1
|
Sukhija N, Malik AA, Devadasan JM, Dash A, Bidyalaxmi K, Ravi Kumar D, Kousalaya Devi M, Choudhary A, Kanaka KK, Sharma R, Tripathi SB, Niranjan SK, Sivalingam J, Verma A. Genome-wide selection signatures address trait specific candidate genes in cattle indigenous to arid regions of India. Anim Biotechnol 2024; 35:2290521. [PMID: 38088885 DOI: 10.1080/10495398.2023.2290521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The peculiarity of Indian cattle lies in milk quality, resistance to diseases and stressors as well as adaptability. The investigation addressed selection signatures in Gir and Tharparkar cattle, belonging to arid ecotypes of India. Double digest restriction-site associated DNA sequencing (ddRAD-seq) yielded nearly 26 million high-quality reads from unrelated seven Gir and seven Tharparkar cows. In all, 19,127 high-quality SNPs were processed for selection signature analysis. An approach involving within-population composite likelihood ratio (CLR) statistics and between-population FST statistics was used to capture selection signatures within and between the breeds, respectively. A total of 191 selection signatures were addressed using CLR and FST approaches. Selection signatures overlapping 86 and 73 genes were detected as Gir- and Tharparkar-specific, respectively. Notably, genes related to production (CACNA1D, GHRHR), reproduction (ESR1, RBMS3), immunity (NOSTRIN, IL12B) and adaptation (ADAM22, ASL) were annotated to selection signatures. Gene pathway analysis revealed genes in insulin/IGF pathway for milk production, gonadotropin releasing hormone pathway for reproduction, Wnt signalling pathway and chemokine and cytokine signalling pathway for adaptation. This is the first study where selection signatures are identified using ddRAD-seq in indicine cattle breeds. The study shall help in conservation and leveraging genetic improvements in Gir and Tharparkar cattle.
Collapse
Affiliation(s)
- Nidhi Sukhija
- ICAR-National Dairy Research Institute, Karnal, India
| | - Anoop Anand Malik
- TERI School of Advanced Studies, Delhi, India
- The Energy and Resources Institute, North Eastern Regional Centre, Guwahati, India
| | | | | | - Kangabam Bidyalaxmi
- ICAR-National Dairy Research Institute, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - D Ravi Kumar
- ICAR-National Dairy Research Institute, Karnal, India
| | | | | | - K K Kanaka
- ICAR-National Dairy Research Institute, Karnal, India
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | | | | | | - Archana Verma
- ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
2
|
Low ZY, Yip AJW, Chan AML, Choo WS. 14-3-3 Family of Proteins: Biological Implications, Molecular Interactions, and Potential Intervention in Cancer, Virus and Neurodegeneration Disorders. J Cell Biochem 2024; 125:e30624. [PMID: 38946063 DOI: 10.1002/jcb.30624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The 14-3-3 family of proteins are highly conserved acidic eukaryotic proteins (25-32 kDa) abundantly present in the body. Through numerous binding partners, the 14-3-3 is responsible for many essential cellular pathways, such as cell cycle regulation and gene transcription control. Hence, its dysregulation has been linked to the onset of critical illnesses such as cancers, neurodegenerative diseases and viral infections. Interestingly, explorative studies have revealed an inverse correlation of 14-3-3 protein in cancer and neurodegenerative diseases, and the direct manipulation of 14-3-3 by virus to enhance infection capacity has dramatically extended its significance. Of these, COVID-19 has been linked to the 14-3-3 proteins by the interference of the SARS-CoV-2 nucleocapsid (N) protein during virion assembly. Given its predisposition towards multiple essential host signalling pathways, it is vital to understand the holistic interactions between the 14-3-3 protein to unravel its potential therapeutic unit in the future. As such, the general structure and properties of the 14-3-3 family of proteins, as well as their known biological functions and implications in cancer, neurodegeneration, and viruses, were covered in this review. Furthermore, the potential therapeutic target of 14-3-3 proteins in the associated diseases was discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
3
|
Abdi G, Jain M, Patil N, Upadhyay B, Vyas N, Dwivedi M, Kaushal RS. 14-3-3 proteins-a moonlight protein complex with therapeutic potential in neurological disorder: in-depth review with Alzheimer's disease. Front Mol Biosci 2024; 11:1286536. [PMID: 38375509 PMCID: PMC10876095 DOI: 10.3389/fmolb.2024.1286536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/05/2024] [Indexed: 02/21/2024] Open
Abstract
Alzheimer's disease (AD) affects millions of people worldwide and is a gradually worsening neurodegenerative condition. The accumulation of abnormal proteins, such as tau and beta-amyloid, in the brain is a hallmark of AD pathology. 14-3-3 proteins have been implicated in AD pathology in several ways. One proposed mechanism is that 14-3-3 proteins interact with tau protein and modulate its phosphorylation, aggregation, and toxicity. Tau is a protein associated with microtubules, playing a role in maintaining the structural integrity of neuronal cytoskeleton. However, in the context of Alzheimer's disease (AD), an abnormal increase in its phosphorylation occurs. This leads to the aggregation of tau into neurofibrillary tangles, which is a distinctive feature of this condition. Studies have shown that 14-3-3 proteins can bind to phosphorylated tau and regulate its function and stability. In addition, 14-3-3 proteins have been shown to interact with beta-amyloid (Aβ), the primary component of amyloid plaques in AD. 14-3-3 proteins can regulate the clearance of Aβ through the lysosomal degradation pathway by interacting with the lysosomal membrane protein LAMP2A. Dysfunction of lysosomal degradation pathway is thought to contribute to the accumulation of Aβ in the brain and the progression of AD. Furthermore, 14-3-3 proteins have been found to be downregulated in the brains of AD patients, suggesting that their dysregulation may contribute to AD pathology. For example, decreased levels of 14-3-3 proteins in cerebrospinal fluid have been suggested as a biomarker for AD. Overall, these findings suggest that 14-3-3 proteins may play an important role in AD pathology and may represent a potential therapeutic target for the disease. However, further research is needed to fully understand the mechanisms underlying the involvement of 14-3-3 proteins in AD and to explore their potential as a therapeutic target.
Collapse
Affiliation(s)
- Gholamareza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Mukul Jain
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Nil Patil
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Bindiya Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Nigam Vyas
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Biophysics and Structural Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Biophysics and Structural Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
4
|
Calcium channels and iron metabolism: A redox catastrophe in Parkinson's disease and an innovative path to novel therapies? Redox Biol 2021; 47:102136. [PMID: 34653841 PMCID: PMC8517601 DOI: 10.1016/j.redox.2021.102136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
Autonomously spiking dopaminergic neurons of the substantia nigra pars compacta (SNpc) are exquisitely specialized and suffer toxic iron-loading in Parkinson's disease (PD). However, the molecular mechanism involved remains unclear and critical to decipher for designing new PD therapeutics. The long-lasting (L-type) CaV1.3 voltage-gated calcium channel is expressed at high levels amongst nigral neurons of the SNpc, and due to its role in calcium and iron influx, could play a role in the pathogenesis of PD. Neuronal iron uptake via this route could be unregulated under the pathological setting of PD and potentiate cellular stress due to its redox activity. This Commentary will focus on the role of the CaV1.3 channels in calcium and iron uptake in the context of pharmacological targeting. Prospectively, the audacious use of artificial intelligence to design innovative CaV1.3 channel inhibitors could lead to breakthrough pharmaceuticals that attenuate calcium and iron entry to ameliorate PD pathology.
Collapse
|
5
|
Aldewachi H, Al-Zidan RN, Conner MT, Salman MM. High-Throughput Screening Platforms in the Discovery of Novel Drugs for Neurodegenerative Diseases. Bioengineering (Basel) 2021; 8:30. [PMID: 33672148 PMCID: PMC7926814 DOI: 10.3390/bioengineering8020030] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are incurable and debilitating conditions that result in progressive degeneration and/or death of nerve cells in the central nervous system (CNS). Identification of viable therapeutic targets and new treatments for CNS disorders and in particular, for NDDs is a major challenge in the field of drug discovery. These difficulties can be attributed to the diversity of cells involved, extreme complexity of the neural circuits, the limited capacity for tissue regeneration, and our incomplete understanding of the underlying pathological processes. Drug discovery is a complex and multidisciplinary process. The screening attrition rate in current drug discovery protocols mean that only one viable drug may arise from millions of screened compounds resulting in the need to improve discovery technologies and protocols to address the multiple causes of attrition. This has identified the need to screen larger libraries where the use of efficient high-throughput screening (HTS) becomes key in the discovery process. HTS can investigate hundreds of thousands of compounds per day. However, if fewer compounds could be screened without compromising the probability of success, the cost and time would be largely reduced. To that end, recent advances in computer-aided design, in silico libraries, and molecular docking software combined with the upscaling of cell-based platforms have evolved to improve screening efficiency with higher predictability and clinical applicability. We review, here, the increasing role of HTS in contemporary drug discovery processes, in particular for NDDs, and evaluate the criteria underlying its successful application. We also discuss the requirement of HTS for novel NDD therapies and examine the major current challenges in validating new drug targets and developing new treatments for NDDs.
Collapse
Affiliation(s)
- Hasan Aldewachi
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
- College of Pharmacy, Nineveh University, Mosul 41002, Iraq
| | - Radhwan N. Al-Zidan
- College of Pharmacy, University of Mosul, Mosul 41002, Iraq;
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, UK
| | - Matthew T. Conner
- School of Sciences, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Mootaz M. Salman
- College of Pharmacy, University of Mosul, Mosul 41002, Iraq;
- Oxford Parkinson’s Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
6
|
Gonzalez G, Grúz J, D’Acunto CW, Kaňovský P, Strnad M. Cytokinin Plant Hormones Have Neuroprotective Activity in In Vitro Models of Parkinson's Disease. Molecules 2021; 26:E361. [PMID: 33445611 PMCID: PMC7827283 DOI: 10.3390/molecules26020361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 01/03/2023] Open
Abstract
Cytokinins are adenine-based phytohormones that regulate key processes in plants, such as cell division and differentiation, root and shoot growth, apical dominance, branching, and seed germination. In preliminary studies, they have also shown protective activities against human neurodegenerative diseases. To extend knowledge of the protection (protective activity) they offer, we investigated activities of natural cytokinins against salsolinol (SAL)-induced toxicity (a Parkinson's disease model) and glutamate (Glu)-induced death of neuron-like dopaminergic SH-SY5Y cells. We found that kinetin-3-glucoside, cis-zeatin riboside, and N6-isopentenyladenosine were active in the SAL-induced PD model. In addition, trans-, cis-zeatin, and kinetin along with the iron chelator deferoxamine (DFO) and the necroptosis inhibitor necrostatin 1 (NEC-1) significantly reduced cell death rates in the Glu-induced model. Lactate dehydrogenase assays revealed that the cytokinins provided lower neuroprotective activity than DFO and NEC-1. Moreover, they reduced apoptotic caspase-3/7 activities less strongly than DFO. However, the cytokinins had very similar effects to DFO and NEC-1 on superoxide radical production. Overall, they showed protective activity in the SAL-induced model of parkinsonian neuronal cell death and Glu-induced model of oxidative damage mainly by reduction of oxidative stress.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (G.G.); (J.G.); (C.W.D.)
