1
|
Yu H, Li S, Li X, Liu Y, Wang Z, Cui M, Jin F, Yu X. Apolipoprotein L3 inhibits breast cancer proliferation and modulates cell cycle via the P53 pathway. J Cancer 2024; 15:4623-4635. [PMID: 39006089 PMCID: PMC11242351 DOI: 10.7150/jca.96903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Background: Breast cancer is the second most common cause of cancer-related mortality globally. Apolipoprotein L3 (APOL3), a member of the apolipoprotein family, has been implicated in the pathogenesis of cardiovascular diseases. Nevertheless, the functions and underlying mechanisms of APOL3 in breast cancer have yet to be elucidated. Methods: The patient data were sourced from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry (IHC) assays were used to assess expression of APOL3. Cell proliferation rates were determined by Cell Counting Kit-8 (CCK-8) and colony formation assays. Flow cytometry was used to examine cell cycle distribution. Western blotting was conducted to investigate the expression of cell cycle related proteins. A xenograft model was used to evaluate the effect of APOL3 in vivo. APOL3-binding proteins were identified through mass spectrometry, co-immunoprecipitation (CO-IP) assay and immunofluorescence assay. Results: APOL3 expression was significantly downregulated in breast cancer, and its low expression was correlated with poor prognostic outcomes. Overexpression of APOL3 suppressed breast cancer cell proliferation, induced cell cycle disruption. Conversely, knockdown of APOL3 promoted cell proliferation. In vivo animal experiments demonstrated that APOL3 overexpression can inhibit tumor proliferation. Mass spectrometry, CO-IP and immunofluorescence assay confirmed the interaction between APOL3 and Y-box binding protein 1 (YBX1). Furthermore, YBX1 knockdown following APOL3 knockdown mitigated the enhanced proliferation. These results provide new ideas for clinically targeting APOL3 to inhibit proliferation in breast cancer. Conclusions: Our findings indicate that APOL3 inhibits breast cancer cell proliferation and cell cycle modulating P53 pathway through the interaction of YBX1.
Collapse
Affiliation(s)
- Hao Yu
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siyan Li
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xing Li
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanbiao Liu
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhaobu Wang
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengyao Cui
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Jin
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinmiao Yu
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Wang XK, Guo YX, Wang M, Zhang XD, Liu ZY, Wang MS, Luo K, Huang S, Li RF. Identification and validation of candidate clinical signatures of apolipoprotein L isoforms in hepatocellular carcinoma. Sci Rep 2023; 13:20969. [PMID: 38017264 PMCID: PMC10684526 DOI: 10.1038/s41598-023-48366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy worldwide with an increasing number of new cases each year. Apolipoprotein (APOL) isoforms have been explored for their associations with HCC.The GSE14520 cohort was used for training data; The Cancer Genome Atlas (TCGA) database was used for validated data. Diagnostic, prognostic significance and mechanisms were explored using these cohorts. Risk score models and nomograms were constructed using prognosis-related isoforms and clinical factors for survival prediction. Oncomine and HCCDB databases were further used for validation of diagnostic, prognostic significance. APOL1, 3, and 6 were differentially expressed in two cohorts (all P ≤ 0.05). APOL1 and APOL6 had diagnostic capacity whereas APOL3 and APOL6 had prognostic capacity in two cohorts (areas under curves [AUCs] > 0.7, P ≤ 0.05). Mechanism studies demonstrated that APOL3 and APOL6 might be involved in humoral chemokine signaling pathways (all P ≤ 0.05). Risk score models and nomograms were constructed and validated for survival prediction of HCC. Moreover, diagnostic values of APOL1 and weak APOL6 were validated in Oncomine database (AUC > 0.700, 0.694); prognostic values of APOL3 and APOL6 were validated in HCCDB database (all P < 0.05). Differentially expressed APOL1 and APOL6 might be diagnostic biomarkers; APOL3 and APOL6 might be prognostic biomarkers of RFS and OS for HCC via chemokine signaling pathways.
