1
|
Takahashi Y, Ishida Y, Yoshida S, Shin HW, Katoh Y, Nakayama K. Counterregulatory roles of GLI2 and GLI3 in osteogenic differentiation via Gli1 expression. J Cell Sci 2025; 138:jcs263556. [PMID: 39801296 DOI: 10.1242/jcs.263556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
The GLI1, GLI2 and GLI3 transcription factors mediate Hedgehog (Hh) signaling, which is crucial for bone development. During intramembranous ossification, mesenchymal stem cells (MSCs) are directly differentiated into osteoblasts. Under basal and Hh pathway-stimulated conditions, primary cilia play essential roles in proteolytic processing of GLI3 to its repressor form (GLI3R) and in activation of GLI2. Although previous studies in mice have suggested that Gli1 expression depends on GLI2 and GLI3, coordinated roles of GLI1, GLI2 and GLI3 in osteogenic differentiation are not fully understood at the cellular level. From the MSC line C3H10T1/2, we established Gli2-knockout (KO) and Gli3-KO cells, as well as constitutively GLI3R-producing (cGLI3R) cells, and expressed GLI1, GLI2 and GLI3 constructs in these cell lines. The results demonstrate at the cellular level that GLI2 and GLI3R counterregulate osteogenic differentiation via activation and repression of Gli1 expression, respectively; GLI3R, which results from GLI3 processing requiring protein kinase A-mediated phosphorylation, downregulates expression of Gli2 as well as Gli1; and GLI1 upregulates expression of Gli1 itself and Gli2, constituting a GLI1-GLI2 positive feedback loop.
Collapse
Affiliation(s)
- Yuto Takahashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Francis RJB, San Agustin JT, Szabo Rogers HL, Cui C, Jonassen JA, Eguether T, Follit JA, Lo CW, Pazour GJ. Autonomous and non-cell autonomous role of cilia in structural birth defects in mice. PLoS Biol 2023; 21:e3002425. [PMID: 38079449 PMCID: PMC10735189 DOI: 10.1371/journal.pbio.3002425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/21/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Ciliopathies are associated with wide spectrum of structural birth defects (SBDs), indicating important roles for cilia in development. Here, we provide novel insights into the temporospatial requirement for cilia in SBDs arising from deficiency in Ift140, an intraflagellar transport (IFT) protein regulating ciliogenesis. Ift140-deficient mice exhibit cilia defects accompanied by wide spectrum of SBDs including macrostomia (craniofacial defects), exencephaly, body wall defects, tracheoesophageal fistula (TEF), randomized heart looping, congenital heart defects (CHDs), lung hypoplasia, renal anomalies, and polydactyly. Tamoxifen inducible CAGGCre-ER deletion of a floxed Ift140 allele between E5.5 to 9.5 revealed early requirement for Ift140 in left-right heart looping regulation, mid to late requirement for cardiac outflow septation and alignment, and late requirement for craniofacial development and body wall closure. Surprisingly, CHD were not observed with 4 Cre drivers targeting different lineages essential for heart development, but craniofacial defects and omphalocele were observed with Wnt1-Cre targeting neural crest and Tbx18-Cre targeting epicardial lineage and rostral sclerotome through which trunk neural crest cells migrate. These findings revealed cell autonomous role of cilia in cranial/trunk neural crest-mediated craniofacial and body wall closure defects, while non-cell autonomous multi-lineage interactions underlie CHD pathogenesis, revealing unexpected developmental complexity for CHD associated with ciliopathies.
Collapse
Affiliation(s)
- Richard J. B. Francis
- Department of Developmental Biology, University of Pittsburgh, Rangos Research Center, Pittsburgh, Pennsylvania, United States of America
- Discipline of Biomedical Sciences and Molecular Biology; College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, Australia
| | - Jovenal T. San Agustin
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Heather L. Szabo Rogers
- Department of Developmental Biology, University of Pittsburgh, Rangos Research Center, Pittsburgh, Pennsylvania, United States of America
- Center for Craniofacial Regeneration, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cheng Cui
- Department of Developmental Biology, University of Pittsburgh, Rangos Research Center, Pittsburgh, Pennsylvania, United States of America
| | - Julie A. Jonassen
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Thibaut Eguether
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - John A. Follit
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh, Rangos Research Center, Pittsburgh, Pennsylvania, United States of America
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
3
|
Ferrante C, Cavin L. Early Mesozoic burst of morphological disparity in the slow-evolving coelacanth fish lineage. Sci Rep 2023; 13:11356. [PMID: 37443368 PMCID: PMC10345187 DOI: 10.1038/s41598-023-37849-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Since the split of the coelacanth lineage from other osteichthyans 420 million years ago, the morphological disparity of this clade has remained remarkably stable. Only few outliers with peculiar body shape stood out over the evolutionary history, but they were phylogenetically and stratigraphically independent of each other. Here, we report the discovery of a new clade of ancient latimeriid coelacanths representing a small flock of species present in the Western Tethys between 242 and 241 million years ago. Among the four species, two show highly derived anatomy. A new genus shows reversal to plesiomorphic conditions in its skull and caudal fin organisation. The new genus and its sister Foreyia have anatomical modules that moved from the general coelacanth Bauplau either in the same direction or in opposite direction that affect proportions of the body, opercle and fins. Comparisons with extant genetic models shows that changes of the regulatory network of the Hedgehog signal gene family may account for most of the altered anatomy. This unexpected, short and confined new clade represents the only known example of a burst of morphological disparity over the long history of coelacanths at a recovery period after the Permian-Triassic Mass Extinction.
Collapse
Affiliation(s)
- Christophe Ferrante
- Department of Geology and Palaeontology, Natural History Museum of Geneva, CP 6434, 1211, Geneva 6, Switzerland.
- Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205, Geneva, Switzerland.
| | - Lionel Cavin
- Department of Geology and Palaeontology, Natural History Museum of Geneva, CP 6434, 1211, Geneva 6, Switzerland
| |
Collapse
|
4
|
Janssen JN, Kalev-Altman R, Shalit T, Sela-Donenfeld D, Monsonego-Ornan E. Differential gene expression in the calvarial and cortical bone of juvenile female mice. Front Endocrinol (Lausanne) 2023; 14:1127536. [PMID: 37378024 PMCID: PMC10291685 DOI: 10.3389/fendo.2023.1127536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Both the calvarial and the cortical bones develop through intramembranous ossification, yet they have very different structures and functions. The calvaria enables the rapid while protected growth of the brain, whereas the cortical bone takes part in locomotion. Both types of bones undergo extensive modeling during embryonic and post-natal growth, while bone remodeling is the most dominant process in adults. Their shared formation mechanism and their highly distinct functions raise the fundamental question of how similar or diverse the molecular pathways that act in each bone type are. Methods To answer this question, we aimed to compare the transcriptomes of calvaria and cortices from 21-day old mice by bulk RNA-Seq analysis. Results The results revealed clear differences in expression levels of genes related to bone pathologies, craniosynostosis, mechanical loading and bone-relevant signaling pathways like WNT and IHH, emphasizing the functional differences between these bones. We further discussed the less expected candidate genes and gene sets in the context of bone. Finally, we compared differences between juvenile and mature bone, highlighting commonalities and dissimilarities of gene expression between calvaria and cortices during post-natal bone growth and adult bone remodeling. Discussion Altogether, this study revealed significant differences between the transcriptome of calvaria and cortical bones in juvenile female mice, highlighting the most important pathway mediators for the development and function of two different bone types that originate both through intramembranous ossification.
Collapse
Affiliation(s)
- Jerome Nicolas Janssen
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rotem Kalev-Altman
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Koret School of Veterinary Medicine, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Shalit
- The Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- The Koret School of Veterinary Medicine, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Efrat Monsonego-Ornan
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
5
|
Francis R, San Agustin JT, Szabo Rogers HL, Cui C, Jonassen JA, Eguether T, Follit JA, Lo CW, Pazour GJ. Autonomous and non-cell autonomous etiology of ciliopathy associated structural birth defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544132. [PMID: 37333142 PMCID: PMC10274801 DOI: 10.1101/2023.06.07.544132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Ciliopathies are associated with wide spectrum of structural birth defects (SBD), indicating important roles for cilia in development. Here we provide novel insights into the temporospatial requirement for cilia in SBDs arising from deficiency in Ift140 , an intraflagellar transport protein regulating ciliogenesis. Ift140 deficient mice exhibit cilia defects accompanied by wide spectrum of SBDs including macrostomia (craniofacial defects), exencephaly, body wall defects, tracheoesophageal fistula, randomized heart looping, congenital heart defects (CHD), lung hypoplasia, renal anomalies, and polydactyly. Tamoxifen inducible CAG-Cre deletion of a floxed Ift140 allele between E5.5 to 9.5 revealed early requirement for Ift140 in left-right heart looping regulation, mid to late requirement for cardiac outflow septation and alignment, and late requirement for craniofacial development and body wall closure. Surprisingly, CHD was not observed with four Cre drivers targeting different lineages essential for heart development, but craniofacial defects and omphalocele were observed with Wnt1-Cre targeting neural crest and Tbx18-Cre targeting epicardial lineage and rostral sclerotome through which trunk neural crest cells migrate. These findings revealed cell autonomous role of cilia in cranial/trunk neural crest mediated craniofacial and body wall closure defects, while non-cell autonomous multi-lineage interactions underlie CHD pathogenesis, revealing unexpected developmental complexity for CHD associated with ciliopathy.