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20 Olomouc, Czech Republic;
| | - Jiří Grúz
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (G.G.); (J.G.); (C.W.D.)
| | - Cosimo Walter D’Acunto
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (G.G.); (J.G.); (C.W.D.)
| | - Petr Kaňovský
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20 Olomouc, Czech Republic;
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (G.G.); (J.G.); (C.W.D.)
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20 Olomouc, Czech Republic;
| |
Collapse
|
7
|
Martín-Jiménez R, Lurette O, Hebert-Chatelain E. Damage in Mitochondrial DNA Associated with Parkinson's Disease. DNA Cell Biol 2020; 39:1421-1430. [PMID: 32397749 DOI: 10.1089/dna.2020.5398] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the only organelles that contain their own genetic material (mtDNA). Mitochondria are involved in several key physiological functions, including ATP production, Ca2+ homeostasis, and metabolism of neurotransmitters. Since these organelles perform crucial processes to maintain neuronal homeostasis, mitochondrial dysfunctions can lead to various neurodegenerative diseases. Several mitochondrial proteins involved in ATP production are encoded by mtDNA. Thus, any mtDNA alteration can ultimately lead to mitochondrial dysfunction and cell death. Accumulation of mutations, deletions, and rearrangements in mtDNA has been observed in animal models and patients suffering from Parkinson's disease (PD). Also, specific inherited variations associated with mtDNA genetic groups (known as mtDNA haplogroups) are associated with lower or higher risk of developing PD. Consequently, mtDNA alterations should now be considered important hallmarks of this neurodegenerative disease. This review provides an update about the role of mtDNA alterations in the physiopathology of PD.
Collapse
Affiliation(s)
- Rebeca Martín-Jiménez
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| | - Olivier Lurette
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| | - Etienne Hebert-Chatelain
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| |
Collapse
|
8
|
Momtaz S, Memariani Z, El-Senduny FF, Sanadgol N, Golab F, Katebi M, Abdolghaffari AH, Farzaei MH, Abdollahi M. Targeting Ubiquitin-Proteasome Pathway by Natural Products: Novel Therapeutic Strategy for Treatment of Neurodegenerative Diseases. Front Physiol 2020; 11:361. [PMID: 32411012 PMCID: PMC7199656 DOI: 10.3389/fphys.2020.00361] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Misfolded proteins are the main common feature of neurodegenerative diseases, thereby, normal proteostasis is an important mechanism to regulate the neural survival and the central nervous system functionality. The ubiquitin-proteasome system (UPS) is a non-lysosomal proteolytic pathway involved in numerous normal functions of the nervous system, modulation of neurotransmitter release, synaptic plasticity, and recycling of membrane receptors or degradation of damaged and regulatory intracellular proteins. Aberrant accumulation of intracellular ubiquitin-positive inclusions has been implicated to a variety of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington disease (HD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Myeloma (MM). Genetic mutation in deubiquitinating enzyme could disrupt UPS and results in destructive effects on neuron survival. To date, various agents were characterized with proteasome-inhibitory potential. Proteins of the ubiquitin-proteasome system, and in particular, E3 ubiquitin ligases, may be promising molecular targets for neurodegenerative drug discovery. Phytochemicals, specifically polyphenols (PPs), were reported to act as proteasome-inhibitors or may modulate the proteasome activity. PPs modify the UPS by means of accumulation of ubiquitinated proteins, suppression of neuronal apoptosis, reduction of neurotoxicity, and improvement of synaptic plasticity and transmission. This is the first comprehensive review on the effect of PPs on UPS. Here, we review the recent findings describing various aspects of UPS dysregulation in neurodegenerative disorders. This review attempts to summarize the latest reports on the neuroprotective properties involved in the proper functioning of natural polyphenolic compounds with implication for targeting ubiquitin-proteasome pathway in the neurodegenerative diseases. We highlight the evidence suggesting that polyphenolic compounds have a dose and disorder dependent effects in improving neurological dysfunctions, and so their mechanism of action could stimulate the UPS, induce the protein degradation or inhibit UPS and reduce protein degradation. Future studies should focus on molecular mechanisms by which PPs can interfere this complex regulatory system at specific stages of the disease development and progression.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | | | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.,Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Majid Katebi
- Department of Anatomy, Faculty of Medicine, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Amir Hossein Abdolghaffari
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran.,Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Candelario KM, Balaj L, Zheng T, Skog J, Scheffler B, Breakefield X, Schüle B, Steindler DA. Exosome/microvesicle content is altered in leucine-rich repeat kinase 2 mutant induced pluripotent stem cell-derived neural cells. J Comp Neurol 2019; 528:1203-1215. [PMID: 31743443 DOI: 10.1002/cne.24819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles, including exosomes/microvesicles (EMVs), have been described as sensitive biomarkers that represent disease states and response to therapies. In light of recent reports of disease-mirroring EMV molecular signatures, the present study profiled two EMVs from different Parkinson's disease (PD) tissue sources: (a) neural progenitor cells derived from an endogenous adult stem/progenitor cell, called adult human neural progenitor (AHNP) cells, that we found to be pathological when isolated from postmortem PD patients' substantia nigra; and (b) leucine-rich repeat kinase 2 (LRRK2) gene identified patient induced pluripotent stem cells (iPSCs), which were used to isolate EMVs and begin to characterize their cargoes. Initial characterization of EMVs derived from idiopathic patients (AHNPs) and mutant LRRK2 patients showed differences between both phenotypes and when compared with a sibling control in EMV size and release based on Nanosight analysis. Furthermore, molecular profiling disclosed that neurodegenerative-related gene pathways altered in PD can be reversed using gene-editing approaches. In fact, the EMV cargo genes exhibited normal expression patterns after gene editing. This study shows that EMVs have the potential to serve as sensitive biomarkers of disease state in both idiopathic and gene-identified PD patients and that following gene-editing, EMVs reflect a corrected state. This is relevant for both prodromal and symptomatic patient populations where potential responses to therapies can be monitored via non-invasive liquid biopsies and EMV characterizations.
Collapse
Affiliation(s)
- Kate M Candelario
- Department of Neurological Surgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Leonora Balaj
- Massachusetts General Hospital and Harvard University, Boston, Massachusetts
| | - Tong Zheng
- JM USDA Human Nutrition Research Center on Aging, and CTSI of Tufts University, Boston, Massachusetts
| | - Johan Skog
- Exosome Diagnostics, Inc., Cambridge, Massachusetts
| | - Bjorn Scheffler
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg & University Hospital Essen, Essen, Germany
| | - Xandra Breakefield
- Massachusetts General Hospital and Harvard University, Boston, Massachusetts
| | - Birgitt Schüle
- Department of Pathology, Stanford University, Stanford, California
| | - Dennis A Steindler
- Department of Neurological Surgery, McKnight Brain Institute, University of Florida, Gainesville, Florida.,JM USDA Human Nutrition Research Center on Aging, and CTSI of Tufts University, Boston, Massachusetts
| |
Collapse
|
10
|
Neuroprotection of Indole-Derivative Compound NC001-8 by the Regulation of the NRF2 Pathway in Parkinson's Disease Cell Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5074367. [PMID: 31781339 PMCID: PMC6874971 DOI: 10.1155/2019/5074367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/05/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease accompanied by a loss of dopaminergic (DAergic) neurons. The development of therapies to prevent disease progression is the main goal of drug discovery. There is increasing evidence that oxidative stress and antioxidants may contribute to the pathogenesis and treatment of PD, respectively. In the present study, we investigated the antioxidative protective effects of the indole-derivative compound NC001-8 in DAergic neurons derived from SH-SY5Y cells and PD-specific induced pluripotent stem cells (PD-iPSCs) carrying a PARKIN ex5del mutation. In SH-SY5Y-differentiated DAergic neurons under 1-methyl-4-phenylpyridinium (MPP+) treatment, NC001-8 remarkably reduced the levels of reactive oxygen species (ROS) and cleaved caspase 3; upregulated nuclear factor erythroid 2-related factor 2 (NRF2) and NAD(P)H dehydrogenase, quinone 1 (NQO1); and promoted neuronal viability. In contrast, NRF2 knockdown abolished the effect of NC001-8 on the reduction of ROS and improvement of neuronal viability. In H2O2-treated DAergic neurons differentiated from PD-iPSCs, NC001-8 rescued the aberrant increase in ROS and cleaved caspase 3 by upregulating NRF2 and NQO1. Our results demonstrated the protective effect of NC001-8 in DAergic neurons via promoting the NRF2 antioxidative pathway and reducing ROS levels. We anticipate that our present in vitro assays may be a starting point for more sophisticated in vivo models or clinical trials that evaluate the potential of NC001-8 as a disease modifier for PD.
Collapse
|
11
|
Rivero-Ríos P, Romo-Lozano M, Madero-Pérez J, Thomas AP, Biosa A, Greggio E, Hilfiker S. The G2019S variant of leucine-rich repeat kinase 2 (LRRK2) alters endolysosomal trafficking by impairing the function of the GTPase RAB8A. J Biol Chem 2019; 294:4738-4758. [PMID: 30709905 PMCID: PMC6442034 DOI: 10.1074/jbc.ra118.005008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
Mutations in the gene encoding for leucine-rich repeat kinase 2 (LRRK2) are a common cause of hereditary Parkinson's disease. LRRK2 regulates various intracellular vesicular trafficking pathways, including endolysosomal degradative events such as epidermal growth factor receptor (EGFR) degradation. Recent studies have revealed that a subset of RAB proteins involved in secretory and endocytic recycling are LRRK2 kinase substrates in vivo. However, the effects of LRRK2-mediated phosphorylation of these substrates on membrane trafficking remain unknown. Here, using an array of immunofluorescence and pulldown assays, we report that expression of active or phosphodeficient RAB8A variants rescues the G2019S LRRK2–mediated effects on endolysosomal membrane trafficking. Similarly, up-regulation of the RAB11–Rabin8–RAB8A cascade, which activates RAB8A, also reverted these trafficking deficits. Loss of RAB8A mimicked the effects of G2019S LRRK2 on endolysosomal trafficking and decreased RAB7A activity. Expression of pathogenic G2019S LRRK2 or loss of RAB8A interfered with EGFR degradation by causing its accumulation in a RAB4-positive endocytic compartment, which was accompanied by a deficit in EGFR recycling and was rescued upon expression of active RAB7A. Dominant-negative RAB7A expression resulted in similar deficits in EGF degradation, accumulation in a RAB4 compartment, and deficits in EGFR recycling, which were all rescued upon expression of active RAB8A. Taken together, these findings suggest that, by impairing RAB8A function, pathogenic G2019S LRRK2 deregulates endolysosomal transport and endocytic recycling events.