Collapse
Affiliation(s)
- Xiang-Kun Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Yu-Xiang Guo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Miao Wang
- Department of Gastrointestinal Oncology, Nanyang Second General Hospital, Nanyang, 473009, Henan Province, People's Republic of China
| | - Xu-Dong Zhang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Zhong-Yuan Liu
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Mao-Sen Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Kai Luo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Shuai Huang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Ren-Feng Li
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China.
| |
Collapse
|
3
|
Lv Y, Tang W, Xu Y, Chang W, Zhang Z, Lin Q, Ji M, Feng Q, He G, Xu J. Apolipoprotein L3 enhances CD8+ T cell antitumor immunity of colorectal cancer by promoting LDHA-mediated ferroptosis. Int J Biol Sci 2023; 19:1284-1298. [PMID: 36923931 PMCID: PMC10008698 DOI: 10.7150/ijbs.74985] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/25/2023] [Indexed: 03/14/2023] Open
Abstract
Aim: Colorectal cancer (CRC) is the leading cause of cancer associated death worldwide and immune checkpoint blockade therapy only benefit a small set of CRC patients. Tumor ferroptosis of CRC reflected immune-activation in our previous findings. Understanding the mechanisms underlying how to bolster CD8+ T cells function through ferroptosis in CRC tumor microenvironment (TME) will greatly benefit cancer immunotherapy. Methods: Genes between ferroptosis and CD8+ T cell function in CRC were screened through Cox, WGCNA and differential expression analysis. Immunohistochemistry and Immunofluorescence analysis were performed. Co-immunoprecipitation were performed to determine protein-protein interaction, mRNA level was determined by qRT-PCR. RSL3 was used to induce ferroptosis, and ferroptosis levels were evaluated by measuring Transmission Electron Microscope analysis, MDA, Fe2+level and cell viability. Results: We screened APOL3 as the significant modulator for ferroptosis-related CD8+ infiltration in CRC. Next, by in vitro and in vivo, we found that increased APOL3 expression was positively correlated with sensitivity to ferroptosis and antitumor ability of CD8+ T cells. Next, we demonstrated that APOL3 can binds LDHA and promote its ubiquitylation-related degradation. Then, based on in vivo analysis and tumor specimen, we discovered the APOL3-LDHA axis can facilitate the tumor ferroptosis and cytotoxic ability of CD8+ T cells through increased IFNγ and decreased lactic acid concentration. Conclusion: The present study demonstrated that APOL3 promotes ferroptosis and immunotherapy in colorectal cancer cells. The present work provides us with a novel target to overcome drug resistance to ferroptosis and immunotherapy.
Collapse
Affiliation(s)
- Yang Lv
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - WenTao Tang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
| | - YuQiu Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
| | - WenJu Chang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
| | - ZhiYuan Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
| | - Qi Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
| | - MeiLing Ji
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
| | - QingYang Feng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
| | - GuoDong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
- ✉ Corresponding authors: JianMin Xu, Address: 180 Fenglin Road, Shanghai 200032, China; Tel +86 21 6404 1990. E-mail: and Guo-Dong He, Address: 180 Fenglin Road, Shanghai 200032, China; Tel +86 21 6404 1990. E-mail:
| | - JianMin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
- ✉ Corresponding authors: JianMin Xu, Address: 180 Fenglin Road, Shanghai 200032, China; Tel +86 21 6404 1990. E-mail: and Guo-Dong He, Address: 180 Fenglin Road, Shanghai 200032, China; Tel +86 21 6404 1990. E-mail:
| |
Collapse
|
4
|
Identification of Ten-Gene Related to Lipid Metabolism for Predicting Overall Survival of Breast Invasive Carcinoma. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8348780. [PMID: 35919504 PMCID: PMC9293542 DOI: 10.1155/2022/8348780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022]
Abstract
Background. Predicting the risk of poor prognosis of breast cancer is crucial to treating breast cancer. This study investigated the prognostic assessment of 10 lipid metabolism-related genes constructed as breast cancer models based on this study. Methods. The TCGA database was used to obtain clinical information and expression data of breast cancer patients, and GSEA analysis and univariate and multivariate Cox proportional risk regression models were performed to identify lipid metabolism genes closely associated with overall survival (OS) of breast cancer patients and to construct a prognostic risk score model based on lipid metabolism gene markers. The Kaplan–Meier method was used to analyze the survival status of patients with high and low-risk scores, and ROC curves assessed the accuracy of this risk score. Finally, the relationship between this risk score and clinicopathological characteristics of BRCA was analyzed in a stratified manner, and the validity of this risk score as an independent prognostic factor was determined using univariate and multivariate Cox regression analyses. Results. One hundred and forty-four differentially expressed lipid metabolism-related genes were identified in cancer and paracancerous tissues in BRCA, 21 of which were associated with overall survival (OS) in BRCA
. Univariate and multivariate Cox analyses revealed that age, grade, and risk score were independent prognostic factors for BRCA. Multivariate Cox regression analysis further identified APOL4, NR1H3, SLC25A5, APOL3, OSBPL1A, DYNLT1, IMMT, MAP2K6, ZDHHC8, and RAB2A lipid metabolism-related genes as independent prognostic markers for BRCA. A prognostic risk score model was developed by labeling lipid metabolism genes with these 10 genes, and patients with BRCA with high-risk scores in the model sample had significantly worse OS than those with low-risk
. The ROC curve area (AUC) of this risk score model was 0.712. Conclusion. By mining the TCGA database, we identified 10 lipid metabolism-related genes APOL4, NR1H3, SLC25A5, APOL3, OSBPL1A, DYNLT1, IMMT, MAP2K6, ZDHHC8, and RAB2A, which are closely related to the prognosis of BRCA patients, and constructed a prognostic risk scoring system based on 10 lipid metabolism genes tags.