Collapse
|
6
|
Zhao X, Erhardt S, Sung K, Wang J. FGF signaling in cranial suture development and related diseases. Front Cell Dev Biol 2023; 11:1112890. [PMID: 37325554 PMCID: PMC10267317 DOI: 10.3389/fcell.2023.1112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Suture mesenchymal stem cells (SMSCs) are a heterogeneous stem cell population with the ability to self-renew and differentiate into multiple cell lineages. The cranial suture provides a niche for SMSCs to maintain suture patency, allowing for cranial bone repair and regeneration. In addition, the cranial suture functions as an intramembranous bone growth site during craniofacial bone development. Defects in suture development have been implicated in various congenital diseases, such as sutural agenesis and craniosynostosis. However, it remains largely unknown how intricate signaling pathways orchestrate suture and SMSC function in craniofacial bone development, homeostasis, repair and diseases. Studies in patients with syndromic craniosynostosis identified fibroblast growth factor (FGF) signaling as an important signaling pathway that regulates cranial vault development. A series of in vitro and in vivo studies have since revealed the critical roles of FGF signaling in SMSCs, cranial suture and cranial skeleton development, and the pathogenesis of related diseases. Here, we summarize the characteristics of cranial sutures and SMSCs, and the important functions of the FGF signaling pathway in SMSC and cranial suture development as well as diseases caused by suture dysfunction. We also discuss emerging current and future studies of signaling regulation in SMSCs.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| | - Kihan Sung
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| |
Collapse
|
7
|
Ang PS, Matrongolo MJ, Zietowski ML, Nathan SL, Reid RR, Tischfield MA. Cranium growth, patterning and homeostasis. Development 2022; 149:dev201017. [PMID: 36408946 PMCID: PMC9793421 DOI: 10.1242/dev.201017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Craniofacial development requires precise spatiotemporal regulation of multiple signaling pathways that crosstalk to coordinate the growth and patterning of the skull with surrounding tissues. Recent insights into these signaling pathways and previously uncharacterized progenitor cell populations have refined our understanding of skull patterning, bone mineralization and tissue homeostasis. Here, we touch upon classical studies and recent advances with an emphasis on developmental and signaling mechanisms that regulate the osteoblast lineage for the calvaria, which forms the roof of the skull. We highlight studies that illustrate the roles of osteoprogenitor cells and cranial suture-derived stem cells for proper calvarial growth and homeostasis. We also discuss genes and signaling pathways that control suture patency and highlight how perturbing the molecular regulation of these pathways leads to craniosynostosis. Finally, we discuss the recently discovered tissue and signaling interactions that integrate skull and cerebrovascular development, and the potential implications for both cerebrospinal fluid hydrodynamics and brain waste clearance in craniosynostosis.
Collapse
Affiliation(s)
- Phillip S. Ang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Matt J. Matrongolo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - Shelby L. Nathan
- Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Max A. Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Meier-Gorlin Syndrome: Clinical Misdiagnosis, Genetic Testing and Functional Analysis of ORC6 Mutations and the Development of a Prenatal Test. Int J Mol Sci 2022; 23:ijms23169234. [PMID: 36012502 PMCID: PMC9408996 DOI: 10.3390/ijms23169234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Meier−Gorlin syndrome (MGS) is a rare genetic developmental disorder that causes primordial proportional dwarfism, microtia, the absence of or hypoplastic patellae and other skeletal anomalies. Skeletal symptoms overlapping with other syndromes make MGS difficult to diagnose clinically. We describe a 3-year-old boy with short stature, recurrent respiratory infections, short-rib dysplasia, tower head and facial dysmorphisms who was admitted to the Tomsk Genetic Clinic to verify a clinical diagnosis of Jeune syndrome. Clinical exome sequencing revealed two variants (compound heterozygosity) in the ORC6 gene: c.2T>C(p.Met1Thr) and c.449+5G>A. In silico analysis showed the pathogenicity of these two mutations and predicted a decrease in donor splicing site strength for c.449+5G>A. An in vitro minigene assay indicated that variant c.449+5G>A causes complete skipping of exon 4 in the ORC6 gene. The parents requested urgent prenatal testing for MGS for the next pregnancy, but it ended in a miscarriage. Our results may help prevent MGS misdiagnosis in the future. We also performed in silico and functional analyses of ORC6 mutations and developed a restriction fragment length polymorphism and haplotype-based short-tandem-repeat assay for prenatal genetic testing for MGS. These findings should elucidate MGS etiology and improve the quality of genetic counselling for affected families.
Collapse
|
9
|
Holmes G, Gonzalez-Reiche AS, Saturne M, Motch Perrine SM, Zhou X, Borges AC, Shewale B, Richtsmeier JT, Zhang B, van Bakel H, Jabs EW. Single-cell analysis identifies a key role for Hhip in murine coronal suture development. Nat Commun 2021; 12:7132. [PMID: 34880220 PMCID: PMC8655033 DOI: 10.1038/s41467-021-27402-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
Craniofacial development depends on formation and maintenance of sutures between bones of the skull. In sutures, growth occurs at osteogenic fronts along the edge of each bone, and suture mesenchyme separates adjacent bones. Here, we perform single-cell RNA-seq analysis of the embryonic, wild type murine coronal suture to define its population structure. Seven populations at E16.5 and nine at E18.5 comprise the suture mesenchyme, osteogenic cells, and associated populations. Expression of Hhip, an inhibitor of hedgehog signaling, marks a mesenchymal population distinct from those of other neurocranial sutures. Tracing of the neonatal Hhip-expressing population shows that descendant cells persist in the coronal suture and contribute to calvarial bone growth. In Hhip-/- coronal sutures at E18.5, the osteogenic fronts are closely apposed and the suture mesenchyme is depleted with increased hedgehog signaling compared to those of the wild type. Collectively, these data demonstrate that Hhip is required for normal coronal suture development.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Ana S. Gonzalez-Reiche
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Madrikha Saturne
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Susan M. Motch Perrine
- grid.29857.310000 0001 2097 4281Department of Anthropology, Pennsylvania State University, University Park, PA 16802 USA
| | - Xianxiao Zhou
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ana C. Borges
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bhavana Shewale
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Joan T. Richtsmeier
- grid.29857.310000 0001 2097 4281Department of Anthropology, Pennsylvania State University, University Park, PA 16802 USA
| | - Bin Zhang
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Harm van Bakel
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ethylin Wang Jabs
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.21107.350000 0001 2171 9311Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
10
|
Genetic background dependent modifiers of craniosynostosis severity. J Struct Biol 2020; 212:107629. [PMID: 32976998 DOI: 10.1016/j.jsb.2020.107629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
Craniosynostosis severity varies in patients with identical genetic mutations. To understand causes of this phenotypic variation, we backcrossed the FGFR2+/C342Y mouse model of Crouzon syndrome onto congenic C57BL/6 and BALB/c backgrounds. Coronal suture fusion was observed in C57BL/6 (88% incidence, p < .001 between genotypes) but not in BALB/c FGFR2+/C342Y mutant mice at 3 weeks after birth, establishing that that the two models differ in phenotype severity. To begin identifying pre-existing modifiers of craniosynostosis severity, we compared transcriptome signatures of cranial tissues from C57BL/6 vs. BALB/c FGFR2+/+ mice. We separately analyzed frontal bone with coronal suture tissue from parietal bone with sagittal suture tissues because the coronal suture but not the sagittal suture fuses in FGFR2+/C342Y mice. The craniosynostosis associated Twist and En1 transcription factors were down-regulated, while Runx2 was up-regulated, in C57BL/6 compared to BALB/c tissues, which could predispose to craniosynostosis. Transcriptome analyses under the GO term MAPK cascade revealed that genes associated with calcium ion channels, angiogenesis, protein quality control and cell stress response were central to transcriptome differences associated with genetic background. FGFR2 and HSPA2 protein levels plus ERK1/2 activity were higher in cells isolated from C57BL/6 than BALB/c cranial tissues. Notably, the HSPA2 protein chaperone is central to craniofacial genetic epistasis, and we find that FGFR2 protein is abnormally processed in primary cells from FGFR2+/C342Y but not FGFR2+/+ mice. Therefore, we propose that differences in protein quality control responses may contribute to genetic background influences on craniosynostosis phenotype severity.
Collapse
|
11
|
Hasan MR, Takatalo M, Ma H, Rice R, Mustonen T, Rice DP. RAB23 coordinates early osteogenesis by repressing FGF10-pERK1/2 and GLI1. eLife 2020; 9:55829. [PMID: 32662771 PMCID: PMC7423339 DOI: 10.7554/elife.55829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in the gene encoding Ras-associated binding protein 23 (RAB23) cause Carpenter Syndrome, which is characterized by multiple developmental abnormalities including polysyndactyly and defects in skull morphogenesis. To understand how RAB23 regulates skull development, we generated Rab23-deficient mice that survive to an age where skeletal development can be studied. Along with polysyndactyly, these mice exhibit premature fusion of multiple sutures resultant from aberrant osteoprogenitor proliferation and elevated osteogenesis in the suture. FGF10-driven FGFR1 signaling is elevated in Rab23-/-sutures with a consequent imbalance in MAPK, Hedgehog signaling and RUNX2 expression. Inhibition of elevated pERK1/2 signaling results in the normalization of osteoprogenitor proliferation with a concomitant reduction of osteogenic gene expression, and prevention of craniosynostosis. Our results suggest a novel role for RAB23 as an upstream negative regulator of both FGFR and canonical Hh-GLI1 signaling, and additionally in the non-canonical regulation of GLI1 through pERK1/2.
