1
|
Arif S, Qazi TJ, Quan Z, Ni J, Li Z, Qiu Y, Qing H. Extracellular vesicle-packed microRNAs profiling in Alzheimer's disease: The molecular intermediary between pathology and diagnosis. Ageing Res Rev 2025; 104:102614. [PMID: 39626853 DOI: 10.1016/j.arr.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
MicroRNAs (miRNAs), referring to a type of non-coding RNAs functioning in various biological processes, participate in the pathophysiology of Alzheimer's disease (AD) through increasing amyloid-beta (Aβ) production, enhancing Tau phosphorylation, and inducing neuroinflammation. Meanwhile, extracellular vesicles (EVs) have been suggested as promising carriers of AD biomarkers as they possess the ability to transmit information from cerebral tissue to peripheral blood. Inspired by the above findings, we in this review systematically generalized the roles of miRNAs in AD and explored the potential of EV-packed miRNA as biomarkers for early diagnosis of AD. Through the detailed investigation, this review may highlight the promise of EV-packed miRNAs in advancing our understanding of AD, and underscore the imperative needs of further studies on their diagnostic potential.
Collapse
Affiliation(s)
- Sandila Arif
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Talal Jamil Qazi
- The Department of Biomedical Engineering, Balochistan University of Engineering & Technology, Khuzdar 89120, Pakistan
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhaohan Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yunjie Qiu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| |
Collapse
|
2
|
Wang X, Zhang S, Li Y, Zhang Y. The regulation of miRNAs using curcumin and other polyphenols during the prevention and treatment of Alzheimer's disease. Hum Mol Genet 2025; 34:117-127. [PMID: 39561994 DOI: 10.1093/hmg/ddae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD), a prevalent neurodegenerative disorder, predominantly affects individuals over the age of 65 and poses significant challenges in terms of effective management and treatment. The disease's pathogenesis involves complex molecular pathways including misfolded proteins accumulation, neuroinflammation, and synaptic dysfunction. Recent insights have highlighted the role of microRNAs (miRNAs) as critical regulators within these pathways, where they influence gene expression and contribute to the pathophysiological landscape of AD. Notably, emerging research has demonstrated that polyphenols, including curcumin, might modulate miRNA activity, thus offering a novel approach to mitigate AD symptoms and progression. This review explores the potential mechanisms through which polyphenols regulate miRNA expression and activity, specifically focusing on autophagy enhancement and inflammation reduction in the context of AD. We provide a detailed examination of key studies linking miRNA dysregulation to AD pathogenesis and discuss how polyphenols might correct these aberrations. The findings presented here underscore the therapeutic potential of polyphenols in AD treatment via miRNA modulation, pointing to new directions in disease management strategies and highlighting the need for targeted research into miRNA-based interventions.
Collapse
Affiliation(s)
- XiYun Wang
- Department of Neurology, Tiantai People's Hospital of Zhejiang Province, Tiantai Branch of Zhejiang Provincial People's Hospital, Hangzhou Medical College, Taizhou, Zhejiang, China
| | - Sale Zhang
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi 710125, China
| | - Ying Li
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi 710125, China
| | - Yu Zhang
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi 710125, China
| |
Collapse
|
3
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Durgawale TP, Arjun UVNV, Shanmugarajan TS, Kannan SP, Prasad PD, Usman MRM, Reddy KTK, Sultana R, Alshehri MA, Rab SO, Suliman M, Emran TB. Cellular stress response and neuroprotection of flavonoids in neurodegenerative diseases: Clinical insights into targeted therapy and molecular signaling pathways. Brain Res 2025; 1847:149310. [PMID: 39537124 DOI: 10.1016/j.brainres.2024.149310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases (NDs) are caused by the gradual decline of neuronal structure and function, which presents significant challenges in treatment. Cellular stress responses significantly impact the pathophysiology of these disorders, often exacerbating neuronal damage. Plant-derived flavonoids have demonstrated potential as neuroprotective agents due to their potent anti-inflammatory, anti-apoptotic, and antioxidant properties. This review provides an in-depth analysis of the molecular processes and clinical insights that cause the neuroprotective properties of flavonoids in NDs. By controlling essential signaling pathways such as Nrf2/ARE, MAPK, and PI3K/Akt, flavonoids can lower cellular stress and improve neuronal survival. The study discusses the challenges of implementing these discoveries in clinical practice and emphasizes the therapeutic potential of specific flavonoids and their derivatives. Flavonoids are identified as potential therapeutic agents for NDs, potentially slowing progression by regulating cellular stress and improving neuroprotection despite their potential medicinal uses and clinical challenges. The study designed a strategy to identify literature published in prestigious journals, utilizing search results from PubMed, Scopus, and WOS. We selected and investigated original studies, review articles, and research reports published until 2024. It suggests future research and therapeutic approaches to effectively utilize the neuroprotective properties of flavonoids.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, KVV's Krishna Institute of Pharmacy, Karad, Maharashtra, India
| | - Uppuluri Varuna Naga Venkata Arjun
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - Shruthi Paramasivam Kannan
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - P Dharani Prasad
- Department of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, (Erstwhile, Sree Vidyaniketan College of Pharmacy), Tirupati, Andhra Pradesh 517102, India
| | - Md Rageeb Md Usman
- Department of Pharmacognosy, Smt. Sharadchandrika Suresh Patil College of Pharmacy, Chopda, Maharashtra, India
| | - Konatham Teja Kumar Reddy
- Department of Pharmacy, University College of Technology, Osmania University, Amberpet, Hyderabad, Telangana 500007, India
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College and Research Centre, Yenepoya (deemed to be University), Mangalore, Karnataka, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
4
|
Behl T, Kyada A, Roopashree R, Nathiya D, Arya R, Kumar MR, Khalid M, Gulati M, Sachdeva M, Fareed M, Patra PK, Agrawal A, Wal P, Gasmi A. Epigenetic biomarkers in Alzheimer's disease: Diagnostic and prognostic relevance. Ageing Res Rev 2024; 102:102556. [PMID: 39490904 DOI: 10.1016/j.arr.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of cognitive decline in the aging population, presenting a critical need for early diagnosis and effective prognostic tools. Epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs, have emerged as promising biomarkers for AD due to their roles in regulating gene expression and potential for reversibility. This review examines the current landscape of epigenetic biomarkers in AD, emphasizing their diagnostic and prognostic relevance. DNA methylation patterns in genes such as APP, PSEN1, and PSEN2 are highlighted for their strong associations with AD pathology. Alterations in DNA methylation at specific CpG sites have been consistently observed in AD patients, suggesting their utility in early detection. Histone modifications, such as acetylation and methylation, also play a crucial role in chromatin remodelling and gene expression regulation in AD. Dysregulated histone acetylation and methylation have been linked to AD progression, making these modifications valuable biomarkers. Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), further contribute to the epigenetic regulation in AD. miRNAs can modulate gene expression post-transcriptionally and have been found in altered levels in AD, while lncRNAs can influence chromatin structure and gene expression. The presence of these non-coding RNAs in biofluids like blood and cerebrospinal fluid positions them as accessible and minimally invasive biomarkers. Technological advancements in detecting and quantifying epigenetic modifications have propelled the field forward. Techniques such as next-generation sequencing, bisulfite sequencing, and chromatin immunoprecipitation assays offer high sensitivity and specificity, enabling the detailed analysis of epigenetic changes in clinical samples. These tools are instrumental in translating epigenetic research into clinical practice. This review underscores the potential of epigenetic biomarkers to enhance the early diagnosis and prognosis of AD, paving the way for personalized therapeutic strategies and improved patient outcomes. The integration of these biomarkers into clinical workflows promises to revolutionize AD management, offering hope for better disease monitoring and intervention.
Collapse
Affiliation(s)
- Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India.
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mohammad Khalid
- Department of pharmacognosy, College of pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box No. 71666, Riyadh 11597, Saudi Arabia
| | - Pratap Kumar Patra
- School of Pharmacy & Life Sciences, Centurion University of Technology & Managemnet, Bhubaneswar, Odisha 752050, India
| | - Ankur Agrawal
- Jai Institute of Pharmaceutical Sciences and Research, Gwalior, Madhya Pradesh 474001, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology, Pharmacy, NH-19, Bhauti Road, Kanpur, UP 209305, India
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France; International Institute of Nutrition and Micronutrition Sciences, Saint-Étienne, France
| |
Collapse
|
5
|
Nateghi B, Keraudren R, Boulay G, Bazin M, Goupil C, Canet G, Loiselle A, St-Amour I, Planel E, Soulet D, Hébert SS. Beneficial effects of miR-132/212 deficiency in the zQ175 mouse model of Huntington's disease. Front Neurosci 2024; 18:1421680. [PMID: 39170678 PMCID: PMC11337869 DOI: 10.3389/fnins.2024.1421680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Huntington's disease (HD) is a rare genetic neurodegenerative disorder caused by an expansion of CAG repeats in the Huntingtin (HTT) gene. One hypothesis suggests that the mutant HTT gene contributes to HD neuropathology through transcriptional dysregulation involving microRNAs (miRNAs). In particular, the miR-132/212 cluster is strongly diminished in the HD brain. This study explores the effects of miR-132/212 deficiency specifically in adult HD zQ175 mice. The absence of miR-132/212 did not impact body weight, body temperature, or survival rates. Surprisingly, miR-132/212 loss seemed to alleviate, in part, the effects on endogenous Htt expression, HTT inclusions, and neuronal integrity in HD zQ175 mice. Additionally, miR-132/212 depletion led to age-dependent improvements in certain motor functions. Transcriptomic analysis revealed alterations in HD-related networks in WT- and HD zQ175-miR-132/212-deficient mice, including significant overlap in BDNF and Creb1 signaling pathways. Interestingly, however, a higher number of miR-132/212 gene targets was observed in HD zQ175 mice lacking the miR-132/212 cluster, especially in the striatum. These findings suggest a nuanced interplay between miR-132/212 expression and HD pathogenesis, providing potential insights into therapeutic interventions. Further investigation is needed to fully understand the underlying mechanisms and therapeutic potential of modulating miR-132/212 expression during HD progression.