Collapse
|
5
|
Baietti MF, Zhao P, Crowther J, Sewduth RN, De Troyer L, Debiec-Rychter M, Sablina AA. Loss of 9p21 Regulatory Hub Promotes Kidney Cancer Progression by Upregulating HOXB13. Mol Cancer Res 2021; 19:979-990. [PMID: 33619226 DOI: 10.1158/1541-7786.mcr-20-0705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/24/2020] [Accepted: 02/16/2021] [Indexed: 11/16/2022]
Abstract
Loss of chromosome 9p21 is observed in one-thirds of clear-cell renal cell carcinoma (ccRCC) and is associated with poorer patient survival. Unexpectedly, 9p21 LOH does not lead to decreased expression of the 9p21 tumor suppressor genes, CDKN2A and CDKN2B, suggesting alternative mechanisms of 9p-mediated tumorigenesis. Concordantly, CRISPR-mediated 9p21 deletion promotes growth of immortalized human embryonic kidney epithelial cells independently of the CDKN2A/B pathway inactivation. The 9p21 locus has a highly accessible chromatin structure, suggesting that 9p21 loss might contribute to kidney cancer progression by dysregulating genes distal to the 9p21 locus. We identified several 9p21 regulatory hubs by assessing which of the 9p21-interacting genes are dysregulated in 9p21-deleted kidney cells and ccRCCs. By focusing on the analysis of the homeobox gene 13 (HOXB13) locus, we found that 9p21 loss relieves the HOXB13 locus, decreasing HOXB13 methylation and promoting its expression. Upregulation of HOXB13 facilitates cell growth and is associated with poorer survival of patients with ccRCC. IMPLICATIONS: The results of our study propose a novel tumor suppressive mechanism on the basis of coordinated expression of physically associated genes, providing a better understanding of the role of chromosomal deletions in cancer.
Collapse
Affiliation(s)
- Maria Francesca Baietti
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium. .,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peihua Zhao
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jonathan Crowther
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Raj Nayan Sewduth
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Linde De Troyer
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Department of Pathology, University Hospitals KU Leuven, Leuven, Belgium
| | - Anna A Sablina
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium. .,Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Saunders EJ, Kote-Jarai Z, Eeles RA. Identification of Germline Genetic Variants that Increase Prostate Cancer Risk and Influence Development of Aggressive Disease. Cancers (Basel) 2021; 13:760. [PMID: 33673083 PMCID: PMC7917798 DOI: 10.3390/cancers13040760] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PrCa) is a heterogeneous disease, which presents in individual patients across a diverse phenotypic spectrum ranging from indolent to fatal forms. No robust biomarkers are currently available to enable routine screening for PrCa or to distinguish clinically significant forms, therefore late stage identification of advanced disease and overdiagnosis plus overtreatment of insignificant disease both remain areas of concern in healthcare provision. PrCa has a substantial heritable component, and technological advances since the completion of the Human Genome Project have facilitated improved identification of inherited genetic factors influencing susceptibility to development of the disease within families and populations. These genetic markers hold promise to enable improved understanding of the biological mechanisms underpinning PrCa development, facilitate genetically informed PrCa screening programmes and guide appropriate treatment provision. However, insight remains largely lacking regarding many aspects of their manifestation; especially in relation to genes associated with aggressive phenotypes, risk factors in non-European populations and appropriate approaches to enable accurate stratification of higher and lower risk individuals. This review discusses the methodology used in the elucidation of genetic loci, genes and individual causal variants responsible for modulating PrCa susceptibility; the current state of understanding of the allelic spectrum contributing to PrCa risk; and prospective future translational applications of these discoveries in the developing eras of genomics and personalised medicine.
