672258 PMCID: PMC8592574 DOI: 10.7554/elife.68558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Craniofacial defects are among the most common phenotypes caused by ciliopathies, yet the developmental and molecular etiology of these defects is poorly understood. We investigated multiple mouse models of human ciliopathies (including Tctn2, Cc2d2a, and Tmem231 mutants) and discovered that each displays hypotelorism, a narrowing of the midface. As early in development as the end of gastrulation, Tctn2 mutants displayed reduced activation of the Hedgehog (HH) pathway in the prechordal plate, the head organizer. This prechordal plate defect preceded a reduction of HH pathway activation and Shh expression in the adjacent neurectoderm. Concomitant with the reduction of HH pathway activity, Tctn2 mutants exhibited increased cell death in the neurectoderm and facial ectoderm, culminating in a collapse of the facial midline. Enhancing HH signaling by decreasing the gene dosage of a negative regulator of the pathway, Ptch1, decreased cell death and rescued the midface defect in both Tctn2 and Cc2d2a mutants. These results reveal that ciliary HH signaling mediates communication between the prechordal plate and the neurectoderm to provide cellular survival cues essential for development of the facial midline.
Collapse
Affiliation(s)
- Shaun R Abrams
- Department of Biochemistry and Biophysics, Cardiovascular Research InstituteSan FranciscoUnited States
- Oral and Craniofacial Sciences Program, School of DentistrySan FranciscoUnited States
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research InstituteSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
22
|
Boschen KE, Fish EW, Parnell SE. Prenatal alcohol exposure disrupts Sonic hedgehog pathway and primary cilia genes in the mouse neural tube. Reprod Toxicol 2021; 105:136-147. [PMID: 34492310 PMCID: PMC8529623 DOI: 10.1016/j.reprotox.2021.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
Neurulation-stage alcohol exposure (NAE; embryonic day [E] 8-10) is associated with midline craniofacial and CNS defects that likely arise from disruption of morphogen pathways, such as Sonic hedgehog (Shh). Notably, midline anomalies are also a hallmark of genetic ciliopathies such as Joubert syndrome. We tested whether NAE alters Shh pathway signaling and the number and function of primary cilia, organelles critical for Shh pathway transduction. Female C57BL/6 J mice were administered two doses of alcohol (2.9 g/kg/dose) or vehicle on E9. Embryos were collected 6, 12, or 24 h later, and changes to Shh, cell cycle genes, and primary cilia were measured in the rostroventral neural tube (RVNT). Within the first 24 h post-NAE, reductions in Shh pathway and cell cycle gene expression and the ratio of Gli3 forms in the full-length activator state were observed. RVNT volume and cell layer width were reduced at 12 h. In addition, altered expression of multiple cilia-related genes was observed at 6 h post-NAE. As a further test of cilia gene-ethanol interaction, mice heterozygous for Kif3a exhibited perturbed behavior during adolescence following NAE compared to vehicle-treated mice, and Kif3a heterozygosity exacerbated the hyperactive effects of NAE on exploratory activity. These data demonstrate that NAE downregulates the Shh pathway in a region of the neural tube that gives rise to alcohol-sensitive brain structures and identifies disruption of primary cilia function, or a "transient ciliopathy", as a possible cellular mechanism of prenatal alcohol pathogenesis.
Collapse
Affiliation(s)
- Karen E Boschen
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Eric W Fish
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Scott E Parnell
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Hwang SH, Somatilaka BN, White K, Mukhopadhyay S. Ciliary and extraciliary Gpr161 pools repress hedgehog signaling in a tissue-specific manner. eLife 2021; 10:67121. [PMID: 34346313 PMCID: PMC8378848 DOI: 10.7554/elife.67121] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
The role of compartmentalized signaling in primary cilia during tissue morphogenesis is not well understood. The cilia localized G protein-coupled receptor, Gpr161, represses hedgehog pathway via cAMP signaling. We engineered a knock-in at the Gpr161 locus in mice to generate a variant (Gpr161mut1), which was ciliary localization defective but cAMP signaling competent. Tissue phenotypes from hedgehog signaling depend on downstream bifunctional Gli transcriptional factors functioning as activators or repressors. Compared to knockout (ko), Gpr161mut1/ko had delayed embryonic lethality, moderately increased hedgehog targets, and partially down-regulated Gli3 repressor. Unlike ko, the Gpr161mut1/ko neural tube did not show Gli2 activator-dependent expansion of ventral-most progenitors. Instead, the intermediate neural tube showed progenitor expansion that depends on loss of Gli3 repressor. Increased extraciliary receptor levels in Gpr161mut1/mut1 prevented ventralization. Morphogenesis in limb buds and midface requires Gli repressor; these tissues in Gpr161mut1/mut1 manifested hedgehog hyperactivation phenotypes—polydactyly and midfacial widening. Thus, ciliary and extraciliary Gpr161 pools likely establish tissue-specific Gli repressor thresholds in determining morpho-phenotypic outcomes.
Collapse
Affiliation(s)
- Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bandarigoda N Somatilaka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
24
|
Combating Constraints of the Functional Matrix: The Importance of Overcorrection in Pediatric Craniofacial Surgery. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3604. [PMID: 34235032 PMCID: PMC8225382 DOI: 10.1097/gox.0000000000003604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
Background: To effectively manipulate the bone, particularly in the growing patient, the craniofacial surgeon must understand the principles related to bone-based reconstruction. A theory of craniofacial growth that is both biologically accurate and clinically relevant is thus needed. Methods: A historical review of major findings across various disciplines (including orthopedic surgery, anatomy, embryology, orthodontics, and cell biology) will be covered, as it pertains to the concept of the functional matrix of the craniofacial skeleton. Results: The functional matrix dictates the interplay between the soft tissue envelope and bone grafts, thus guiding donor site choice and inset methods. The soft tissue may also warrant the use of bony hypercorrection especially in cranial vault remodeling. Control of both bone and boundaries of the soft tissue functional matrix can be achieved via distraction osteogenesis. Conclusion: The soft tissue functional matrix must be accounted for during craniofacial bone grafting, mobilizing osteotomies, and distraction osteogenesis if optimal aesthetic results are to be obtained using the least amount of procedures.