Collapse
Affiliation(s)
- Pilar Rivero-Ríos
- From the Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain
| | - María Romo-Lozano
- From the Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain
| | - Jesús Madero-Pérez
- From the Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain
| | - Andrew P Thomas
- the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, and
| | - Alice Biosa
- the Department of Biology, University of Padova, Padova 35121, Italy
| | - Elisa Greggio
- the Department of Biology, University of Padova, Padova 35121, Italy
| | - Sabine Hilfiker
- From the Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain,
| |
Collapse
|
12
|
Bolognin S, Fossépré M, Qing X, Jarazo J, Ščančar J, Moreno EL, Nickels SL, Wasner K, Ouzren N, Walter J, Grünewald A, Glaab E, Salamanca L, Fleming RMT, Antony PMA, Schwamborn JC. 3D Cultures of Parkinson's Disease-Specific Dopaminergic Neurons for High Content Phenotyping and Drug Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800927. [PMID: 30643711 PMCID: PMC6325628 DOI: 10.1002/advs.201800927] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/31/2018] [Indexed: 05/16/2023]
Abstract
Parkinson's disease (PD)-specific neurons, grown in standard 2D cultures, typically only display weak endophenotypes. The cultivation of PD patient-specific neurons, derived from induced pluripotent stem cells carrying the LRRK2-G2019S mutation, is optimized in 3D microfluidics. The automated image analysis algorithms are implemented to enable pharmacophenomics in disease-relevant conditions. In contrast to 2D cultures, this 3D approach reveals robust endophenotypes. High-content imaging data show decreased dopaminergic differentiation and branching complexity, altered mitochondrial morphology, and increased cell death in LRRK2-G2019S neurons compared to isogenic lines without using stressor agents. Treatment with the LRRK2 inhibitor 2 (Inh2) rescues LRRK2-G2019S-dependent dopaminergic phenotypes. Strikingly, a holistic analysis of all studied features shows that the genetic background of the PD patients, and not the LRRK2-G2019S mutation, constitutes the strongest contribution to the phenotypes. These data support the use of advanced in vitro models for future patient stratification and personalized drug development.
Collapse
Affiliation(s)
- Silvia Bolognin
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
- Braingineering Technologies SARL9 avenue des Hauts‐ForneauxEsch‐sur‐AlzetteL‐4362Luxembourg
| | - Marie Fossépré
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
- Braingineering Technologies SARL9 avenue des Hauts‐ForneauxEsch‐sur‐AlzetteL‐4362Luxembourg
| | - Xiaobing Qing
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Javier Jarazo
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Janez Ščančar
- Department of Environmental SciencesJožef Stefan InstituteJamova 391000LjubljanaSlovenia
| | - Edinson Lucumi Moreno
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Sarah L. Nickels
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Kobi Wasner
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Nassima Ouzren
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Jonas Walter
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
- Braingineering Technologies SARL9 avenue des Hauts‐ForneauxEsch‐sur‐AlzetteL‐4362Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
- Institute of NeurogeneticsUniversity of Lübeck23562LübeckGermany
| | - Enrico Glaab
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Luis Salamanca
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Ronan M. T. Fleming
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Paul M. A. Antony
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| |
Collapse
|
13
|
Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 2018; 47:151-173. [PMID: 30408594 DOI: 10.1016/j.mito.2018.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/08/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) are the group of disorder that includes brain, peripheral nerves, spinal cord and results in sensory and motor neuron dysfunction. Several studies have shown that mitochondrial dynamics and their axonal transport play a central role in most common NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS) etc. In normal physiological condition, there is a balance between mitochondrial fission and fusion process while any alteration to these processes cause defect in ATP (Adenosine Triphosphate) biogenesis that lead to the onset of several NDs. Also, mitochondria mediated ROS may induce lipid and protein peroxidation, energy deficiency environment in the neurons and results in cell death and defective neurotransmission. Though, mitochondria is a well-studied cell organelle regulating the cellular energy demands but still, its detail role or association in NDs is under observation. In this review, we have summarized an updated mitochondria and their possible role in different NDs with the therapeutic strategy to improve the mitochondrial functions.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India.
| |
Collapse
|
14
|
LaMarca EA, Powell SK, Akbarian S, Brennand KJ. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells. Front Pediatr 2018; 6:82. [PMID: 29666786 PMCID: PMC5891587 DOI: 10.3389/fped.2018.00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional "mini-brains" and clustered, regularly interspersed short palindromic repeats (CRISPR)-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson's disease, and consider the future of this groundbreaking research.
Collapse
Affiliation(s)
- Elizabeth A. LaMarca
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Samuel K. Powell
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Schahram Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristen J. Brennand
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
15
|
Athanasopoulos PS, Heumann R, Kortholt A. The role of (auto)-phosphorylation in the complex activation mechanism of LRRK2. Biol Chem 2018. [DOI: 10.1515/hsz-2017-0332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Mutations in human leucine-rich-repeat kinase 2 (LRRK2) have been found to be the most frequent cause of late-onset Parkinson’s Disease (PD). LRRK2 is a large protein with two enzymatic domains, a GTPase and a kinase domain. A cluster of (auto)-phosphorylation sites within the N-terminus of LRRK2 have been shown to be crucial for the localization of LRRK2 and is important for PD pathogenesis. In addition, phosphorylation of sites within the G-domain of the protein affect GTPase activity. Here we discuss the role of these (auto)-phosphorylation sites of LRRK2 and their regulation by phosphatases and upstream kinases.
Collapse
Affiliation(s)
- Panagiotis S. Athanasopoulos
- Department of Cell Biochemistry , University of Groningen , Nijenborgh 7 , NL-9747 AG Groningen , The Netherlands
- Faculty of Chemistry and Biochemistry , Molecular Neurobiochemistry, Ruhr University Bochum , Universitätstrasse 150 , D-44780 Bochum , Germany
| | - Rolf Heumann
- Faculty of Chemistry and Biochemistry , Molecular Neurobiochemistry, Ruhr University Bochum , Universitätstrasse 150 , D-44780 Bochum , Germany
| | - Arjan Kortholt
- Department of Cell Biochemistry , University of Groningen , Nijenborgh 7 , NL-9747 AG Groningen , The Netherlands
| |
Collapse
|
16
|
Sharma A, Kurek J, Morgan JC, Wakade C, Rao SSC. Constipation in Parkinson's Disease: a Nuisance or Nuanced Answer to the Pathophysiological Puzzle? Curr Gastroenterol Rep 2018; 20:1. [PMID: 29350301 DOI: 10.1007/s11894-018-0609-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Chronic constipation is a common, nonmotor, and prodromal symptom in Parkinson's disease (PD). Its underlying neuropathology may provide pathophysiological insight into PD. Here, we critically review what is currently known about the neuroanatomical and brain-gut interactions, and the origin and progression of Lewy pathology (LP) at three levels-brain/brainstem, spinal cord, and enteric nervous system. RECENT FINDINGS Many recent studies have illustrated the challenges of examining LP in tissues obtained from colon biopsies of PD patients. Large-scale epidemiological studies have not confirmed the widely accepted Braakpostula. In this review, we propose an alternative origin and route of spread of LP in PD. We describe novel, noninvasive neurophysiological testing that could advance the understanding of LP and complex bidirectional brain-pelvic floor neural pathways in PD-a true disease model of a neurogastrointestinal disorder. This review may provide the impetus for future studies investigating gut and brain interaction and constipation in PD.
Collapse
Affiliation(s)
- Amol Sharma
- Division of Gastroenterology/Hepatology, Medical College of Georgia, Augusta University Medical Center, 1120 15th Street, AD-2226, Augusta, GA, 30912, USA.
| | - Julie Kurek
- Parkinson's Foundation Center of Excellence, Movement Disorders Program, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John C Morgan
- Parkinson's Foundation Center of Excellence, Movement Disorders Program, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Chandramohan Wakade
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University & Charlie Norwood VAMC, Augusta, GA, USA
| | - Satish S C Rao
- Division of Gastroenterology/Hepatology, Medical College of Georgia, Augusta University Medical Center, 1120 15th Street, AD-2226, Augusta, GA, 30912, USA
| |
Collapse
|
17
|
More SV, Choi DK. Emerging preclinical pharmacological targets for Parkinson's disease. Oncotarget 2018; 7:29835-63. [PMID: 26988916 PMCID: PMC5045437 DOI: 10.18632/oncotarget.8104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological condition caused by the degeneration of dopaminergic neurons in the basal ganglia. It is the most prevalent form of Parkinsonism, categorized by cardinal features such as bradykinesia, rigidity, tremors, and postural instability. Due to the multicentric pathology of PD involving inflammation, oxidative stress, excitotoxicity, apoptosis, and protein aggregation, it has become difficult to pin-point a single therapeutic target and evaluate its potential application. Currently available drugs for treating PD provide only symptomatic relief and do not decrease or avert disease progression resulting in poor patient satisfaction and compliance. Significant amount of understanding concerning the pathophysiology of PD has offered a range of potential targets for PD. Several emerging targets including AAV-hAADC gene therapy, phosphodiesterase-4, potassium channels, myeloperoxidase, acetylcholinesterase, MAO-B, dopamine, A2A, mGlu5, and 5-HT-1A/1B receptors are in different stages of clinical development. Additionally, alternative interventions such as deep brain stimulation, thalamotomy, transcranial magnetic stimulation, and gamma knife surgery, are also being developed for patients with advanced PD. As much as these therapeutic targets hold potential to delay the onset and reverse the disease, more targets and alternative interventions need to be examined in different stages of PD. In this review, we discuss various emerging preclinical pharmacological targets that may serve as a new promising neuroprotective strategy that could actually help alleviate PD and its symptoms.
Collapse
Affiliation(s)
- Sandeep Vasant More
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| |
Collapse
|
18
|
Zhou W, Barkow JC, Freed CR. Running wheel exercise reduces α-synuclein aggregation and improves motor and cognitive function in a transgenic mouse model of Parkinson's disease. PLoS One 2017; 12:e0190160. [PMID: 29272304 PMCID: PMC5741244 DOI: 10.1371/journal.pone.0190160] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/08/2017] [Indexed: 01/01/2023] Open
Abstract
Exercise has been recommended to improve motor function in Parkinson patients, but its value in altering progression of disease is unknown. In this study, we examined the neuroprotective effects of running wheel exercise in mice. In adult wild-type mice, one week of running wheel activity led to significantly increased DJ-1 protein concentrations in muscle and plasma. In DJ-1 knockout mice, running wheel performance was much slower and Rotarod performance was reduced, suggesting that DJ-1 protein is required for normal motor activity. To see if exercise can prevent abnormal protein deposition and behavioral decline in transgenic animals expressing a mutant human form of α-synuclein in all neurons, we set up running wheels in the cages of pre-symptomatic animals at 12 months old. Activity was monitored for a 3-month period. After 3 months, motor and cognitive performance on the Rotarod and Morris Water Maze were significantly better in running animals compared to control transgenic animals with locked running wheels. Biochemical analysis revealed that running mice had significantly higher DJ-1, Hsp70 and BDNF concentrations and had significantly less α-synuclein aggregation in brain compared to control mice. By contrast, plasma concentrations of α-synuclein were significantly higher in exercising mice compared to control mice. Our results suggest that exercise may slow the progression of Parkinson's disease by preventing abnormal protein aggregation in brain.