Collapse
Affiliation(s)
- Md Rakibul Hasan
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Hongqiang Ma
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Ritva Rice
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - David Pc Rice
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
Mahmoud M, Souilhol C, Serbanovic-Canic J, Evans P. GATA4-Twist1 Signalling in Disturbed Flow-Induced Atherosclerosis. Cardiovasc Drugs Ther 2020; 33:231-237. [PMID: 30809744 DOI: 10.1007/s10557-019-06863-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Endothelial cell (EC) dysfunction (enhanced inflammation, proliferation and permeability) is the initial trigger for atherosclerosis. Atherosclerosis shows preferential development near branches and bends exposed to disturbed blood flow. By contrast, sites that are exposed to non-disturbed blood flow are atheroprotected. Disturbed flow promotes atherosclerosis by promoting EC dysfunction. Blood flow controls EC function through transcriptional and post-transcriptional mechanisms that are incompletely understood. METHODS AND RESULTS We identified the developmental transcription factors Twist1 and GATA4 as being enriched in EC at disturbed flow, atheroprone regions of the porcine aorta in a microarray study. Further work using the porcine and murine aortae demonstrated that Twist1 and GATA4 expression was enhanced at the atheroprone, disturbed flow sites in vivo. Using controlled in vitro flow systems, the expression of Twist1 and GATA4 was enhanced under disturbed compared to non-disturbed flow in cultured cells. Disturbed flow promoted Twist1 expression through a GATA4-mediated transcriptional mechanism as revealed by a series of in vivo and in vitro studies. GATA4-Twist1 signalling promoted EC proliferation, inflammation, permeability and endothelial-to-mesenchymal transition (EndoMT) under disturbed flow, leading to atherosclerosis development, as shown in a combination of in vitro and in vivo studies using GATA4 and Twist1-specific siRNA and EC-specific GATA4 and Twist1 Knock out (KO) mice. CONCLUSIONS We revealed that GATA4-Twist1-Snail signalling triggers EC dysfunction and atherosclerosis; this work could lead to the development of novel anti-atherosclerosis therapeutics.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA.
| | - Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Cornille M, Dambroise E, Komla-Ebri D, Kaci N, Biosse-Duplan M, Di Rocco F, Legeai-Mallet L. Animal models of craniosynostosis. Neurochirurgie 2019; 65:202-209. [PMID: 31563616 DOI: 10.1016/j.neuchi.2019.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/22/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Various animal models mimicking craniosynostosis have been developed, using mutant zebrafish and mouse. The aim of this paper is to review the different animal models for syndromic craniosynostosis and analyze what insights they have provided in our understanding of the pathophysiology of these conditions. MATERIAL AND METHODS The relevant literature for animal models of craniosynostosis was reviewed. RESULTS Although few studies on craniosynostosis using zebrafish were published, this model appears useful in studying the suture formation mechanisms conserved across vertebrates. Conversely, several mouse models have been generated for the most common syndromic craniosynostoses, associated with mutations in FGFR1, FGFR2, FGFR3 and TWIST genes and also in MSX2, EFFNA, GLI3, FREM1, FGF3/4 genes. The mouse models have also been used to test pharmacological treatments to restore craniofacial growth. CONCLUSIONS Several zebrafish and mouse models have been developed in recent decades. These animal models have been helpful for our understanding of normal and pathological craniofacial growth. Mouse models mimicking craniosynostoses can be easily used for the screening of drugs as therapeutic candidates.
Collapse
Affiliation(s)
- M Cornille
- Inserm U1163, Paris university, institut Imagine, 75015 Paris, France
| | - E Dambroise
- Inserm U1163, Paris university, institut Imagine, 75015 Paris, France
| | - D Komla-Ebri
- Inserm U1163, Paris university, institut Imagine, 75015 Paris, France; Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, W12 ONNLondon, United Kingdom
| | - N Kaci
- Inserm U1163, Paris university, institut Imagine, 75015 Paris, France; Inovarion, 75013 Paris, France
| | - M Biosse-Duplan
- Inserm U1163, Paris university, institut Imagine, 75015 Paris, France
| | - F Di Rocco
- Centre de référence craniosténoses, université de Lyon, 69677 Bron France; Service de neurochirurgie pédiatrique, université Lyon, hôpital Femme-Mère-Enfant, 69677, Bron, France.
| | - L Legeai-Mallet
- Inserm U1163, Paris university, institut Imagine, 75015 Paris, France.
| |
Collapse
|
14
|
Tooth agenesis-related GLI2 and GLI3 genes may contribute to craniofacial skeletal morphology in humans. Arch Oral Biol 2019; 103:12-18. [PMID: 31112935 DOI: 10.1016/j.archoralbio.2019.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The present cross-sectional, multi-centre, genetic study aimed to determine, whether single nucleotide polymorphisms (SNPs) in tooth agenesis (TA)-associated GLI2 and GLI3 genes contribute to the development of craniofacial skeletal morphology in humans. DESIGN Orthodontic patients from an ethnically heterogeneous population were selected for the present study (n = 594). The presence or absence of TA was determined by analysis of panoramic radiography and dental records. The subjects were classified according to their skeletal malocclusion and facial growth pattern by means of digital cephalometric analysis. Genomic DNA was extracted from squamous epithelial cells of the buccal mucosa and SNPs in GLI2 (rs3738880, rs2278741) and GLI3 (rs929387, rs846266) were analysed by polymerase chain reaction using TaqMan chemistry and end-point analysis. RESULTS Class II skeletal malocclusion presented a significantly lower frequency of TA (P < 0.05). Subjects without TA showed significantly higher ANB angles (P < 0.05). Genotype and/or allele distributions of the SNPs in GLI2 (rs3738880, rs2278741) and GLI3 (rs846266) were associated with the presence of TA (P < 0.05). The SNPs rs3738880, rs2278741 and rs929387 were also associated with some type of skeletal malocclusion (P < 0.05), but not with the facial growth pattern (P > 0.05). The G allele for TA-related GLI2 rs3738880 was strongly linked to the presence of Class III skeletal malocclusion (OR = 2.03; 95% CI = 1.37-3.03; P<3125 × 10-6). GLI2 rs2278741 C allele was overrepresented in individuals without TA, suggesting it as a protective factor for this dental phenotype (OR = 0.43; 95% CI = 0.24-0.78; P<625 × 10-5). CONCLUSION The present study suggests that SNPs in TA-associated GLI2 and GLI3 genes may also play a role in the development of skeletal malocclusions. rs3738880 and rs2278741 in GLI2 seems to contribute to the genetic background for skeletal Class III and TA, respectively. TA could be an additional predictor of craniofacial morphology in some cases. Further research replicating the reported associations should be performed.
Collapse
|
15
|
Gli Proteins: Regulation in Development and Cancer. Cells 2019; 8:cells8020147. [PMID: 30754706 PMCID: PMC6406693 DOI: 10.3390/cells8020147] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gli proteins are transcriptional effectors of the Hedgehog signaling pathway. They play key roles in the development of many organs and tissues, and are deregulated in birth defects and cancer. We review the molecular mechanisms of Gli protein regulation in mammals, with special emphasis on posttranslational modifications and intracellular transport. We also discuss how Gli proteins interact with co-activators and co-repressors to fine-tune the expression of Hedgehog target genes. Finally, we provide an overview of the regulation of developmental processes and tissue regeneration by Gli proteins and discuss how these proteins are involved in cancer progression, both through canonical regulation via the Hedgehog pathway and through cross-talk with other signaling pathways.
Collapse
|
16
|
Abstract
Craniosynostosis is a common craniofacial birth defect. This review focusses on the advances that have been achieved through studying the pathogenesis of craniosynostosis using mouse models. Classic methods of gene targeting which generate individual gene knockout models have successfully identified numerous genes required for normal development of the skull bones and sutures. However, the study of syndromic craniosynostosis has largely benefited from the production of knockin models that precisely mimic human mutations. These have allowed the detailed investigation of downstream events at the cellular and molecular level following otherwise unpredictable gain-of-function effects. This has greatly enhanced our understanding of the pathogenesis of this disease and has the potential to translate into improvement of the clinical management of this condition in the future.
Collapse
Affiliation(s)
- Kevin K L Lee
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Philip Stanier
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Erwin Pauws
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
17
|
Barba M, Di Pietro L, Massimi L, Geloso MC, Frassanito P, Caldarelli M, Michetti F, Della Longa S, Romitti PA, Di Rocco C, Arcovito A, Parolini O, Tamburrini G, Bernardini C, Boyadjiev SA, Lattanzi W. BBS9 gene in nonsyndromic craniosynostosis: Role of the primary cilium in the aberrant ossification of the suture osteogenic niche. Bone 2018; 112:58-70. [PMID: 29674126 PMCID: PMC5970090 DOI: 10.1016/j.bone.2018.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/26/2022]
Abstract
Nonsyndromic craniosynostosis (NCS) is the premature ossification of skull sutures, without associated clinical features. Mutations in several genes account for a small number of NCS patients; thus, the molecular etiopathogenesis of NCS remains largely unclear. Our study aimed at characterizing the molecular signaling implicated in the aberrant ossification of sutures in NCS patients. Comparative gene expression profiling of NCS patient sutures identified a fused suture-specific signature, including 17 genes involved in primary cilium signaling and assembly. Cells from fused sutures displayed a reduced potential to form primary cilia compared to cells from control patent sutures of the same patient. We identified specific upregulated splice variants of the Bardet Biedl syndrome-associated gene 9 (BBS9), which encodes a structural component of the ciliary BBSome complex. BBS9 expression increased during in vitro osteogenic differentiation of suture-derived mesenchymal cells of NCS patients. Also, Bbs9 expression increased during in vivo ossification of rat sutures. BBS9 functional knockdown affected the expression of primary cilia on patient suture cells and their osteogenic potential. Computational modeling of the upregulated protein isoforms (observed in patients) predicted that their binding affinity within the BBSome may be affected, providing a possible explanation for the aberrant suture ossification in NCS.