Collapse
|
25
|
Fitriasari S, Trainor PA. Diabetes, Oxidative Stress, and DNA Damage Modulate Cranial Neural Crest Cell Development and the Phenotype Variability of Craniofacial Disorders. Front Cell Dev Biol 2021; 9:644410. [PMID: 34095113 PMCID: PMC8174788 DOI: 10.3389/fcell.2021.644410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Craniofacial malformations are among the most common birth defects in humans and they often have significant detrimental functional, aesthetic, and social consequences. To date, more than 700 distinct craniofacial disorders have been described. However, the genetic, environmental, and developmental origins of most of these conditions remain to be determined. This gap in our knowledge is hampered in part by the tremendous phenotypic diversity evident in craniofacial syndromes but is also due to our limited understanding of the signals and mechanisms governing normal craniofacial development and variation. The principles of Mendelian inheritance have uncovered the etiology of relatively few complex craniofacial traits and consequently, the variability of craniofacial syndromes and phenotypes both within families and between families is often attributed to variable gene expression and incomplete penetrance. However, it is becoming increasingly apparent that phenotypic variation is often the result of combinatorial genetic and non-genetic factors. Major non-genetic factors include environmental effectors such as pregestational maternal diabetes, which is well-known to increase the risk of craniofacial birth defects. The hyperglycemia characteristic of diabetes causes oxidative stress which in turn can result in genotoxic stress, DNA damage, metabolic alterations, and subsequently perturbed embryogenesis. In this review we explore the importance of gene-environment associations involving diabetes, oxidative stress, and DNA damage during cranial neural crest cell development, which may underpin the phenotypic variability observed in specific craniofacial syndromes.
Collapse
Affiliation(s)
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
26
|
Mutation in the Ciliary Protein C2CD3 Reveals Organ-Specific Mechanisms of Hedgehog Signal Transduction in Avian Embryos. J Dev Biol 2021; 9:jdb9020012. [PMID: 33805906 PMCID: PMC8103285 DOI: 10.3390/jdb9020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Primary cilia are ubiquitous microtubule-based organelles that serve as signaling hubs for numerous developmental pathways, most notably the Hedgehog (Hh) pathway. Defects in the structure or function of primary cilia result in a class of diseases called ciliopathies. It is well known that primary cilia participate in transducing a Hh signal, and as such ciliopathies frequently present with phenotypes indicative of aberrant Hh function. Interestingly, the exact mechanisms of cilia-dependent Hh signaling transduction are unclear as some ciliopathic animal models simultaneously present with gain-of-Hh phenotypes in one organ system and loss-of-Hh phenotypes in another. To better understand how Hh signaling is perturbed across different tissues in ciliopathic conditions, we examined four distinct Hh-dependent signaling centers in the naturally occurring avian ciliopathic mutant talpid2 (ta2). In addition to the well-known and previously reported limb and craniofacial malformations, we observed dorsal-ventral patterning defects in the neural tube, and a shortened gastrointestinal tract. Molecular analyses for elements of the Hh pathway revealed that the loss of cilia impact transduction of an Hh signal in a tissue-specific manner at variable levels of the pathway. These studies will provide increased knowledge into how impaired ciliogenesis differentially regulates Hh signaling across tissues and will provide potential avenues for future targeted therapeutic treatments.
Collapse
|
27
|
Trakanant S, Nihara J, Nagai T, Kawasaki M, Kawasaki K, Ishida Y, Meguro F, Kudo T, Yamada A, Maeda T, Saito I, Ohazama A. MicroRNAs regulate distal region of mandibular development through Hh signaling. J Anat 2021; 238:711-719. [PMID: 33011977 PMCID: PMC7855062 DOI: 10.1111/joa.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/29/2022] Open
Abstract
Mandibular anomalies are often seen in various congenital diseases, indicating that mandibular development is under strict molecular control. Therefore, it is crucial to understand the molecular mechanisms involved in mandibular development. MicroRNAs (miRNAs) are noncoding small single-stranded RNAs that play a critical role in regulating the level of gene expression. We found that the mesenchymal conditional deletion of miRNAs arising from a lack of Dicer (an essential molecule for miRNA processing, Dicerfl/fl ;Wnt1Cre), led to an abnormal groove formation at the distal end of developing mandibles. At E10.5, when the region forms, inhibitors of Hh signaling, Ptch1 and Hhip1 showed increased expression at the region in Dicer mutant mandibles, while Gli1 (a major mediator of Hh signaling) was significantly downregulated in mutant mandibles. These suggest that Hh signaling was downregulated at the distal end of Dicer mutant mandibles by increased inhibitors. To understand whether the abnormal groove formation inDicer mutant mandibles was caused by the downregulation of Hh signaling, mice with a mesenchymal deletion of Hh signaling activity arising from a lack of Smo (an essential molecule for Hh signaling activation, Smofl/fl ;Wnt1Cre) were examined. Smofl/fl ;Wnt1Cre mice showed a similar phenotype in the distal region of their mandibles to those in Dicerfl/fl ;Wnt1Cre mice. We also found that approximately 400 miRNAs were expressed in wild-type mandibular mesenchymes at E10.5, and six microRNAs were identified as miRNAs with binding potential against both Ptch1 and Hhip1. Their expressions at the distal end of the mandible were confirmed by in situ hybridization. This indicates that microRNAs regulate the distal part of mandibular formation at an early stage of development by involving Hh signaling activity through controlling its inhibitor expression level.