Collapse
Affiliation(s)
- Wenbo Zhou
- Division of Clinical Pharmacology and Toxicology, Departments of Medicine, Pharmacology, Neurology, and Neurosurgery; University of Colorado Denver, School of Medicine, Aurora, CO, United States of America
| | - Jessica Cummiskey Barkow
- Division of Clinical Pharmacology and Toxicology, Departments of Medicine, Pharmacology, Neurology, and Neurosurgery; University of Colorado Denver, School of Medicine, Aurora, CO, United States of America
| | - Curt R. Freed
- Division of Clinical Pharmacology and Toxicology, Departments of Medicine, Pharmacology, Neurology, and Neurosurgery; University of Colorado Denver, School of Medicine, Aurora, CO, United States of America
| |
Collapse
|
19
|
Malik N, Gifford AN, Sandell J, Tuchman D, Ding YS. Synthesis and In Vitro and In Vivo Evaluation of [ 3H]LRRK2-IN-1 as a Novel Radioligand for LRRK2. Mol Imaging Biol 2017; 19:837-845. [PMID: 28289968 PMCID: PMC5597475 DOI: 10.1007/s11307-017-1070-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE LRRK2 (leucine-rich repeat kinase 2) has recently been proven to be a promising drug target for Parkinson's disease (PD) due to an apparent enhanced activity caused by mutations associated with familial PD. To date, there have been no reports in which a LRRK2 inhibitor has been radiolabeled and used for in in vitro or in vivo studies of LRRK2. In the present study, we radiolabeled the LRRK2 ligand, LRRK-IN-1, for the purposes of performing in vitro (IC50, K d , B max, autoradiography) and in vivo (biodistribution, and blocking experiments) evaluations in rodents and human striatum tissues. PROCEDURES [3H]LRRK2-IN-1 was prepared with high radiochemical purity (>99 %) and a specific activity of 41 Ci/mmol via tritium/hydrogen (T/H) exchange using Crabtree's catalyst. For IC50, K d , and B max determination, LRRK2-IN-1 was used as a competing drug for nonspecific binding assessment. The specific binding of the tracer was further evaluated via an in vivo blocking study in mice with a potent LRRK2 inhibitor, Pf-06447475. RESULTS In vitro binding studies demonstrated a saturable binding site for [3H]LRRK2-IN-1 in rat kidney, rat brain striatum and human brain striatum with K d of 26 ± 3 and 43 ± 8, 48 ± 2 nM, respectively. In rat, the density of LRRK2 binding sites (B max) was higher in kidney (6.4 ± 0.04 pmol/mg) than in brain (2.5 ± 0.03 pmol/mg), however, in human brain striatum, the B max was 0.73 ± 0.01 pmol/mg protein. Autoradiography imaging in striatum of rat and human brain tissues gave results consistent with binding studies. In in vivo biodistribution and blocking studies in mice, co-administration with Pf-06447475 (10 mg/kg) reduced the uptake of [3H]LRRK2-IN-1 (%ID/g) by 50-60% in the kidney or brain. CONCLUSION The high LRRK2 brain density observed in our study suggests the feasibility for positron emission tomography imaging of LRRK2 (a potential target) with radioligands of higher affinity and specificity.
Collapse
Affiliation(s)
- Noeen Malik
- Department of Radiology, New York University School of Medicine, New York, USA
| | | | | | - Daniel Tuchman
- Department of Radiology, New York University School of Medicine, New York, USA
| | - Yu-Shin Ding
- Department of Radiology, New York University School of Medicine, New York, USA.
- Department of Psychiatry, New York University School of Medicine, New York, USA.
| |
Collapse
|
20
|
Cooper DJ, Zunino G, Bixby JL, Lemmon VP. Phenotypic screening with primary neurons to identify drug targets for regeneration and degeneration. Mol Cell Neurosci 2017; 80:161-169. [PMID: 27444126 PMCID: PMC5243932 DOI: 10.1016/j.mcn.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/04/2016] [Accepted: 07/16/2016] [Indexed: 12/13/2022] Open
Abstract
High-throughput, target-based screening techniques have been utilized extensively for drug discovery in the past several decades. However, the need for more predictive in vitro models of in vivo disease states has generated a shift in strategy towards phenotype-based screens. Phenotype based screens are particularly valuable in studying complex conditions such as CNS injury and degenerative disease, as many factors can contribute to a specific cellular response. In this review, we will discuss different screening frameworks and their relative utility in examining mechanisms of neurodegeneration and axon regrowth, particularly in cell-based in vitro disease models.
Collapse
Affiliation(s)
- Daniel J. Cooper
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| | - Giulia Zunino
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| | - John L. Bixby
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
- Center for Computational Science, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| | - Vance P. Lemmon
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
- Center for Computational Science, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| |
Collapse
|
21
|
Chandran JS, Scarrott JM, Shaw PJ, Azzouz M. Gene Therapy in the Nervous System: Failures and Successes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:241-257. [PMID: 28840561 DOI: 10.1007/978-3-319-60733-7_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetic disorders, caused by deleterious changes in the DNA sequence away from the normal genomic sequence, affect millions of people worldwide. Gene therapy as a treatment option for patients is an attractive proposition due to its conceptual simplicity. In principle, gene therapy involves correcting the genetic disorder by either restoring a normal functioning copy of a gene or reducing the toxicity arising from a mutated gene. In this way specific genetic function can be restored without altering the expression of other genes and the proteins they encode. The reality however is much more complex, and as a result the vector systems used to deliver gene therapies have by necessity continued to evolve and improve over time with respect to safety profile, efficiency, and long-term expression. In this chapter we examine the current approaches to gene therapy, assess the different gene delivery systems utilized, and highlight the failures and successes of relevant clinical trials. We do not intend for this chapter to be a comprehensive and exhaustive assessment of all clinical trials that have been conducted in the CNS, but instead will focus on specific diseases that have seen successes and failures with different gene therapy vehicles to gauge how preclinical models have informed the design of clinical trials.
Collapse
Affiliation(s)
- Jayanth S Chandran
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Joseph M Scarrott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
22
|
Ding X, Barodia SK, Ma L, Goldberg MS. Fbxl18 targets LRRK2 for proteasomal degradation and attenuates cell toxicity. Neurobiol Dis 2016; 98:122-136. [PMID: 27890708 DOI: 10.1016/j.nbd.2016.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 01/18/2023] Open
Abstract
Dominantly inherited mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common causes of familial Parkinson's disease (PD) and LRRK2 polymorphisms are associated with increased risk for idiopathic PD. However, the molecular mechanisms by which these mutations cause PD remain uncertain. In vitro studies indicate that disease-linked mutations in LRRK2 increase LRRK2 kinase activity and LRRK2-mediated cell toxicity. Identifying LRRK2-interacting proteins and determining their effects on LRRK2 are important for understanding LRRK2 function and for delineating the pathophysiological mechanisms of LRRK2 mutations. Here we identified a novel protein, F-box and leucine-rich repeat domain-containing protein 18 (Fbxl18) that physically associates with LRRK2. We demonstrated that Fbxl18 is a component of a Skp1-Cullin1-F-box ubiquitin ligase complex that regulates the abundance of LRRK2 by selectively targeting phosphorylated LRRK2 for ubiquitination and proteasomal degradation. Knockdown of endogenous Fbxl18 stabilized LRRK2 abundance while protein kinase C activation enhanced LRRK2 degradation by Fbxl18. Dephosphorylation of LRRK2 blocked Fbxl18 association with LRRK2. Taken together, we have identified potential mechanisms for LRRK2 regulation by kinase signaling pathways. Furthermore, Fbxl18 prevented caspase activation and cell death caused by LRRK2 and PD-linked mutant LRRK2. This reveals novel targets for developing potential therapies for familial and idiopathic PD.
Collapse
Affiliation(s)
- Xiaodong Ding
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sandeep K Barodia
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisha Ma
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew S Goldberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
23
|
Protein Kinases and Parkinson's Disease. Int J Mol Sci 2016; 17:ijms17091585. [PMID: 27657053 PMCID: PMC5037850 DOI: 10.3390/ijms17091585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/09/2016] [Accepted: 09/01/2016] [Indexed: 01/09/2023] Open
Abstract
Currently, the lack of new drug candidates for the treatment of major neurological disorders such as Parkinson’s disease has intensified the search for drugs that can be repurposed or repositioned for such treatment. Typically, the search focuses on drugs that have been approved and are used clinically for other indications. Kinase inhibitors represent a family of popular molecules for the treatment and prevention of various cancers, and have emerged as strong candidates for such repurposing because numerous serine/threonine and tyrosine kinases have been implicated in the pathobiology of Parkinson’s disease. This review focuses on various kinase-dependent pathways associated with the expression of Parkinson’s disease pathology, and evaluates how inhibitors of these pathways might play a major role as effective therapeutic molecules.
Collapse
|
24
|
Nuzhnyi EP, Yakimovskii AF, Timofeeva AA, Usenko TS, Nikolaev MA, Emelyanov AK, Amosov VI, Bubnova EV, Boukina AM, Zakharova EY, Pchelina SN. [Mutation del 1,02kb in the CLN3 gene and extrapyramidal syndrome]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:50-53. [PMID: 27635612 DOI: 10.17116/jnevro20161168150-53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the GBA and SMPD1 genes, which lead to the development of lysosomal storage diseases, are high risk factors for Parkinson's disease and dementia with Lewy bodies. We screened the mutations in the GALC and CLN3 genes in patients with Parkinson's disease and control subjects. A heterozygous CLN3 mutation (del 1.02 kb) carrier with clinical features of the unusual extrapyramidal syndrome was identified. A role of CLN3 mutations in the development of neurodegenerative disorders is discussed.