Collapse
Affiliation(s)
- Marta Barba
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Lorena Di Pietro
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Massimi
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Concetta Geloso
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Paolo Frassanito
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Massimo Caldarelli
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabrizio Michetti
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefano Della Longa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, 52242, IA, USA
| | - Concezio Di Rocco
- Department of Neurosurgery, International Neuroscience Institute, 30625 Hannover, Germany
| | - Alessandro Arcovito
- Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ornella Parolini
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, 25124 Brescia, Italy
| | - Gianpiero Tamburrini
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Camilla Bernardini
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Simeon A Boyadjiev
- Section of Genomics, Department of Pediatrics, University of California, 95817 Sacramento, CA, USA
| | - Wanda Lattanzi
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy.
| |
Collapse
|
18
|
Veistinen LK, Mustonen T, Hasan MR, Takatalo M, Kobayashi Y, Kesper DA, Vortkamp A, Rice DP. Regulation of Calvarial Osteogenesis by Concomitant De-repression of GLI3 and Activation of IHH Targets. Front Physiol 2017; 8:1036. [PMID: 29311969 PMCID: PMC5742257 DOI: 10.3389/fphys.2017.01036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
Loss-of-function mutations in GLI3 and IHH cause craniosynostosis and reduced osteogenesis, respectively. In this study, we show that Ihh ligand, the receptor Ptch1 and Gli transcription factors are differentially expressed in embryonic mouse calvaria osteogenic condensations. We show that in both Ihh-/- and Gli3Xt-J/Xt-J embryonic mice, the normal gene expression architecture is lost and this results in disorganized calvarial bone development. RUNX2 is a master regulatory transcription factor controlling osteogenesis. In the absence of Gli3, RUNX2 isoform II and IHH are upregulated, and RUNX2 isoform I downregulated. This is consistent with the expanded and aberrant osteogenesis observed in Gli3Xt-J/Xt-J mice, and consistent with Runx2-I expression by relatively immature osteoprogenitors. Ihh-/- mice exhibited small calvarial bones and HH target genes, Ptch1 and Gli1, were absent. This indicates that IHH is the functional HH ligand, and that it is not compensated by another HH ligand. To decipher the roles and potential interaction of Gli3 and Ihh, we generated Ihh-/-;Gli3Xt-J/Xt-J compound mutant mice. Even in the absence of Ihh, Gli3 deletion was sufficient to induce aberrant precocious ossification across the developing suture, indicating that the craniosynostosis phenotype of Gli3Xt-J/Xt-J mice is not dependent on IHH ligand. Also, we found that Ihh was not required for Runx2 expression as the expression of RUNX2 target genes was unaffected by deletion of Ihh. To test whether RUNX2 has a role upstream of IHH, we performed RUNX2 siRNA knock down experiments in WT calvarial osteoblasts and explants and found that Ihh expression is suppressed. Our results show that IHH is the functional HH ligand in the embryonic mouse calvaria osteogenic condensations, where it regulates the progression of osteoblastic differentiation. As GLI3 represses the expression of Runx2-II and Ihh, and also elevates the Runx2-I expression, and as IHH may be regulated by RUNX2 these results raise the possibility of a regulatory feedback circuit to control calvarial osteogenesis and suture patency. Taken together, RUNX2-controlled osteoblastic cell fate is regulated by IHH through concomitant inhibition of GLI3-repressor formation and activation of downstream targets.
Collapse
Affiliation(s)
- Lotta K Veistinen
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Minerva Research Institute, Helsinki, Finland
| | - Md Rakibul Hasan
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Yukiho Kobayashi
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Orthodontics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dörthe A Kesper
- Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Andrea Vortkamp
- Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - David P Rice
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Orthodontics, Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
19
|
He F, Soriano P. Dysregulated PDGFRα signaling alters coronal suture morphogenesis and leads to craniosynostosis through endochondral ossification. Development 2017; 144:4026-4036. [PMID: 28947535 DOI: 10.1242/dev.151068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/15/2017] [Indexed: 01/02/2023]
Abstract
Craniosynostosis is a prevalent human birth defect characterized by premature fusion of calvarial bones. In this study, we show that tight regulation of endogenous PDGFRα activity is required for normal calvarium development in the mouse and that dysregulated PDGFRα activity causes craniosynostosis. Constitutive activation of PDGFRα leads to expansion of cartilage underlying the coronal sutures, which contribute to suture closure through endochondral ossification, in a process regulated in part by PI3K/AKT signaling. Our results thus identify a novel mechanism underlying calvarial development in craniosynostosis.
Collapse
Affiliation(s)
- Fenglei He
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
Li J, Cui Y, Xu J, Wang Q, Yang X, Li Y, Zhang X, Qiu M, Zhang Z, Zhang Z. Suppressor of Fused restraint of Hedgehog activity level is critical for osteogenic proliferation and differentiation during calvarial bone development. J Biol Chem 2017; 292:15814-15825. [PMID: 28794157 DOI: 10.1074/jbc.m117.777532] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/04/2017] [Indexed: 12/31/2022] Open
Abstract
Hedgehog signaling plays crucial roles in the development of calvarial bone, relying on the activation of Gli transcription factors. However, the molecular mechanism of the role of regulated Gli protein level in osteogenic specification of mesenchyme still remains elusive. Here, we show by conditionally inactivating Suppressor of Fused (Sufu), a critical repressor of Hedgehog signaling, in Wnt1-Cre-mediated cranial neural crest (CNC) or Dermo1-Cre-mediated mesodermal lineages that Sufu restraint of Hedgehog activity level is critical for differentiation of preosteogenic mesenchyme. Ablation of Sufu results in failure of calvarial bone formation, including CNC-derived bones and mesoderm-derived bones, depending on the Cre line being used. Although mesenchymal cells populate to frontonasal destinations, where they are then condensed, Sufu deletion significantly inhibits the proliferation of osteoprogenitor cells, and these cells no longer differentiate into osteoblasts. We show that there is suppression of Runx2 and Osterix, the osteogenic regulators, in calvarial mesenchyme in the Sufu mutant. We show that down-regulation of several genes upstream to Runx2 and Osterix is manifested within the calvarial primordia, including Bmp2 and its downstream genes Msx1/2 and Dlx5 By contrast, we find that Gli1, the Hedgehog activity readout gene, is excessively activated in mesenchyme. Deletion of Sufu in CNC leads to a discernible decrease in the repressive Gli3 form and an increase in the full-length Gli2. Finally, we demonstrate that simultaneous deletion of Gli2 and Sufu in CNC completely restores calvarial bone formation, suggesting that a sustained level of Hedgehog activity is critical in specification of the osteogenic mesenchymal cells.
Collapse
Affiliation(s)
- Jianying Li
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Ying Cui
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Jie Xu
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Qihui Wang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Xueqin Yang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Yan Li
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Xiaoyun Zhang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Mengsheng Qiu
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Ze Zhang
- the Department of Ophthamology, Tulane Medical Center, Tulane University, New Orleans, Louisiana 70112
| | - Zunyi Zhang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| |
Collapse
|
21
|
Biology of Bone Formation, Fracture Healing, and Distraction Osteogenesis. J Craniofac Surg 2017; 28:1380-1389. [DOI: 10.1097/scs.0000000000003625] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
22
|
Al-Qattan MM, Shamseldin HE, Salih MA, Alkuraya FS. GLI3-related polydactyly: a review. Clin Genet 2017; 92:457-466. [PMID: 28224613 DOI: 10.1111/cge.12952] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/28/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022]
Abstract
GLI3 mutations are known to be associated with nine syndromes/conditions in which polydactyly is a feature. In this review, the embryology, pathogenesis, and animal models of GLI3-related polydactyly are discussed first. This is followed by a detailed review of the genotype-phenotype correlations. Based on our review of the literature and our clinical experiences, we recommend viewing GLI3-related syndromes/conditions as four separate entities; each characterized by a specific pattern of polydactyly. These four entities are: the preaxial polydactyly type IV-Greig-acrocallosal spectrum, postaxial polydactyly types A/B, Pallister-Hall syndrome (PHS), and oral-facial-digital overlap syndrome. We also provide illustrative clinical examples from our practice including a family with a novel GLI3 mutation causing PHS. The review also introduces the term 'Forme Fruste' preaxial polydactyly and gives several conclusions/recommendations including the recommendation to revise the current criteria for the clinical diagnosis of PHS.
Collapse
Affiliation(s)
- M M Al-Qattan
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - H E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - M A Salih
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - F S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Lattanzi W, Barba M, Di Pietro L, Boyadjiev SA. Genetic advances in craniosynostosis. Am J Med Genet A 2017; 173:1406-1429. [PMID: 28160402 DOI: 10.1002/ajmg.a.38159] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/30/2016] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
Craniosynostosis, the premature ossification of one or more skull sutures, is a clinically and genetically heterogeneous congenital anomaly affecting approximately one in 2,500 live births. In most cases, it occurs as an isolated congenital anomaly, that is, nonsyndromic craniosynostosis (NCS), the genetic, and environmental causes of which remain largely unknown. Recent data suggest that, at least some of the midline NCS cases may be explained by two loci inheritance. In approximately 25-30% of patients, craniosynostosis presents as a feature of a genetic syndrome due to chromosomal defects or mutations in genes within interconnected signaling pathways. The aim of this review is to provide a detailed and comprehensive update on the genetic and environmental factors associated with NCS, integrating the scientific findings achieved during the last decade. Focus on the neurodevelopmental, imaging, and treatment aspects of NCS is also provided.