Collapse
Affiliation(s)
- Supaluk Trakanant
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan,Division of OrthodonticsFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Jun Nihara
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan,Division of OrthodonticsFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Takahiro Nagai
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Maiko Kawasaki
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Katsushige Kawasaki
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan,Center for Advanced Oral ScienceFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Yoko Ishida
- Center for Advanced Oral ScienceFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Fumiya Meguro
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Takehisa Kudo
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan,Division of OrthodonticsFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Akane Yamada
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Takeyasu Maeda
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Isao Saito
- Division of OrthodonticsFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Atsushi Ohazama
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| |
Collapse
|
28
|
Bonatto Paese CL, Brooks EC, Aarnio-Peterson M, Brugmann SA. Ciliopathic micrognathia is caused by aberrant skeletal differentiation and remodeling. Development 2021; 148:148/4/dev194175. [PMID: 33589509 DOI: 10.1242/dev.194175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Ciliopathies represent a growing class of diseases caused by defects in microtubule-based organelles called primary cilia. Approximately 30% of ciliopathies are characterized by craniofacial phenotypes such as craniosynostosis, cleft lip/palate and micrognathia. Patients with ciliopathic micrognathia experience a particular set of difficulties, including impaired feeding and breathing, and have extremely limited treatment options. To understand the cellular and molecular basis for ciliopathic micrognathia, we used the talpid2 (ta2 ), a bona fide avian model for the human ciliopathy oral-facial-digital syndrome subtype 14. Histological analyses revealed that the onset of ciliopathic micrognathia in ta2 embryos occurred at the earliest stages of mandibular development. Neural crest-derived skeletal progenitor cells were particularly sensitive to a ciliopathic insult, undergoing unchecked passage through the cell cycle and subsequent increased proliferation. Furthermore, whereas neural crest-derived skeletal differentiation was initiated, osteoblast maturation failed to progress to completion. Additional molecular analyses revealed that an imbalance in the ratio of bone deposition and resorption also contributed to ciliopathic micrognathia in ta2 embryos. Thus, our results suggest that ciliopathic micrognathia is a consequence of multiple aberrant cellular processes necessary for skeletal development, and provide potential avenues for future therapeutic treatments.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Evan C Brooks
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan Aarnio-Peterson
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA .,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Shriners Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
29
|
Kopinke D, Norris AM, Mukhopadhyay S. Developmental and regenerative paradigms of cilia regulated hedgehog signaling. Semin Cell Dev Biol 2021; 110:89-103. [PMID: 32540122 PMCID: PMC7736055 DOI: 10.1016/j.semcdb.2020.05.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023]
Abstract
Primary cilia are immotile appendages that have evolved to receive and interpret a variety of different extracellular cues. Cilia play crucial roles in intercellular communication during development and defects in cilia affect multiple tissues accounting for a heterogeneous group of human diseases called ciliopathies. The Hedgehog (Hh) signaling pathway is one of these cues and displays a unique and symbiotic relationship with cilia. Not only does Hh signaling require cilia for its function but the majority of the Hh signaling machinery is physically located within the cilium-centrosome complex. More specifically, cilia are required for both repressing and activating Hh signaling by modifying bifunctional Gli transcription factors into repressors or activators. Defects in balancing, interpreting or establishing these repressor/activator gradients in Hh signaling either require cilia or phenocopy disruption of cilia. Here, we will summarize the current knowledge on how spatiotemporal control of the molecular machinery of the cilium allows for a tight control of basal repression and activation states of the Hh pathway. We will then discuss several paradigms on how cilia influence Hh pathway activity in tissue morphogenesis during development. Last, we will touch on how cilia and Hh signaling are being reactivated and repurposed during adult tissue regeneration. More specifically, we will focus on mesenchymal stem cells within the connective tissue and discuss the similarities and differences of how cilia and ciliary Hh signaling control the formation of fibrotic scar and adipose tissue during fatty fibrosis of several tissues.
Collapse
Affiliation(s)
- Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA.
| | - Alessandra M Norris
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
30
|
Echevarría-Andino ML, Allen BL. The hedgehog co-receptor BOC differentially regulates SHH signaling during craniofacial development. Development 2020; 147:dev.189076. [PMID: 33060130 DOI: 10.1242/dev.189076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022]
Abstract
The Hedgehog (HH) pathway controls multiple aspects of craniofacial development. HH ligands signal through the canonical receptor PTCH1, and three co-receptors: GAS1, CDON and BOC. Together, these co-receptors are required during embryogenesis to mediate proper HH signaling. Here, we investigated the individual and combined contributions of GAS1, CDON and BOC to HH-dependent mammalian craniofacial development. Notably, individual deletion of either Gas1 or Cdon results in variable holoprosencephaly phenotypes in mice, even on a congenic background. In contrast, we find that Boc deletion results in facial widening that correlates with increased HH target gene expression. In addition, Boc deletion in a Gas1 null background partially ameliorates the craniofacial defects observed in Gas1 single mutants; a phenotype that persists over developmental time, resulting in significant improvements to a subset of craniofacial structures. This contrasts with HH-dependent phenotypes in other tissues that significantly worsen following combined deletion of Gas1 and Boc Together, these data indicate that BOC acts as a multi-functional regulator of HH signaling during craniofacial development, alternately promoting or restraining HH pathway activity in a tissue-specific fashion.
Collapse
Affiliation(s)
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Ohba S. Hedgehog Signaling in Skeletal Development: Roles of Indian Hedgehog and the Mode of Its Action. Int J Mol Sci 2020; 21:E6665. [PMID: 32933018 PMCID: PMC7555016 DOI: 10.3390/ijms21186665] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Hedgehog (Hh) signaling is highly conserved among species and plays indispensable roles in various developmental processes. There are three Hh members in mammals; one of them, Indian hedgehog (Ihh), is expressed in prehypertrophic and hypertrophic chondrocytes during endochondral ossification. Based on mouse genetic studies, three major functions of Ihh have been proposed: (1) Regulation of chondrocyte differentiation via a negative feedback loop formed together with parathyroid hormone-related protein (PTHrP), (2) promotion of chondrocyte proliferation, and (3) specification of bone-forming osteoblasts. Gli transcription factors mediate the major aspect of Hh signaling in this context. Gli3 has dominant roles in the growth plate chondrocytes, whereas Gli1, Gli2, and Gli3 collectively mediate biological functions of Hh signaling in osteoblast specification. Recent studies have also highlighted postnatal roles of the signaling in maintenance and repair of skeletal tissues.
