1
|
Zang Z, Yin Y, Liu C, Zhu Q, Huang X, Li H, Yang R. IL21R hypomethylation as a biomarker for distinguishing benign and malignant breast tumours. Epigenetics 2024; 19:2352683. [PMID: 38723244 PMCID: PMC11086039 DOI: 10.1080/15592294.2024.2352683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Some benign and malignant breast tumours are similar in pathological morphology, which are difficult to be distinguished in clinical diagnosis. In this study, we intended to explore novel biomarkers for differential diagnosis of benign and malignant breast tumours. Methylation EPIC 850K beadchip and RNA-sequencing were used to analyse 29 tissue samples from patients with early-stage breast cancer (BC) and benign breast tumours for differently methylated and expressed genes. The altered methylation of IL21R was semi-quantitatively validated in an independent study with 566 tissue samples (279 BC vs. 287 benign breast tumours) using mass spectrometry. Binary logistic regression analysis was performed to evaluate the association between IL21R methylation and BC. BC-associated IL21R hypomethylation and overexpression were identified in the discovery round. In the validation round, BC patients presented significant IL21R hypomethylation compared to women with benign breast tumours (ORs ≥1.29 per-10% methylation, p-values ≤ 5.69E-14), and this hypomethylation was even enhanced in BC patients with ER-negative and PR-negative tumours as well as with triple-negative tumours. The methylation of IL21R showed efficient discriminatory power to distinguish benign breast tumours from BC (area under curve (AUC) = 0.88), and especially from ER-negative BC (AUC = 0.95), PR-negative BC (AUC = 0.93) and triple-negative BC (AUC = 0.96). We disclosed significant IL21R hypomethylation in patients with BC compared to women with benign breast tumours, and revealed the somatic change of DNA methylation could be a potential biomarker for molecular pathology of BC.
Collapse
Affiliation(s)
- Zishan Zang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifei Yin
- Department of Thyroid and Breast Surgery, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huaian, China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiang Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuandong Huang
- Department of Thyroid and Breast Surgery, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huaian, China
| | - Hong Li
- Department of Pathology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huaian, China
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Kim HM, Joo K, Kim M, Park YJ, Han JW, Kim KW, Lee S, Woo SJ. Genome-wide association study of subfoveal choroidal thickness in a longitudinal cohort of older adults. Sci Rep 2024; 14:23545. [PMID: 39384883 PMCID: PMC11464807 DOI: 10.1038/s41598-024-73094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
To identify genetic influences on subfoveal choroidal thickness of older adults using a genome-wide association study (GWAS). We recruited 300 participants from the population-based Korean Longitudinal Study on Health and Aging (KLoSHA) and Korean Longitudinal Study on Cognitive Aging and Dementia (KLOSCAD) cohort studies and 500 participants from the Bundang age-related macular degeneration (AMD) cohort study dataset. We conducted a GWAS on older adult populations in the KLoSHA and KLOSCAD cohorts. Single nucleotide polymorphisms (SNPs) associated with choroidal thickness were identified with P values < 1.0 × 10-4 in both the right and left eyes, followed by validation using the Bundang AMD cohort dataset. This association was further confirmed by a functional in vitro study using human umbilical vein endothelial cells (HUVECs). The ages of the cohort participants in the discovery and validation datasets were 73.5 ± 3.3 and 71.3 ± 7.9 years, respectively. In the discovery dataset, three SNPs (rs1916762, rs7587019, and rs13320098) were significantly associated with choroidal thickness in both eyes. This association was confirmed for rs1916762 (genotypes GG, GA, and AA) and rs7587019 (genotypes GG, GA, and AA), but not for rs13320098. The mean choroidal thickness decreased by 56.7 μm (AA, 73.8%) and 31.1 μm (GA, 85.6%) compared with that of the GG genotype of rs1916762, and by 55.4 μm (AA, 74.2%) and 28.2 μm (GA, 86.7%) compared with that of the GG genotype of rs7587019. The SNPs rs1916762 and rs7587019 were located close to the FAM124B gene near its cis-regulatory region. Moreover, FAM124B was highly expressed in vascular endothelial cells. In vitro HUVEC experiments showed that the inhibition of FAM124B was associated with decreased vascular endothelial proliferation, suggesting a potential mechanism of choroidal thinning. FAM124B was identified as a susceptibility gene affecting subfoveal choroidal thickness in older adults. This gene may be involved in mechanisms underlying retinal diseases associated with altered choroidal thickness, such as age-related macular degeneration.