Collapse
Affiliation(s)
- Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Latium Musculoskeletal Tıssue Bank, Rome, Italy
| | - Marta Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorena Di Pietro
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simeon A Boyadjiev
- Division of Genomic Medicine, Department of Pediatrics, Davis Medical Center, University of California, Sacramento, California
| |
Collapse
|
24
|
Salva JE, Merrill AE. Signaling networks in joint development. Dev Dyn 2016; 246:262-274. [PMID: 27859991 DOI: 10.1002/dvdy.24472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Here we review studies identifying regulatory networks responsible for synovial, cartilaginous, and fibrous joint development. Synovial joints, characterized by the fluid-filled synovial space between the bones, are found in high-mobility regions and are the most common type of joint. Cartilaginous joints such as the intervertebral disc unite adjacent bones through either a hyaline cartilage or a fibrocartilage intermediate. Fibrous joints, which include the cranial sutures, form a direct union between bones through fibrous connective tissue. We describe how the distinct morphologic and histogenic characteristics of these joint classes are established during embryonic development. Collectively, these studies reveal that despite the heterogeneity of joint strength and mobility, joint development throughout the skeleton utilizes common signaling networks via long-range morphogen gradients and direct cell-cell contact. This suggests that different joint types represent specialized variants of homologous developmental modules. Identifying the unifying aspects of the signaling networks between joint classes allows a more complete understanding of the signaling code for joint formation, which is critical to improving strategies for joint regeneration and repair. Developmental Dynamics 246:262-274, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna E Salva
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
25
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
26
|
Brinkley JF, Fisher S, Harris MP, Holmes G, Hooper JE, Jabs EW, Jones KL, Kesselman C, Klein OD, Maas RL, Marazita ML, Selleri L, Spritz RA, van Bakel H, Visel A, Williams TJ, Wysocka J, Chai Y. The FaceBase Consortium: a comprehensive resource for craniofacial researchers. Development 2016; 143:2677-88. [PMID: 27287806 PMCID: PMC4958338 DOI: 10.1242/dev.135434] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/22/2016] [Indexed: 12/13/2022]
Abstract
The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research, National Institutes of Health, is designed to accelerate understanding of craniofacial developmental biology by generating comprehensive data resources to empower the research community, exploring high-throughput technology, fostering new scientific collaborations among researchers and human/computer interactions, facilitating hypothesis-driven research and translating science into improved health care to benefit patients. The resources generated by the FaceBase projects include a number of dynamic imaging modalities, genome-wide association studies, software tools for analyzing human facial abnormalities, detailed phenotyping, anatomical and molecular atlases, global and specific gene expression patterns, and transcriptional profiling over the course of embryonic and postnatal development in animal models and humans. The integrated data visualization tools, faceted search infrastructure, and curation provided by the FaceBase Hub offer flexible and intuitive ways to interact with these multidisciplinary data. In parallel, the datasets also offer unique opportunities for new collaborations and training for researchers coming into the field of craniofacial studies. Here, we highlight the focus of each spoke project and the integration of datasets contributed by the spokes to facilitate craniofacial research.
Collapse
Affiliation(s)
- James F Brinkley
- Structural Informatics Group, Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Shannon Fisher
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Matthew P Harris
- Department of Orthopedic Research, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joan E Hooper
- Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kenneth L Jones
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Carl Kesselman
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA 90292, USA
| | - Ophir D Klein
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Pediatrics, Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Richard L Maas
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Pediatrics, Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Axel Visel
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
| | - Trevor J Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology and of Developmental Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
27
|
Flaherty K, Singh N, Richtsmeier JT. Understanding craniosynostosis as a growth disorder. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:429-59. [PMID: 27002187 PMCID: PMC4911263 DOI: 10.1002/wdev.227] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/06/2015] [Accepted: 12/24/2015] [Indexed: 12/15/2022]
Abstract
Craniosynostosis is a condition of complex etiology that always involves the premature fusion of one or multiple cranial sutures and includes various anomalies of the soft and hard tissues of the head. Steady progress in the field has resulted in identifying gene mutations that recurrently cause craniosynostosis. There are now scores of mutations on many genes causally related to craniosynostosis syndromes, though the genetic basis for the majority of nonsyndromic cases is unknown. Identification of these genetic mutations has allowed significant progress in understanding the intrinsic properties of cranial sutures, including mechanisms responsible for normal suture patency and for pathogenesis of premature suture closure. An understanding of morphogenesis of cranial vault sutures is critical to understanding the pathophysiology of craniosynostosis conditions, but the field is now poised to recognize the repeated changes in additional skeletal and soft tissues of the head that typically accompany premature suture closure. We review the research that has brought an understanding of premature suture closure within our reach. We then enumerate the less well-studied, but equally challenging, nonsutural phenotypes of craniosynostosis conditions that are well characterized in available mouse models. We consider craniosynostosis as a complex growth disorder of multiple tissues of the developing head, whose growth is also targeted by identified mutations in ways that are poorly understood. Knowledge gained from studies of humans and mouse models for these conditions underscores the diverse, associated developmental anomalies of the head that contribute to the complex phenotypes of craniosynostosis conditions presenting novel challenges for future research. WIREs Dev Biol 2016, 5:429-459. doi: 10.1002/wdev.227 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kevin Flaherty
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Nandini Singh
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| |
Collapse
|
28
|
Adhikari K, Fuentes-Guajardo M, Quinto-Sánchez M, Mendoza-Revilla J, Camilo Chacón-Duque J, Acuña-Alonzo V, Jaramillo C, Arias W, Lozano RB, Pérez GM, Gómez-Valdés J, Villamil-Ramírez H, Hunemeier T, Ramallo V, Silva de Cerqueira CC, Hurtado M, Villegas V, Granja V, Gallo C, Poletti G, Schuler-Faccini L, Salzano FM, Bortolini MC, Canizales-Quinteros S, Cheeseman M, Rosique J, Bedoya G, Rothhammer F, Headon D, González-José R, Balding D, Ruiz-Linares A. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat Commun 2016; 7:11616. [PMID: 27193062 PMCID: PMC4874031 DOI: 10.1038/ncomms11616] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 04/14/2016] [Indexed: 12/28/2022] Open
Abstract
We report a genome-wide association scan for facial features in ∼6,000 Latin Americans. We evaluated 14 traits on an ordinal scale and found significant association (P values<5 × 10−8) at single-nucleotide polymorphisms (SNPs) in four genomic regions for three nose-related traits: columella inclination (4q31), nose bridge breadth (6p21) and nose wing breadth (7p13 and 20p11). In a subsample of ∼3,000 individuals we obtained quantitative traits related to 9 of the ordinal phenotypes and, also, a measure of nasion position. Quantitative analyses confirmed the ordinal-based associations, identified SNPs in 2q12 associated to chin protrusion, and replicated the reported association of nasion position with SNPs in PAX3. Strongest association in 2q12, 4q31, 6p21 and 7p13 was observed for SNPs in the EDAR, DCHS2, RUNX2 and GLI3 genes, respectively. Associated SNPs in 20p11 extend to PAX1. Consistent with the effect of EDAR on chin protrusion, we documented alterations of mandible length in mice with modified Edar funtion. Humans show great diversity in facial appearance and this variation is highly heritable. Here, Andres Ruiz-Linares and colleagues examined facial features in admixed Latin Americans and identify genome-wide associations for 14 facial traits, including four gene loci (RUNX2, GLI3, DCHS2 and PAX1) influencing nose morphology.
Collapse
Affiliation(s)
- Kaustubh Adhikari
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Macarena Fuentes-Guajardo
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK.,Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica 1000009, Chile
| | - Mirsha Quinto-Sánchez
- Centro Nacional Patagónico, CONICET, Unidad de Diversidad, Sistematica y Evolucion, Puerto Madryn U912OACD, Argentina
| | - Javier Mendoza-Revilla
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Juan Camilo Chacón-Duque
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Victor Acuña-Alonzo
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK.,Laboratorio de Genética Molecular, Escuela Nacional de Antropologia e Historia, México City 14030, México
| | - Claudia Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Rodrigo Barquera Lozano
- Laboratorio de Genética Molecular, Escuela Nacional de Antropologia e Historia, México City 14030, México.,Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City 4510, México
| | - Gastón Macín Pérez
- Laboratorio de Genética Molecular, Escuela Nacional de Antropologia e Historia, México City 14030, México.,Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City 4510, México
| | - Jorge Gómez-Valdés
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City 04510, México
| | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City 4510, México
| | - Tábita Hunemeier
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Virginia Ramallo
- Centro Nacional Patagónico, CONICET, Unidad de Diversidad, Sistematica y Evolucion, Puerto Madryn U912OACD, Argentina.,Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Caio C Silva de Cerqueira
- Centro Nacional Patagónico, CONICET, Unidad de Diversidad, Sistematica y Evolucion, Puerto Madryn U912OACD, Argentina.,Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Lavinia Schuler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Francisco M Salzano
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City 4510, México
| | - Michael Cheeseman
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Javier Rosique
- Departamento de Antropología, Universidad de Antioquia, Medellín 5001000, Colombia
| | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | | | - Denis Headon
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Rolando González-José
- Centro Nacional Patagónico, CONICET, Unidad de Diversidad, Sistematica y Evolucion, Puerto Madryn U912OACD, Argentina
| | - David Balding
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK.,Schools of BioSciences and Mathematics and Statistics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
29
|
Abstract
Polydactyly is one of the most common inherited limb abnormalities, characterised by supernumerary fingers or toes. It results from disturbances in the normal programme of the anterior-posterior axis of the developing limb, with diverse aetiology and variable inter- and intra-familial clinical features. Polydactyly can occur as an isolated disorder (non-syndromic polydactyly) or as a part of an anomaly syndrome (syndromic polydactyly). On the basis of the anatomic location of the duplicated digits, non-syndromic polydactyly is divided into three kinds, including preaxial polydactyly, axial polydactyly and postaxial polydactyly. Non-syndromic polydactyly frequently exhibits an autosomal dominant inheritance with variable penetrance. To date, in human, at least ten loci and four disease-causing genes, including the GLI3 gene, the ZNF141 gene, the MIPOL1 gene and the PITX1 gene, have been identified. In this paper, we review clinical features of non-syndromic polydactyly and summarise the recent progress in the molecular genetics, including loci and genes that are responsible for the disorder, the signalling pathways that these genetic factors are involved in, as well as animal models of the disorder. These progresses will improve our understanding of the complex disorder and have implications on genetic counselling such as prenatal diagnosis.