Collapse
Affiliation(s)
- Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| |
Collapse
|
32
|
Shiromizu T, Yuge M, Kasahara K, Yamakawa D, Matsui T, Bessho Y, Inagaki M, Nishimura Y. Targeting E3 Ubiquitin Ligases and Deubiquitinases in Ciliopathy and Cancer. Int J Mol Sci 2020; 21:E5962. [PMID: 32825105 PMCID: PMC7504095 DOI: 10.3390/ijms21175962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cilia are antenna-like structures present in many vertebrate cells. These organelles detect extracellular cues, transduce signals into the cell, and play an essential role in ensuring correct cell proliferation, migration, and differentiation in a spatiotemporal manner. Not surprisingly, dysregulation of cilia can cause various diseases, including cancer and ciliopathies, which are complex disorders caused by mutations in genes regulating ciliary function. The structure and function of cilia are dynamically regulated through various mechanisms, among which E3 ubiquitin ligases and deubiquitinases play crucial roles. These enzymes regulate the degradation and stabilization of ciliary proteins through the ubiquitin-proteasome system. In this review, we briefly highlight the role of cilia in ciliopathy and cancer; describe the roles of E3 ubiquitin ligases and deubiquitinases in ciliogenesis, ciliopathy, and cancer; and highlight some of the E3 ubiquitin ligases and deubiquitinases that are potential therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Mizuki Yuge
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Kousuke Kasahara
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Daishi Yamakawa
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Takaaki Matsui
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Yasumasa Bessho
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Masaki Inagaki
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| |
Collapse
|
33
|
Ji Y, Garland MA, Sun B, Zhang S, Reynolds K, McMahon M, Rajakumar R, Islam MS, Liu Y, Chen Y, Zhou CJ. Cellular and developmental basis of orofacial clefts. Birth Defects Res 2020; 112:1558-1587. [PMID: 32725806 DOI: 10.1002/bdr2.1768] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 12/11/2022]
Abstract
During craniofacial development, defective growth and fusion of the upper lip and/or palate can cause orofacial clefts (OFCs), which are among the most common structural birth defects in humans. The developmental basis of OFCs includes morphogenesis of the upper lip, primary palate, secondary palate, and other orofacial structures, each consisting of diverse cell types originating from all three germ layers: the ectoderm, mesoderm, and endoderm. Cranial neural crest cells and orofacial epithelial cells are two major cell types that interact with various cell lineages and play key roles in orofacial development. The cellular basis of OFCs involves defective execution in any one or several of the following processes: neural crest induction, epithelial-mesenchymal transition, migration, proliferation, differentiation, apoptosis, primary cilia formation and its signaling transduction, epithelial seam formation and disappearance, periderm formation and peeling, convergence and extrusion of palatal epithelial seam cells, cell adhesion, cytoskeleton dynamics, and extracellular matrix function. The latest cellular and developmental findings may provide a basis for better understanding of the underlying genetic, epigenetic, environmental, and molecular mechanisms of OFCs.
Collapse
Affiliation(s)
- Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Michael A Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Moira McMahon
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Ratheya Rajakumar
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Mohammad S Islam
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Yue Liu
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| |
Collapse
|
34
|
Hampl M, Dumkova J, Kavkova M, Dosedelova H, Bryjova A, Zahradnicek O, Pyszko M, Macholan M, Zikmund T, Kaiser J, Buchtova M. Polarized Sonic Hedgehog Protein Localization and a Shift in the Expression of Region-Specific Molecules Is Associated With the Secondary Palate Development in the Veiled Chameleon. Front Cell Dev Biol 2020; 8:572. [PMID: 32850780 PMCID: PMC7399257 DOI: 10.3389/fcell.2020.00572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022] Open
Abstract
Secondary palate development is characterized by the formation of two palatal shelves on the maxillary prominences, which fuse in the midline in mammalian embryos. However, in reptilian species, such as turtles, crocodilians, and lizards, the palatal shelves of the secondary palate develop to a variable extent and morphology. While in most Squamates, the palate is widely open, crocodilians develop a fully closed secondary palate. Here, we analyzed developmental processes that underlie secondary palate formation in chameleons, where large palatal shelves extend horizontally toward the midline. The growth of the palatal shelves continued during post-hatching stages and closure of the secondary palate can be observed in several adult animals. The massive proliferation of a multilayered oral epithelium and mesenchymal cells in the dorsal part of the palatal shelves underlined the initiation of their horizontal outgrowth, and was decreased later in development. The polarized cellular localization of primary cilia and Sonic hedgehog protein was associated with horizontal growth of the palatal shelves. Moreover, the development of large palatal shelves, supported by the pterygoid and palatine bones, was coupled with the shift in Meox2, Msx1, and Pax9 gene expression along the rostro-caudal axis. In conclusion, our results revealed distinctive developmental processes that contribute to the expansion and closure of the secondary palate in chameleons and highlighted divergences in palate formation across amniote species.
Collapse
Affiliation(s)
- Marek Hampl
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jana Dumkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Michaela Kavkova
- Laboratory of Computed Tomography, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Hana Dosedelova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Anna Bryjova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Oldrich Zahradnicek
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia.,Department of Radiation Dosimetry, Nuclear Physics Institute, Czech Academy of Sciences, Prague, Czechia
| | - Martin Pyszko
- Department of Anatomy, Histology, and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Milos Macholan
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Tomas Zikmund
- Laboratory of Computed Tomography, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Jozef Kaiser
- Laboratory of Computed Tomography, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
35
|
Finding the Unicorn, a New Mouse Model of Midfacial Clefting. Genes (Basel) 2020; 11:genes11010083. [PMID: 31940751 PMCID: PMC7016607 DOI: 10.3390/genes11010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 11/17/2022] Open
Abstract
Human midfacial clefting is a rare subset of orofacial clefting and in severe cases, the cleft separates the nostrils splitting the nose into two independent structures. To begin to understand the morphological and genetic causes of midfacial clefting we recovered the Unicorn mouse line. Unicorn embryos develop a complete midfacial cleft through the lip, and snout closely modelling human midfacial clefting. The Unicorn mouse line has ethylnitrosourea (ENU)-induced missense mutations in Raldh2 and Leo1. The mutations segregate with the cleft face phenotype. Importantly, the nasal cartilages and surrounding bones are patterned and develop normal morphology, except for the lateral displacement because of the cleft. We conclude that the midfacial cleft arises from the failure of the medial convergence of the paired medial nasal prominences between E10.5 to E11.5 rather than defective cell proliferation and death. Our work uncovers a novel mouse model and mechanism for the etiology of midfacial clefting.