Collapse
Affiliation(s)
- Hyeong Min Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, 13620, Gyeonggi-do, Republic of Korea
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, 13620, Gyeonggi-do, Republic of Korea
| | - Minji Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, 13620, Gyeonggi-do, Republic of Korea
| | - Young Joo Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, 13620, Gyeonggi-do, Republic of Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sejoon Lee
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, 13620, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Li DD, Zhou T, Gao J, Wu GL, Yang GR. Circadian rhythms and breast cancer: from molecular level to therapeutic advancements. J Cancer Res Clin Oncol 2024; 150:419. [PMID: 39266868 PMCID: PMC11393214 DOI: 10.1007/s00432-024-05917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND AND OBJECTIVES Circadian rhythms, the endogenous biological clocks that govern physiological processes, have emerged as pivotal regulators in the development and progression of breast cancer. This comprehensive review delves into the intricate interplay between circadian disruption and breast tumorigenesis from multifaceted perspectives, encompassing biological rhythms, circadian gene regulation, tumor microenvironment dynamics, and genetic polymorphisms. METHODS AND RESULTS Epidemiological evidence underscores the profound impact of external factors, such as night shift work, jet lag, dietary patterns, and exercise routines, on breast cancer risk and progression through the perturbation of circadian homeostasis. The review elucidates the distinct roles of key circadian genes, including CLOCK, BMAL1, PER, and CRY, in breast cancer biology, highlighting their therapeutic potential as molecular targets. Additionally, it investigates how circadian rhythm dysregulation shapes the tumor microenvironment, fostering epithelial-mesenchymal transition, chronic inflammation, and immunosuppression, thereby promoting tumor progression and metastasis. Furthermore, the review sheds light on the association between circadian gene polymorphisms and breast cancer susceptibility, paving the way for personalized risk assessment and tailored treatment strategies. CONCLUSIONS Importantly, it explores innovative therapeutic modalities that harness circadian rhythms, including chronotherapy, melatonin administration, and traditional Chinese medicine interventions. Overall, this comprehensive review emphasizes the critical role of circadian rhythms in the pathogenesis of breast cancer and highlights the promising prospects for the development of circadian rhythm-based interventions to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Dou-Dou Li
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Gao
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guan-Lin Wu
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Guang-Rui Yang
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
4
|
Luo Y, Cao H, Lei C, Liu J. ST6GALNAC1 promotes the invasion and migration of breast cancer cells via the EMT pathway. Genes Genomics 2023; 45:1367-1376. [PMID: 37747641 DOI: 10.1007/s13258-023-01445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND A specific sialyl-transferases called ST6GALNAC1 has been proven to up-regulate abnormal O-glycosylation, which is strongly associated with tumorigenesis and cancer progression. However, the precise pathological outcome of ST6GALNAC1 expression in breast cancer cells remains unknown. Therefore, our study aims to investigate the functional role of ST6GALNAC1 and its impact on the epithelial-mesenchymal transition (EMT) pathway in breast cancer cells. METHODS Plasmids with siRNA were used to construct ST6GALNAC1 knockoff (si-ST6GALNAC1) MDA-MB-231 and MDA-MB-453 cells, while lentiviruses were used to construct ST6GALNAC1 over-expression (oe-ST6GALNAC1) MCF-7 and BT474 cells. Transfer efficiency was verified by Western Blot. Then we selected transfected cells and assessed the changes in cell proliferation, invasion, migration, and EMT markers. RESULTS The expression of ST6GALNAC1 significantly enhanced cell migration and invasion, which was confirmed by Wound Scratch Assay and Transwell Assay. Particularly, ST6GALNAC1 expression directly induced the EMT signaling pathway. E-cadherin was markedly decreased in oe-ST6GALNAC1 cells, accompanied by an up-regulation of mesenchymal markers including N-cadherin, snail, and ZEB1. However, no significant correlation was found between ST6GALNAC1 expression and cell proliferation. All of the outcomes were reversely validated in si-ST6GALNAC1 cells. CONCLUSIONS The expression of ST6GALNAC1 promotes cell migration and invasion probably by triggering the molecular process of the EMT pathway in breast cancer cells, which may provide new clues for designing novel molecular targeted drugs in breast cancer treatment.