Collapse
Affiliation(s)
- Behnaz Nateghi
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Remi Keraudren
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Gabriel Boulay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Marc Bazin
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Claudia Goupil
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Geoffrey Canet
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Andréanne Loiselle
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Isabelle St-Amour
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale-Nationale, Québec, QC, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Denis Soulet
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Sébastien S. Hébert
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
7
|
Prasanth MI, Sivamaruthi BS, Cheong CSY, Verma K, Tencomnao T, Brimson JM, Prasansuklab A. Role of Epigenetic Modulation in Neurodegenerative Diseases: Implications of Phytochemical Interventions. Antioxidants (Basel) 2024; 13:606. [PMID: 38790711 PMCID: PMC11118909 DOI: 10.3390/antiox13050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epigenetics defines changes in cell function without involving alterations in DNA sequence. Neuroepigenetics bridges neuroscience and epigenetics by regulating gene expression in the nervous system and its impact on brain function. With the increase in research in recent years, it was observed that alterations in the gene expression did not always originate from changes in the genetic sequence, which has led to understanding the role of epigenetics in neurodegenerative diseases (NDDs) including Alzheimer's disease (AD) and Parkinson's disease (PD). Epigenetic alterations contribute to the aberrant expression of genes involved in neuroinflammation, protein aggregation, and neuronal death. Natural phytochemicals have shown promise as potential therapeutic agents against NDDs because of their antioxidant, anti-inflammatory, and neuroprotective effects in cellular and animal models. For instance, resveratrol (grapes), curcumin (turmeric), and epigallocatechin gallate (EGCG; green tea) exhibit neuroprotective effects through their influence on DNA methylation patterns, histone acetylation, and non-coding RNA expression profiles. Phytochemicals also aid in slowing disease progression, preserving neuronal function, and enhancing cognitive and motor abilities. The present review focuses on various epigenetic modifications involved in the pathology of NDDs, including AD and PD, gene expression regulation related to epigenetic alterations, and the role of specific polyphenols in influencing epigenetic modifications in AD and PD.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Clerance Su Yee Cheong
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Kelley CM, Maloney B, Beck JS, Ginsberg SD, Liang W, Lahiri DK, Mufson EJ, Counts SE. Micro-RNA profiles of pathology and resilience in posterior cingulate cortex of cognitively intact elders. Brain Commun 2024; 6:fcae082. [PMID: 38572270 PMCID: PMC10988646 DOI: 10.1093/braincomms/fcae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
The posterior cingulate cortex (PCC) is a key hub of the default mode network underlying autobiographical memory retrieval, which falters early in the progression of Alzheimer's disease (AD). We recently performed RNA sequencing of post-mortem PCC tissue samples from 26 elderly Rush Religious Orders Study participants who came to autopsy with an ante-mortem diagnosis of no cognitive impairment but who collectively displayed a range of Braak I-IV neurofibrillary tangle stages. Notably, cognitively unimpaired subjects displaying high Braak stages may represent cognitive resilience to AD pathology. Transcriptomic data revealed elevated synaptic and ATP-related gene expression in Braak Stages III/IV compared with Stages I/II, suggesting these pathways may be related to PCC resilience. We also mined expression profiles for small non-coding micro-RNAs (miRNAs), which regulate mRNA stability and may represent an underexplored potential mechanism of resilience through the fine-tuning of gene expression within complex cellular networks. Twelve miRNAs were identified as differentially expressed between Braak Stages I/II and III/IV. However, the extent to which the levels of all identified miRNAs were associated with subject demographics, neuropsychological test performance and/or neuropathological diagnostic criteria within this cohort was not explored. Here, we report that a total of 667 miRNAs are significantly associated (rho > 0.38, P < 0.05) with subject variables. There were significant positive correlations between miRNA expression levels and age, perceptual orientation and perceptual speed. By contrast, higher miRNA levels correlated negatively with semantic and episodic memory. Higher expression of 15 miRNAs associated with lower Braak Stages I-II and 47 miRNAs were associated with higher Braak Stages III-IV, suggesting additional mechanistic influences of PCC miRNA expression with resilience. Pathway analysis showed enrichment for miRNAs operating in pathways related to lysine degradation and fatty acid synthesis and metabolism. Finally, we demonstrated that the 12 resilience-related miRNAs differentially expressed in Braak Stages I/II versus Braak Stages III/IV were predicted to regulate mRNAs related to amyloid processing, tau and inflammation. In summary, we demonstrate a dynamic state wherein differential PCC miRNA levels are associated with cognitive performance and post-mortem neuropathological AD diagnostic criteria in cognitively intact elders. We posit these relationships may inform miRNA transcriptional alterations within the PCC relevant to potential early protective (resilience) or pathogenic (pre-clinical or prodromal) responses to disease pathogenesis and thus may be therapeutic targets.
Collapse
Affiliation(s)
- Christy M Kelley
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Bryan Maloney
- Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John S Beck
- Departments of Translational Neuroscience and Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, Neuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Winnie Liang
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Scott E Counts
- Departments of Translational Neuroscience and Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| |
Collapse
|
9
|
Kompotis K, Mang GM, Hubbard J, Jimenez S, Emmenegger Y, Polysopoulos C, Hor CN, Wigger L, Hébert SS, Mongrain V, Franken P. Cortical miR-709 links glutamatergic signaling to NREM sleep EEG slow waves in an activity-dependent manner. Proc Natl Acad Sci U S A 2024; 121:e2220532121. [PMID: 38207077 PMCID: PMC10801902 DOI: 10.1073/pnas.2220532121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression that have been implicated in a plethora of neuronal processes. Nevertheless, their role in regulating brain activity in the context of sleep has so far received little attention. To test their involvement, we deleted mature miRNAs in post-mitotic neurons at two developmental ages, i.e., in early adulthood using conditional Dicer knockout (cKO) mice and in adult mice using an inducible conditional Dicer cKO (icKO) line. In both models, electroencephalographic (EEG) activity was affected and the response to sleep deprivation (SD) altered; while the rapid-eye-movement sleep (REMS) rebound was compromised in both, the increase in EEG delta (1 to 4 Hz) power during non-REMS (NREMS) was smaller in cKO mice and larger in icKO mice compared to controls. We subsequently investigated the effects of SD on the forebrain miRNA transcriptome and found that the expression of 48 miRNAs was affected, and in particular that of the activity-dependent miR-709. In vivo inhibition of miR-709 in the brain increased EEG power during NREMS in the slow-delta (0.75 to 1.75 Hz) range, particularly after periods of prolonged wakefulness. Transcriptome analysis of primary cortical neurons in vitro revealed that miR-709 regulates genes involved in glutamatergic neurotransmission. A subset of these genes was also affected in the cortices of sleep-deprived, miR-709-inhibited mice. Our data implicate miRNAs in the regulation of EEG activity and indicate that miR-709 links neuronal activity during wakefulness to brain synchrony during sleep through the regulation of glutamatergic signaling.
Collapse
Affiliation(s)
- Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, ZurichCH-8057, Switzerland
| | - Géraldine M. Mang
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Jeffrey Hubbard
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Sonia Jimenez
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Christos Polysopoulos
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, ZurichCH-8057, Switzerland
| | - Charlotte N. Hor
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Leonore Wigger
- Genomic Technologies Facility, Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Sébastien S. Hébert
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Axe Neurosciences, Québec, QCG1V 4G2, Canada
- Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec, QCG1V 0A6, Canada
| | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montréal, QCH3T 1J4, Canada
- Centre de recherche, Centre hospitalier de l’Université de Montréal, Montréal, QCH2X 0A9, Canada
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, QCH4J 1C5, Canada
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| |
Collapse
|
10
|
Statsenko Y, Kuznetsov NV, Morozova D, Liaonchyk K, Simiyu GL, Smetanina D, Kashapov A, Meribout S, Gorkom KNV, Hamoudi R, Ismail F, Ansari SA, Emerald BS, Ljubisavljevic M. Reappraisal of the Concept of Accelerated Aging in Neurodegeneration and Beyond. Cells 2023; 12:2451. [PMID: 37887295 PMCID: PMC10605227 DOI: 10.3390/cells12202451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Genetic and epigenetic changes, oxidative stress and inflammation influence the rate of aging, which diseases, lifestyle and environmental factors can further accelerate. In accelerated aging (AA), the biological age exceeds the chronological age. OBJECTIVE The objective of this study is to reappraise the AA concept critically, considering its weaknesses and limitations. METHODS We reviewed more than 300 recent articles dealing with the physiology of brain aging and neurodegeneration pathophysiology. RESULTS (1) Application of the AA concept to individual organs outside the brain is challenging as organs of different systems age at different rates. (2) There is a need to consider the deceleration of aging due to the potential use of the individual structure-functional reserves. The latter can be restored by pharmacological and/or cognitive therapy, environment, etc. (3) The AA concept lacks both standardised terminology and methodology. (4) Changes in specific molecular biomarkers (MBM) reflect aging-related processes; however, numerous MBM candidates should be validated to consolidate the AA theory. (5) The exact nature of many potential causal factors, biological outcomes and interactions between the former and the latter remain largely unclear. CONCLUSIONS Although AA is commonly recognised as a perspective theory, it still suffers from a number of gaps and limitations that assume the necessity for an updated AA concept.
Collapse
Affiliation(s)
- Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Big Data Analytic Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Daria Morozova
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Katsiaryna Liaonchyk
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Gillian Lylian Simiyu
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Darya Smetanina
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Aidar Kashapov
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Sarah Meribout
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Klaus Neidl-Van Gorkom
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Rifat Hamoudi
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PS, UK
| | - Fatima Ismail
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Suraiya Anjum Ansari
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bright Starling Emerald
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
11
|
Bhatnagar D, Ladhe S, Kumar D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer's Disease. Mol Neurobiol 2023; 60:5954-5974. [PMID: 37386272 DOI: 10.1007/s12035-023-03446-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Although over the last few decades, numerous attempts have been made to halt Alzheimer's disease (AD) progression and mitigate its symptoms, only a few have been proven beneficial. Most medications available, still only cater to the symptoms of the disease rather than fixing the cause at the root level. A novel approach involving the use of miRNAs, which work on the principle of gene silencing, is being explored by scientists. Naturally present miRNAs in the biological system help to regulate various genes than may be implicated in AD-like BACE-1 and APP. One miRNA thus, holds the power to keep a check on several genes, conferring it the ability to be used as a multi-target therapeutic. With aging and the onset of diseased pathology, dysregulation of these miRNAs is observed. This flawed miRNA expression is responsible for the unusual buildup of amyloid proteins, fibrillation of tau proteins in the brain, neuronal death and other hallmarks leading to AD. The use of miRNA mimics and miRNA inhibitors provides an attractive perspective for fixing the upregulation and downregulation of miRNAs that led to abnormal cellular activities. Furthermore, the detection of miRNAs in the CSF and serum of diseased patients might be considered an earlier biomarker for the disease. While most of the therapies designed around AD have not succeeded completely, the targeting of dysregulated miRNAs in AD patients might give a new direction to scholars to develop an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Devyani Bhatnagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Shreya Ladhe
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India.