Collapse
|
36
|
Disruption of Dhcr7 and Insig1/2 in cholesterol metabolism causes defects in bone formation and homeostasis through primary cilium formation. Bone Res 2020; 8:1. [PMID: 31934493 PMCID: PMC6946666 DOI: 10.1038/s41413-019-0078-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Human linkage studies suggest that craniofacial deformities result from either genetic mutations related to cholesterol metabolism or high-cholesterol maternal diets. However, little is known about the precise roles of intracellular cholesterol metabolism in the development of craniofacial bones, the majority of which are formed through intramembranous ossification. Here, we show that an altered cholesterol metabolic status results in abnormal osteogenesis through dysregulation of primary cilium formation during bone formation. We found that cholesterol metabolic aberrations, induced through disruption of either Dhcr7 (which encodes an enzyme involved in cholesterol synthesis) or Insig1 and Insig2 (which provide a negative feedback mechanism for cholesterol biosynthesis), result in osteoblast differentiation abnormalities. Notably, the primary cilia responsible for sensing extracellular cues were altered in number and length through dysregulated ciliary vesicle fusion in Dhcr7 and Insig1/2 mutant osteoblasts. As a consequence, WNT/β-catenin and hedgehog signaling activities were altered through dysregulated primary cilium formation. Strikingly, the normalization of defective cholesterol metabolism by simvastatin, a drug used in the treatment of cholesterol metabolic aberrations, rescued the abnormalities in both ciliogenesis and osteogenesis in vitro and in vivo. Thus, our results indicate that proper intracellular cholesterol status is crucial for primary cilium formation during skull formation and homeostasis.
Collapse
|
37
|
Skuplik I, Cobb J. Animal Models for Understanding Human Skeletal Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:157-188. [DOI: 10.1007/978-981-15-2389-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Portal C, Rompolas P, Lwigale P, Iomini C. Primary cilia deficiency in neural crest cells models anterior segment dysgenesis in mouse. eLife 2019; 8:52423. [PMID: 31845891 PMCID: PMC6946567 DOI: 10.7554/elife.52423] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Defects affecting tissues of the anterior segment (AS) of the eye lead to a group of highly debilitating disorders called Anterior Segment Dysgenesis (ASD). Despite the identification of some causative genes, the pathogenesis of ASD remains unclear. Interestingly, several ciliopathies display conditions of the AS. Using conditional targeting of Ift88 with Wnt1-Cre, we show that primary cilia of neural crest cells (NCC), precursors of most AS structures, are indispensable for normal AS development and their ablation leads to ASD conditions including abnormal corneal dimensions, defective iridocorneal angle, reduced anterior chamber volume and corneal neovascularization. Mechanistically, NCC cilia ablation abolishes hedgehog (Hh) signaling in the periocular mesenchyme (POM) canonically activated by choroid-secreted Indian Hh, reduces proliferation of POM cells surrounding the retinal pigment epithelium and decreases the expression of Foxc1 and Pitx2, two transcription factors identified as major ASD causative genes. Thus, we uncovered a signaling axis linking cilia and ASD.
Collapse
Affiliation(s)
- Céline Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Panteleimos Rompolas
- Department of Dermatology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Peter Lwigale
- BioSciences Department, Rice University, Houston, United States
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
39
|
Sasai N, Toriyama M, Kondo T. Hedgehog Signal and Genetic Disorders. Front Genet 2019; 10:1103. [PMID: 31781166 PMCID: PMC6856222 DOI: 10.3389/fgene.2019.01103] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
The hedgehog (Hh) family comprises sonic hedgehog (Shh), Indian hedgehog (Ihh), and desert hedgehog (Dhh), which are versatile signaling molecules involved in a wide spectrum of biological events including cell differentiation, proliferation, and survival; establishment of the vertebrate body plan; and aging. These molecules play critical roles from embryogenesis to adult stages; therefore, alterations such as abnormal expression or mutations of the genes involved and their downstream factors cause a variety of genetic disorders at different stages. The Hh family involves many signaling mediators and functions through complex mechanisms, and achieving a comprehensive understanding of the entire signaling system is challenging. This review discusses the signaling mediators of the Hh pathway and their functions at the cellular and organismal levels. We first focus on the roles of Hh signaling mediators in signal transduction at the cellular level and the networks formed by these factors. Then, we analyze the spatiotemporal pattern of expression of Hh pathway molecules in tissues and organs, and describe the phenotypes of mutant mice. Finally, we discuss the genetic disorders caused by malfunction of Hh signaling-related molecules in humans.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Michinori Toriyama
- Systems Neurobiology and Medicine, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
40
|
Kitamura A, Kawasaki M, Kawasaki K, Meguro F, Yamada A, Nagai T, Kodama Y, Trakanant S, Sharpe PT, Maeda T, Takagi R, Ohazama A. Ift88 is involved in mandibular development. J Anat 2019; 236:317-324. [PMID: 31657471 DOI: 10.1111/joa.13096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
The mandible is a crucial organ in both clinical and biological fields due to the high frequency of congenital anomalies and the significant morphological changes during evolution. Primary cilia play a critical role in many biological processes, including the determination of left/right axis patterning, the regulation of signaling pathways, and the formation of bone and cartilage. Perturbations in the function of primary cilia are known to cause a wide spectrum of human diseases: the ciliopathies. Craniofacial dysmorphologies, including mandibular deformity, are often seen in patients with ciliopathies. Mandibular development is characterized by chondrogenesis and osteogenesis; however, the role of primary cilia in mandibular development is not fully understood. To address this question, we generated mice with mesenchymal deletions of the ciliary protein, Ift88 (Ift88fl/fl ;Wnt1Cre). Ift88fl/fl ;Wnt1Cre mice showed ectopic mandibular bone formation, whereas Ift88 mutant mandible was slightly shortened. Meckel's cartilage was modestly expanded in Ift88fl/fl ;Wnt1Cre mice. The downregulation of Hh signaling was found in most of the mesenchyme of Ift88 mutant mandible. However, mice with a mesenchymal deletion of an essential molecule for Hh signaling activity, Smo (Smofl/fl ;Wnt1Cre), showed only ectopic mandibular formation, whereas Smo mutant mandible was significantly shortened. Ift88 is thus involved in chondrogenesis and osteogenesis during mandibular development, partially through regulating Sonic hedgehog (Shh) signaling.