Collapse
Affiliation(s)
- Yunzhao Luo
- Department of Breast Surgery, Beijing Chaoyang Hospital of Capital Medical University, No. 8 Workers' Stadium South Road, Beijing, 100020, China
| | - Heng Cao
- Department of Breast Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Chuqi Lei
- Department of Breast Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jun Liu
- Department of Breast Surgery, Beijing Chaoyang Hospital of Capital Medical University, No. 8 Workers' Stadium South Road, Beijing, 100020, China.
| |
Collapse
|
5
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
6
|
Shin HJ, Hua JT, Li H. Recent advances in understanding DNA methylation of prostate cancer. Front Oncol 2023; 13:1182727. [PMID: 37234978 PMCID: PMC10206257 DOI: 10.3389/fonc.2023.1182727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Epigenetic modifications, such as DNA methylation, is widely studied in cancer. DNA methylation patterns have been shown to distinguish between benign and malignant tumors in various cancers, including prostate cancer. It may also contribute to oncogenesis, as it is frequently associated with downregulation of tumor suppressor genes. Aberrant patterns of DNA methylation, in particular the CpG island hypermethylator phenotype (CIMP), have shown associative evidence with distinct clinical features and outcomes, such as aggressive subtypes, higher Gleason score, prostate-specific antigen (PSA), and overall tumor stage, overall worse prognosis, as well as reduced survival. In prostate cancer, hypermethylation of specific genes is significantly different between tumor and normal tissues. Methylation patterns could distinguish between aggressive subtypes of prostate cancer, including neuroendocrine prostate cancer (NEPC) and castration resistant prostate adenocarcinoma. Further, DNA methylation is detectable in cell-free DNA (cfDNA) and is reflective of clinical outcome, making it a potential biomarker for prostate cancer. This review summarizes recent advances in understanding DNA methylation alterations in cancers with the focus on prostate cancer. We discuss the advanced methodology used for evaluating DNA methylation changes and the molecular regulators behind these changes. We also explore the clinical potential of DNA methylation as prostate cancer biomarkers and its potential for developing targeted treatment of CIMP subtype of prostate cancer.
Collapse
Affiliation(s)
- Hyun Jin Shin
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Junjie T Hua
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Powers RM, Hevner RF, Halpain S. The Neuron Navigators: Structure, function, and evolutionary history. Front Mol Neurosci 2023; 15:1099554. [PMID: 36710926 PMCID: PMC9877351 DOI: 10.3389/fnmol.2022.1099554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Neuron navigators (Navigators) are cytoskeletal-associated proteins important for neuron migration, neurite growth, and axon guidance, but they also function more widely in other tissues. Recent studies have revealed novel cellular functions of Navigators such as macropinocytosis, and have implicated Navigators in human disorders of axon growth. Navigators are present in most or all bilaterian animals: vertebrates have three Navigators (NAV1-3), Drosophila has one (Sickie), and Caenorhabditis elegans has one (Unc-53). Structurally, Navigators have conserved N- and C-terminal regions each containing specific domains. The N-terminal region contains a calponin homology (CH) domain and one or more SxIP motifs, thought to interact with the actin cytoskeleton and mediate localization to microtubule plus-end binding proteins, respectively. The C-terminal region contains two coiled-coil domains, followed by a AAA+ family nucleoside triphosphatase domain of unknown activity. The Navigators appear to have evolved by fusion of N- and C-terminal region homologs present in simpler organisms. Overall, Navigators participate in the cytoskeletal response to extracellular cues via microtubules and actin filaments, in conjunction with membrane trafficking. We propose that uptake of fluid-phase cues and nutrients and/or downregulation of cell surface receptors could represent general mechanisms that explain Navigator functions. Future studies developing new models, such as conditional knockout mice or human cerebral organoids may reveal new insights into Navigator function. Importantly, further biochemical studies are needed to define the activities of the Navigator AAA+ domain, and to study potential interactions among different Navigators and their binding partners.