Collapse
Affiliation(s)
- E P Nuzhnyi
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - A F Yakimovskii
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - A A Timofeeva
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - T S Usenko
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia; Konstantinov St. Petersburg Institute of Nuclear Physics, St. Petersburg, Russia
| | - M A Nikolaev
- Konstantinov St. Petersburg Institute of Nuclear Physics, St. Petersburg, Russia
| | - A K Emelyanov
- Konstantinov St. Petersburg Institute of Nuclear Physics, St. Petersburg, Russia
| | - V I Amosov
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - E V Bubnova
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | | | | | - S N Pchelina
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia; Konstantinov St. Petersburg Institute of Nuclear Physics, St. Petersburg, Russia
| |
Collapse
|
25
|
Stepanichev MY, Markov DA, Freiman SV, Frolova OA, Omelyanchik SN, Borodina TA, Novikova MR, Kanunnikova NP, Onufriev MV, Moiseenok AG, Gulyaeva NV. Combined treatment with pantothenic acid derivatives and memantine alleviates scopolamine-induced amnesia in rats: The involvement of the thiol redox state and coenzyme A. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416020094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Chen W, Li H, Liu Z, Yuan W. Lipopolyplex for Therapeutic Gene Delivery and Its Application for the Treatment of Parkinson's Disease. Front Aging Neurosci 2016; 8:68. [PMID: 27092073 PMCID: PMC4820442 DOI: 10.3389/fnagi.2016.00068] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
Lipopolyplex is a core-shell structure composed of nucleic acid, polycation and lipid. As a non-viral gene delivery vector, lipopolyplex combining the advantages of polyplex and lipoplex has shown superior colloidal stability, reduced cytotoxicity, extremely high gene transfection efficiency. Following intravenous administration, there are many strategies based on lipopolyplex to overcome the complex biological barriers in systemic gene delivery including condensation of nucleic acids into nanoparticles, long circulation, cell targeting, endosomal escape, release to cytoplasm and entry into cell nucleus. Parkinson's disease (PD) is the second most common neurodegenerative disorder and severely influences the patients' life quality. Current gene therapy clinical trials for PD employing viral vectors didn't achieve satisfactory efficacy. However, lipopolyplex may become a promising alternative approach owing to its stability in blood, ability to cross the blood-brain barrier (BBB) and specific targeting to diseased brain cells.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine Shanghai, China
| | - Hui Li
- School of Pharmacy, Shanghai JiaoTong University Shanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine Shanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai JiaoTong University Shanghai, China
| |
Collapse
|
27
|
Arranz AM, Delbroek L, Van Kolen K, Guimarães MR, Mandemakers W, Daneels G, Matta S, Calafate S, Shaban H, Baatsen P, De Bock PJ, Gevaert K, Vanden Berghe P, Verstreken P, De Strooper B, Moechars D. LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism. J Cell Sci 2016; 128:541–52. [PMID: 25501810 DOI: 10.1242/jcs.158196] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson’s disease, but the precise physiological function of the protein remains ill-defined. Recently, our group proposed a model in which LRRK2 kinase activity is part of an EndoA phosphorylation cycle that facilitates efficient vesicle formation at synapses in the Drosophila melanogaster neuromuscular junctions.Flies harbor only one Lrrk gene, which might encompass the functions of both mammalian LRRK1 and LRRK2. We therefore studied the role of LRRK2 in mammalian synaptic function and provide evidence that knockout or pharmacological inhibition of LRRK2 results in defects in synaptic vesicle endocytosis, altered synaptic morphology and impairments in neurotransmission. In addition, our data indicate that mammalian endophilin A1 (EndoA1,also known as SH3GL2) is phosphorylated by LRRK2 in vitro at T73 and S75, two residues in the BAR domain. Hence, our results indicate that LRRK2 kinase activity has an important role in the regulation of clathrin-mediated endocytosis of synaptic vesicles and subsequent neurotransmission at the synapse.
Collapse
|
28
|
There's Something Wrong with my MAM; the ER-Mitochondria Axis and Neurodegenerative Diseases. Trends Neurosci 2016; 39:146-157. [PMID: 26899735 PMCID: PMC4780428 DOI: 10.1016/j.tins.2016.01.008] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis with associated frontotemporal dementia (ALS/FTD) are major neurodegenerative diseases for which there are no cures. All are characterised by damage to several seemingly disparate cellular processes. The broad nature of this damage makes understanding pathogenic mechanisms and devising new treatments difficult. Can the different damaged functions be linked together in a common disease pathway and which damaged function should be targeted for therapy? Many functions damaged in neurodegenerative diseases are regulated by communications that mitochondria make with a specialised region of the endoplasmic reticulum (ER; mitochondria-associated ER membranes or 'MAM'). Moreover, several recent studies have shown that disturbances to ER-mitochondria contacts occur in neurodegenerative diseases. Here, we review these findings.
Collapse
|
29
|
Chin LS, Li L. Ubiquitin phosphorylation in Parkinson's disease: Implications for pathogenesis and treatment. Transl Neurodegener 2016; 5:1. [PMID: 26740872 PMCID: PMC4702311 DOI: 10.1186/s40035-015-0049-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized primarily by the loss of dopaminergic neurons in substantia nigra. The pathogenic mechanisms of PD remain unclear, and no effective therapy currently exists to stop neurodegeneration in this debilitating disease. The identification of mutations in mitochondrial serine/threonine kinase PINK1 or E3 ubiquitin-protein ligase parkin as the cause of autosomal recessive PD opens up new avenues for uncovering neuroprotective pathways and PD pathogenic mechanisms. Recent studies reveal that PINK1 translocates to the outer mitochondrial membrane in response to mitochondrial depolarization and phosphorylates ubiquitin at the residue Ser65. The phosphorylated ubiquitin serves as a signal for activating parkin and recruiting autophagy receptors to promote clearance of damaged mitochondria via mitophagy. Emerging evidence has begun to indicate a link between impaired ubiquitin phosphorylation-dependent mitophagy and PD pathogenesis and supports the potential of Ser65-phosphorylated ubiquitin as a biomarker for PD. The new mechanistic insights and phenotypic screens have identified multiple potential therapeutic targets for PD drug discovery. This review highlights recent advances in understanding ubiquitin phosphorylation in mitochondrial quality control and PD pathogenesis and discusses how these findings can be translated into novel approaches for PD diagnostic and therapeutic development.
Collapse
Affiliation(s)
- Lih-Shen Chin
- Department of Pharmacology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Lian Li
- Department of Pharmacology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
30
|
Fallaize D, Chin LS, Li L. Differential submitochondrial localization of PINK1 as a molecular switch for mediating distinct mitochondrial signaling pathways. Cell Signal 2015; 27:2543-54. [PMID: 26436374 DOI: 10.1016/j.cellsig.2015.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 12/31/2022]
Abstract
Mutations in mitochondrial kinase PINK1 cause Parkinson disease (PD), but the submitochondrial site(s) of PINK1 action remains unclear. Here, we report that three-dimensional structured illumination microscopy (3D-SIM) enables super-resolution imaging of protein submitochondrial localization. Dual-color 3D-SIM imaging analysis revealed that PINK1 resides in the cristae membrane and intracristae space but not on the outer mitochondrial membrane (OMM) of healthy mitochondria. Under normal physiological conditions, PINK1 colocalizes with its substrate TRAP1 in the cristae membrane and intracristae space. In response to mitochondrial depolarization, PINK1, but not TRAP1, translocates to the OMM. The PINK1 translocation to the OMM of depolarized mitochondria is independent of new protein synthesis and requires combined action of PINK1 transmembrane domain and C-terminal region. We found that mitochondrial depolarization-induced PINK1 OMM translocation is required for recruitment of parkin to the OMM of damaged mitochondria. Our findings suggest that differential submitochondrial localization of PINK1 serves as a molecular switch for mediating two distinct mitochondrial signaling pathways in maintenance of mitochondrial homeostasis. Furthermore, our study provides evidence for the involvement of deregulated PINK1 submitochondrial localization in PD pathogenesis.
Collapse
Affiliation(s)
- Dana Fallaize
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lih-Shen Chin
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Lian Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
31
|
Bankapalli K, Saladi S, Awadia SS, Goswami AV, Samaddar M, D'Silva P. Robust glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI family member protein, is critical for oxidative stress resistance in Saccharomyces cerevisiae. J Biol Chem 2015; 290:26491-507. [PMID: 26370081 DOI: 10.1074/jbc.m115.673624] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/06/2022] Open
Abstract
Methylglyoxal (MG) is a reactive metabolic intermediate generated during various cellular biochemical reactions, including glycolysis. The accumulation of MG indiscriminately modifies proteins, including important cellular antioxidant machinery, leading to severe oxidative stress, which is implicated in multiple neurodegenerative disorders, aging, and cardiac disorders. Although cells possess efficient glyoxalase systems for detoxification, their functions are largely dependent on the glutathione cofactor, the availability of which is self-limiting under oxidative stress. Thus, higher organisms require alternate modes of reducing the MG-mediated toxicity and maintaining redox balance. In this report, we demonstrate that Hsp31 protein, a member of the ThiJ/DJ-1/PfpI family in Saccharomyces cerevisiae, plays an indispensable role in regulating redox homeostasis. Our results show that Hsp31 possesses robust glutathione-independent methylglyoxalase activity and suppresses MG-mediated toxicity and ROS levels as compared with another paralog, Hsp34. On the other hand, glyoxalase-defective mutants of Hsp31 were found highly compromised in regulating the ROS levels. Additionally, Hsp31 maintains cellular glutathione and NADPH levels, thus conferring protection against oxidative stress, and Hsp31 relocalizes to mitochondria to provide cytoprotection to the organelle under oxidative stress conditions. Importantly, human DJ-1, which is implicated in the familial form of Parkinson disease, complements the function of Hsp31 by suppressing methylglyoxal and oxidative stress, thus signifying the importance of these proteins in the maintenance of ROS homeostasis across phylogeny.
Collapse
Affiliation(s)
- Kondalarao Bankapalli
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - SreeDivya Saladi
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sahezeel S Awadia
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Arvind Vittal Goswami
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Madhuja Samaddar
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Patrick D'Silva
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
32
|
Ahn TB, Jeon BS. The role of quercetin on the survival of neuron-like PC12 cells and the expression of α-synuclein. Neural Regen Res 2015; 10:1113-9. [PMID: 26330835 PMCID: PMC4541243 DOI: 10.4103/1673-5374.160106] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2015] [Indexed: 12/26/2022] Open
Abstract
Both genetic and environmental factors are important in the pathogenesis of Parkinson's disease. As α-synuclein is a major constituent of Lewy bodies, a pathologic hallmark of Parkinson's disease, genetic aspects of α-synuclein is widely studied. However, the influence of dietary factors such as quercetin on α-synuclein was rarely studied. Herein we aimed to study the neuroprotective role of quercetin against various toxins affecting apoptosis, autophagy and aggresome, and the role of quercetin on α-synuclein expression. PC12 cells were pre-treated with quercetin (100, 500, 1,000 μM) and then together with various drugs such as 1-methyl-4-phenylpyridinium (MPP+; a free radical generator), 6-hydroxydopamine (6-OHDA; a free radical generator), ammonium chloride (an autophagy inhibitor), and nocodazole (an aggresome inhibitor). Cell viability was determined using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltertazolium bromide (MTT) assay. Apoptosis was detected by annexin V-fluorescein isothiocyanate and propidium iodide through the use of fluorescence activated cell sorter. α-Synuclein expression was detected by western blot assay and immunohistochemistry. The role of α-synuclein was further studied by knocking out α-synuclein using RNA interference. Cell viability increased at lower concentrations (100 and 500 μM) of quercetin but decreased at higher concentration (1,000 μM). Quercetin exerted neuroprotective effect against MPP+, ammonium chloride and nocodazole at 100 μM. MPP+ induced apoptosis was decreased by 100 μM quercetin. Quercetin treatment increased α-synuclein expression. However, knocking out α-synuclein exerted no significant effect on cell survival. In conclusion, quercetin is neuroprotective against toxic agents via affecting various mechanisms such as apoptosis, autophagy and aggresome. Because α-synuclein expression is increased by quercetin, the role of quercetin as an environmental factor in Parkinson's disease pathogenesis needs further investigation.