Collapse
Affiliation(s)
- Atsushi Kitamura
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Maiko Kawasaki
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Centre for Craniofacial Development and Regeneration, Dental Institute, Guy's Hospital, King's College London, London, UK
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Centre for Craniofacial Development and Regeneration, Dental Institute, Guy's Hospital, King's College London, London, UK.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akane Yamada
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takahiro Nagai
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasumitsu Kodama
- Division of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Supaluk Trakanant
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Orthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Paul T Sharpe
- Centre for Craniofacial Development and Regeneration, Dental Institute, Guy's Hospital, King's College London, London, UK
| | - Takeyasu Maeda
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Centre for Craniofacial Development and Regeneration, Dental Institute, Guy's Hospital, King's College London, London, UK
| |
Collapse
|
41
|
Li S, Jin S, Jin C. The correlative hypotheses between Pitchfork and Kif3a in palate development. Med Hypotheses 2019; 126:23-25. [PMID: 31010494 DOI: 10.1016/j.mehy.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/11/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022]
Abstract
It is well known that dysfunction of primary cilia during embryonic development causes a range of developmental disorders such as cleft lip and palate, lung, kidney and heart disease. Both Pitchfork and Kinesin family member 3a (Kif3a) are associating with primary cilia, but whether there is a correlation between them are still inconclusive. Our research confirmed that Pitchfork over-expression induced lateral cleft palate and primary cilia disassembly during palate development. We also demonstrated that Sonic hedgehog (Shh) and Patched1 (Ptc1) expression levels were altering in the over-expressed Pitchfork group during palate development. Then we observed by consulting a vast amount of literature that specific knockout of the Kif3a also induced lateral cleft palate and expended the expression domains of Shh and Gli1 during palate development. Furthermore, loss of the Kif3a results in disassembly of the primary cilia and eventually leads to abnormal palatal development. Finally, we found that both Pitchfork and Kif3a are accumulating at the basal body and ciliary necklace during the early phase of cilia assembly and disassembly and both of them are involved in ciliary transport. Based on the above evidence, we hypotheses that there may be a potential correlation between Pitchfork and Kif3a, that could regulate primary cilia disassembly during palate development.
Collapse
Affiliation(s)
- Shujin Li
- Department of Dentistry, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, China.
| | - Shan Jin
- Department of Dermatology, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, China
| | - Chengri Jin
- Department of Dentistry, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, China.
| |
Collapse
|
42
|
Abramyan J. Hedgehog Signaling and Embryonic Craniofacial Disorders. J Dev Biol 2019; 7:E9. [PMID: 31022843 PMCID: PMC6631594 DOI: 10.3390/jdb7020009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Since its initial discovery in a Drosophila mutagenesis screen, the Hedgehog pathway has been revealed to be instrumental in the proper development of the vertebrate face. Vertebrates possess three hedgehog paralogs: Sonic hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). Of the three, Shh has the broadest range of functions both in the face and elsewhere in the embryo, while Ihh and Dhh play more limited roles. The Hedgehog pathway is instrumental from the period of prechordal plate formation early in the embryo, until the fusion of the lip and secondary palate, which complete the major patterning events of the face. Disruption of Hedgehog signaling results in an array of developmental disorders in the face, ranging from minor alterations in the distance between the eyes to more serious conditions such as severe clefting of the lip and palate. Despite its critical role, Hedgehog signaling seems to be disrupted through a number of mechanisms that may either be direct, as in mutation of a downstream target of the Hedgehog ligand, or indirect, such as mutation in a ciliary protein that is otherwise seemingly unrelated to the Hedgehog pathway. A number of teratogens such as alcohol, statins and steroidal alkaloids also disrupt key aspects of Hedgehog signal transduction, leading to developmental defects that are similar, if not identical, to those of Hedgehog pathway mutations. The aim of this review is to highlight the variety of roles that Hedgehog signaling plays in developmental disorders of the vertebrate face.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128, USA.
| |
Collapse
|
43
|
Defining a critical period in calvarial development for Hedgehog pathway antagonist-induced frontal bone dysplasia in mice. Int J Oral Sci 2019; 11:3. [PMID: 30783111 PMCID: PMC6381108 DOI: 10.1038/s41368-018-0040-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/09/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Abstract
The Hedgehog (Hh) signalling pathway is essential for cellular proliferation and differentiation during embryonic development. Gain and loss of function of Hh signalling are known to result in an array of craniofacial malformations. To determine the critical period for Hh pathway antagonist-induced frontal bone hypoplasia, we examined patterns of dysmorphology caused by Hh signalling inhibition. Pregnant mice received a single oral administration of Hh signalling inhibitor GDC-0449 at 100 mg•kg−1 or 150 mg•kg−1 body weight at preselected time points between embryonic days (E)8.5 and 12.5. The optimal teratogenic concentration of GDC-0449 was determined to be 150 mg•kg−1. Exposure between E9.5 and E10.5 induced frontal bone dysplasia, micrognathia and limb defects, with administration at E10.5 producing the most pronounced effects. This model showed decreased ossification of the frontal bone with downregulation of Hh signalling. The osteoid thickness of the frontal bone was significantly reduced. The amount of neural crest-derived frontal bone primordium was reduced after GDC-0449 exposure owing to a decreased rate of cell proliferation and increased cell death. During embryonic development, the Hedgehog signalling pathway regulates the migration, proliferation and differentiation of cranial neural crest cells in the early frontal bone. The Hedgehog signalling pathway transmits information to embryonic cells for their proper cell differentiation, and increased or reduced function of that signalling results in various craniofacial malformations. A team headed by Weihui Chen at Fujian Medical University in China investigated the patterns of abnormalities caused by inhibition of Hedgehog signalling in pregnant mice at preselected embryonic time points. The team was able to identify the critical period for sensitivity to GDC-0449, a potent Hedgehog signalling inhibitor. The authors believe that their mouse model can be effective in further investigating the mechanisms of craniofacial malformations and will have a profound impact on identifying candidate human disease genes and associated environmental factors.