Collapse
Affiliation(s)
- Regina M. Powers
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States,Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Robert F. Hevner
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States,Department of Pathology, UC San Diego School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States,Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States,*Correspondence: Shelley Halpain, ✉
| |
Collapse
|
8
|
Dansonka-Mieszkowska A, Szafron LA, Kulesza M, Stachurska A, Leszczynski P, Tomczyk-Szatkowska A, Sobiczewski P, Parada J, Kulinczak M, Moes-Sosnowska J, Pienkowska-Grela B, Kupryjanczyk J, Chechlinska M, Szafron LM. PROM1, CXCL8, RUNX1, NAV1 and TP73 genes as independent markers predictive of prognosis or response to treatment in two cohorts of high-grade serous ovarian cancer patients. PLoS One 2022; 17:e0271539. [PMID: 35867729 PMCID: PMC9307210 DOI: 10.1371/journal.pone.0271539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Considering the vast biological diversity and high mortality rate in high-grade ovarian cancers, identification of novel biomarkers, enabling precise diagnosis and effective, less aggravating treatment, is of paramount importance. Based on scientific literature data, we selected 80 cancer-related genes and evaluated their mRNA expression in 70 high-grade serous ovarian cancer (HGSOC) samples by Real-Time qPCR. The results were validated in an independent Northern American cohort of 85 HGSOC patients with publicly available NGS RNA-seq data. Detailed statistical analyses of our cohort with multivariate Cox and logistic regression models considering clinico-pathological data and different TP53 mutation statuses, revealed an altered expression of 49 genes to affect the prognosis and/or treatment response. Next, these genes were investigated in the validation cohort, to confirm the clinical significance of their expression alterations, and to identify genetic variants with an expected high or moderate impact on their products. The expression changes of five genes, PROM1, CXCL8, RUNX1, NAV1, TP73, were found to predict prognosis or response to treatment in both cohorts, depending on the TP53 mutation status. In addition, we revealed novel and confirmed known SNPs in these genes, and showed that SNPs in the PROM1 gene correlated with its elevated expression.
Collapse
Affiliation(s)
- Agnieszka Dansonka-Mieszkowska
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Laura Aleksandra Szafron
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Kulesza
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Stachurska
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Pawel Leszczynski
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Agnieszka Tomczyk-Szatkowska
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Sobiczewski
- Department of Gynecological Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Parada
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mariusz Kulinczak
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Moes-Sosnowska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Barbara Pienkowska-Grela
- Cytogenetics Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jolanta Kupryjanczyk
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Chechlinska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Lukasz Michal Szafron
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
9
|
Ravari MS, Farrokhi E, Moradi Z, Chaleshtori MH, Jami MS, Zarandi MB. Association between GPX1 and IL-6 promoter methylation and type 2 diabetes. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Todorova VK, Byrum SD, Gies AJ, Haynie C, Smith H, Reyna NS, Makhoul I. Circulating Exosomal microRNAs as Predictive Biomarkers of Neoadjuvant Chemotherapy Response in Breast Cancer. Curr Oncol 2022; 29:613-630. [PMID: 35200555 PMCID: PMC8870357 DOI: 10.3390/curroncol29020055] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Neoadjuvant chemotherapy (NACT) is an increasingly used approach for treatment of breast cancer. The pathological complete response (pCR) is considered a good predictor of disease-specific survival. This study investigated whether circulating exosomal microRNAs could predict pCR in breast cancer patients treated with NACT. Method: Plasma samples of 20 breast cancer patients treated with NACT were collected prior to and after the first cycle. RNA sequencing was used to determine microRNA profiling. The Cancer Genome Atlas (TCGA) was used to explore the expression patterns and survivability of the candidate miRNAs, and their potential targets based on the expression levels and copy number variation (CNV) data. Results: Three miRNAs before that NACT (miR-30b, miR-328 and miR-423) predicted pCR in all of the analyzed samples. Upregulation of miR-127 correlated with pCR in triple-negative breast cancer (TNBC). After the first NACT dose, pCR was predicted by exo-miR-141, while miR-34a, exo-miR182, and exo-miR-183 predicted non-pCR. A significant correlation between the candidate miRNAs and the overall survival, subtype, and metastasis in breast cancer, suggesting their potential role as predictive biomarkers of pCR. Conclusions: If the miRNAs identified in this study are validated in a large cohort of patients, they might serve as predictive non-invasive liquid biopsy biomarkers for monitoring pCR to NACT in breast cancer.