Collapse
Affiliation(s)
- Tae-Beom Ahn
- Department of Neurology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Beom S Jeon
- Department of Neurology, College of Medicine, Seoul National University, Seoul, Republic of Korea ; Department of Neurology, Movement Disorder Center, Parkinson Study Group, and Neuroscience Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
33
|
Saha S, Ash PEA, Gowda V, Liu L, Shirihai O, Wolozin B. Mutations in LRRK2 potentiate age-related impairment of autophagic flux. Mol Neurodegener 2015; 10:26. [PMID: 26159606 PMCID: PMC4702340 DOI: 10.1186/s13024-015-0022-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 06/25/2015] [Indexed: 12/13/2022] Open
Abstract
Autophagy is thought to play a pivotal role in the pathophysiology of Parkinson's disease, but little is known about how genes linked to PD affect autophagy in the context of aging. We generated lines of C. elegans expressing reporters for the autophagosome and lysosome expressed only in dopaminergic neurons, and examined autophagy throughout the lifespan in nematode lines expressing LRRK2 and α-synuclein. Dopamine neurons exhibit a progressive loss of autophagic function with aging. G2019S LRRK2 inhibited autophagy and accelerated the age-related loss of autophagic function, while WT LRRK2 improved autophagy throughout the life-span. Expressing α-synuclein with G2019S or WT LRRK2 caused age-related synergistic inhibition of autophagy and increase in degeneration of dopaminergic neurons. The presence of α-synuclein particularly accentuated age-related inhibition of autophagy by G2019S LRRK2. This work indicates that LRRK2 exhibits a selective, age-linked deleterious interaction with α-synuclein that promotes neurodegeneration.
Collapse
Affiliation(s)
- Shamol Saha
- Departments of Pharmacology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Peter E A Ash
- Departments of Pharmacology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Vivek Gowda
- Departments of Pharmacology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Liqun Liu
- Departments of Pharmacology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Orian Shirihai
- Departments of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Benjamin Wolozin
- Departments of Pharmacology, Boston University School of Medicine, Boston, MA, 02118, USA.
- Departments of Neurology, Boston University School of Medicine, 72 East Concord St., Boston, MA, 02118, USA.
| |
Collapse
|
34
|
Moussa CEH. Parkin Is Dispensable for Mitochondrial Function, but Its Ubiquitin Ligase Activity Is Critical for Macroautophagy and Neurotransmitters: Therapeutic Potential beyond Parkinson's Disease. NEURODEGENER DIS 2015; 15:259-70. [DOI: 10.1159/000430888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/23/2015] [Indexed: 11/19/2022] Open
|
35
|
Abstract
Mutations in leucine-rich-repeat kinase 2 (LRRK2) are the most frequent cause of late-onset Parkinson's disease (PD). LRRK2 belongs to the Roco family of proteins which share a conserved Ras-like G-domain (Roc) and a C-terminal of Roc (COR) domain tandem. The nucleotide state of small G-proteins is strictly controlled by guanine-nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because of contradictory structural and biochemical data, the regulatory mechanism of the LRRK2 Roc G-domain and the RocCOR tandem is still under debate. In the present study, we solved the first nucleotide-bound Roc structure and used LRRK2 and bacterial Roco proteins to characterize the RocCOR function in more detail. Nucleotide binding induces a drastic structural change in the Roc/COR domain interface, a region strongly implicated in patients with an LRRK2 mutation. Our data confirm previous assumptions that the C-terminal subdomain of COR functions as a dimerization device. We show that the dimer formation is independent of nucleotide. The affinity for GDP/GTP is in the micromolar range, the result of which is high dissociation rates in the s-1 range. Thus Roco proteins are unlikely to need GEFs to achieve activation. Monomeric LRRK2 and Roco G-domains have a similar low GTPase activity to small G-proteins. We show that GTPase activity in bacterial Roco is stimulated by the nucleotide-dependent dimerization of the G-domain within the complex. We thus propose that the Roco proteins do not require GAPs to stimulate GTP hydrolysis but stimulate each other by one monomer completing the catalytic machinery of the other.
Collapse
|
36
|
Naoi M, Riederer P, Maruyama W. Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: genetic and environmental factors involved in type A MAO expression. J Neural Transm (Vienna) 2015; 123:91-106. [PMID: 25604428 DOI: 10.1007/s00702-014-1362-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/27/2014] [Indexed: 12/18/2022]
Abstract
Monoamine oxidase types A and B (MAO-A, MAO-B) regulate the levels of monoamine neurotransmitters in the brain, and their dysfunction may be involved in the pathogenesis and influence the clinical phenotypes of neuropsychiatric disorders. Reversible MAO-A inhibitors, such as moclobemide and befloxatone, are currently employed in the treatment of emotional disorders by inhibiting the enzymatic degradation of dopamine, serotonin and norepinephrine in the central nervous system (CNS). It has been suggested that the irreversible MAO-B inhibitors selegiline and rasagiline exert a neuroprotective effect in Parkinson's and Alzheimer's diseases. This effect, however, is not related to their inhibition of MAO activity; in animal and cellular models, selegiline and rasagiline protect neuronal cells through their anti-apoptotic activity and induction of pro-survival genes. There is increasing evidence that MAO-A activity, but not that of MAO-B, is implicated in the pathophysiology of neurodegenerative disorders, but also in gene induction by MAO-B inhibitors; on the other hand, selegiline and rasagiline increase MAO-A mRNA, protein, and enzyme activity levels. Taken together, these results suggest that each MAO subtype exerts effects that modulate the expression and activity of the other isoenzyme. The roles of MAO-A and -B in the CNS should therefore be re-evaluated with respect to the "type-specificity" of their inhibitors, which may not be unconditional during chronic treatment. Mao-a expression, in particular, may be implicated in pathogenesis and phenotypes in neuropsychiatric disorders. MAO-A expression is modified by mao polymorphisms affecting its transcriptional efficiency, as well as by mutations and polymorphism of parkin, Sirt1, FOXO, microRNA, presenilin-1, and other regulatory proteins. In addition, childhood maltreatment has been shown to have an impact upon adolescent social behavior in children with mao-a polymorphisms of low transcriptional activity. Low MAO-A activity may increase the levels of serotonin and norepinephrine, resulting in disturbed neurotransmitter system development and behavior. This review discusses genetic and environmental factors involved in the regulation of MAO-A expression, in the contexts of neuropsychiatric function and of the regulation of neuronal survival and death.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 470-0195, Japan.
| | - Peter Riederer
- Clinical Neurochemistry, National Parkinson's Foundation Centre of Excellence Laboratories, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Wakako Maruyama
- Department of Cognitive Brain Science, National Research Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
37
|
Brichta L, Greengard P. Molecular determinants of selective dopaminergic vulnerability in Parkinson's disease: an update. Front Neuroanat 2014; 8:152. [PMID: 25565977 PMCID: PMC4266033 DOI: 10.3389/fnana.2014.00152] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022] Open
Abstract
Numerous disorders of the central nervous system (CNS) are attributed to the selective death of distinct neuronal cell populations. Interestingly, in many of these conditions, a specific subset of neurons is extremely prone to degeneration while other, very similar neurons are less affected or even spared for many years. In Parkinson’s disease (PD), the motor manifestations are primarily linked to the selective, progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). In contrast, the very similar DA neurons in the ventral tegmental area (VTA) demonstrate a much lower degree of degeneration. Elucidating the molecular mechanisms underlying the phenomenon of differential DA vulnerability in PD has proven extremely challenging. Moreover, an increasing number of studies demonstrate that considerable molecular and electrophysiologic heterogeneity exists among the DA neurons within the SNpc as well as those within the VTA, adding yet another layer of complexity to the selective DA vulnerability observed in PD. The discovery of key pathways that regulate this differential susceptibility of DA neurons to degeneration holds great potential for the discovery of novel drug targets and the development of promising neuroprotective treatment strategies. This review provides an update on the molecular basis of the differential vulnerability of midbrain DA neurons in PD and highlights the most recent developments in this field.
Collapse
Affiliation(s)
- Lars Brichta
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University New York, NY, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University New York, NY, USA
| |
Collapse
|
38
|
Song Y, Brady ST. Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol 2014; 25:125-36. [PMID: 25468068 DOI: 10.1016/j.tcb.2014.10.004] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 01/01/2023]
Abstract
Tubulin and microtubules are subject to a remarkable number of post-translational modifications. Understanding the roles these modifications play in determining the functions and properties of microtubules has presented a major challenge that is only now being met. Many of these modifications are found concurrently, leading to considerable diversity in cellular microtubules, which varies with development, differentiation, cell compartment, and cell cycle. We now know that post-translational modifications of tubulin affect, not only the dynamics of the microtubules, but also their organization and interaction with other cellular components. Many early suggestions of how post-translational modifications affect microtubules have been replaced with new ideas and even new modifications as our understanding of cellular microtubule diversity comes into focus.