Collapse
|
44
|
Boschen KE, Gong H, Murdaugh LB, Parnell SE. Knockdown of Mns1 Increases Susceptibility to Craniofacial Defects Following Gastrulation-Stage Alcohol Exposure in Mice. Alcohol Clin Exp Res 2018; 42:2136-2143. [PMID: 30129265 PMCID: PMC6214710 DOI: 10.1111/acer.13876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND MNS1 (meiosis-specific nuclear structural protein 1) is necessary for motile cilia function, such as sperm flagella or those found in the embryonic primitive node. While little is known regarding the function or expression pattern of MNS1 in the embryo, co-immunoprecipitation experiments in sperm have determined that MNS1 interacts with ciliary proteins, which are also important during development. Establishment of morphogenic gradients is dependent on normal ciliary motion in the primitive node beginning during gastrulation (gestational day [GD] 7 in the mouse, second-third week of pregnancy in humans), a critical window for face, eye, and brain development and particularly susceptible to perturbations of developmental signals. The current study investigates the role of Mns1 in craniofacial defects associated with gastrulation-stage alcohol exposure. METHODS On GD7, pregnant Mns1+/- dams were administered 2 doses of ethanol (5.8 g/kg total) or vehicle 4 hours apart to target gastrulation. On GD17, fetuses were examined for ocular defects by scoring each eye on a scale from 1 to 7 (1 = normal, 2 to 7 = defects escalating in severity). Craniofacial and brain abnormalities were also assessed. RESULTS Prenatal alcohol exposure (PAE) significantly increased the rate of defects in wild-type fetuses, as PAE fetuses had an incidence rate of 41.18% compared to a 10% incidence rate in controls. Furthermore, PAE interacted with genotype to significantly increase the defect rate and severity in Mns1+/- (64.29%) and Mns1-/- mice (92.31%). PAE Mns1-/- fetuses with severe eye defects also presented with craniofacial dysmorphologies characteristic of fetal alcohol syndrome and midline tissue loss in the brain, palate, and nasal septum. CONCLUSIONS These data demonstrate that a partial or complete knockdown of Mns1 interacts with PAE to increase the susceptibility to ocular defects and correlating craniofacial and brain anomalies, likely though interaction of alcohol with motile cilia function. These results further our understanding of genetic risk factors that may underlie susceptibility to teratogenic exposures.
Collapse
Affiliation(s)
- Karen E. Boschen
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599
| | - Henry Gong
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599
| | - Laura B. Murdaugh
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599
| | - Scott E. Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
45
|
Kurosaka H. Choanal atresia and stenosis: Development and diseases of the nasal cavity. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e336. [PMID: 30320458 DOI: 10.1002/wdev.336] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022]
Abstract
Proper craniofacial development in vertebrates depends on growth and fusion of the facial processes during embryogenesis. Failure of any step in this process could lead to craniofacial anomalies such as facial clefting, which has been well studied with regard to its molecular etiology and cellular pathogenesis. Nasal cavity invagination is also a critical event in proper craniofacial development, and is required for the formation of a functional nasal cavity and airway. The nasal cavity must connect the nasopharynx with the primitive choanae to complete an airway from the nostril to the nasopharynx. In contrast to orofacial clefts, defects in nasal cavity and airway formation, such as choanal atresia (CA), in which the connection between the nasal airway and nasopharynx is physically blocked, have largely been understudied. This is also true for a narrowed connection between the nasal cavity and the nasopharynx, which is known as choanal stenosis (CS). CA occurs in approximately 1 in 5,000 live births, and can present in isolation but typically arises as part of a syndrome. Despite the fact that CA and CS usually require immediate intervention, and substantially affect the quality of life of affected individuals, the etiology and pathogenesis of CA and CS have remained elusive. In this review I focus on the process of nasal cavity development with respect to forming a functional airway and discuss the cellular behavior and molecular networks governing this process. Additionally, the etiology of human CA is discussed using examples of disorders which involve CA or CS. This article is categorized under: Signaling Pathways > Cell Fate Signaling Comparative Development and Evolution > Model Systems Birth Defects > Craniofacial and Nervous System Anomalies.
Collapse
Affiliation(s)
- Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
46
|
Cavodeassi F, Creuzet S, Etchevers HC. The hedgehog pathway and ocular developmental anomalies. Hum Genet 2018; 138:917-936. [PMID: 30073412 PMCID: PMC6710239 DOI: 10.1007/s00439-018-1918-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
Mutations in effectors of the hedgehog signaling pathway are responsible for a wide variety of ocular developmental anomalies. These range from massive malformations of the brain and ocular primordia, not always compatible with postnatal life, to subtle but damaging functional effects on specific eye components. This review will concentrate on the effects and effectors of the major vertebrate hedgehog ligand for eye and brain formation, Sonic hedgehog (SHH), in tissues that constitute the eye directly and also in those tissues that exert indirect influence on eye formation. After a brief overview of human eye development, the many roles of the SHH signaling pathway during both early and later morphogenetic processes in the brain and then eye and periocular primordia will be evoked. Some of the unique molecular biology of this pathway in vertebrates, particularly ciliary signal transduction, will also be broached within this developmental cellular context.
Collapse
Affiliation(s)
- Florencia Cavodeassi
- Institute for Medical and Biomedical Education, St. George´s University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sophie Creuzet
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Heather C Etchevers
- Aix-Marseille Univ, Marseille Medical Genetics (MMG), INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
47
|
Usui K, Tokita M. Creating diversity in mammalian facial morphology: a review of potential developmental mechanisms. EvoDevo 2018; 9:15. [PMID: 29946416 PMCID: PMC6003202 DOI: 10.1186/s13227-018-0103-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Mammals (class Mammalia) have evolved diverse craniofacial morphology to adapt to a wide range of ecological niches. However, the genetic and developmental mechanisms underlying the diversification of mammalian craniofacial morphology remain largely unknown. In this paper, we focus on the facial length and orofacial clefts of mammals and deduce potential mechanisms that produced diversity in mammalian facial morphology. Small-scale changes in facial morphology from the common ancestor, such as slight changes in facial length and the evolution of the midline cleft in some lineages of bats, could be attributed to heterochrony in facial bone ossification. In contrast, large-scale changes of facial morphology from the common ancestor, such as a truncated, widened face as well as the evolution of the bilateral cleft possessed by some bat species, could be brought about by changes in growth and patterning of the facial primordium (the facial processes) at the early stages of embryogenesis.