Collapse
Affiliation(s)
- Valentina K. Todorova
- Division of Medical Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Correspondence:
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (A.J.G.)
| | - Allen J. Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (A.J.G.)
| | - Cade Haynie
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (C.H.); (H.S.); (N.S.R.)
| | - Hunter Smith
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (C.H.); (H.S.); (N.S.R.)
| | - Nathan S. Reyna
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (C.H.); (H.S.); (N.S.R.)
| | - Issam Makhoul
- Division of Medical Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
11
|
Kuang Y, Wang Y, Cao X, Peng C, Gao H. New prognostic factors and scoring system for patients with acute myeloid leukemia. Oncol Lett 2021; 22:823. [PMID: 34691250 PMCID: PMC8527825 DOI: 10.3892/ol.2021.13084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease originating from myeloid hematopoietic stem or progenitor cells. It is important to identify molecules associated with the prognosis of AML and conduct an individual risk assessment for different patients. In the present study, the RNA expression profile of 132 patients with AML and 337 healthy individuals were downloaded from the University of California Santa Cruz Xena and the Genotype-Tissue Expression project databases. Differentially expressed mRNA (DEmRNA) transcripts between normal blood and AML blood were identified. Among these, prognosis-associated signature mRNA molecules were screened using univariate Cox and least absolute shrinkage and selection operator regression. A total of four genes, namely, family with sequence similarity 124 member B (FAM124B), 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL), myeloperoxidase (MPO) and purinergic receptor P2Y1 (P2RY1), were identified using multivariate Cox regression analysis and were used to construct a prognostic scoring system. Moreover, the expression levels of HPDL and MPO were higher in the samples with high immunity scores and estimate scores (sum of stromal score and immune score), compared with those with low scores. Reverse transcription-quantitative PCR and western blot analysis were used to confirm the upregulation of the four candidate genes in AML cell lines as well as in clinical AML samples. In summary, the present study identified a novel mRNA-based prognostic risk scoring system for patients with AML. The four genes used in this scoring system may also play an important role in AML.
Collapse
Affiliation(s)
- Ye Kuang
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| | - Yang Wang
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| | - Xianghong Cao
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| | - Chuanmei Peng
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| | - Hui Gao
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
12
|
Yu X, Han Y, Liu S, Jiang W, Song Y, Tong J, Qiao T, Lv Z, Li D. Analysis of Genetic Alterations Related to DNA Methylation in Testicular Germ Cell Tumors Based on Data Mining. Cytogenet Genome Res 2021; 161:382-394. [PMID: 34433169 DOI: 10.1159/000516385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/27/2020] [Indexed: 11/19/2022] Open
Abstract
Embryonal carcinoma (EC) and seminoma (SE) are both derived from germ cell neoplasia in situ but show big differences in growth patterns and clinical prognosis. Epigenetic regulation may play an important role in the development of EC and SE. This study investigated the DNA methylation-based genetic alterations between EC and SE by analyzing the datasets of mRNA expression and DNA methylation profiling. The datasets were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified between EC and SE by limma package in R environment. Gene function enrichment analysis of the DEGs was performed on the DAVID tool, the results of which suggested differences in capability of pluripotency and genomic stability between EC and SE. The minfi package and wANNOVAR tool were used to identify differentially methylated genes. A total of 37 genes were discovered with both mRNA expression and the accordant DNA methylation changes. The findings were verified by the sequencing data from The Cancer Genome Atlas database, and Kaplan-Meier survival analysis was performed. Finally, 5 genes (PRDM1, LMO2, FAM53B, HCN4, and FAM124B) were found that showed both low expression and high methylation in EC, and were significantly associated with relapse-free survival. The findings of methylation-based genetic features between EC and SE might be helpful in studying the role of DNA methylation in cancer development.
Collapse
Affiliation(s)
- Xiaqing Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yali Han
- Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Simin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Jiang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingchun Song
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junyu Tong
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Qiao
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Imaging Clinical Medical Center, Tongji University School of Medicine, Shanghai, China.,Clinical Nuclear Medicine Center, Tongji University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Cai J, Yang F, Chen X, Huang H, Miao B. Signature Panel of 11 Methylated mRNAs and 3 Methylated lncRNAs for Prediction of Recurrence-Free Survival in Prostate Cancer Patients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:797-811. [PMID: 34285549 PMCID: PMC8285280 DOI: 10.2147/pgpm.s312024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022]
Abstract
Background Radical prostatectomy is the main treatment for prostate cancer (PCa), a common cancer type among men. Recurrence frequently occurs in a proportion of patients. Therefore, there is a great need to early screen those patients to specifically schedule adjuvant therapy to improve the recurrence-free survival (RFS) rate. This study aims to develop a biomarker to predict RFS for patients with PCa based on the data of methylation, an important heritable contributor to carcinogenesis. Methods Methylation expression data of PCa patients were downloaded from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus database (GSE26126), and the European Bioinformatics Institute (E-MTAB-6131). The stable co-methylation modules were identified by weighted gene co-expression network analysis. The genes in modules were overlapped with differentially methylated RNAs (DMRs) screened by MetaDE package in three datasets, which were used to screen the prognostic genes using least absolute shrinkage and selection operator analyses. The prognostic performance of the prognostic signature was assessed by survival curve analysis. Results Five co-methylation modules were considered preserved in three datasets. A total of 192 genes in these 5 modules were overlapped with 985 DMRs, from which a signature panel of 11 methylated messenger RNAs and 3 methylated long non-coding RNAs was identified. This signature panel could independently predict the 5-year RFS of PCa patients, with an area under the receiver operating characteristic curve (AUC) of 0.969 for the training TCGA dataset and 0.811 for the testing E-MTAB-6131 dataset, both of which were higher than the predictive accuracy of Gleason score (AUC = 0.689). Also, the patients with the same Gleason score (6–7 or 8–10) could be further divided into the high-risk group and the low-risk group. Conclusion These results suggest that our prognostic model may be a promising biomarker for clinical prediction of RFS in PCa patients.