Collapse
Affiliation(s)
- Yuyu Song
- Yale School of Medicine, Department of Genetics and Howard Hughes Medical Institute, Boyer Center, 295 Congress Avenue, New Haven, CT 065105, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, 808 S. Wood St., Rm 578 (M/C 512), University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
39
|
Zheng C, Geetha T, Babu JR. Failure of ubiquitin proteasome system: risk for neurodegenerative diseases. NEURODEGENER DIS 2014; 14:161-75. [PMID: 25413678 DOI: 10.1159/000367694] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/19/2014] [Indexed: 11/19/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is the primary proteolytic quality control system in cells and has an essential function in the nervous system. UPS dysfunction has been linked to neurodegenerative conditions, including Alzheimer's, Parkinson's and Huntington's diseases. The pathology of neurodegenerative diseases is characterized by the abnormal accumulation of insoluble protein aggregates or inclusion bodies within neurons. The failure or dysregulation of the UPS prevents the degradation of misfolded/aberrant proteins, leading to deficient synaptic function that eventually affects the nervous system. In this review, we discuss the UPS and its physiological roles in the nervous system, its influence on neuronal function, and how UPS dysfunction contributes to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Ala., USA
| | | | | |
Collapse
|
40
|
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Mitochondrial complex I impairment in PD is modeled in vitro by the susceptibility of dopaminergic neurons to the complex I inhibitor 1-methyl-4-phenylpyridinium (MPP+). In the present study, we demonstrate that microRNA-7 (miR-7), which is expressed in tyrosine hydroxylase-positive nigral neurons in mice and humans, protects cells from MPP+-induced toxicity in dopaminergic SH-SY5Y cells, differentiated human neural progenitor ReNcell VM cells, and primary mouse neurons. RelA, a component of nuclear factor-κB (NF-κB), was identified to be downregulated by miR-7 using quantitative proteomic analysis. Through a series of validation experiments, it was confirmed that RelA mRNA is a target of miR-7 and is required for cell death following MPP+ exposure. Further, RelA mediates MPP+-induced suppression of NF-κB activity, which is essential for MPP+-induced cell death. Accordingly, the protective effect of miR-7 is exerted through relieving NF-κB suppression by reducing RelA expression. These findings provide a novel mechanism by which NF-κB suppression, rather than activation, underlies the cell death mechanism following MPP+ toxicity, have implications for the pathogenesis of PD, and suggest miR-7 as a therapeutic target for this disease.
Collapse
|
41
|
Pchelina SN, Nuzhnyi EP, Emelyanov AK, Boukina TM, Usenko TS, Nikolaev MA, Salogub GN, Yakimovskii AF, Zakharova EY. Increased plasma oligomeric alpha-synuclein in patients with lysosomal storage diseases. Neurosci Lett 2014; 583:188-93. [PMID: 25265039 DOI: 10.1016/j.neulet.2014.09.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/08/2014] [Accepted: 09/18/2014] [Indexed: 01/14/2023]
Abstract
A link between lysosomal storage diseases (LSDs) and neurodegenerative disorders associated with accumulation of presynaptic protein alpha-synuclein has been shown. Particularly, Gaucher disease (GD) patients with a deficiency of the lysosomal enzyme glucocerebrosidase (GBA) and carriers of GBA mutations are at increased risk of Parkinson's disease (PD). It remains unclear whether this link is due to increased alpha-synuclein oligomerization. Here we show that level of oligomeric alpha-synuclein form, associated with PD development, is increased in plasma of GD patients (n=41, median=22.9pg/mL, range1.57-444.58pg/mL; controls (n=40, median=6.02pg/mL, range 1.05-103.14pg/mL, p<0.0001). This difference is absent in GD patients receiving enzyme replacement therapy (ERT) for more than 5 years. Moreover, the levels of alpha-synuclein oligomers in plasma are also higher in patients with other LSDs (Niemann-Pick type C, Krabbe disease, Wolman disease) compared to the median value in controls. Therefore, we suggest that mutations in the GBA gene and at least in several other LSDs genes may be associated with an increase in oligomeric alpha-synuclein in plasma. ERT applied for recovering of GBA functions in GD treatment might decrease formation of plasma oligomeric alpha-synuclein.
Collapse
Affiliation(s)
- S N Pchelina
- Petersburg Nuclear Physics Institute, St. Petersburg, Russia; First Pavlov's State Medical University of Saint-Petersburg, St. Petersburg, Russia; St. Petersburg Academic University - Nanothecnology Research and Education Centre, RAS, St. Petersburg, Russia.
| | - E P Nuzhnyi
- First Pavlov's State Medical University of Saint-Petersburg, St. Petersburg, Russia
| | - A K Emelyanov
- Petersburg Nuclear Physics Institute, St. Petersburg, Russia; First Pavlov's State Medical University of Saint-Petersburg, St. Petersburg, Russia; St. Petersburg Academic University - Nanothecnology Research and Education Centre, RAS, St. Petersburg, Russia
| | - T M Boukina
- Medical-genetics Scientific Center, Moscow, Russia
| | - T S Usenko
- Petersburg Nuclear Physics Institute, St. Petersburg, Russia; First Pavlov's State Medical University of Saint-Petersburg, St. Petersburg, Russia
| | - M A Nikolaev
- Petersburg Nuclear Physics Institute, St. Petersburg, Russia; St. Petersburg Academic University - Nanothecnology Research and Education Centre, RAS, St. Petersburg, Russia
| | - G N Salogub
- First Pavlov's State Medical University of Saint-Petersburg, St. Petersburg, Russia
| | - A F Yakimovskii
- First Pavlov's State Medical University of Saint-Petersburg, St. Petersburg, Russia
| | | |
Collapse
|
42
|
Rodriguez M, Morales I, Rodriguez-Sabate C, Sanchez A, Castro R, Brito JM, Sabate M. The degeneration and replacement of dopamine cells in Parkinson's disease: the role of aging. Front Neuroanat 2014; 8:80. [PMID: 25147507 PMCID: PMC4124707 DOI: 10.3389/fnana.2014.00080] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/22/2014] [Indexed: 01/06/2023] Open
Abstract
Available data show marked similarities for the degeneration of dopamine cells in Parkinson’s disease (PD) and aging. The etio-pathogenic agents involved are very similar in both cases, and include free radicals, different mitochondrial disturbances, alterations of the mitophagy and the ubiquitin-proteasome system. Proteins involved in PD such as α-synuclein, UCH-L1, PINK1 or DJ-1, are also involved in aging. The anomalous behavior of astrocytes, microglia and stem cells of the subventricular zone (SVZ) also changes similarly in aging brains and PD. Present data suggest that PD could be the expression of aging on a cell population with high vulnerability to aging. The future knowledge of mechanisms involved in aging could be critical for both understanding the etiology of PD and developing etiologic treatments to prevent the onset of this neurodegenerative illness and to control its progression.
Collapse
Affiliation(s)
- Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna La Laguna, Tenerife, Canary Islands, Spain ; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna La Laguna, Tenerife, Canary Islands, Spain ; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Clara Rodriguez-Sabate
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna La Laguna, Tenerife, Canary Islands, Spain
| | - Rafael Castro
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna La Laguna, Tenerife, Canary Islands, Spain
| | - Jose Miguel Brito
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna La Laguna, Tenerife, Canary Islands, Spain
| | - Magdalena Sabate
- Rehabilitation Service, Department of Physical Medicine and Pharmacology, Faculty of Medicine, University of La Laguna La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
43
|
Dauer WT, Guo M. Multiplying messages LRRK beneath Parkinson disease. Cell 2014; 157:291-293. [PMID: 24725399 DOI: 10.1016/j.cell.2014.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parkinson Disease (PD) is a progressive neurodegenerative disorder with limited therapeutic options. In this issue of Cell, Martin et al. link PD protein leucine-rich repeat kinase 2 (LRRK2) to abnormalities of translational control, a pathogenic mechanism implicated in an increasing number of CNS neurodegenerative diseases, as well as in normal aging.
Collapse
Affiliation(s)
- William T Dauer
- Department of Neurology, Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Ming Guo
- Department of Neurology, Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, University of California, 695 Charles Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
44
|
Prahlad J, Hauser DN, Milkovic NM, Cookson MR, Wilson MA. Use of cysteine-reactive cross-linkers to probe conformational flexibility of human DJ-1 demonstrates that Glu18 mutations are dimers. J Neurochem 2014; 130:839-53. [PMID: 24832775 DOI: 10.1111/jnc.12763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/24/2014] [Accepted: 05/11/2014] [Indexed: 11/29/2022]
Abstract
The oxidation of a key cysteine residue (Cys106) in the parkinsonism-associated protein DJ-1 regulates its ability to protect against oxidative stress and mitochondrial damage. Cys106 interacts with a neighboring protonated Glu18 residue, stabilizing the Cys106-SO2 (-) (sulfinic acid) form of DJ-1. To study this important post-translational modification, we previously designed several Glu18 mutations (E18N, E18D, E18Q) that alter the oxidative propensity of Cys106. However, recent results suggest these Glu18 mutations cause loss of DJ-1 dimerization, which would severely compromise the protein's function. The purpose of this study was to conclusively determine the oligomerization state of these mutants using X-ray crystallography, NMR spectroscopy, thermal stability analysis, circular dichroism spectroscopy, sedimentation equilibrium ultracentrifugation, and cross-linking. We found that all of the Glu18 DJ-1 mutants were dimeric. Thiol cross-linking indicates that these mutant dimers are more flexible than the wild-type protein and can form multiple cross-linked dimeric species due to the transient exposure of cysteine residues that are inaccessible in the wild-type protein. The enhanced flexibility of Glu18 DJ-1 mutants provides a parsimonious explanation for their lower observed cross-linking efficiency in cells. In addition, thiol cross-linkers may have an underappreciated value as qualitative probes of protein conformational flexibility. DJ-1 is a homodimeric protein that protects cells against oxidative stress. Designed mutations that influence the regulatory oxidation of a key cysteine residue have recently been proposed to disrupt DJ-1 dimerization. We use cysteine cross-linking and various biophysical techniques to show that these DJ-1 mutants form dimers with increased conformational flexibility.
Collapse
Affiliation(s)
- Janani Prahlad
- Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA
| | | | | | | | | |
Collapse
|
45
|
Mamais A, Chia R, Beilina A, Hauser DN, Hall C, Lewis PA, Cookson MR, Bandopadhyay R. Arsenite stress down-regulates phosphorylation and 14-3-3 binding of leucine-rich repeat kinase 2 (LRRK2), promoting self-association and cellular redistribution. J Biol Chem 2014; 289:21386-400. [PMID: 24942733 PMCID: PMC4118103 DOI: 10.1074/jbc.m113.528463] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are a common genetic cause of Parkinson disease, but the mechanisms whereby LRRK2 is regulated are unknown. Phosphorylation of LRRK2 at Ser910/Ser935 mediates interaction with 14-3-3. Pharmacological inhibition of its kinase activity abolishes Ser910/Ser935 phosphorylation and 14-3-3 binding, and this effect is also mimicked by pathogenic mutations. However, physiological situations where dephosphorylation occurs have not been defined. Here, we show that arsenite or H2O2-induced stresses promote loss of Ser910/Ser935 phosphorylation, which is reversed by phosphatase inhibition. Arsenite-induced dephosphorylation is accompanied by loss of 14-3-3 binding and is observed in wild type, G2019S, and kinase-dead D2017A LRRK2. Arsenite stress stimulates LRRK2 self-association and association with protein phosphatase 1α, decreases kinase activity and GTP binding in vitro, and induces translocation of LRRK2 to centrosomes. Our data indicate that signaling events induced by arsenite and oxidative stress may regulate LRRK2 function.