Collapse
|
30
|
The Development of the Calvarial Bones and Sutures and the Pathophysiology of Craniosynostosis. Curr Top Dev Biol 2015; 115:131-56. [PMID: 26589924 DOI: 10.1016/bs.ctdb.2015.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The skull vault is a complex, exquisitely patterned structure that plays a variety of key roles in vertebrate life, ranging from the acquisition of food to the support of the sense organs for hearing, smell, sight, and taste. During its development, it must meet the dual challenges of protecting the brain and accommodating its growth. The bones and sutures of the skull vault are derived from cranial neural crest and head mesoderm. The frontal and parietal bones develop from osteogenic rudiments in the supraorbital ridge. The coronal suture develops from a group of Shh-responsive cells in the head mesoderm that are collocated, with the osteogenic precursors, in the supraorbital ridge. The osteogenic rudiments and the prospective coronal suture expand apically by cell migration. A number of congenital disorders affect the skull vault. Prominent among these is craniosynostosis, the fusion of the bones at the sutures. Analysis of the pathophysiology underling craniosynostosis has identified a variety of cellular mechanisms, mediated by a range of signaling pathways and effector transcription factors. These cellular mechanisms include loss of boundary integrity, altered sutural cell specification in embryos, and loss of a suture stem cell population in adults. Future work making use of genome-wide transcriptomic approaches will address the deep structure of regulatory interactions and cellular processes that unify these seemingly diverse mechanisms.
Collapse
|
31
|
The Role of Hedgehog Signaling in Tumor Induced Bone Disease. Cancers (Basel) 2015; 7:1658-83. [PMID: 26343726 PMCID: PMC4586789 DOI: 10.3390/cancers7030856] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022] Open
Abstract
Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.
Collapse
|
32
|
Park SS, Beyer RP, Smyth MD, Clarke CM, Timms AE, Bammler TK, Stamper BD, Mecham BH, Gustafson JA, Cunningham ML. Osteoblast differentiation profiles define sex specific gene expression patterns in craniosynostosis. Bone 2015; 76:169-76. [PMID: 25753363 PMCID: PMC4546839 DOI: 10.1016/j.bone.2015.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/18/2015] [Accepted: 03/01/2015] [Indexed: 01/25/2023]
Abstract
Single suture craniosynostosis (SSC) is the premature fusion of one calvarial suture and occurs in 1-1700-2500 live births. Congenital fusion of either the sagittal, metopic, or coronal sutures represents 95% of all cases of SSC. Sagittal and metopic synostosis have a male preponderance (3:1) while premature fusion of the coronal suture has a female preponderance (2:1). Although environmental and genetic factors contribute to SSC, the etiology of the majority of SSC cases remains unclear. In this study, 227 primary calvarial osteoblast cell lines from patients with coronal, metopic, or sagittal synostosis and unaffected controls were established and assayed for ALP activity and BrdU incorporation (n = 226) as respective measures of early stage osteoblast differentiation and proliferation. Primary osteoblast cell lines from individuals with sagittal synostosis demonstrated higher levels of ALP activity and reduced proliferation when compared to control lines. In order to address the sex differences in SSC types, the data was further stratified by sex. Osteoblasts from males and females with sagittal synostosis as well as males with metopic synostosis demonstrated higher levels of ALP activity when compared to sex matched controls, and males with sagittal or metopic synostosis demonstrated reduced levels of proliferation. In order to elucidate genes and pathways involved in these observed phenotypes, correlation analyses comparing ALP activity and proliferation to global gene expression was performed. Transcripts related to osteoblast differentiation were identified both differentially up and downregulated, correlated with ALP activity when compared to controls, and demonstrated a striking sex specific gene expression pattern. These data support that the dysregulation of osteoblast differentiation plays a role in the development of SSC and that genetic factors contribute to the observed sex related differences.
Collapse
Affiliation(s)
- Sarah S Park
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, USA
| | - Richard P Beyer
- University of Washington, Center for Ecogenetics and Environmental Health, Seattle, WA, USA
| | - Matthew D Smyth
- Washington University, Department of Neurosurgery and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Christine M Clarke
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, USA
| | - Andrew E Timms
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, USA
| | - Theo K Bammler
- University of Washington, Center for Ecogenetics and Environmental Health, Seattle, WA, USA
| | | | | | - Jennifer A Gustafson
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, USA
| | - Michael L Cunningham
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, USA; Seattle Children's Craniofacial Center, Seattle, WA, USA.
| |
Collapse
|
33
|
Abstract
The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.
Collapse
|
34
|
|
35
|
Closing the Gap: Genetic and Genomic Continuum from Syndromic to Nonsyndromic Craniosynostoses. CURRENT GENETIC MEDICINE REPORTS 2014; 2:135-145. [PMID: 26146596 DOI: 10.1007/s40142-014-0042-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Craniosynostosis, a condition that includes the premature fusion of one or multiple cranial sutures, is a relatively common birth defect in humans and the second most common craniofacial anomaly after orofacial clefts. There is a significant clinical variation among different sutural synostoses as well as significant variation within any given single-suture synostosis. Craniosynostosis can be isolated (i.e., nonsyndromic) or occurs as part of a genetic syndrome (e.g., Crouzon, Pfeiffer, Apert, Muenke, and Saethre-Chotzen syndromes). Approximately 85 % of all cases of craniosynostosis are nonsyndromic. Several recent genomic discoveries are elucidating the genetic basis for nonsyndromic cases and implicate the newly identified genes in signaling pathways previously found in syndromic craniosynostosis. Published epidemiologic and phenotypic studies clearly demonstrate that nonsyndromic craniosynostosis is a complex and heterogeneous condition supporting a strong genetic component accompanied by environmental factors that contribute to the pathogenetic network of this birth defect. Large population, rather than single-clinic or hospital-based studies is required with phenotypically homogeneous subsets of patients to further understand the complex genetic, maternal, environmental, and stochastic factors contributing to nonsyndromic craniosynostosis. Learning about these variables is a key in formulating the basis of multidisciplinary and lifelong care for patients with these conditions.
Collapse
|
36
|
Feng W, Choi I, Clouthier DE, Niswander L, Williams T. The Ptch1(DL) mouse: a new model to study lambdoid craniosynostosis and basal cell nevus syndrome-associated skeletal defects. Genesis 2013; 51:677-89. [PMID: 23897749 DOI: 10.1002/dvg.22416] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/16/2013] [Indexed: 12/19/2022]
Abstract
Mouse models provide valuable opportunities for probing the underlying pathology of human birth defects. By using an N-ethyl-N-nitrosourea-based screen for recessive mutations affecting craniofacial anatomy, we isolated a mouse strain, Dogface-like (DL), with abnormal skull and snout morphology. Examination of the skull indicated that these mice developed craniosynostosis of the lambdoid suture. Further analysis revealed skeletal defects related to the pathology of basal cell nevus syndrome (BCNS) including defects in development of the limbs, scapula, ribcage, secondary palate, cranial base, and cranial vault. In humans, BCNS is often associated with mutations in the Hedgehog receptor PTCH1 and genetic mapping in DL identified a point mutation at a splice donor site in Ptch1. By using genetic complementation analysis we determined that DL is a hypomorphic allele of Ptch1, leading to increased Hedgehog signaling. Two aberrant transcripts are generated by the mutated Ptch1(DL) gene, which would be predicted to reduce significantly the levels of functional Patched1 protein. This new Ptch1 allele broadens the mouse genetic reagents available to study the Hedgehog pathway and provides a valuable means to study the underlying skeletal abnormalities in BCNS. In addition, these results strengthen the connection between elevated Hedgehog signaling and craniosynostosis.
Collapse
Affiliation(s)
- Weiguo Feng
- Department of Craniofacial Biology and Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | | |
Collapse
|
37
|
Lee MY, Sun L, Veltmaat JM. Hedgehog and Gli signaling in embryonic mammary gland development. J Mammary Gland Biol Neoplasia 2013; 18:133-8. [PMID: 23677624 PMCID: PMC3691482 DOI: 10.1007/s10911-013-9291-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 04/30/2013] [Indexed: 12/21/2022] Open
Abstract
The first mouse mutation associated with a heritable defect in embryonic mammary gland development was Extratoes. It represents a functional null-mutation of the gene encoding Gli3, which is best known as a transcription factor mediating canonical Hedgehog (Hh) signaling. Here we review the roles of Hh and Gli proteins in murine embryonic mammary development. We propose that an off-state for Hh signaling, mediated by Gli3-repressor, is determinant for induction of a mammary instead of hair follicle fate in the trunk surface ectoderm.