Collapse
Affiliation(s)
- Jiarong Cai
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Fei Yang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Xuelian Chen
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - He Huang
- General Surgery Department, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Bin Miao
- Department of Organ Transplantation, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| |
Collapse
|
14
|
Hegde M, Joshi MB. Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors. J Cancer Res Clin Oncol 2021; 147:937-971. [PMID: 33604794 PMCID: PMC7954751 DOI: 10.1007/s00432-021-03519-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Significant reprogramming of epigenome is widely described during pathogenesis of breast cancer. Transformation of normal cell to hyperplastic cell and to neoplastic phenotype is associated with aberrant DNA (de)methylation, which, through promoter and enhancer methylation changes, activates oncogenes and silence tumor suppressor genes in variety of tumors including breast. DNA methylation, one of the major epigenetic mechanisms is catalyzed by evolutionarily conserved isoforms namely, DNMT1, DNMT3A and DNMT3B in humans. Over the years, studies have demonstrated intricate and complex regulation of DNMT isoforms at transcriptional, translational and post-translational levels. The recent findings of allosteric regulation of DNMT isoforms and regulation by other interacting chromatin modifying proteins emphasizes functional integrity and their contribution for the development of breast cancer and progression. DNMT isoforms are regulated by several intrinsic and extrinsic parameters. In the present review, we have extensively performed bioinformatics analysis of expression of DNMT isoforms along with their transcriptional and post-transcriptional regulators such as transcription factors, interacting proteins, hormones, cytokines and dietary elements along with their significance during pathogenesis of breast tumors. Our review manuscript provides a comprehensive understanding of key factors regulating DNMT isoforms in breast tumor pathology and documents unsolved issues.
Collapse
Affiliation(s)
- Mangala Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
15
|
Gong Z, Chen J, Wang J, Liu S, Ambrosone CB, Higgins MJ. Differential methylation and expression patterns of microRNAs in relation to breast cancer subtypes among American women of African and European ancestry. PLoS One 2021; 16:e0249229. [PMID: 33784351 PMCID: PMC8009363 DOI: 10.1371/journal.pone.0249229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Aggressive high-grade, estrogen receptor negative (ER-) breast cancer is more common among American women of African ancestry (AA) than those of European ancestry (EA). Epigenetic mechanisms, particularly DNA methylation and altered microRNA (miRNA) expression, may contribute to racial differences in breast cancer. However, few studies have specifically characterized genome-wide DNA methylation-based modifications at the miRNA level in relation to ER+ and ER- subtype, and their functional role in the regulation of miRNA expression, especially among high risk AA women. In this study, we evaluated DNA methylation patterns of miRNA encoding genes and their effect on expression in breast tumors from both AA and EA women. The genome-wide methylation screen identified a total of 7,191 unique CpGs mapped to 1,292 miRNA genes, corresponding to 2,035 unique mature miRNAs. We identified differentially methylated loci (DMLs: (|delta β|)>0.10, FDR<0.05) between ER- and ER+ tumor subtypes, including 290 DMLs shared in both races, 317 and 136 were specific to AA and EA women, respectively. Integrated analysis identified certain DMLs whose methylation levels were significantly correlated with the expression of relevant miRNAs, such as multiple CpGs within miR-190b and miR-135b highly negatively correlated with their expression. These results were then validated in the TCGA dataset. Target prediction and pathway analysis showed that these DNA methylation-dysregulated miRNAs are involved in multiple cancer-related pathways, including cell cycle G1-S growth factor regulation, cytoskeleton remodeling, angiogenesis, EMT, and ESR1-mediated signaling pathways. In summary, our results suggest that DNA methylation changes within miRNA genes are associated with altered miRNA expression, which may contribute to the network of subtype- and race-related tumor biological differences in breast cancer. These findings support the involvement of epigenetic regulation of miRNA expression and provide insights into the relations of clinical-relevant miRNAs to their target genes, which may serve as potential preventative and therapeutic targets.