Collapse
Affiliation(s)
- Kaoru Usui
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| | - Masayoshi Tokita
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| |
Collapse
|
48
|
Elliott KH, Millington G, Brugmann SA. A novel role for cilia-dependent sonic hedgehog signaling during submandibular gland development. Dev Dyn 2018. [PMID: 29532549 DOI: 10.1002/dvdy.24627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Submandibular glands (SMGs) are specialized epithelial structures which generate saliva necessary for mastication and digestion. Loss of SMGs can lead to inflammation, oral lesions, fungal infections, problems with chewing/swallowing, and tooth decay. Understanding the development of the SMG is important for developing therapeutic options for patients with impaired SMG function. Recent studies have suggested Sonic hedgehog (Shh) signaling in the epithelium plays an integral role in SMG development; however, the mechanism by which Shh influences gland development remains nebulous. RESULTS Using the Kif3af/f ;Wnt1-Cre ciliopathic mouse model to prevent Shh signal transduction by means of the loss of primary cilia in neural crest cells, we report that mesenchymal Shh activity is necessary for gland development. Furthermore, using a variety of murine transgenic lines with aberrant mesenchymal Shh signal transduction, we determine that loss of Shh activity, by means of loss of the Gli activator, rather than gain of Gli repressor, is sufficient to cause the SMG aplasia. Finally, we determine that loss of the SMG correlates with reduced Neuregulin1 (Nrg1) expression and lack of innervation of the SMG epithelium. CONCLUSIONS Together, these data suggest a novel mechanistic role for mesenchymal Shh signaling during SMG development. Developmental Dynamics 247:818-831, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kelsey H Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Grethel Millington
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
49
|
Elliott KH, Brugmann SA. Sending mixed signals: Cilia-dependent signaling during development and disease. Dev Biol 2018; 447:28-41. [PMID: 29548942 DOI: 10.1016/j.ydbio.2018.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023]
Abstract
Molecular signals are the guiding force of development, imparting direction upon cells to divide, migrate, differentiate, etc. The mechanisms by which a cell can receive and transduce these signals into measurable actions remains a 'black box' in developmental biology. Primary cilia are ubiquitous, microtubule-based organelles that dynamically extend from a cell to receive and process molecular and mechanical signaling cues. In the last decade, this organelle has become increasingly intriguing to the research community due to its ability to act as a cellular antenna, receive and transduce molecular stimuli, and initiate a cellular response. In this review, we discuss the structure of primary cilia, emphasizing how the ciliary components contribute to the transduction of signaling pathways. Furthermore, we address how the cilium integrates these signals and conveys them into cellular processes such as proliferation, migration and tissue patterning. Gaining a deeper understanding of the mechanisms used by primary cilia to receive and integrate molecular signals is essential, as it opens the door for the identification of therapeutic targets within the cilium that could alleviate pathological conditions brought on by aberrant molecular signaling.
Collapse
Affiliation(s)
- Kelsey H Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
50
|
Miller EE, Kobayashi GS, Musso CM, Allen M, Ishiy FAA, de Caires LC, Goulart E, Griesi-Oliveira K, Zechi-Ceide RM, Richieri-Costa A, Bertola DR, Passos-Bueno MR, Silver DL. EIF4A3 deficient human iPSCs and mouse models demonstrate neural crest defects that underlie Richieri-Costa-Pereira syndrome. Hum Mol Genet 2017; 26:2177-2191. [PMID: 28334780 DOI: 10.1093/hmg/ddx078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/28/2017] [Indexed: 11/14/2022] Open
Abstract
Biallelic loss-of-function mutations in the RNA-binding protein EIF4A3 cause Richieri-Costa-Pereira syndrome (RCPS), an autosomal recessive condition mainly characterized by craniofacial and limb malformations. However, the pathogenic cellular mechanisms responsible for this syndrome are entirely unknown. Here, we used two complementary approaches, patient-derived induced pluripotent stem cells (iPSCs) and conditional Eif4a3 mouse models, to demonstrate that defective neural crest cell (NCC) development explains RCPS craniofacial abnormalities. RCPS iNCCs have decreased migratory capacity, a distinct phenotype relative to other craniofacial disorders. Eif4a3 haploinsufficient embryos presented altered mandibular process fusion and micrognathia, thus recapitulating the most penetrant phenotypes of the syndrome. These defects were evident in either ubiquitous or NCC-specific Eif4a3 haploinsufficient animals, demonstrating an autonomous requirement of Eif4a3 in NCCs. Notably, RCPS NCC-derived mesenchymal stem-like cells (nMSCs) showed premature bone differentiation, a phenotype paralleled by premature clavicle ossification in Eif4a3 haploinsufficient embryos. Likewise, nMSCs presented compromised in vitro chondrogenesis, and Meckel's cartilage was underdeveloped in vivo. These findings indicate novel and essential requirements of EIF4A3 for NCC migration and osteochondrogenic differentiation during craniofacial development. Altogether, complementary use of iPSCs and mouse models pinpoint unique cellular mechanisms by which EIF4A3 mutation causes RCPS, and provide a paradigm to study craniofacial disorders.
Collapse
Affiliation(s)
- Emily E Miller
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Gerson S Kobayashi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Camila M Musso
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Miranda Allen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Felipe A A Ishiy
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Luiz Carlos de Caires
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ernesto Goulart
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Karina Griesi-Oliveira
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Roseli M Zechi-Ceide
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, Brazil
| | - Antonio Richieri-Costa
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, Brazil
| | - Debora R Bertola
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology.,Department of Cell Biology.,Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|