Collapse
Affiliation(s)
- Edward J. Saunders
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
- Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| |
Collapse
|
7
|
Pays E. The function of apolipoproteins L (APOLs): relevance for kidney disease, neurotransmission disorders, cancer and viral infection. FEBS J 2021; 288:360-381. [PMID: 32530132 PMCID: PMC7891394 DOI: 10.1111/febs.15444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
The discovery that apolipoprotein L1 (APOL1) is the trypanolytic factor of human serum raised interest about the function of APOLs, especially following the unexpected finding that in addition to their protective action against sleeping sickness, APOL1 C-terminal variants also cause kidney disease. Based on the analysis of the structure and trypanolytic activity of APOL1, it was proposed that APOLs could function as ion channels of intracellular membranes and be involved in mechanisms triggering programmed cell death. In this review, the recent finding that APOL1 and APOL3 inversely control the synthesis of phosphatidylinositol-4-phosphate (PI(4)P) by the Golgi PI(4)-kinase IIIB (PI4KB) is commented. APOL3 promotes Ca2+ -dependent activation of PI4KB, but due to their increased interaction with APOL3, APOL1 C-terminal variants can inactivate APOL3, leading to reduction of Golgi PI(4)P synthesis. The impact of APOLs on several pathological processes that depend on Golgi PI(4)P levels is discussed. I propose that through their effect on PI4KB activity, APOLs control not only actomyosin activities related to vesicular trafficking, but also the generation and elongation of autophagosomes induced by inflammation.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular ParasitologyIBMMUniversité Libre de BruxellesGosseliesBelgium
| |
Collapse
|
8
|
Chen J, Loukola A, Gillespie NA, Peterson R, Jia P, Riley B, Maes H, Dick DM, Kendler KS, Damaj MI, Miles MF, Zhao Z, Li MD, Vink JM, Minica CC, Willemsen G, Boomsma DI, Qaiser B, Madden PAF, Korhonen T, Jousilahti P, Hällfors J, Gelernter J, Kranzler HR, Sherva R, Farrer L, Maher B, Vanyukov M, Taylor M, Ware JJ, Munafò MR, Lutz SM, Hokanson JE, Gu F, Landi MT, Caporaso NE, Hancock DB, Gaddis NC, Baker TB, Bierut LJ, Johnson EO, Chenoweth M, Lerman C, Tyndale R, Kaprio J, Chen X. Genome-Wide Meta-Analyses of FTND and TTFC Phenotypes. Nicotine Tob Res 2020; 22:900-909. [PMID: 31294817 PMCID: PMC7249921 DOI: 10.1093/ntr/ntz099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION FTND (Fagerstrӧm test for nicotine dependence) and TTFC (time to smoke first cigarette in the morning) are common measures of nicotine dependence (ND). However, genome-wide meta-analysis for these phenotypes has not been reported. METHODS Genome-wide meta-analyses for FTND (N = 19,431) and TTFC (N = 18,567) phenotypes were conducted for adult smokers of European ancestry from 14 independent cohorts. RESULTS We found that SORBS2 on 4q35 (p = 4.05 × 10-8), BG182718 on 11q22 (p = 1.02 × 10-8), and AA333164 on 14q21 (p = 4.11 × 10-9) were associated with TTFC phenotype. We attempted replication of leading candidates with independent samples (FTND, N = 7010 and TTFC, N = 10 061), however, due to limited power of the replication samples, the replication of these new loci did not reach significance. In gene-based analyses, COPB2 was found associated with FTND phenotype, and TFCP2L1, RELN, and INO80C were associated with TTFC phenotype. In pathway and network analyses, we found that the interconnected interactions among the endocytosis, regulation of actin cytoskeleton, axon guidance, MAPK signaling, and chemokine signaling pathways were involved in ND. CONCLUSIONS Our analyses identified several promising candidates for both FTND and TTFC phenotypes, and further verification of these candidates was necessary. Candidates supported by both FTND and TTFC (CHRNA4, THSD7B, RBFOX1, and ZNF804A) were associated with addiction to alcohol, cocaine, and heroin, and were associated with autism and schizophrenia. We also identified novel pathways involved in cigarette smoking. The pathway interactions highlighted the importance of receptor recycling and internalization in ND. IMPLICATIONS Understanding the genetic architecture of cigarette smoking and ND is critical to develop effective prevention and treatment. Our study identified novel candidates and biological pathways involved in FTND and TTFC phenotypes, and this will facilitate further investigation of these candidates and pathways.