Collapse
Affiliation(s)
- Zhihong Gong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Jianhong Chen
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Jie Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Michael J. Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| |
Collapse
|
16
|
Han T, Chen Z, Chen W, Yuan L, Liu B. The prognostic value of circular RNA regulatory genes in competitive endogenous RNA network in gastric cancer. Cancer Gene Ther 2021; 28:1175-1187. [PMID: 33514881 DOI: 10.1038/s41417-020-00270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023]
Abstract
Accumulating evidence shows that circular RNA (circRNA) is an important regulator of many diseases, especially cancer. Gastric cancer (GC) is a malignant tumor of the digestive system. The regulatory role and potential mechanism of circRNAs in GC remain unknown. This study aims to explore the function and regulatory mechanism of circRNA-related competitive endogenous RNA (ceRNA) in GC. The circRNA expression profile was downloaded from the Gene Expression Omnibus (GEO) database. The RNA expression profile and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. Difference analysis was conducted after quality control. Based on CircInteractome, TargetScan, and miRDB databases, a circRNA-related ceRNA network was constructed. R package "clusterProfiler" was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Then, a univariate and multivariate Cox regression was used to construct a prognostic-related gene model to predict survival models. Finally, a gene set enrichment analysis (GSEA) analysis was performed to elucidate the function of genes related to prognosis. Altogether, 23 DEcircRNAs, 319 DEmiRNAs, and 14,541 DEmRNAs were identified. Based on ceRNA trends, the ceRNA network included 15 DEcircRNAs, 25 DEmiRNAs, and 1099 DEmRNAs in GC. Univariate and multivariate Cox proportional hazards regression analysis was used to establish a survival model with 11 prognosis-related genes and its AUC was 0.741, indicating good sensitivity and specificity in the prediction of GC prognosis. Finally, three prognostic-related genes were selected randomly to verify expression levels, which were consistent with the analysis result. The prognostic genes were significantly enriched in cancer-related biological processes, suggesting their roles in the onset and progression of GC. Our study constructs a prognostic model of GC, deepens our understanding of circRNA-related ceRNA networks in GC biology, and provided further implications for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Tong Han
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zonglin Chen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Weidong Chen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Liqin Yuan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Bo Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
17
|
Houshdaran S, Oke AB, Fung JC, Vo KC, Nezhat C, Giudice LC. Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis. PLoS Genet 2020; 16:e1008601. [PMID: 32555663 PMCID: PMC7299312 DOI: 10.1371/journal.pgen.1008601] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/09/2020] [Indexed: 01/03/2023] Open
Abstract
Programmed cellular responses to cycling ovarian-derived steroid hormones are central to normal endometrial function. Abnormalities therein, as in the estrogen-dependent, progesterone-"resistant" disorder, endometriosis, predispose to infertility and poor pregnancy outcomes. The endometrial stromal fibroblast (eSF) is a master regulator of pregnancy success. However, the complex hormone-epigenome-transcriptome interplay in eSF by each individual steroid hormone, estradiol (E2) and/or progesterone (P4), under physiologic and pathophysiologic conditions, is poorly understood and was investigated herein. Genome-wide analysis in normal, early and late stage eutopic eSF revealed: i) In contrast to P4, E2 extensively affected the eSF DNA methylome and transcriptome. Importantly, E2 resulted in a more open versus closed chromatin, confirmed by histone modification analysis. Combined E2 with P4 affected a totally different landscape than E2 or P4 alone. ii) P4 responses were aberrant in early and late stage endometriosis, and mapping differentially methylated CpG sites with progesterone receptor targets from the literature revealed different but not decreased P4-targets, leading to question the P4-"resistant" phenotype in endometriosis. Interestingly, an aberrant E2-response was noted in eSF from endometriosis women; iii) Steroid hormones affected specific genomic contexts and locations, significantly enriching enhancers and intergenic regions and minimally involving proximal promoters and CpG islands, regardless of hormone type and eSF disease state. iv) In eSF from women with endometriosis, aberrant hormone-induced methylation signatures were mainly due to existing DNA methylation marks prior to hormone treatments and involved known endometriosis genes and pathways. v) Distinct DNA methylation and transcriptomic signatures revealed early and late stage endometriosis comprise unique disease subtypes. Taken together, the data herein, for the first time, provide significant insight into the hormone-epigenome-transcriptome interplay of each steroid hormone in normal eSF, and aberrant E2 response, distinct disease subtypes, and pre-existing epigenetic aberrancies in the setting of endometriosis, provide mechanistic insights into how endometriosis affects endometrial function/dysfunction.