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Petrović N, Essack M, Šami A, Perry G, Gojobori T, Isenović ER, Bajić VP. MicroRNA networks linked with BRCA1/2, PTEN, and common genes for Alzheimer's disease and breast cancer share highly enriched pathways that may unravel targets for the AD/BC comorbidity treatment. Comput Biol Chem 2023; 106:107925. [PMID: 37487248 DOI: 10.1016/j.compbiolchem.2023.107925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
MicroRNAs (miRNAs) are involved in the regulation of various cellular processes including pathological conditions. MiRNA networks have been extensively researched in age-related degenerative diseases, such as cancer, Alzheimer's disease (AD), and heart failure. Thus, miRNA has been studied from different approaches, in vivo, in vitro, and in silico including miRNA networks. Networks linking diverse biomedical entities unveil information not readily observable by other means. This work focuses on biological networks related to Breast cancer susceptibility 1 (BRCA1) in AD and breast cancer (BC). Using various bioinformatics approaches, we identified subnetworks common to AD and BC that suggest they are linked. According to our results, miR-107 was identified as a potentially good candidate for both AD and BC treatment (targeting BRCA1/2 and PTEN in both diseases), accompanied by miR-146a and miR-17. The analysis also confirmed the involvement of the miR-17-92 cluster, and miR-124-3p, and highlighted the importance of poorly researched miRNAs such as mir-6785 mir-6127, mir-6870, or miR-8485. After filtering the in silico analysis results, we found 49 miRNA molecules that modulate the expression of at least five genes common to both BC and AD. Those 49 miRNAs regulate the expression of 122 genes in AD and 93 genes in BC, from which 26 genes are common genes for AD and BC involved in neuron differentiation and genesis, cell differentiation and migration, regulation of cell cycle, and cancer development. Additionally, the highly enriched pathway was associated with diabetic complications, pointing out possible interplay among molecules underlying BC, AD, and diabetes pathology.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA "Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia; Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ahmad Šami
- Cellular and Molecular Radiation Oncology Laboratory, Department of Radiation Oncology, Universitatsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Esma R Isenović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA "Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Vladan P Bajić
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA "Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia.
| |
Collapse
|
13
|
Singh R, Hussain J, Kaur A, Jamdare BG, Pathak D, Garg K, Kaur R, Shankar S, Sunkaria A. The hidden players: Shedding light on the significance of post-translational modifications and miRNAs in Alzheimer's disease development. Ageing Res Rev 2023; 90:102002. [PMID: 37423542 DOI: 10.1016/j.arr.2023.102002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent, expensive, lethal, and burdening neurodegenerative disease of this century. The initial stages of this disease are characterized by a reduced ability to encode and store new memories. Subsequent cognitive and behavioral deterioration occurs during the later stages. Abnormal cleavage of amyloid precursor protein (APP) resulting in amyloid-beta (Aβ) accumulation along with hyperphosphorylation of tau protein are the two characteristic hallmarks of AD. Recently, several post-translational modifications (PTMs) have been identified on both Aβ as well as tau proteins. However, a complete understanding of how different PTMs influence the structure and function of proteins in both healthy and diseased conditions is still lacking. It has been speculated that these PTMs might play vital roles in the progression of AD. In addition, several short non-coding microRNA (miRNA) sequences have been found to be deregulated in the peripheral blood of Alzheimer patients. The miRNAs are single-stranded RNAs that control gene expression by causing mRNA degradation, deadenylation, or translational repression and have been implicated in the regulation of several neuronal and glial activities. The lack of comprehensive understanding regarding disease mechanisms, biomarkers, and therapeutic targets greatly hampers the development of effective strategies for early diagnosis and the identification of viable therapeutic targets. Moreover, existing treatment options for managing the disease have proven to be ineffective and provide only temporary relief. Therefore, understanding the role of miRNAs and PTMs in AD can provide valuable insights into disease mechanisms, aid in the identification of biomarkers, facilitate the discovery of novel therapeutic targets, and inspire innovative treatments for this challenging condition.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Julfequar Hussain
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Amandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Balaji Gokul Jamdare
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Deepti Pathak
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kanchan Garg
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ramanpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Shivani Shankar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
14
|
Noor Eddin A, Hamsho K, Adi G, Al-Rimawi M, Alfuwais M, Abdul Rab S, Alkattan K, Yaqinuddin A. Cerebrospinal fluid microRNAs as potential biomarkers in Alzheimer's disease. Front Aging Neurosci 2023; 15:1210191. [PMID: 37476007 PMCID: PMC10354256 DOI: 10.3389/fnagi.2023.1210191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Alzheimer's disease (AD) is the leading form of dementia worldwide, but its early detection and diagnosis remain a challenge. MicroRNAs (miRNAs) are a group of small endogenous RNA molecules that regulate mRNA expression. Recent evidence suggests miRNAs play an important role in the five major hallmarks of AD pathophysiology: amyloidogenesis, tauopathy, neuroinflammation, synaptic dysfunction, and neuronal death. Compared to traditional biomarkers of AD, miRNAs display a greater degree of stability in cerebrospinal fluid. Moreover, aberrant changes in miRNA expression can be measured over time to monitor and guide patient treatment. Specific miRNA profiles and combinations may also be used to distinguish AD subjects from normal controls and other causes of dementia. Because of these properties, miRNAs are now being considered as promising and potential biomarkers of AD. This review comprehensively summarizes the diagnostic potential and regulatory roles miRNAs play in AD.
Collapse
|
15
|
Sonsalla MM, Lamming DW. Geroprotective interventions in the 3xTg mouse model of Alzheimer's disease. GeroScience 2023; 45:1343-1381. [PMID: 37022634 PMCID: PMC10400530 DOI: 10.1007/s11357-023-00782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease. As the population ages, the increasing prevalence of AD threatens massive healthcare costs in the coming decades. Unfortunately, traditional drug development efforts for AD have proven largely unsuccessful. A geroscience approach to AD suggests that since aging is the main driver of AD, targeting aging itself may be an effective way to prevent or treat AD. Here, we discuss the effectiveness of geroprotective interventions on AD pathology and cognition in the widely utilized triple-transgenic mouse model of AD (3xTg-AD) which develops both β-amyloid and tau pathologies characteristic of human AD, as well as cognitive deficits. We discuss the beneficial impacts of calorie restriction (CR), the gold standard for geroprotective interventions, and the effects of other dietary interventions including protein restriction. We also discuss the promising preclinical results of geroprotective pharmaceuticals, including rapamycin and medications for type 2 diabetes. Though these interventions and treatments have beneficial effects in the 3xTg-AD model, there is no guarantee that they will be as effective in humans, and we discuss the need to examine these interventions in additional animal models as well as the urgent need to test if some of these approaches can be translated from the lab to the bedside for the treatment of humans with AD.
Collapse
Affiliation(s)
- Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
16
|
Li W, Zheng Y. MicroRNAs in Extracellular Vesicles of Alzheimer's Disease. Cells 2023; 12:1378. [PMID: 37408212 PMCID: PMC10216432 DOI: 10.3390/cells12101378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with dysfunction of memory, language and thinking. More than 55 million people were diagnosed with AD or other dementia around the world in 2020. The pathology of AD is still unclear and there are no applicable therapies for AD. MicroRNAs (miRNAs) play key roles in AD pathology and have great potential for the diagnosis and treatment of AD. Extracellular vesicles (EVs) widely exist in body fluids such as blood and cerebrospinal fluid (CSF) and contain miRNAs that are involved in cell-to-cell communication. We summarized the dysregulated miRNAs in EVs derived from the different body fluids of AD patients, as well as their potential function and application in AD. We also compared these dysregulated miRNAs in EVs to those in the brain tissues of AD patients aiming to provide a comprehensive view of miRNAs in AD. After careful comparisons, we found that miR-125b-5p and miR-132-3p were upregulated and downregulated in several different brain tissues of AD and EVs of AD, respectively, suggesting their value in AD diagnosis based on EV miRNAs. Furthermore, miR-9-5p was dysregulated in EVs and different brain tissues of AD patients and had also been tested as a potential therapy for AD in mice and human cell models, suggesting that miR-9-5p could be used to design new therapies for AD.
Collapse
Affiliation(s)
- Wanran Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yun Zheng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
17
|
Taha M, Eldemerdash OM, Elshaffei IM, Yousef EM, Soliman AS, Senousy MA. Apigenin Attenuates Hippocampal Microglial Activation and Restores Cognitive Function in Methotrexate-Treated Rats: Targeting the miR-15a/ROCK-1/ERK1/2 Pathway. Mol Neurobiol 2023; 60:3770-3787. [PMID: 36943623 DOI: 10.1007/s12035-023-03299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
Microglial activation underpins the methotrexate (MTX)-induced neurotoxicity; however, the precise mechanism remains unclear. This study appraised the potential impact of apigenin (Api), a neuroprotective flavonoid, in MTX-induced neurotoxicity in rats in terms of microglial activation through targeting the miR-15a/Rho-associated protein kinase-1 (ROCK-1)/extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. Male Sprague Dawley rats were randomly divided into 4 groups: Normal control (saline i.p. daily and i.v. on days 8 and 15); Api control (20 mg/kg, p.o.) daily for 30 days; MTX-alone (75 mg/kg, i.v.) on days 8 and 15, then four i.p. injections of leucovorin (LCV): 6 mg/kg after 18 h, then three doses (3 mg/kg) every 8 h post-MTX; and Api co-treated (20 mg/kg/day, p.o.) throughout the model for 30 days, with administration of MTX and LCV as in group 3. MTX administration elevated hippocampal ionized calcium-binding adaptor protein-1 (Iba-1) immunostaining, indicating microglial activation. This was accompanied by neuroinflammation, oxidative stress, and enhanced apoptosis manifested by elevated hippocampal interleukin-1β, malondialdehyde, and caspase-3, and decreased reduced glutathione levels. Concurrently, abated miR-15a expression, overexpression of its target ROCK-1, diminished downstream ERK1/2 and cAMP response element-binding protein (CREB) phosphorylation, and decreased hippocampal brain-derived neurotrophic factor (BDNF) levels were observed. Api mitigated the MTX-induced neurotoxicity by reversing the biochemical, histopathological, and behavioral derangements tested by novel object recognition and Morris water maze tests. Conclusively, Api lessens MTX-induced neuroinflammation, oxidative stress, and apoptosis and boosts cognitive function through inhibiting microglial activation via modulating the miR-15a/ROCK-1/ERK1/2/CREB/BDNF pathway. Graphical abstract showing the effects of methotrexate and apigenin co-treatment in MTX-induced neurotoxicity model. On the left, methotrexate (MTX) administration to rats resulted in hippocampal miR-15a downregulation, which triggered an enhanced expression of its target ROCK-1, consequently inhibiting the downstream ERK1/2/CREB/BDNF pathway, instigating a state of microglial activation, neuroinflammation, oxidative stress, and apoptosis. On the other hand, apigenin (Api) co-treatment restored miR-15a, inhibited ROCK-1 expression, and activated the ERK1/2/CREB/BDNF pathway, leading to diminished hippocampal microglial activation, neuroinflammation, and apoptosis, and restoration of the redox balance, along with improvement in memory and cognitive function of the MTX-treated rats.