Collapse
Affiliation(s)
- Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Anu Loukola
- Department of Public Health, University of Helsinki, Helsinki, FI, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Nathan A Gillespie
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Roseann Peterson
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Peilin Jia
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX
| | - Brien Riley
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Hermine Maes
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Daniella M Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, VA
| | - Kenneth S Kendler
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
| | - Zhongming Zhao
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jacqueline M Vink
- Netherlands Twin Register, Department of Biological Psychology, VU University, the Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Camelia C Minica
- Netherlands Twin Register, Department of Biological Psychology, VU University, the Netherlands
- Neuroscience Campus Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, VU Medical Center, Amsterdam, the Netherlands
| | - Gonneke Willemsen
- Netherlands Twin Register, Department of Biological Psychology, VU University, the Netherlands
- Neuroscience Campus Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, VU Medical Center, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Netherlands Twin Register, Department of Biological Psychology, VU University, the Netherlands
- Neuroscience Campus Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, VU Medical Center, Amsterdam, the Netherlands
| | - Beenish Qaiser
- Department of Public Health, University of Helsinki, Helsinki, FI, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Tellervo Korhonen
- Department of Public Health, University of Helsinki, Helsinki, FI, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
| | | | - Jenni Hällfors
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, CT
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Richard Sherva
- Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Lindsay Farrer
- Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Brion Maher
- Department of Mental Health, Johns Hopkins University, Baltimore, MD
| | - Michael Vanyukov
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Michelle Taylor
- MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, BS, UK
| | - Jenifer J Ware
- MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, BS, UK
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, BS, UK
| | - Sharon M Lutz
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - John E Hokanson
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Fangyi Gu
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD
| | - Maria T Landi
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD
| | - Neil E Caporaso
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD
| | - Dana B Hancock
- Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC
| | - Nathan C Gaddis
- Research Computing Division, RTI International, Research Triangle Park, NC
| | - Timothy B Baker
- Center for Tobacco Research and Intervention, University of Wisconsin, Madison, WI
| | - Laura J Bierut
- Department of Psychiatry, Washington University, St. Louis, MO
| | - Eric O Johnson
- Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC
- Fellow Program, RTI International, Research Triangle Park, NC
| | - Meghan Chenoweth
- Centre for Addiction and Mental Health, and Departments of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Canada
| | - Caryn Lerman
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Rachel Tyndale
- Centre for Addiction and Mental Health, and Departments of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Canada
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, Helsinki, FI, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV
| |
Collapse
|
9
|
Ren L, Yi J, Li W, Zheng X, Liu J, Wang J, Du G. Apolipoproteins and cancer. Cancer Med 2019; 8:7032-7043. [PMID: 31573738 PMCID: PMC6853823 DOI: 10.1002/cam4.2587] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
The role of apolipoproteins in cardiovascular disease has been well investigated, but their participation in cancer has only been explored in a few published studies which showed a close link with certain kinds of cancer. In this review, we focused on the function of different kinds of apolipoproteins in cancers, autophagy, oxidative stress, and drug resistance. The potential application of apolipoproteins as biomarkers for cancer diagnosis and prognosis was highlighted, together with an investigation of their potential as drug targets for cancer treatment. Many important roles of apolipoproteins and their mechanisms in cancers were reviewed in detail and future perspectives of apolipoprotein research were discussed.
Collapse
Affiliation(s)
- Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Comparative RNA-seq analysis reveals dys-regulation of major canonical pathways in ERG-inducible LNCaP cell progression model of prostate cancer. Oncotarget 2019; 10:4290-4306. [PMID: 31303963 PMCID: PMC6611515 DOI: 10.18632/oncotarget.27019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/30/2019] [Indexed: 11/25/2022] Open
Abstract
Prostate Cancer (CaP) is the second leading cause of cancer related death in USA. In human CaP, gene fusion between androgen responsive regulatory elements at the 5'-untranslated region of TMPRSS2 and ETS-related genes (ERG) is present in at least 50% of prostate tumors. Here we have investigated the unique cellular transcriptome associated with over-expression of ERG in ERG-inducible LNCaP cell model system of human CaP. Comprehensive transcriptome analyses reveal a distinct signature that distinguishes ERG dependent and independent CaP in LNCaP cells. Our data highlight a significant heterogeneity among the transcripts. Out of the 526 statistically significant differentially expressed genes, 232 genes are up-regulated and 294 genes are down-regulated in response to ERG. These ERG-associated genes are linked to several major cellular pathways, cell cycle regulation being the most significant. Consistently our data indicate that ERG plays a key role in modulating the expression of genes required for G1 to S phase transition, particularly those that affect cell cycle arrest at G1 phase. Moreover, cell cycle arrest in response to ERG appears to be promoted by induction of p21 in a p53 independent manner. These findings may provide new insights into mechanisms that promote growth and progression of CaP.