Collapse
Affiliation(s)
- May Yin Lee
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore, 138673 Singapore
- Present Address: Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, 808 Route de Lennik, Brussels, 1070 Belgium
| | - Li Sun
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore, 138673 Singapore
| | - Jacqueline M. Veltmaat
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore, 138673 Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, MD10, 4 Medical Drive, Singapore, 117597 Singapore
| |
Collapse
|
38
|
Cranial Vault Growth in Multiple-Suture Nonsyndromic and Syndromic Craniosynostosis. J Craniofac Surg 2013; 24:753-7. [DOI: 10.1097/scs.0b013e3182868b4f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Pan A, Chang L, Nguyen A, James AW. A review of hedgehog signaling in cranial bone development. Front Physiol 2013; 4:61. [PMID: 23565096 PMCID: PMC3613593 DOI: 10.3389/fphys.2013.00061] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/13/2013] [Indexed: 12/20/2022] Open
Abstract
During craniofacial development, the Hedgehog (HH) signaling pathway is essential for mesodermal tissue patterning and differentiation. The HH family consists of three protein ligands: Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Desert Hedgehog (DHH), of which two are expressed in the craniofacial complex (IHH and SHH). Dysregulations in HH signaling are well documented to result in a wide range of craniofacial abnormalities, including holoprosencephaly (HPE), hypotelorism, and cleft lip/palate. Furthermore, mutations in HH effectors, co-receptors, and ciliary proteins result in skeletal and craniofacial deformities. Cranial suture morphogenesis is a delicate developmental process that requires control of cell commitment, proliferation and differentiation. This review focuses on both what is known and what remains unknown regarding HH signaling in cranial suture morphogenesis and intramembranous ossification. As demonstrated from murine studies, expression of both SHH and IHH is critical to the formation and fusion of the cranial sutures and calvarial ossification. SHH expression has been observed in the cranial suture mesenchyme and its precise function is not fully defined, although some postulate SHH to delay cranial suture fusion. IHH expression is mainly found on the osteogenic fronts of the calvarial bones, and functions to induce cell proliferation and differentiation. Unfortunately, neonatal lethality of IHH deficient mice precludes a detailed examination of their postnatal calvarial phenotype. In summary, a number of basic questions are yet to be answered regarding domains of expression, developmental role, and functional overlap of HH morphogens in the calvaria. Nevertheless, SHH and IHH ligands are integral to cranial suture development and regulation of calvarial ossification. When HH signaling goes awry, the resultant suite of morphologic abnormalities highlights the important roles of HH signaling in cranial development.
Collapse
Affiliation(s)
- Angel Pan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
40
|
Hermann C, Lawrence K, Olivares-Navarrete R, Williams JK, Guldberg RE, Boyan BD, Schwartz Z. Rapid re-synostosis following suturectomy in pediatric mice is age and location dependent. Bone 2013; 53:284-93. [PMID: 23201269 PMCID: PMC3781584 DOI: 10.1016/j.bone.2012.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 11/06/2012] [Accepted: 11/10/2012] [Indexed: 11/16/2022]
Abstract
Craniosynostosis is the premature fusion of the cranial sutures early in development. If left untreated, craniosynostosis can lead to complications resulting from cranial deformities or increased intracranial pressure. The standard treatment involves calvarial reconstruction, which in many cases undergoes rapid re-synostosis. This requires additional surgical intervention that is associated with a high incidence of life threatening complications. To better understand this rapid healing, a pediatric mouse model of re-synostosis was developed and characterized. Defects (1.5mm by 2.5mm) over the posterior frontal suture were created surgically in weanling (21 days post-natal) and adolescent (50 days post-natal) C57Bl/6J mice. In addition, defects were created in the frontal bone lateral to the posterior frontal suture. The regeneration of bone in the defect was assessed using advanced image processing algorithms on micro-computed tomography scans. The genes associated with defect healing were assessed by real-time PCR of mRNA isolated from the tissue present in the defect. The results showed that the weanling mouse healed in a biphasic process with bone bridging the defect by post-operative (post-op) day 3 followed by an increase in the bone volume on day 14. In adolescent mice, there was a delay in bone bridging across the defect, and no subsequent increase in bone volume. No bridging of the defect by 14 days post-op was seen in identically sized defects placed lateral to the suture in both weanling and adolescent animals. This study demonstrates that bone regeneration in the cranium is both age and location dependent. Rapid and robust bone regeneration only occurred when the defect was created over the posterior frontal suture in immature weanling mice.
Collapse
Affiliation(s)
- Christopher Hermann
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA
- Emory University School of Medicine, Atlanta, GA
| | - Kelsey Lawrence
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Rene Olivares-Navarrete
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA
| | | | - Robert E. Guldberg
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Barbara D. Boyan
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA
- Emory University School of Medicine, Atlanta, GA
| | - Zvi Schwartz
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
41
|
McGee-Lawrence ME, Li X, Bledsoe KL, Wu H, Hawse JR, Subramaniam M, Razidlo DF, Stensgard BA, Stein GS, van Wijnen AJ, Lian JB, Hsu W, Westendorf JJ. Runx2 protein represses Axin2 expression in osteoblasts and is required for craniosynostosis in Axin2-deficient mice. J Biol Chem 2013; 288:5291-302. [PMID: 23300083 DOI: 10.1074/jbc.m112.414995] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Runx2 and Axin2 regulate craniofacial development and skeletal maintenance. Runx2 is essential for calvarial bone development, as Runx2 haploinsufficiency causes cleidocranial dysplasia. In contrast, Axin2-deficient mice develop craniosynostosis because of high β-catenin activity. Axin2 levels are elevated in Runx2(-/-) calvarial cells, and Runx2 represses transcription of Axin2 mRNA, suggesting a direct relationship between these factors in vivo. Here we demonstrate that Runx2 binds several regions of the Axin2 promoter and that Runx2-mediated repression of Axin2 transcription depends on Hdac3. To determine whether Runx2 contributes to the etiology of Axin2 deficiency-induced craniosynostosis, we generated Axin2(-/-):Runx2(+/-) mice. These double mutant mice had longer skulls than Axin2(-/-) mice, indicating that Runx2 haploinsufficiency rescued the craniosynostosis phenotype of Axin2(-/-) mice. Together, these studies identify a key mechanistic pathway for regulating intramembranous bone development within the skull that involves Runx2- and Hdac3-mediated suppression of Axin2 to prevent the untimely closure of the calvarial sutures.
Collapse
|
42
|
Twigg S, Lloyd D, Jenkins D, Elçioglu N, Cooper C, Al-Sannaa N, Annagür A, Gillessen-Kaesbach G, Hüning I, Knight S, Goodship J, Keavney B, Beales P, Gileadi O, McGowan S, Wilkie A. Mutations in multidomain protein MEGF8 identify a Carpenter syndrome subtype associated with defective lateralization. Am J Hum Genet 2012; 91:897-905. [PMID: 23063620 PMCID: PMC3487118 DOI: 10.1016/j.ajhg.2012.08.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/13/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022] Open
Abstract
Carpenter syndrome is an autosomal-recessive multiple-congenital-malformation disorder characterized by multisuture craniosynostosis and polysyndactyly of the hands and feet; many other clinical features occur, and the most frequent include obesity, umbilical hernia, cryptorchidism, and congenital heart disease. Mutations of RAB23, encoding a small GTPase that regulates vesicular transport, are present in the majority of cases. Here, we describe a disorder caused by mutations in multiple epidermal-growth-factor-like-domains 8 (MEGF8), which exhibits substantial clinical overlap with Carpenter syndrome but is frequently associated with abnormal left-right patterning. We describe five affected individuals with similar dysmorphic facies, and three of them had either complete situs inversus, dextrocardia, or transposition of the great arteries; similar cardiac abnormalities were previously identified in a mouse mutant for the orthologous Megf8. The mutant alleles comprise one nonsense, three missense, and two splice-site mutations; we demonstrate in zebrafish that, in contrast to the wild-type protein, the proteins containing all three missense alterations provide only weak rescue of an early gastrulation phenotype induced by Megf8 knockdown. We conclude that mutations in MEGF8 cause a Carpenter syndrome subtype frequently associated with defective left-right patterning, probably through perturbation of signaling by hedgehog and nodal family members. We did not observe any subject with biallelic loss-of function mutations, suggesting that some residual MEGF8 function might be necessary for survival and might influence the phenotypes observed.
Collapse
Affiliation(s)
- Stephen R.F. Twigg
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Deborah Lloyd
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Dagan Jenkins
- Molecular Medicine Unit, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Nursel E. Elçioglu
- Department of Pediatric Genetics, Marmara University Medical Faculty, 34660 Istanbul, Turkey
| | - Christopher D.O. Cooper
- Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Nouriya Al-Sannaa
- Pediatrics Services Division, Dhahran Health Center, Saudi Aramco Medical Services Organization, Dhahran-31311, Saudi Arabia
| | - Ali Annagür
- Division of Neonatology, Selçuk University, Faculty of Medicine, 42075 Konya, Turkey
| | | | - Irina Hüning
- Institut für Humangenetik, Universität zu Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Samantha J.L. Knight
- National Institute for Health Research Biomedical Research Centre, Oxford and Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Judith A. Goodship
- Institute of Genetic Medicine, University of Newcastle, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Bernard D. Keavney
- Institute of Genetic Medicine, University of Newcastle, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Philip L. Beales
- Molecular Medicine Unit, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Opher Gileadi
- Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Simon J. McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Andrew O.M. Wilkie
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
43
|
The role of vertebrate models in understanding craniosynostosis. Childs Nerv Syst 2012; 28:1471-81. [PMID: 22872264 DOI: 10.1007/s00381-012-1844-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND Craniosynostosis (CS), the premature fusion of cranial sutures, is a relatively common pediatric anomaly, occurring in isolation or as part of a syndrome. A growing number of genes with pathologic mutations have been identified for syndromic and nonsyndromic CS. The study of human sutural material obtained post-operatively is not sufficient to understand the etiology of CS, for which animal models are indispensable. DISCUSSION The similarity of the human and murine calvarial structure, our knowledge of mouse genetics and biology, and ability to manipulate the mouse genome make the mouse the most valuable model organism for CS research. A variety of mouse mutants are available that model specific human CS mutations or have CS phenotypes. These allow characterization of the biochemical and morphological events, often embryonic, which precede suture fusion. Other vertebrate organisms have less functional genetic utility than mice, but the rat, rabbit, chick, zebrafish, and frog provide alternative systems in which to validate or contrast molecular functions relevant to CS.