Collapse
Affiliation(s)
- Mohamed Taha
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., Cairo, 11562, Egypt.
| | - Omar Mohsen Eldemerdash
- Department of Biochemistry, Faculty of Pharmacy, Misr International University (MIU), KM 28 Cairo, Ismailia Road, Cairo, 44971, Egypt
| | - Ismail Mohamed Elshaffei
- Department of Biochemistry, Faculty of Pharmacy, Misr International University (MIU), KM 28 Cairo, Ismailia Road, Cairo, 44971, Egypt
| | - Einas Mohamed Yousef
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Ayman S Soliman
- Medical Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mahmoud Ahmed Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., Cairo, 11562, Egypt
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| |
Collapse
|
18
|
Roy B, Dwivedi Y. An insight into the sprawling microverse of microRNAs in depression pathophysiology and treatment response. Neurosci Biobehav Rev 2023; 146:105040. [PMID: 36639069 PMCID: PMC9974865 DOI: 10.1016/j.neubiorev.2023.105040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Stress-related neuropathologies are pivotal in developing major depressive disorder (MDD) and are often governed by gene-regulatory changes. Being a stress-responsive gene-regulatory factor, microRNAs (miRNAs) have tremendous biomolecular potential to define an altered gene-regulatory landscape in the MDD brain. MiRNAs' regulatory roles in the MDD brain are closely aligned with changes in plasticity, neurogenesis, and stress-axis functions. MiRNAs act at the epigenetic interface between stress-induced environmental stimuli and cellular pathologies by triggering large-scale gene expression changes in a highly coordinated fashion. The parallel changes in peripheral circulation may provide an excellent opportunity for miRNA to devise more effective treatment strategies and help explore their potential as biomarkers in treatment response. This review discusses the role of miRNAs as epigenetic modifiers in the etiopathogenesis of MDD. Concurrently, key research is highlighted to show the progress in using miRNAs as predictive biomarkers for treatment response.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
19
|
Altman J, Jones G, Ahmed S, Sharma S, Sharma A. Tear Film MicroRNAs as Potential Biomarkers: A Review. Int J Mol Sci 2023; 24:3694. [PMID: 36835108 PMCID: PMC9962948 DOI: 10.3390/ijms24043694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
MicroRNAs are non-coding RNAs that serve as regulatory molecules in a variety of pathways such as inflammation, metabolism, homeostasis, cell machinery, and development. With the progression of sequencing methods and modern bioinformatics tools, novel roles of microRNAs in regulatory mechanisms and pathophysiological states continue to expand. Advances in detection methods have further enabled larger adoption of studies utilizing minimal sample volumes, allowing the analysis of microRNAs in low-volume biofluids, such as the aqueous humor and tear fluid. The reported abundance of extracellular microRNAs in these biofluids has prompted studies to explore their biomarker potential. This review compiles the current literature reporting microRNAs in human tear fluid and their association with ocular diseases including dry eye disease, Sjögren's syndrome, keratitis, vernal keratoconjunctivitis, glaucoma, diabetic macular edema, and diabetic retinopathy, as well as non-ocular diseases, including Alzheimer's and breast cancer. We also summarize the known roles of these microRNAs and shed light on the future progression of this field.
Collapse
Affiliation(s)
- Jeremy Altman
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Saleh Ahmed
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
20
|
Dexmedetomidine Attenuates Methotrexate-Induced Neurotoxicity and Memory Deficits in Rats through Improving Hippocampal Neurogenesis: The Role of miR-15a/ROCK-1/ERK1/2/CREB/BDNF Pathway Modulation. Int J Mol Sci 2023; 24:ijms24010766. [PMID: 36614208 PMCID: PMC9821704 DOI: 10.3390/ijms24010766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Methotrexate (MTX) is a widely used neurotoxic drug with broad antineoplastic and immunosuppressant spectra. However, the exact molecular mechanisms by which MTX inhibits hippocampal neurogenesis are yet unclear. Dexmedetomidine (Dex), an α2-adrenergic receptor agonist, has recently shown neuroprotective effects; however, its full mechanism is unexplored. This study investigated the potential of Dex to mitigate MTX-induced neurotoxicity and memory impairment in rats and the possible role of the miR-15a/ROCK-1/ERK1/2/CREB/BDNF pathway. Notably, no former studies have linked this pathway to MTX-induced neurotoxicity. Male Sprague Dawley rats were placed into four groups. Group 1 received saline i.p. daily and i.v. on days 8 and 15. Group 2 received Dex at 10 μg/kg/day i.p. for 30 days. Group 3 received MTX at 75 mg/kg i.v. on days 8 and 15, followed by four i.p. doses of leucovorin at 6 mg/kg after 18 h and 3 mg/kg after 26, 42, and 50 h. Group 4 received MTX and leucovorin as in group 3 and Dex daily dosages as in group 2. Bioinformatic analysis identified the association of miR-15a with ROCK-1/ERK1/2/CREB/BDNF and neurogenesis. MTX lowered hippocampal doublecortin and Ki-67, two markers of neurogenesis. This was associated with the downregulation of miR-15a, upregulation of its target ROCK-1, and reduction in the downstream ERK1/2/CREB/BDNF pathway, along with disturbed hippocampal redox state. Novel object recognition and Morris water maze tests demonstrated the MTX-induced memory deficiencies. Dex co-treatment reversed the MTX-induced behavioral, biochemical, and histological alterations in the rats. These neuroprotective actions could be partly mediated through modulating the miR-15a/ROCK-1/ERK1/2/CREB/BDNF pathway, which enhances hippocampal neurogenesis.
Collapse
|
21
|
Yuan A, Nixon RA. Posttranscriptional regulation of neurofilament proteins and tau in health and disease. Brain Res Bull 2023; 192:115-127. [PMID: 36441047 PMCID: PMC9907725 DOI: 10.1016/j.brainresbull.2022.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 01/16/2023]
Abstract
Neurofilament and tau proteins are neuron-specific cytoskeletal proteins that are enriched in axons, regulated by many of the same protein kinases, interact physically, and are the principal constituents of neurofibrillary lesions in major adult-onset dementias. Both proteins share functions related to the modulation of stability and functions of the microtubule network in axons, axonal transport and scaffolding of organelles, long-term synaptic potentiation, and learning and memory. Expression of these proteins is regulated not only at the transcriptional level but also through posttranscriptional control of pre-mRNA splicing, mRNA stability, transport, localization, local translation and degradation. Current evidence suggests that posttranscriptional determinants of their levels are usually regulated by RNA-binding proteins and microRNAs primarily through 3'-untranslated regions of neurofilament and tau mRNAs. Dysregulations of neurofilament and tau expression caused by mutations or pathologies of RNA-binding proteins such as TDP43, FUS and microRNAs are increasingly recognized in association with varied neurological disorders. In this review, we summarize the current understanding of posttranscriptional control of neurofilament and tau by examining the posttranscriptional regulation of neurofilament and tau by RNA-binding proteins and microRNAs implicated in health and diseases.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA,Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA,Department of Cell Biology, New York University Langone Health, New York, NY 10016, USA,NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA,Correspondence to: Center for Dementia Research, Nathan Kline Institute, New York University Langone Health, New York, NY 10016, USA, (A. Yuan), (R.A. Nixon)
| |
Collapse
|
22
|
Tan Z, Li W, Cheng X, Zhu Q, Zhang X. Non-Coding RNAs in the Regulation of Hippocampal Neurogenesis and Potential Treatment Targets for Related Disorders. Biomolecules 2022; 13:biom13010018. [PMID: 36671403 PMCID: PMC9855933 DOI: 10.3390/biom13010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, circRNAs, and piRNAs, do not encode proteins. Nonetheless, they have critical roles in a variety of cellular activities-such as development, neurogenesis, degeneration, and the response to injury to the nervous system-via protein translation, RNA splicing, gene activation, silencing, modifications, and editing; thus, they may serve as potential targets for disease treatment. The activity of adult neural stem cells (NSCs) in the subgranular zone of the hippocampal dentate gyrus critically influences hippocampal function, including learning, memory, and emotion. ncRNAs have been shown to be involved in the regulation of hippocampal neurogenesis, including proliferation, differentiation, and migration of NSCs and synapse formation. The interaction among ncRNAs is complex and diverse and has become a major topic within the life science. This review outlines advances in research on the roles of ncRNAs in modulating NSC bioactivity in the hippocampus and discusses their potential applications in the treatment of illnesses affecting the hippocampus.
Collapse
Affiliation(s)
- Zhengye Tan
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wen Li
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiang Cheng
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
- Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong 226001, China
| | - Xinhua Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Central Lab, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng 224001, China
- Correspondence:
| |
Collapse
|
23
|
Petry S, Keraudren R, Nateghi B, Loiselle A, Pircs K, Jakobsson J, Sephton C, Langlois M, St-Amour I, Hébert SS. Widespread alterations in microRNA biogenesis in human Huntington’s disease putamen. Acta Neuropathol Commun 2022; 10:106. [PMID: 35869509 PMCID: PMC9308264 DOI: 10.1186/s40478-022-01407-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
Altered microRNA (miRNA) expression is a common feature of Huntington’s disease (HD) and could participate in disease onset and progression. However, little is known about the underlying causes of miRNA disruption in HD. We and others have previously shown that mutant Huntingtin binds to Ago2, a central component of miRNA biogenesis, and disrupts mature miRNA levels. In this study, we sought to determine if miRNA maturation per se was compromised in HD. Towards this end, we characterized major miRNA biogenesis pathway components and miRNA maturation products (pri-miRNA, pre-miRNA, and mature) in human HD (N = 41, Vonsattel grades HD2-4) and healthy control (N = 25) subjects. Notably, the striatum (putamen) and cortex (BA39) from the same individuals were analyzed in parallel. We show that Ago2, Drosha, and Dicer were strongly downregulated in human HD at the early stages of the disease. Using a panel of HD-related miRNAs (miR-10b, miR-196b, miR-132, miR-212, miR-127, miR-128), we uncovered various types of maturation defects in the HD brain, the most prominent occurring at the pre-miRNA to mature miRNA maturation step. Consistent with earlier findings, we provide evidence that alterations in autophagy could participate in miRNA maturation defects. Notably, most changes occurred in the striatum, which is more prone to HTT aggregation and neurodegeneration. Likewise, we observed no significant alterations in miRNA biogenesis in human HD cortex and blood, strengthening tissue-specific effects. Overall, these data provide important clues into the underlying mechanisms behind miRNA alterations in HD-susceptible tissues. Further investigations are now required to understand the biological, diagnostic, and therapeutic implications of miRNA/RNAi biogenesis defects in HD and related neurodegenerative disorders.
Collapse
|
24
|
Azimi Sanavi M, Mahdavian F, Dorosti N, Karami N, Karami S, Khatami SH, Vakili O, Taheri-Anganeh M, Karima S, Movahedpour A. A review of highly sensitive electrochemical genosensors for microRNA detection: A novel diagnostic platform for neurodegenerative diseases diagnostics. Biotechnol Appl Biochem 2022. [PMID: 36445196 DOI: 10.1002/bab.2419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022]
Abstract
The significant role of microRNAs in regulating gene expression and in disease tracking has handed the possibility of robust and accurate diagnosis of various diseases. Measurement of these biomarkers has also had a significant impact on the preparation of natural samples. Discovery of miRNAs is a major challenge due to their small size in the real sample and their short length, which is generally measured by complex and expensive methods. Electrochemical nanobiosensors have made significant progress in this field. Due to the delicate nature of nerve tissue repair and the significance of rapid-fire feature of neurodegenerative conditions, these biosensors can be reliably promising. This review presents advances in the field of neurodegenerative diseases diagnostics. At the same time, there are still numerous openings in this field that are a bright prospect for researchers in the rapid-fire opinion of neurological diseases and indeed nerve tissue repair.