Collapse
|
11
|
Wilson BD, Ricks-Santi LJ, Mason TE, Abbas M, Kittles RA, Dunston GM, Kanaan YM. Admixture Mapping Links RACGAP1 Regulation to Prostate Cancer in African Americans. Cancer Genomics Proteomics 2018; 15:185-191. [PMID: 29695400 DOI: 10.21873/cgp.20076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Prostate cancer is the most common malignancy in US males. African American men have higher incidence and mortality rates than European Americans. Five single nucleotide polymorphisms are associated with PCa. We hypothesized haplotypes inferred from these SNPs are also associated with PCa. PATIENTS AND METHODS We genotyped SNPs in a case-control admixture mapping study. SNP haplotypes inferred for 157 PCa cases and 150 controls were used in the regression analysis. RESULTS We found an association between "GTCCC", "ATTCT", and "ACCCC" haplotypes and PCa after ancestry adjustment (OR=3.62, 95%CI=1.42-9.21, p=0.0070; OR=7.89, 95%CI=2.36-26.31, p=0.0008; OR=4.34, 95%CI=1.75-10.78, p=0.0016). The rs615382 variant disrupts the recombination signal binding protein with immunoglobulin kappa J binding site in Rac GTPase activating protein 1 (RACGAP1). CONCLUSION Disruption of notch 1 mediated-repression of RACGAP1 may contribute to PCa in African Americans.
Collapse
Affiliation(s)
- Bradford D Wilson
- National Human Genome Center, Howard University, Washington, DC, U.S.A.
| | | | - Tshela E Mason
- National Human Genome Center, Howard University, Washington, DC, U.S.A
| | - Muneer Abbas
- National Human Genome Center, Howard University, Washington, DC, U.S.A.,Department of Microbiology, Howard University, Washington, DC, U.S.A
| | - Rick A Kittles
- City of Hope Comprehensive Cancer Center, Duarte, CA, U.S.A
| | - Georgia M Dunston
- National Human Genome Center, Howard University, Washington, DC, U.S.A.,Department of Microbiology, Howard University, Washington, DC, U.S.A
| | - Yasmine M Kanaan
- Department of Microbiology, Howard University, Washington, DC, U.S.A
| |
Collapse
|
12
|
Villegas-Ruiz V, Juarez-Mendez S. Data Mining for Identification of Molecular Targets in Ovarian Cancer. Asian Pac J Cancer Prev 2017; 17:1691-9. [PMID: 27221839 DOI: 10.7314/apjcp.2016.17.4.1691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ovarian cancer is possibly the sixth most common malignancy worldwide, in Mexico representing the fourth leading cause of gynecological cancer death more than 70% being diagnosed at an advanced stage and the survival being very poor. Ovarian tumors are classified according to histological characteristics, epithelial ovarian cancer as the most common (~80%). We here used high-density microarrays and a systems biology approach to identify tissue-associated deregulated genes. Non-malignant ovarian tumors showed a gene expression profile associated with immune mediated inflammatory responses (28 genes), whereas malignant tumors had a gene expression profile related to cell cycle regulation (1,329 genes) and ovarian cell lines to cell cycling and metabolism (1,664 genes).
Collapse
Affiliation(s)
- Vanessa Villegas-Ruiz
- Experimental Oncology Laboratory, Research Department, National Institute of Pediatrics, Mexico E-mail :
| | | |
Collapse
|
13
|
Abstract
Although prostate cancer is the most common malignancy to affect men in the Western world, the molecular mechanisms underlying its development and progression remain poorly understood. Like all cancers, prostate cancer is a genetic disease that is characterized by multiple genomic alterations, including point mutations, microsatellite variations, and chromosomal alterations such as translocations, insertions, duplications, and deletions. In prostate cancer, but not other carcinomas, these chromosome alterations result in a high frequency of gene fusion events. The development and application of novel high-resolution technologies has significantly accelerated the detection of genomic alterations, revealing the complex nature and heterogeneity of the disease. The clinical heterogeneity of prostate cancer can be partly explained by this underlying genetic heterogeneity, which has been observed between patients from different geographical and ethnic populations, different individuals within these populations, different tumour foci within the same patient, and different cells within the same tumour focus. The highly heterogeneous nature of prostate cancer provides a real challenge for clinical disease management and a detailed understanding of the genetic alterations in all cells, including small subpopulations, would be highly advantageous.