Collapse
|
44
|
Veistinen L, Takatalo M, Tanimoto Y, Kesper DA, Vortkamp A, Rice DPC. Loss-of-Function of Gli3 in Mice Causes Abnormal Frontal Bone Morphology and Premature Synostosis of the Interfrontal Suture. Front Physiol 2012; 3:121. [PMID: 22563320 PMCID: PMC3342524 DOI: 10.3389/fphys.2012.00121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/12/2012] [Indexed: 01/02/2023] Open
Abstract
Greig cephalopolysyndactyly syndrome (GCPS) is an autosomal dominant disorder with polydactyly and syndactyly of the limbs and a broad spectrum of craniofacial abnormalities. Craniosynostosis of the metopic suture (interfrontal suture in mice) is an important but rare feature associated with GCPS. GCPS is caused by mutations in the transcription factor GLI3, which regulates Hedgehog signaling. The Gli3 loss-of-function (Gli3Xt-J/Xt-J) mouse largely phenocopies the human syndrome with the mice exhibiting polydactyly and several craniofacial abnormalities. Here we show that Gli3Xt-J/Xt-J mice exhibit ectopic ossification in the interfrontal suture and in the most severe cases the suture fuses already prior to birth. We show that abnormalities in frontal bones occur early in calvarial development, before the establishment of the interfrontal suture. It provides a model for the metopic suture pathology that can occur in GCPS.
Collapse
Affiliation(s)
- Lotta Veistinen
- Department of Orthodontics, Institute of Dentistry, University of Helsinki Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
45
|
Tanimoto Y, Veistinen L, Alakurtti K, Takatalo M, Rice DPC. Prevention of premature fusion of calvarial suture in GLI-Kruppel family member 3 (Gli3)-deficient mice by removing one allele of Runt-related transcription factor 2 (Runx2). J Biol Chem 2012; 287:21429-38. [PMID: 22547067 DOI: 10.1074/jbc.m112.362145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the gene encoding the zinc finger transcription factor GLI3 (GLI-Kruppel family member 3) have been identified in patients with Grieg cephalopolysyndactyly syndrome in which premature fusion of calvarial suture (craniosynostosis) is an infrequent but important feature. Here, we show that Gli3 acts as a repressor in the developing murine calvaria and that Dlx5, Runx2 type II isoform (Runx2-II), and Bmp2 are expressed ectopically in the calvarial mesenchyme, which results in aberrant osteoblastic differentiation in Gli3-deficient mouse (Gli3(Xt-J/Xt-J)) and resulted in craniosynostosis. At the same time, enhanced activation of phospho-Smad1/5/8 (pSmad1/5/8), which is a downstream mediator of canonical Bmp signaling, was observed in Gli3(Xt-J/Xt-J) embryonic calvaria. Therefore, we generated Gli3;Runx2 compound mutant mice to study the effects of decreasing Runx2 dosage in a Gli3(Xt-J/Xt-J) background. Gli3(Xt-J/Xt-J) Runx2(+/-) mice have neither craniosynostosis nor additional ossification centers in interfrontal suture and displayed a normalization of Dlx5, Runx2-II, and pSmad1/5/8 expression as well as sutural mesenchymal cell proliferation. These findings suggest a novel role for Gli3 in regulating calvarial suture development by controlling canonical Bmp-Smad signaling, which integrates a Dlx5/Runx2-II cascade. We propose that targeting Runx2 might provide an attractive way of preventing craniosynostosis in patients.
Collapse
Affiliation(s)
- Yukiho Tanimoto
- Department of Orthodontics, Institute of Dentistry, University of Helsinki, Helsinki 00014, Finland
| | | | | | | | | |
Collapse
|
46
|
Algorithm to Assess Cranial Suture Fusion with Varying and Discontinuous Mineral Density. Ann Biomed Eng 2012; 40:1597-609. [DOI: 10.1007/s10439-012-0520-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/19/2012] [Indexed: 01/09/2023]
|
47
|
Qin Q, Xu Y, He T, Qin C, Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res 2011; 22:90-106. [PMID: 21876555 DOI: 10.1038/cr.2011.144] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This article reviews the molecular structure, expression pattern, physiological function, pathological roles and molecular mechanisms of Twist1 in development, genetic disease and cancer. Twist1 is a basic helix-loop-helix domain-containing transcription factor. It forms homo- or hetero-dimers in order to bind the Nde1 E-box element and activate or repress its target genes. During development, Twist1 is essential for mesoderm specification and differentiation. Heterozygous loss-of-function mutations of the human Twist1 gene cause several diseases including the Saethre-Chotzen syndrome. The Twist1-null mouse embryos die with unclosed cranial neural tubes and defective head mesenchyme, somites and limb buds. Twist1 is expressed in breast, liver, prostate, gastric and other types of cancers, and its expression is usually associated with invasive and metastatic cancer phenotypes. In cancer cells, Twist1 is upregulated by multiple factors including SRC-1, STAT3, MSX2, HIF-1α, integrin-linked kinase and NF-κB. Twist1 significantly enhances epithelial-mesenchymal transition (EMT) and cancer cell migration and invasion, hence promoting cancer metastasis. Twist1 promotes EMT in part by directly repressing E-cadherin expression by recruiting the nucleosome remodeling and deacetylase complex for gene repression and by upregulating Bmi1, AKT2, YB-1, etc. Emerging evidence also suggests that Twist1 plays a role in expansion and chemotherapeutic resistance of cancer stem cells. Further understanding of the mechanisms by which Twist1 promotes metastasis and identification of Twist1 functional modulators may hold promise for developing new strategies to inhibit EMT and cancer metastasis.
Collapse
Affiliation(s)
- Qian Qin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
48
|
Lenton K, James AW, Manu A, Brugmann SA, Birker D, Nelson ER, Leucht P, Helms JA, Longaker MT. Indian hedgehog positively regulates calvarial ossification and modulates bone morphogenetic protein signaling. Genesis 2011; 49:784-96. [DOI: 10.1002/dvg.20768] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 12/17/2022]
|
49
|
Lana-Elola E, Tylzanowski P, Takatalo M, Alakurtti K, Veistinen L, Mitsiadis TA, Graf D, Rice R, Luyten FP, Rice DP. Noggin null allele mice exhibit a microform of holoprosencephaly. Hum Mol Genet 2011; 20:4005-15. [PMID: 21821669 DOI: 10.1093/hmg/ddr329] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Holoprosencephaly (HPE) is a heterogeneous craniofacial and neural developmental anomaly characterized in its most severe form by the failure of the forebrain to divide. In humans, HPE is associated with disruption of Sonic hedgehog and Nodal signaling pathways, but the role of other signaling pathways has not yet been determined. In this study, we analyzed mice which, due to the lack of the Bmp antagonist Noggin, exhibit elevated Bmp signaling. Noggin(-/-) mice exhibited a solitary median maxillary incisor that developed from a single dental placode, early midfacial narrowing as well as abnormalities in the developing hyoid bone, pituitary gland and vomeronasal organ. In Noggin(-/-) mice, the expression domains of Shh, as well as the Shh target genes Ptch1 and Gli1, were reduced in the frontonasal region at key stages of early facial development. Using E10.5 facial cultures, we show that excessive BMP4 results in reduced Fgf8 and Ptch1 expression. These data suggest that increased Bmp signaling in Noggin(-/-) mice results in downregulation of the hedgehog pathway at a critical stage when the midline craniofacial structures are developing, which leads to a phenotype consistent with a microform of HPE.
Collapse
Affiliation(s)
- Eva Lana-Elola
- Department of Craniofacial Development, King's College, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hurst JA, Jenkins D, Vasudevan PC, Kirchhoff M, Skovby F, Rieubland C, Gallati S, Rittinger O, Kroisel PM, Johnson D, Biesecker LG, Wilkie AOM. Metopic and sagittal synostosis in Greig cephalopolysyndactyly syndrome: five cases with intragenic mutations or complete deletions of GLI3. Eur J Hum Genet 2011; 19:757-62. [PMID: 21326280 DOI: 10.1038/ejhg.2011.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Greig cephalopolysyndactyly syndrome (GCPS) is a multiple congenital malformation characterised by limb and craniofacial anomalies, caused by heterozygous mutation or deletion of GLI3. We report four boys and a girl who were presented with trigonocephaly due to metopic synostosis, in association with pre- and post-axial polydactyly and cutaneous syndactyly of hands and feet. Two cases had additional sagittal synostosis. None had a family history of similar features. In all five children, the diagnosis of GCPS was confirmed by molecular analysis of GLI3 (two had intragenic mutations and three had complete gene deletions detected on array comparative genomic hybridisation), thus highlighting the importance of trigonocephaly or overt metopic or sagittal synostosis as a distinct presenting feature of GCPS. These observations confirm and extend a recently proposed association of intragenic GLI3 mutations with metopic synostosis; moreover, the three individuals with complete deletion of GLI3 were previously considered to have Carpenter syndrome, highlighting an important source of diagnostic confusion.
Collapse
Affiliation(s)
- Jane A Hurst
- Department of Clinical Genetics, Oxford Radcliffe Hospitals NHS Trust, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|