Collapse
Affiliation(s)
- Mehrnoosh Azimi Sanavi
- Department of Biochemistry and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Mahdavian
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nafiseh Dorosti
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Sari, Iran
| | - Neda Karami
- TU Wien, Institute of Solid State Electronics, Vienna, Austria
| | - Sajedeh Karami
- Department of Chemistry, Shiraz University, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
25
|
Calderaro A, Patanè GT, Tellone E, Barreca D, Ficarra S, Misiti F, Laganà G. The Neuroprotective Potentiality of Flavonoids on Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232314835. [PMID: 36499159 PMCID: PMC9736131 DOI: 10.3390/ijms232314835] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Alzheimer's disease (AD), due to its spread, has become a global health priority, and is characterized by senile dementia and progressive disability. The main cause of AD and other neurodegenerations (Huntington, Parkinson, Amyotrophic Lateral Sclerosis) are aggregated protein accumulation and oxidative damage. Recent research on secondary metabolites of plants such as polyphenols demonstrated that they may slow the progression of AD. The flavonoids' mechanism of action in AD involved the inhibition of acetylcholinesterase, butyrylcholinesterase, Tau protein aggregation, β-secretase, oxidative stress, inflammation, and apoptosis through modulation of signaling pathways which are implicated in cognitive and neuroprotective functions, such as ERK, PI3-kinase/Akt, NFKB, MAPKs, and endogenous antioxidant enzymatic systems. This review focuses on flavonoids and their role in AD, in terms of therapeutic potentiality for human health, antioxidant potential, and specific AD molecular targets.
Collapse
Affiliation(s)
- Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.T.); (D.B.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.T.); (D.B.)
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Francesco Misiti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, V. S. Angelo, Loc. Folcara, 3043 Cassino, Italy
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
26
|
Liu T, Zhu X, Huang C, Chen J, Shu S, Chen G, Xu Y, Hu Y. ERK inhibition reduces neuronal death and ameliorates inflammatory responses in forebrain-specific Ppp2cα knockout mice. FASEB J 2022; 36:e22515. [PMID: 35997299 DOI: 10.1096/fj.202200293r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Abstract
It has been shown that PP2A is critical for apoptosis in neural progenitor cells. However, it remains unknown whether PP2A is required for neuronal survival. To address this question, we generated forebrain-specific Ppp2cα knockout (KO) mice. We show that Ppp2cα KO mice display robust neuronal apoptosis and inflammatory responses in the postnatal cortex. Previous evidence has revealed that PD98059 is a potent ERK inhibitor and may protect the brain against cell death after cardiac arrest. To study whether PD98059 may have any effects on Ppp2cα KO mice, the latter was treated with this inhibitor. We demonstrated that the total number of cleaved caspase3 positive (+) cells in the cortex was significantly reduced in Ppp2cα KO mice treated with PD98059 compared with those without PD98059 treatment. We observed that the total number of IBA1+ cells in the cortex was significantly decreased in Ppp2cα KO mice treated with PD98059. Mechanistic analysis reveals that deletion of PP2Aca causes DNA damage, which may be attenuated by PD98059. Together, this study suggests that inhibition of ERK may be an effective strategy to reduce cell death in brain diseases with abnormal neuronal apoptosis.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Chaoli Huang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Jiang Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yimin Hu
- Department of Anesthesiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
27
|
Liu Y, Cheng X, Li H, Hui S, Zhang Z, Xiao Y, Peng W. Non-Coding RNAs as Novel Regulators of Neuroinflammation in Alzheimer's Disease. Front Immunol 2022; 13:908076. [PMID: 35720333 PMCID: PMC9201920 DOI: 10.3389/fimmu.2022.908076] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the most common causes of dementia. Although significant breakthroughs have been made in understanding the progression and pathogenesis of AD, it remains a worldwide problem and a significant public health burden. Thus, more efficient diagnostic and therapeutic strategies are urgently required. The latest research studies have revealed that neuroinflammation is crucial in the pathogenesis of AD. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA-derived small RNAs (tsRNAs), have been strongly associated with AD-induced neuroinflammation. Furthermore, several ongoing pre-clinical studies are currently investigating ncRNA as disease biomarkers and therapeutic interventions to provide new perspectives for AD diagnosis and treatment. In this review, the role of different types of ncRNAs in neuroinflammation during AD are summarized in order to improve our understanding of AD etiology and aid in the translation of basic research into clinical practice.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Xin Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Hongli Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China.,Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| |
Collapse
|
28
|
Jiang H, Liu J, Guo S, Zeng L, Cai Z, Zhang J, Wang L, Li Z, Liu R. miR-23b-3p rescues cognition in Alzheimer's disease by reducing tau phosphorylation and apoptosis via GSK-3β signaling pathways. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:539-557. [PMID: 35592504 PMCID: PMC9092887 DOI: 10.1016/j.omtn.2022.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/15/2022] [Indexed: 12/24/2022]
Abstract
Dysregulated microRNA (miRNA) expression in the brain can contribute to cognitive dysfunction and aberrant tau hyperphosphorylation in Alzheimer’s disease (AD). Several studies have reported a role for microRNA-23b-3p (miR-23b-3p) in various neurologic disorders; however, its involvement in cognition-related functions remains unclear. In the present study, we investigated the potential therapeutic effects and mechanisms of miR-23b-3p in AD. miRNA profiles in the cortex of amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice (APP/PS1 mice) demonstrated that miR-23b-3p was reduced. This decrease was verified in APPswe cells, SAMP8 mouse brains, and plasma from AD patients. Furthermore, glycogen synthase kinase-3β (GSK-3β), a major tau kinase implicated in tau pathology, was identified as a target of miR-23b-3p. Functional in vivo studies demonstrated that intracerebroventricular delivery of miR-23b-3p in APP/PS1 mice ameliorated cognitive deficits, histopathological changes, and tau phosphorylation immunoreactivity at several sites by inhibiting GSK-3β expression and activation. Similarly, the upregulation of miR-23b-3p in APPswe cells inhibited GSK-3β-mediated tau hyperphosphorylation, Aβ1-42 generation, and neuronal apoptosis, resulting in the suppression of the GSK-3β/p-tau and Bax/caspase-3 pathways. Collectively, our findings strongly support the hypothesis that miR-23b-3p plays a neuroprotective role in AD, thereby identifying miR-23b-3p as a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Hailun Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Jianghong Liu
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Shuilong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China.,National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Li Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Zhongdi Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Junxia Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Linlin Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
29
|
Terry AV, Beck WD, Lin PC, Callahan PM, Rudic RD, Hamrick MW. Manganese-enhanced magnetic resonance imaging method detects age-related impairments in axonal transport in mice and attenuation of the impairments by a microtubule-stabilizing compound. Brain Res 2022; 1789:147947. [PMID: 35597325 DOI: 10.1016/j.brainres.2022.147947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/18/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022]
Abstract
In this study a manganese-enhanced magnetic resonance imaging (MEMRI) method was developed for mice for measuring axonal transport (AXT) rates in real time in olfactory receptor neurons, which project from the olfactory epithelium to the olfactory neuronal layer of the olfactory bulb. Using this MEMRI method, two major experiments were conducted: 1) an evaluation of the effects of age on AXT rates and 2) an evaluation of the brain-penetrant, microtubule-stabilizing agent, Epothilone D for effect on AXT rates in aged mice. In these studies, we improved upon previous MEMRI approaches to develop a method where real-time measurements (32 time points) of AXT rates in mice can be determined over a single (approximately 100 min) scanning session. In the age comparisons, AXT rates were significantly higher in young (mean age ∼4.0 months old) versus aged (mean age ∼24.5 months old) mice. Moreover, in aged mice, eight weeks of treatment with Epothilone D, (0.3 and 1.0 mg/kg) was associated with statistically significant increases in AXT rates compared to vehicle-treated subjects. These experiments conducted in a living mammalian model (i.e., wild type, C57BL/6 mice), using a new modified MEMRI method, thus provide further evidence that the process of aging leads to decreases in AXT rates in the brain and they further support the argument that microtubule-based therapeutic strategies designed to improve AXT rates have potential for age-related neurological disorders.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| | - Wayne D Beck
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Ping-Chang Lin
- Research Computing Center, University of Chicago, Chicago, IL 60637, United States
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - R Daniel Rudic
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
30
|
Dysregulated miRNAs as Biomarkers and Therapeutical Targets in Neurodegenerative Diseases. J Pers Med 2022; 12:jpm12050770. [PMID: 35629192 PMCID: PMC9143965 DOI: 10.3390/jpm12050770] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are representative neurodegenerative diseases (NDs) characterized by degeneration of selective neurons, as well as the lack of effective biomarkers and therapeutic treatments. In the last decade, microRNAs (miRNAs) have gained considerable interest in diagnostics and therapy of NDs, owing to their aberrant expression and their ability to target multiple molecules and pathways. Here, we provide an overview of dysregulated miRNAs in fluids (blood or cerebrospinal fluid) and nervous tissue of AD, PD, and ALS patients. By emphasizing those that are commonly dysregulated in these NDs, we highlight their potential role as biomarkers or therapeutical targets and describe the use of antisense oligonucleotides as miRNA therapies.
Collapse
|
31
|
Ginsenoside Rf inhibits human tau proteotoxicity and causes specific LncRNA, miRNA and mRNA expression changes in Caenorhabditis elegans model of tauopathy. Eur J Pharmacol 2022; 922:174887. [DOI: 10.1016/j.ejphar.2022.174887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/10/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022]
|
32
|
Nguyen TPN, Kumar M, Fedele E, Bonanno G, Bonifacino T. MicroRNA Alteration, Application as Biomarkers, and Therapeutic Approaches in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23094718. [PMID: 35563107 PMCID: PMC9104163 DOI: 10.3390/ijms23094718] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are essential post-transcriptional gene regulators involved in various neuronal and non-neuronal cell functions and play a key role in pathological conditions. Numerous studies have demonstrated that miRNAs are dysregulated in major neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, or Huntington’s disease. Hence, in the present work, we constructed a comprehensive overview of individual microRNA alterations in various models of the above neurodegenerative diseases. We also provided evidence of miRNAs as promising biomarkers for prognostic and diagnostic approaches. In addition, we summarized data from the literature about miRNA-based therapeutic applications via inhibiting or promoting miRNA expression. We finally identified the overlapping miRNA signature across the diseases, including miR-128, miR-140-5p, miR-206, miR-326, and miR-155, associated with multiple etiological cellular mechanisms. However, it remains to be established whether and to what extent miRNA-based therapies could be safely exploited in the future as effective symptomatic or disease-modifying approaches in the different human neurodegenerative disorders.