Collapse
|
14
|
Lynch HT, Kosoko‐Lasaki O, Leslie SW, Rendell M, Shaw T, Snyder C, D'Amico AV, Buxbaum S, Isaacs WB, Loeb S, Moul JW, Powell I. Screening for familial and hereditary prostate cancer. Int J Cancer 2016; 138:2579-91. [DOI: 10.1002/ijc.29949] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Henry T. Lynch
- Hereditary Cancer Center and Department of Preventive MedicineCreighton University2500 California PlazaOmaha NE
| | - Omofolasade Kosoko‐Lasaki
- Departments of Surgery, Preventive Medicine & Public HealthCreighton University2500 California PlazaOmaha NE
| | - Stephen W. Leslie
- Department of Surgery (Urology)Creighton University Medical Center601 North 30th Street, Suite 3700Omaha NE
| | - Marc Rendell
- Department of Internal MedicineCreighton University Medical Center601 North 30th Street, Suite 3700Omaha NE
| | - Trudy Shaw
- Hereditary Cancer Center and Department of Preventive MedicineCreighton University2500 California PlazaOmaha NE
| | - Carrie Snyder
- Hereditary Cancer Center and Department of Preventive MedicineCreighton University2500 California PlazaOmaha NE
| | - Anthony V. D'Amico
- Department of Radiation OncologyBrigham and Women's Hospital and Dana Farber Cancer Institute, Harvard Medical SchoolBoston MA
| | - Sarah Buxbaum
- Jackson State University School of Health Sciences350 W. Woodrow Wilson DriveJackson MS
| | - William B. Isaacs
- Departments of Urology and OncologyJohns Hopkins University School of Medicine, Marburg 115, Johns Hopkins Hospital600 N. Wolfe StBaltimore MD
| | - Stacy Loeb
- Department of Urology and Population HealthNew York University550 1st Ave VZ30 (#612)New York NY
| | - Judd W. Moul
- Duke Prostate Center, Division of Urologic Surgery, DUMC 3707‐Room 1562 Duke SouthDuke University Medical CenterDurham NC
| | - Isaac Powell
- Department of UrologyWayne State University, Karmanos Cancer Institute, University Health Center 7‐CDetroit MI
| |
Collapse
|
15
|
Demichelis F, Stanford JL. Genetic predisposition to prostate cancer: Update and future perspectives. Urol Oncol 2014; 33:75-84. [PMID: 24996773 DOI: 10.1016/j.urolonc.2014.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Prostate cancer is the second most frequent cancer in men worldwide and kills over 250,000 men worldwide every year. Prostate cancer is a heterogeneous disease at the clinical and the molecular level. The Scandinavian Twin Registry Study demonstrated that in contrast to most malignancies where environment was the overriding influence, heritable factors account for more than fifty percent of prostate cancers. METHODS AND MATERIALS We review the literature on prostate cancer risk variants (rare and common) including SNPs and Copy Number Variants (CNVs) and discuss the potential implications of significant variants for prostate cancer patient care. RESULTS The search for prostate cancer susceptibility genes has included both family-based studies and case-control studies utilizing a variety of approaches from array-based to sequencing-based studies. A major challenge is to identify genetic variants associated with more aggressive, potentially lethal prostate cancer and to understand their role in the progression of the disease. CONCLUSION Future risk models useful in the clinical setting will likely incorporate several risk loci rather than single variants and may be dependent on an individual patient's ethnic background.
Collapse
Affiliation(s)
- Francesca Demichelis
- Centre for Integrative Biology, University of Trento, Trento, Italy; Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY; Institute for Precision Medicine, Weill Medical College of Cornell University and New York Presbyterian Hospital, New York, NY.