Collapse
Affiliation(s)
- Adamantios Mamais
- From the Reta Lila Weston Institute of Neurological Studies, University College London Institute of Neurology, London WC1N 1PJ, United Kingdom, the Department of Molecular Neuroscience, University College London Institute of Neurology, London WC1N 3BJ, United Kingdom, the Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, NIA, National Institutes of Health, Bethesda, Maryland 20892,
| | - Ruth Chia
- the Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, NIA, National Institutes of Health, Bethesda, Maryland 20892, the Department of Neuroscience, Georgetown University Medical Center, Washington, D. C. 20057
| | - Alexandra Beilina
- the Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, NIA, National Institutes of Health, Bethesda, Maryland 20892
| | - David N Hauser
- the Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, NIA, National Institutes of Health, Bethesda, Maryland 20892, the Brown University/National Institutes of Health Graduate Partnership Program, Department of Neuroscience, Brown University, Providence, Rhode Island 02912, and
| | - Christine Hall
- the Department of Molecular Neuroscience, University College London Institute of Neurology, London WC1N 3BJ, United Kingdom
| | - Patrick A Lewis
- the Department of Molecular Neuroscience, University College London Institute of Neurology, London WC1N 3BJ, United Kingdom, the School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AP, United Kingdom
| | - Mark R Cookson
- the Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, NIA, National Institutes of Health, Bethesda, Maryland 20892
| | - Rina Bandopadhyay
- From the Reta Lila Weston Institute of Neurological Studies, University College London Institute of Neurology, London WC1N 1PJ, United Kingdom, the Department of Molecular Neuroscience, University College London Institute of Neurology, London WC1N 3BJ, United Kingdom,
| |
Collapse
|
46
|
Zhao P, Luo Z, Tian W, Yang J, Ibáñez DP, Huang Z, Tortorella MD, Esteban MA, Fan W. Solving the puzzle of Parkinson's disease using induced pluripotent stem cells. Exp Biol Med (Maywood) 2014; 239:1421-32. [PMID: 24939824 DOI: 10.1177/1535370214538588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The prevalence and incidence of Parkinson's disease (PD) is increasing due to a prolonged life expectancy. This highlights the need for a better mechanistic understanding and new therapeutic approaches. However, traditional in vitro and in vivo experimental models to study PD are suboptimal, thus hampering the progress in the field. The epigenetic reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) offers a unique way to overcome this problem, as these cells share many properties of embryonic stem cells (ESCs) including the potential to be transformed into different lineages. PD modeling with iPSCs is nowadays facilitated by the growing availability of high-efficiency neural-specific differentiation protocols and the possibility to correct or induce mutations as well as creating marker cell lines using designer nucleases. These technologies, together with steady advances in human genetics, will likely introduce profound changes in the way we interpret PD and develop new treatments. Here, we summarize the different PD iPSCs reported so far and discuss the challenges for disease modeling using these cell lines.
Collapse
Affiliation(s)
- Ping Zhao
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Zhiwei Luo
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Weihua Tian
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Jiayin Yang
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - David P Ibáñez
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Zhijian Huang
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Micky D Tortorella
- Drug Discovery Pipeline Group, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Miguel A Esteban
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China Guangdong Stem Cell and Regenerative Medicine Research Centre, University of Hong Kong, Hong Kong 999077, and Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Wenxia Fan
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| |
Collapse
|
47
|
Linhart R, Wong SA, Cao J, Tran M, Huynh A, Ardrey C, Park JM, Hsu C, Taha S, Peterson R, Shea S, Kurian J, Venderova K. Vacuolar protein sorting 35 (Vps35) rescues locomotor deficits and shortened lifespan in Drosophila expressing a Parkinson's disease mutant of Leucine-Rich Repeat Kinase 2 (LRRK2). Mol Neurodegener 2014; 9:23. [PMID: 24915984 PMCID: PMC4126812 DOI: 10.1186/1750-1326-9-23] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 05/09/2014] [Indexed: 12/20/2022] Open
Abstract
Background Parkinson’s disease (PD) is the most common movement neurodegenerative movement disorder. An incomplete understanding of the molecular pathways involved in its pathogenesis impedes the development of effective disease-modifying treatments. To address this gap, we have previously generated a Drosophila model of PD that overexpresses PD pathogenic mutant form of the second most common causative gene of PD, Leucine-Rich Repeat Kinase 2 (LRRK2). Findings We employed this model in a genetic modifier screen and identified a gene that encodes for a core subunit of retromer – a complex essential for the sorting and recycling of specific cargo proteins from endosomes to the trans-Golgi network and cell surface. We present evidence that overexpression of the Vps35 or Vps26 component of the cargo-recognition subunit of the retromer complex ameliorates the pathogenic mutant LRRK2 eye phenotype. Furthermore, overexpression of Vps35 or Vps26 significantly protects from the locomotor deficits observed in mutant LRRK2 flies, as assessed by the negative geotaxis assay, and rescues their shortened lifespan. Strikingly, overexpressing Vps35 alone protects from toxicity of rotenone, a neurotoxin commonly used to model parkinsonism, both in terms of lifespan and locomotor activity of the flies, and this protection is sustained and even augmented in the presence of mutant LRRK2. Finally, we demonstrate that knocking down expression of Vps35 in dopaminergic neurons causes a significant locomotor impairment. Conclusions From these results we conclude that LRRK2 plays a role in the retromer pathway and that this pathway is involved in PD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Katerina Venderova
- Department of Physiology and Pharmacology, Thomas J, Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd, Stockton, CA 95211, USA.
| |
Collapse
|
48
|
Tarazi FI, Sahli ZT, Wolny M, Mousa SA. Emerging therapies for Parkinson's disease: from bench to bedside. Pharmacol Ther 2014; 144:123-33. [PMID: 24854598 DOI: 10.1016/j.pharmthera.2014.05.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/01/2014] [Indexed: 02/08/2023]
Abstract
The prevalence of Parkinson's disease (PD) increases with age and is projected to increase in parallel to the rising average age of the population. The disease can have significant health-related, social, and financial implications not only for the patient and the caregiver, but for the health care system as well. While the neuropathology of this neurodegenerative disorder is fairly well understood, its etiology remains a mystery, making it difficult to target therapy. The currently available drugs for treatment provide only symptomatic relief and do not control or prevent disease progression, and as a result patient compliance and satisfaction are low. Several emerging pharmacotherapies for PD are in different stages of clinical development. These therapies include adenosine A2A receptor antagonists, glutamate receptor antagonists, monoamine oxidase inhibitors, anti-apoptotic agents, and antioxidants such as coenzyme Q10, N-acetyl cysteine, and edaravone. Other emerging non-pharmacotherapies include viral vector gene therapy, microRNAs, transglutaminases, RTP801, stem cells and glial derived neurotrophic factor (GDNF). In addition, surgical procedures including deep brain stimulation, pallidotomy, thalamotomy and gamma knife surgery have emerged as alternative interventions for advanced PD patients who have completely utilized standard treatments and still suffer from persistent motor fluctuations. While several of these therapies hold much promise in delaying the onset of the disease and slowing its progression, more pharmacotherapies and surgical interventions need to be investigated in different stages of PD. It is hoped that these emerging therapies and surgical procedures will strengthen our clinical armamentarium for improved treatment of PD.
Collapse
Affiliation(s)
- F I Tarazi
- Department of Psychiatry and Neuroscience Program, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA.
| | - Z T Sahli
- Department of Psychiatry and Neuroscience Program, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA; School of Medicine, American University of Beirut, Beirut, Lebanon
| | - M Wolny
- The Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - S A Mousa
- The Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
49
|
Matenia D, Mandelkow EM. Emerging modes of PINK1 signaling: another task for MARK2. Front Mol Neurosci 2014; 7:37. [PMID: 24847206 PMCID: PMC4021145 DOI: 10.3389/fnmol.2014.00037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/19/2014] [Indexed: 11/26/2022] Open
Abstract
PTEN-induced kinase 1 (PINK1) acts at multiple levels to promote mitochondrial health, including regulatory influence on ATP-synthesis, protein quality control, apoptosis, mitochondrial transport, and destiny. PINK1 mutations are linked to Parkinson disease (PD) and mostly result in loss of kinase activity. But the molecular events responsible for neuronal death as well as the physiological targets and regulators of PINK1 are still a matter of debate. This review highlights the recent progress evolving the cellular functions of the cytosolic pool of PINK1 in mitochondrial trafficking and neuronal differentiation. Regulation of PINK1 signaling occurs by mitochondrial processing to truncated forms of PINK1, differentially targeted to several subcellular compartments. The first identified activating kinase of PINK1 is MAP/microtubule affinity regulating kinase 2 (MARK2), which phosphorylates T313, a frequent mutation site linked to PD. Kinases of the MARK2 family perform diverse functions in neuronal polarity, transport, migration, and neurodegeneration such as Alzheimer disease (AD). This new protein kinase signaling axis might provide a link between neurodegenerative processes in AD and PD diseases and opens novel possibilities in targeting pathological signaling processes.
Collapse
Affiliation(s)
- Dorthe Matenia
- Max-Planck-Institute for Neurological Research Hamburg, Germany
| | - Eva M Mandelkow
- Max-Planck-Institute for Neurological Research Hamburg, Germany ; German Center for Neurodegenerative Diseases-Center of Advanced European Studies and Research Bonn, Germany
| |
Collapse
|
50
|
Gilsbach BK, Kortholt A. Structural biology of the LRRK2 GTPase and kinase domains: implications for regulation. Front Mol Neurosci 2014; 7:32. [PMID: 24847205 PMCID: PMC4017136 DOI: 10.3389/fnmol.2014.00032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022] Open
Abstract
Human leucine rich repeat kinase 2 (LRRK2) belongs to the Roco family of proteins, which are characterized by the presence of a Ras-like G-domain (Roc), a C-terminal of Roc domain (COR), and a kinase domain. Mutations in LRRK2 have been found to be thus far the most frequent cause of late-onset Parkinson’s disease (PD). Several of the pathogenic mutations in LRRK2 result in decreased GTPase activity and enhanced kinase activity, suggesting a possible PD-related gain of abnormal function. Important progress in the structural understanding of LRRK2 has come from our work with related Roco proteins from lower organisms. Atomic structures of Roco proteins from prokaryotes revealed that Roco proteins belong to the GAD class of molecular switches (G proteins activated by nucleotide dependent dimerization). As in LRRK2, PD-analogous mutations in Roco proteins from bacteria decrease the GTPase reaction. Studies with Roco proteins from the model organism Dictyostelium discoideum revealed that PD mutants have different effects and most importantly they explained the G2019S-related increased LRRK2 kinase activity. Furthermore, the structure of Dictyostelium Roco4 kinase in complex with the LRRK2 inhibitor H1152 showed that Roco4 and other Roco family proteins can be important for the optimization of the current, and identification of new, LRRK2 kinase inhibitors. In this review we highlight the recent progress in structural and biochemical characterization of Roco proteins and discuss its implication for the understanding of the complex regulatory mechanism of LRRK2.
Collapse
Affiliation(s)
- Bernd K Gilsbach
- Department of Cell Biochemistry, University of Groningen Groningen, Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen Groningen, Netherlands
| |
Collapse
|