Collapse
Affiliation(s)
- T. P. Nhung Nguyen
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
| | - Mandeep Kumar
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
33
|
Nguyen HD, Kim MS. Exposure to a mixture of heavy metals induces cognitive impairment: Genes and microRNAs involved. Toxicology 2022; 471:153164. [PMID: 35346790 DOI: 10.1016/j.tox.2022.153164] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Converging evidence demonstrates that microRNAs (miRNAs) play an important role in the etiology of cognitive impairment. Thus, we aim to: (i) identify the molecular mechanisms of heavy metals, particularly miRNAs involved in the development of cognitive impairment; and (ii) generate miRNA sponges to prevent them from binding with their target messenger RNAs. The Comparative Toxicogenomics Database (CTD; http://ctd.mdibl.org), MicroRNA ENrichment TURned NETwork (MIENTURNET, http://userver.bio.uniroma1.it/apps/mienturnet/) and the microRNA sponge generator and tester (miRNAsong, http://www.med.muni.cz/histology/miRNAsong) were used as the core data-mining approaches in the current study. We observed that lead acetate, arsenic, gold, copper, iron, and aluminum, as well as their mixtures, had significant effects on the development of cognitive impairment. Although prevalent genes obtained from investigated heavy metals of cognitive impairment were different, the "PI3K-Akt signaling pathway", "pathways of neurodegeneration-multiple diseases", "apoptosis", "apoptosis-multiple species", "p53 signaling pathway", "NF-kappa B signaling pathway", and "Alzheimer's disease pathway" were highlighted. The mixed heavy metals altered the genes BAX, CASP3, BCL2, TNF, and IL-1B, indicating the significance of apoptosis and pro-inflammatory cytokines in the pathogenesis of cognitive impairment and the possibility of targeting these genes in future neuroprotective therapy. In addition, we used a network-based approach to identify key genes, miRNAs, pathways, and diseases related to the development of cognitive impairment. We also found 16 significant miRNAs related to cognitive impairment (hsa-miR-1-3p, hsa-let-7a-5p, hsa-miR-9-5p, hsa-miR-16-5p, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-26a-5p, hsa-miR-26b-5p, hsa-miR-34a-5p, hsa-miR-101-3p, hsa-miR-106a-5p, hsa-miR-128-3p, hsa-miR-144-3p, hsa-miR-199a-3p, hsa-miR-204-5p, and hsa-miR-335-5p). Finally, we created and evaluated miRNA sponge sequences for these miRNAs in silico. Further studies, including in vivo and in vitro, are needed to assess the link between these genes, miRNAs, pathways, and cognitive impairment.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
34
|
Wu J, Liu P, Mao X, Qiu F, Gong L, Wu J, Wang D, He M, Li A. Ablation of microRNAs in VIP + interneurons impairs olfactory discrimination and decreases neural activity in the olfactory bulb. Acta Physiol (Oxf) 2022; 234:e13767. [PMID: 34981885 DOI: 10.1111/apha.13767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/18/2021] [Accepted: 01/01/2022] [Indexed: 12/29/2022]
Abstract
AIM MicroRNAs (miRNAs) are abundantly expressed in vasoactive intestinal peptide expressing (VIP+ ) interneurons and are indispensable for their functional maintenance and survival. Here, we blocked miRNA biogenesis in postmitotic VIP+ interneurons in mice by selectively ablating Dicer, an enzyme essential for miRNA maturation, to study whether ablation of VIP+ miRNA affects olfactory function and neural activity in olfactory centres such as the olfactory bulb, which contains a large number of VIP+ interneurons. METHODS A go/no-go odour discrimination task and a food-seeking test were used to assess olfactory discrimination and olfactory detection. In vivo electrophysiological techniques were used to record single units and local field potentials. RESULTS Olfactory detection and olfactory discrimination behaviours were impaired in VIP+ -specific Dicer-knockout mice. In vivo electrophysiological recordings in awake, head-fixed mice showed that both spontaneous and odour-evoked firing rates were decreased in mitral/tufted cells in knockout mice. The power of ongoing and odour-evoked beta local field potentials response of the olfactory bulb and anterior piriform cortex were dramatically decreased. Furthermore, the coherence of theta oscillations between the olfactory bulb and anterior piriform cortex was decreased. Importantly, Dicer knockout restricted to olfactory bulb VIP+ interneurons recapitulated the behavioural and electrophysiological results of the global knockout. CONCLUSIONS VIP+ miRNAs are an important factor in sensory processing, affecting olfactory function and olfactory neural activity.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Xingfeng Mao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Fang Qiu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
- Department of Anesthesiology Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Ling Gong
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Jinyun Wu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| |
Collapse
|
35
|
Wang R, Chopra N, Nho K, Maloney B, Obukhov AG, Nelson PT, Counts SE, Lahiri DK. Human microRNA (miR-20b-5p) modulates Alzheimer's disease pathways and neuronal function, and a specific polymorphism close to the MIR20B gene influences Alzheimer's biomarkers. Mol Psychiatry 2022; 27:1256-1273. [PMID: 35087196 PMCID: PMC9054681 DOI: 10.1038/s41380-021-01351-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with loss of cognitive, executive, and other mental functions, and is the most common form of age-related dementia. Amyloid-β peptide (Aβ) contributes to the etiology and progression of the disease. Aβ is derived from the amyloid-β precursor protein (APP). Multiple microRNA (miRNA) species are also implicated in AD. We report that human hsa-miR20b-5p (miR-20b), produced from the MIR20B gene on Chromosome X, may play complex roles in AD pathogenesis, including Aβ regulation. Specifically, miR-20b-5p miRNA levels were altered in association with disease progression in three regions of the human brain: temporal neocortex, cerebellum, and posterior cingulate cortex. In cultured human neuronal cells, miR-20b-5p treatment interfered with calcium homeostasis, neurite outgrowth, and branchpoints. A single-nucleotide polymorphism (SNP) upstream of the MIR20B gene (rs13897515) associated with differences in levels of cerebrospinal fluid (CSF) Aβ1-42 and thickness of the entorhinal cortex. We located a miR-20b-5p binding site in the APP mRNA 3'-untranslated region (UTR), and treatment with miR-20b-5p reduced APP mRNA and protein levels. Network analysis of protein-protein interactions and gene coexpression revealed other important potential miR-20b-5p targets among AD-related proteins/genes. MiR-20b-5p, a miRNA that downregulated APP, was paradoxically associated with an increased risk for AD. However, miR-20b-5p also reduced, and the blockade of APP by siRNA likewise reduced calcium influx. As APP plays vital roles in neuronal health and does not exist solely to be the source of "pathogenic" Aβ, the molecular etiology of AD is likely to not just be a disease of "excess" but a disruption of delicate homeostasis.
Collapse
Affiliation(s)
- Ruizhi Wang
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nipun Chopra
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- DePauw University, Greencastle, IN, 46135, USA
| | - Kwangsik Nho
- Radiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bryan Maloney
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alexander G Obukhov
- Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Kentucky Alzheimer's Disease Research Center, Lexington, KY, 40536, USA
| | - Scott E Counts
- Departments of Translational Neuroscience & Family Medicine, Michigan State University, Grand Rapids, and Michigan Alzheimer's Disease Research Center, Ann Arbor, MI, USA
| | - Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
36
|
Yuen SC, Lee SMY, Leung SW. Putative Factors Interfering Cell Cycle Re-Entry in Alzheimer's Disease: An Omics Study with Differential Expression Meta-Analytics and Co-Expression Profiling. J Alzheimers Dis 2021; 85:1373-1398. [PMID: 34924393 DOI: 10.3233/jad-215349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuronal cell cycle re-entry (CCR) is a mechanism, along with amyloid-β (Aβ) oligomers and hyperphosphorylated tau proteins, contributing to toxicity in Alzheimer's disease (AD). OBJECTIVE This study aimed to examine the putative factors in CCR based on evidence corroboration by combining meta-analysis and co-expression analysis of omic data. METHODS The differentially expressed genes (DEGs) and CCR-related modules were obtained through the differential analysis and co-expression of transcriptomic data, respectively. Differentially expressed microRNAs (DEmiRNAs) were extracted from the differential miRNA expression studies. The dysregulations of DEGs and DEmiRNAs as binary outcomes were independently analyzed by meta-analysis based on a random-effects model. The CCR-related modules were mapped to human protein-protein interaction databases to construct a network. The importance score of each node within the network was determined by the PageRank algorithm, and nodes that fit the pre-defined criteria were treated as putative CCR-related factors. RESULTS The meta-analysis identified 18,261 DEGs and 36 DEmiRNAs, including genes in the ubiquitination proteasome system, mitochondrial homeostasis, and CCR, and miRNAs associated with AD pathologies. The co-expression analysis identified 156 CCR-related modules to construct a protein-protein interaction network. Five genes, UBC, ESR1, EGFR, CUL3, and KRAS, were selected as putative CCR-related factors. Their functions suggested that the combined effects of cellular dyshomeostasis and receptors mediating Aβ toxicity from impaired ubiquitination proteasome system are involved in CCR. CONCLUSION This study identified five genes as putative factors and revealed the significance of cellular dyshomeostasis in the CCR of AD.
Collapse
Affiliation(s)
- Sze Chung Yuen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siu-Wai Leung
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China.,Edinburgh Bayes Centre for AI Research in Shenzhen, College of Science and Engineering, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
37
|
Song S, Lee JU, Jeon MJ, Kim S, Sim SJ. Detection of multiplex exosomal miRNAs for clinically accurate diagnosis of Alzheimer's disease using label-free plasmonic biosensor based on DNA-Assembled advanced plasmonic architecture. Biosens Bioelectron 2021; 199:113864. [PMID: 34890883 DOI: 10.1016/j.bios.2021.113864] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), the most common neurologic disorder, is characterized by progressive cognitive impairment. However, the low clinical significance of the currently used core AD biomarkers amyloid-beta and tau proteins remains a challenge. Recently, exosomes, found in human biological fluids, are gaining increasing attention because of their clinical significance in diagnosing of various diseases. In particular, blood-derived exosomal miRNAs are not only stable but also provide information regarding the different characteristics according to AD progression. However, quantitative and qualitative detection is difficult due to their characteristics, such as small size, low abundance, and high homology. Here, we present a DNA-assembled advanced plasmonic architecture (DAPA)-based plasmonic biosensor to accurately detect exosomal miRNAs in human serum. The designed nanoarchitecture possesses two narrow nanogaps that induce plasmon coupling; this significantly enhances its optical energy density, resulting in a 1.66-fold higher refractive-index (RI) sensitivity than nanorods at localized surface plasmon resonance (LSPR). Thus, the proposed biosensor is ultrasensitive and capable of selective single-nucleotide detection of exosomal miRNAs at the attomolar level. Furthermore, it identified AD patients from healthy controls by measuring the levels of exosomal miRNA-125b, miRNA-15a, and miRNA-361 in clinical serum samples. In particular, the combination of exosomal miRNA-125b and miRNA-361 showed the best diagnostic performance with a sensitivity of 91.67%, selectivity of 95.00%, and accuracy of 99.52%. These results demonstrate that our sensor can be clinically applied for AD diagnosis and has great potential to revolutionize the field of dementia research and treatment in the future.