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| |
Collapse
|
16
|
Helfand BT, Catalona WJ. The Epidemiology and Clinical Implications of Genetic Variation in Prostate Cancer. Urol Clin North Am 2014; 41:277-97. [DOI: 10.1016/j.ucl.2014.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Abstract
One hundred years ago, decades before the discovery of the structure of DNA, debate raged regarding how human traits were passed from one generation to the next. Phenotypes, including risk of disease, had long been recognized as having a familial component. Yet it was difficult to reconcile genetic segregation as described by Mendel with observations exhaustively documented by Karl Pearson and others regarding the normal distribution of human characteristics. In 1918, R. A. Fisher published his landmark article, "The Correlation Between Relatives on the Supposition of Mendelian Inheritance," bridging this divide and demonstrating that multiple alleles, all individually obeying Mendel's laws, account for the phenotypic variation observed in nature.Since that time, geneticists have sought to identify the link between genotype and phenotype. Trait-associated alleles vary in their frequency and degree of penetrance. Some minor alleles may approach a frequency of 50% in the human population, whereas others are present within only a few individuals. The spectrum for penetrance is similarly wide. These characteristics jointly determine the segregation pattern of a given trait, which, in turn, determine the method used to map the trait. Until recently, identification of rare, highly penetrant alleles was most practical. Revolutionary studies in genomics reported over the past decade have made interrogation of most of the spectrum of genetic variation feasible.The following article reviews recent discoveries in the genetic basis of inherited cancer risk and how these discoveries inform cancer biology and patient management. Although this article focuses on prostate cancer, the principles are generic for any cancer and, indeed, for any trait.
Collapse
|
18
|
Hu CAA, Klopfer EI, Ray PE. Human apolipoprotein L1 (ApoL1) in cancer and chronic kidney disease. FEBS Lett 2012; 586:947-55. [PMID: 22569246 DOI: 10.1016/j.febslet.2012.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 02/09/2023]
Abstract
Human apolipoprotein L1 (ApoL1) possesses both extra- and intra-cellular functions crucial in host defense and cellular homeostatic mechanisms. Alterations in ApoL1 function due to genetic, environmental, and lifestyle factors have been associated with African sleeping sickness, atherosclerosis, lipid disorders, obesity, schizophrenia, cancer, and chronic kidney disease (CKD). Importantly, two alleles of APOL1 carrying three coding-sequence variants have been linked to CKD, particularly in Sub-Saharan Africans and African Americans. Intracellularly, elevated ApoL1 can induce autophagy and autophagy-associated cell death, which may be critical in the maintenance of cellular homeostasis in the kidney. Similarly, ApoL1 may protect kidney cells against renal cell carcinoma (RCC). We summarize the role of ApoL1 in RCC and CKD, highlighting the critical function of ApoL1 in autophagy.
Collapse
Affiliation(s)
- Chien-An A Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico, Health Sciences Center, Albuquerque, NM 87131-0001, USA.
| | | | | |
Collapse
|
19
|
Abstract
For decades, physicians and researchers have recognized that family history is a significant risk factor for prostate cancer. The identification of the genes responsible for inherited risk, however, proved difficult. With the sequencing of the human genome and the completion of the initial phases of the International HapMap Project, the tools are available to scan the entire genome and find genetic markers for disease. Since 2006, more than 30 inherited variants strongly associated with prostate cancer have been reported. As the inherited component of the disease is revealed, efforts are ongoing to translate genetic findings into the clinic.
Collapse
Affiliation(s)
- Mark M Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
20
|
Catalona WJ, Bailey-Wilson JE, Camp NJ, Chanock SJ, Cooney KA, Easton DF, Eeles RA, FitzGerald LM, Freedman ML, Gudmundsson J, Kittles RA, Margulies EH, McGuire BB, Ostrander EA, Rebbeck TR, Stanford JL, Thibodeau SN, Witte JS, Isaacs WB. National Cancer Institute Prostate Cancer Genetics Workshop. Cancer Res 2011; 71:3442-6. [PMID: 21558387 DOI: 10.1158/0008-5472.can-11-0314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Compelling evidence supports a genetic component to prostate cancer susceptibility and aggressiveness. Recent genome-wide association studies have identified more than 30 single-nucleotide polymorphisms associated with prostate cancer susceptibility. It remains unclear, however, whether such genetic variants are associated with disease aggressiveness--one of the most important questions in prostate cancer research today. To help clarify this and substantially expand research in the genetic determinants of prostate cancer aggressiveness, the first National Cancer Institute Prostate Cancer Genetics Workshop assembled researchers to develop plans for a large new research consortium and patient cohort. The workshop reviewed the prior work in this area and addressed the practical issues in planning future studies. With new DNA sequencing technology, the potential application of sequencing information to patient care is emerging. The workshop, therefore, included state-of-the-art presentations by experts on new genotyping technologies, including sequencing and associated bioinformatics issues, which are just beginning to be applied to cancer genetics.
Collapse
Affiliation(s)
- William J Catalona
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|