Collapse
Affiliation(s)
- Sojin Song
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Uk Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea; Department of Chemical Engineering, Sunchon National University, Suncheon-si, Jeollanam-do, 57922, Republic of Korea
| | - Myeong Jin Jeon
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Soohyun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
38
|
Das T, Das TK, Khodarkovskaya A, Dash S. Non-coding RNAs and their bioengineering applications for neurological diseases. Bioengineered 2021; 12:11675-11698. [PMID: 34756133 PMCID: PMC8810045 DOI: 10.1080/21655979.2021.2003667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Engineering of cellular biomolecules is an emerging landscape presenting creative therapeutic opportunities. Recently, several strategies such as biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems have been developed to improve specific biological functions, however, have been confounded with fundamental and technical roadblocks. Rapidly emerging investigations on the bioengineering prospects of mammalian ribonucleic acid (RNA) is expected to result in significant biomedical advances. More specifically, the current trend focuses on devising non-coding (nc) RNAs as therapeutic candidates for complex neurological diseases. Given the pleiotropic and regulatory role, ncRNAs such as microRNAs and long non-coding RNAs are deemed as attractive therapeutic candidates. Currently, the list of non-coding RNAs in mammals is evolving, which presents the plethora of hidden possibilities including their scope in biomedicine. Herein, we critically review on the emerging repertoire of ncRNAs in neurological diseases such as Alzheimer’s disease, Parkinson’s disease, neuroinflammation and drug abuse disorders. Importantly, we present the advances in engineering of ncRNAs to improve their biocompatibility and therapeutic feasibility as well as provide key insights into the applications of bioengineered non-coding RNAs that are investigated for neurological diseases.
Collapse
Affiliation(s)
- Tuhin Das
- Quanta Therapeutics, San Francisco, CA, 94158, USA.,RayBiotech, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | - Tushar Kanti Das
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Anne Khodarkovskaya
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA
| | - Sabyasachi Dash
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024 India
| |
Collapse
|
39
|
The role of microRNAs in diseases and related signaling pathways. Mol Biol Rep 2021; 49:6789-6801. [PMID: 34718938 DOI: 10.1007/s11033-021-06725-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs) are epigenetic regulators of the gene expression and act through posttranslational modification. They bind to 3'-UTR of target mRNAs to inhibit translation or increase the degradation mRNA in many tissues. Any alteration in the level of miRNA expression in many human diseases indicates their involvement in the pathogenesis of many diseases. On the other hand, the regulation of the signaling pathways is necessary for the maintenance of natural and physiological characteristics of any cell. It is worth mentioning that dysfunction of the signaling pathways manifests itself as a disorder or disease. The significant evidence report that miRNAs regulate the several signaling pathways in many diseases. Base on previous studies, miRNAs can be used for therapeutic or diagnostic purposes. According to the important role of miRNAs on the cell signaling pathways, this article reviews miRNAs involvement in incidence of diseases by changing signaling pathways.
Collapse
|
40
|
Xu H, Liu X, Li W, Xi Y, Su P, Meng B, Shao X, Tang B, Yang Q, Mao Z. p38 MAPK-mediated loss of nuclear RNase III enzyme Drosha underlies amyloid beta-induced neuronal stress in Alzheimer's disease. Aging Cell 2021; 20:e13434. [PMID: 34528746 PMCID: PMC8521488 DOI: 10.1111/acel.13434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/26/2021] [Accepted: 07/03/2021] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs ubiquitously expressed in the brain and regulate gene expression at the post‐transcriptional level. The nuclear RNase III enzyme Drosha initiates the maturation process of miRNAs in the nucleus. Strong evidence suggests that dysregulation of miRNAs is involved in many neurological disorders including Alzheimer's disease (AD). Dysfunction of miRNA biogenesis components may be involved in the processes of those diseases. However, the role of Drosha in AD remains unknown. By using immunohistochemistry, biochemistry, and subcellular fractionation methods, we show here that the level of Drosha protein was significantly lower in the postmortem brain of human AD patients as well as in the transgenic rat model of AD. Interestingly, Drosha level was specifically reduced in neurons of the cortex and hippocampus but not in the cerebellum in the AD brain samples. In primary cortical neurons, amyloid‐beta (Aβ) oligomers caused a p38 MAPK‐dependent phosphorylation of Drosha, leading to its redistribution from the nucleus to the cytoplasm and a decrease in its level. This loss of Drosha function preceded Aβ‐induced neuronal death. Importantly, inhibition of p38 MAPK activity or overexpression of Drosha protected neurons from Aβ oligomers‐induced apoptosis. Taken together, these results establish a role for p38 MAPK‐Drosha pathway in modulating neuronal viability under Aβ oligomers stress condition and implicate loss of Drosha as a key molecular change in the pathogenesis of AD.
Collapse
Affiliation(s)
- Haidong Xu
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Xiaolei Liu
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Wenming Li
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Ye Xi
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Peng Su
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Bo Meng
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Xiaoyun Shao
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Beisha Tang
- Department of Neurology Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Neurosurgery Tangdu Hospital The Fourth Military Medical University Xi'an China
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
- Department of Neurology Emory University School of Medicine Atlanta Georgia USA
| |
Collapse
|
41
|
Ammal Kaidery N, Ahuja M, Sharma SM, Thomas B. An Emerging Role of miRNAs in Neurodegenerative Diseases: Mechanisms and Perspectives on miR146a. Antioxid Redox Signal 2021; 35:580-594. [PMID: 33403895 PMCID: PMC8388248 DOI: 10.1089/ars.2020.8256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Advancements in and access to health care have led to unprecedented improvements in the quality of life and increased lifespan of human beings in the past century. However, aging is a significant risk factor for neurodegenerative diseases (NDs). Hence, improved life expectancy has led to an increased incidence of NDs. Despite intense research, effective treatments for NDs remain elusive. The future of neurotherapeutics development depends on effective disease modification strategies centered on carefully scrutinized targets. Recent Advances: As a promising new direction, recent evidence has demonstrated that epigenetic processes modify diverse biochemical pathways, including those related to NDs. Small non-coding RNAs, known as microRNAs (miRNAs), are components of the epigenetic system that alter the expression of target genes at the post-transcriptional level. Critical Issues: miRNAs are expressed abundantly in the central nervous system and are critical for the normal functioning and survival of neurons. Here, we review recent advances in elucidating miRNAs' roles in NDs and discuss their potential as therapeutic targets. In particular, neuroinflammation is a major pathological hallmark of NDs and miR146a is a crucial regulator of inflammation. Future Directions: Finally, we explore the possibilities of developing miR146a as a potential biomarker and therapeutic target where additional research may help facilitate the detection and amelioration of neuroinflammation in NDs. Antioxid. Redox Signal. 35, 580-594.
Collapse
Affiliation(s)
- Navneet Ammal Kaidery
- Darby Children's Research Institute, Departments of Medical University of South Carolina, Charleston, South Carolina, USA.,Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Manuj Ahuja
- Darby Children's Research Institute, Departments of Medical University of South Carolina, Charleston, South Carolina, USA.,Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sudarshana M Sharma
- Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Hollings Cancer Center, and Departments of Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bobby Thomas
- Darby Children's Research Institute, Departments of Medical University of South Carolina, Charleston, South Carolina, USA.,Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA.,Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA.,Drug Discovery, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
42
|
La Rocca G, King B, Shui B, Li X, Zhang M, Akat KM, Ogrodowski P, Mastroleo C, Chen K, Cavalieri V, Ma Y, Anelli V, Betel D, Vidigal J, Tuschl T, Meister G, Thompson CB, Lindsten T, Haigis K, Ventura A. Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. eLife 2021; 10:e70948. [PMID: 34463618 PMCID: PMC8476124 DOI: 10.7554/elife.70948] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Although virtually all gene networks are predicted to be controlled by miRNAs, the contribution of this important layer of gene regulation to tissue homeostasis in adult animals remains unclear. Gain and loss-of-function experiments have provided key insights into the specific function of individual miRNAs, but effective genetic tools to study the functional consequences of global inhibition of miRNA activity in vivo are lacking. Here we report the generation and characterization of a genetically engineered mouse strain in which miRNA-mediated gene repression can be reversibly inhibited without affecting miRNA biogenesis or abundance. We demonstrate the usefulness of this strategy by investigating the consequences of acute inhibition of miRNA function in adult animals. We find that different tissues and organs respond differently to global loss of miRNA function. While miRNA-mediated gene repression is essential for the homeostasis of the heart and the skeletal muscle, it is largely dispensable in the majority of other organs. Even in tissues where it is not required for homeostasis, such as the intestine and hematopoietic system, miRNA activity can become essential during regeneration following acute injury. These data support a model where many metazoan tissues primarily rely on miRNA function to respond to potentially pathogenic events.
Collapse
Affiliation(s)
- Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Bryan King
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Bing Shui
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
| | - Xiaoyi Li
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Minsi Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kemal M Akat
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, United States
| | - Paul Ogrodowski
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Chiara Mastroleo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kevin Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Yilun Ma
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, United States
| | - Viviana Anelli
- Center of Integrative Biology, University of Trento, Trento, Italy
| | - Doron Betel
- Hem/Oncology, Medicine and Institution for Computational Biomedicine, Weill Cornell Medical College, New York, United States
| | - Joana Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, United States
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, United States
| | - Gunter Meister
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Tullia Lindsten
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kevin Haigis
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
43
|
Rybak-Wolf A, Plass M. RNA Dynamics in Alzheimer's Disease. Molecules 2021; 26:5113. [PMID: 34500547 PMCID: PMC8433936 DOI: 10.3390/molecules26175113] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder that heavily burdens healthcare systems worldwide. There is a significant requirement to understand the still unknown molecular mechanisms underlying AD. Current evidence shows that two of the major features of AD are transcriptome dysregulation and altered function of RNA binding proteins (RBPs), both of which lead to changes in the expression of different RNA species, including microRNAs (miRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs). In this review, we will conduct a comprehensive overview of how RNA dynamics are altered in AD and how this leads to the differential expression of both short and long RNA species. We will describe how RBP expression and function are altered in AD and how this impacts the expression of different RNA species. Furthermore, we will also show how changes in the abundance of specific RNA species are linked to the pathology of AD.
Collapse
Affiliation(s)
- Agnieszka Rybak-Wolf
- Max Delbrück Center for Molecular Medicine (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Mireya Plass
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908 Barcelona, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, 08908 Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
44
|
Tung CW, Huang PY, Chan SC, Cheng PH, Yang SH. The regulatory roles of microRNAs toward pathogenesis and treatments in Huntington's disease. J Biomed Sci 2021; 28:59. [PMID: 34412645 PMCID: PMC8375176 DOI: 10.1186/s12929-021-00755-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is one of neurodegenerative diseases, and is defined as a monogenetic disease due to the mutation of Huntingtin gene. This disease affects several cellular functions in neurons, and further influences motor and cognitive ability, leading to the suffering of devastating symptoms in HD patients. MicroRNA (miRNA) is a non-coding RNA, and is responsible for gene regulation at post-transcriptional levels in cells. Since one miRNA targets to several downstream genes, it may regulate different pathways simultaneously. As a result, it raises a potential therapy for different diseases using miRNAs, especially for inherited diseases. In this review, we will not only introduce the update information of HD and miRNA, but also discuss the development of potential miRNA-based therapy in HD. With the understanding toward the progression of miRNA studies in HD, we anticipate it may provide an insight to treat this devastating disease, even applying to other genetic diseases.
Collapse
Affiliation(s)
- Chih-Wei Tung
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pin-Yu Huang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Siew Chin Chan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pei-Hsun Cheng
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
45
|
Contiliani DF, Ribeiro YDA, de Moraes VN, Pereira TC. MicroRNAs in Prion Diseases-From Molecular Mechanisms to Insights in Translational Medicine. Cells 2021; 10:1620. [PMID: 34209482 PMCID: PMC8307047 DOI: 10.3390/cells10071620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules able to post-transcriptionally regulate gene expression via base-pairing with partially complementary sequences of target transcripts. Prion diseases comprise a singular group of neurodegenerative conditions caused by endogenous, misfolded pathogenic (prion) proteins, associated with molecular aggregates. In humans, classical prion diseases include Creutzfeldt-Jakob disease, fatal familial insomnia, Gerstmann-Sträussler-Scheinker syndrome, and kuru. The aim of this review is to present the connections between miRNAs and prions, exploring how the interaction of both molecular actors may help understand the susceptibility, onset, progression, and pathological findings typical of such disorders, as well as the interface with some prion-like disorders, such as Alzheimer's. Additionally, due to the inter-regulation of prions and miRNAs in health and disease, potential biomarkers for non-invasive miRNA-based diagnostics, as well as possible miRNA-based therapies to restore the levels of deregulated miRNAs on prion diseases, are also discussed. Since a cure or effective treatment for prion disorders still pose challenges, miRNA-based therapies emerge as an interesting alternative strategy to tackle such defying medical conditions.
Collapse
Affiliation(s)
- Danyel Fernandes Contiliani
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| | - Yasmin de Araújo Ribeiro
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| | - Vitor Nolasco de Moraes
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| | - Tiago Campos Pereira
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| |
Collapse
|
46
|
Park Y, Page N, Salamon I, Li D, Rasin MR. Making sense of mRNA landscapes: Translation control in neurodevelopment. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1674. [PMID: 34137510 DOI: 10.1002/wrna.1674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022]
Abstract
Like all other parts of the central nervous system, the mammalian neocortex undergoes temporally ordered set of developmental events, including proliferation, differentiation, migration, cellular identity, synaptogenesis, connectivity formation, and plasticity changes. These neurodevelopmental mechanisms have been characterized by studies focused on transcriptional control. Recent findings, however, have shown that the spatiotemporal regulation of post-transcriptional steps like alternative splicing, mRNA traffic/localization, mRNA stability/decay, and finally repression/derepression of protein synthesis (mRNA translation) have become just as central to the neurodevelopment as transcriptional control. A number of dynamic players act post-transcriptionally in the neocortex to regulate these steps, as RNA binding proteins (RBPs), ribosomal proteins (RPs), long non-coding RNAs, and/or microRNA. Remarkably, mutations in these post-transcriptional regulators have been associated with neurodevelopmental, neurodegenerative, inherited, or often co-morbid disorders, such as microcephaly, autism, epilepsy, intellectual disability, white matter diseases, Rett-syndrome like phenotype, spinocerebellar ataxia, and amyotrophic lateral sclerosis. Here, we focus on the current state, advanced methodologies and pitfalls of this exciting and upcoming field of RNA metabolism with vast potential in understanding fundamental neurodevelopmental processes and pathologies. This article is categorized under: Translation > Translation Regulation RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yongkyu Park
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Nicholas Page
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Iva Salamon
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Mladen-Roko Rasin
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
47
|
Diagnostic and Therapeutic Potential of Exosomal MicroRNAs for Neurodegenerative Diseases. Neural Plast 2021; 2021:8884642. [PMID: 34054944 PMCID: PMC8143892 DOI: 10.1155/2021/8884642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders (NDs) are characterized by a gradual loss of neurons and functions that eventually leads to progressive neurological impairment. In view of the heavy burden on the healthcare system, efficient and reliable biomarkers for early diagnosis and therapeutic treatments to reverse the progression of NDs are in urgent need. There has been an increasing interest in using exosomal miRNAs as biomarkers or targeted therapies for neurological diseases recently. In this review, we overviewed the updated studies on exosomal miRNAs as biomarkers and potential therapeutic approaches in NDs, as well as their association with the pathophysiology of this group of disorders, especially Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The exosomal miRNAs that are commonly dysregulated across different NDs or are commonly used as therapeutic candidates were also identified and summarized. In summary, the feasibility of exosomal miRNAs as biomarkers and potential targeted therapy for NDs has been verified. However, due to the limitations of existing studies and the discrepancies across different studies, high quality laboratory and clinical investigations are still required.
Collapse
|
48
|
Benameur T, Soleti R, Porro C. The Potential Neuroprotective Role of Free and Encapsulated Quercetin Mediated by miRNA against Neurological Diseases. Nutrients 2021; 13:1318. [PMID: 33923599 PMCID: PMC8073422 DOI: 10.3390/nu13041318] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic neuroinflammation is a pathological condition of numerous central nervous system (CNS) diseases such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis and many others. Neuroinflammation is characterized by the microglia activation and concomitant production of pro-inflammatory cytokines leading to an increasing neuronal cell death. The decreased neuroinflammation could be obtained by using natural compounds, including flavonoids known to modulate the inflammatory responses. Among flavonoids, quercetin possess multiple pharmacological applications including anti-inflammatory, antitumoral, antiapoptotic and anti-thrombotic activities, widely demonstrated in both in vitro and in vivo studies. In this review, we describe the recent findings about the neuroprotective action of quercetin by acting with different mechanisms on the microglial cells of CNS. The ability of quercetin to influence microRNA expression represents an interesting skill in the regulation of inflammation, differentiation, proliferation, apoptosis and immune responses. Moreover, in order to enhance quercetin bioavailability and capacity to target the brain, we discuss an innovative drug delivery system. In summary, this review highlighted an important application of quercetin in the modulation of neuroinflammation and prevention of neurological disorders.
Collapse
Affiliation(s)
- Tarek Benameur
- College of Medicine, Department of Biomedical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Raffaella Soleti
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49800 Angers, France;
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| |
Collapse
|
49
|
Paul S, Saha D, Bk B. Mitochondrial Dysfunction and Mitophagy Closely Cooperate in Neurological Deficits Associated with Alzheimer's Disease and Type 2 Diabetes. Mol Neurobiol 2021; 58:3677-3691. [PMID: 33797062 DOI: 10.1007/s12035-021-02365-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/19/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are known to be correlated in terms of their epidemiology, histopathology, and molecular and biochemical characteristics. The prevalence of T2D leading to AD is approximately 50-70%. Moreover, AD is often considered type III diabetes because of the common risk factors. Uncontrolled T2D may affect the brain, leading to memory and learning deficits in patients. In addition, metabolic disorders and impaired oxidative phosphorylation in AD and T2D patients suggest that mitochondrial dysfunction is involved in both diseases. The dysregulation of pathways involved in maintaining mitochondrial dynamics, biogenesis and mitophagy are responsible for exacerbating the impact of hyperglycemia on the brain and neurodegeneration under T2D conditions. The first section of this review describes the recent views on mitochondrial dysfunction that connect these two disease conditions, as the pathways are observed to overlap. The second section of the review highlights the importance of different mitochondrial miRNAs (mitomiRs) involved in the regulation of mitochondrial dynamics and their association with the pathogenesis of T2D and AD. Therefore, targeting mitochondrial biogenesis and mitophagy pathways, along with the use of mitomiRs, could be a potent therapeutic strategy for T2D-related AD. The last section of the review highlights the known drugs targeting mitochondrial function for the treatment of both disease conditions.
Collapse
Affiliation(s)
- Sangita Paul
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debarpita Saha
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Binukumar Bk
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
50
|
Nagaraj S, Want A, Laskowska-Kaszub K, Fesiuk A, Vaz S, Logarinho E, Wojda U. Candidate Alzheimer's Disease Biomarker miR-483-5p Lowers TAU Phosphorylation by Direct ERK1/2 Repression. Int J Mol Sci 2021; 22:ijms22073653. [PMID: 33915734 PMCID: PMC8037306 DOI: 10.3390/ijms22073653] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs have been demonstrated as key regulators of gene expression in the etiology of a range of diseases including Alzheimer's disease (AD). Recently, we identified miR-483-5p as the most upregulated miRNA amongst a panel of miRNAs in blood plasma specific to prodromal, early-stage Alzheimer's disease patients. Here, we investigated the functional role of miR-483-5p in AD pathology. Using TargetScan and miRTarBase, we identified the microtubule-associated protein MAPT, often referred to as TAU, and the extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), known to phosphorylate TAU, as predicted direct targets of miR-483-5p. Employing several functional assays, we found that miR-483-5p regulates ERK1 and ERK2 at both mRNA and protein levels, resulting in lower levels of phosphorylated forms of both kinases. Moreover, miR-483-5p-mediated repression of ERK1/2 resulted in reduced phosphorylation of TAU protein at epitopes associated with TAU neurofibrillary pathology in AD. These results indicate that upregulation of miR-483-5p can decrease phosphorylation of TAU via ERK pathway, representing a compensatory neuroprotective mechanism in AD pathology. This miR-483-5p/ERK1/TAU axis thus represents a novel target for intervention in AD.
Collapse
Affiliation(s)
- Siranjeevi Nagaraj
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
| | - Andrew Want
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
| | - Katarzyna Laskowska-Kaszub
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
| | - Aleksandra Fesiuk
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
- i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (S.V.); (E.L.)
| | - Sara Vaz
- i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (S.V.); (E.L.)
| | - Elsa Logarinho
- i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (S.V.); (E.L.)
- Aging and Aneuploidy Laboratory, IBMC, Institute of Molecular and Cellular Biology, University of Porto, 4200-135 Porto, Portugal
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
- Correspondence: ; Tel.: +48-22-5892578
| |
Collapse
|