Collapse
Affiliation(s)
- Sahar Houshdaran
- University of California San Francisco, Dept. of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, California, United States of America
| | - Ashwini B. Oke
- University of California San Francisco, Dept. of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, California, United States of America
| | - Jennifer C. Fung
- University of California San Francisco, Dept. of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, California, United States of America
| | - Kim Chi Vo
- University of California San Francisco, Dept. of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, California, United States of America
| | - Camran Nezhat
- Camran Nezhat Institute, Palo Alto, California, United States of America
| | - Linda C. Giudice
- University of California San Francisco, Dept. of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, California, United States of America
| |
Collapse
|
18
|
Lesicka M, Jabłońska E, Wieczorek E, Seroczyńska B, Kalinowski L, Skokowski J, Reszka E. A different methylation profile of circadian genes promoter in breast cancer patients according to clinicopathological features. Chronobiol Int 2019; 36:1103-1114. [PMID: 31179760 DOI: 10.1080/07420528.2019.1617732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
One of the supposed mechanisms that may lead to breast cancer (BC) is an alteration of circadian gene expression and DNA methylation. We undertook an integrated approach to identify methylation pattern of core circadian promoter regions in BC patients with regard to clinical features. We performed a quantitative methylation-specific real-time PCR analysis of a promoter methylation profile in 107 breast tumor and matched non-tumor tissues. A panel of circadian genes CLOCK, BMAL1, PERIOD (PER1, 2, 3), CRYPTOCHROME (CRY1, 2) and TIMELESS as well as their association with clinicopathological characteristics were included in the analysis. Three out of the eight analyzed genes exhibited marked hypermethylation (PER1, 2, 3), whereas CLOCK, BMAL1, CRY2 showed significantly lower promoter CpG methylation in the BC tissues when compared to the non-tumor tissues. Among variously methylated genes we found an association between the elevated methylation level of PERs promoter region and molecular subtypes, histological subtypes and tumor grading of BC. Methylation status may be associated with a gene expression level of circadian genes in BC patients. An aberrant methylation pattern in circadian genes in BC may provide information that could be used as novel biomarkers in clinics and molecular epidemiology as well as play an important role in BC etiology.
Collapse
Affiliation(s)
- Monika Lesicka
- a Department of Molecular Genetics and Epigenetics , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Ewa Jabłońska
- a Department of Molecular Genetics and Epigenetics , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Edyta Wieczorek
- a Department of Molecular Genetics and Epigenetics , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Barbara Seroczyńska
- b Department of Medical Laboratory Diagnostics and Bank of Frozen Tissues and Genetic Specimens , Medical University of Gdansk , Gdansk , Poland
| | - Leszek Kalinowski
- b Department of Medical Laboratory Diagnostics and Bank of Frozen Tissues and Genetic Specimens , Medical University of Gdansk , Gdansk , Poland.,c Department of Medical Laboratory Diagnostics and Bank of Frozen Tissues and Genetic Specimens , Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.PL) , Gdansk , Poland
| | - Jarosław Skokowski
- b Department of Medical Laboratory Diagnostics and Bank of Frozen Tissues and Genetic Specimens , Medical University of Gdansk , Gdansk , Poland.,c Department of Medical Laboratory Diagnostics and Bank of Frozen Tissues and Genetic Specimens , Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.PL) , Gdansk , Poland.,d Department of Surgical Oncology , Medical University of Gdansk , Gdansk , Poland
| | - Edyta Reszka
- a Department of Molecular Genetics and Epigenetics , Nofer Institute of Occupational Medicine , Lodz , Poland
| |
Collapse
|
19
|
Dai R, Edwards MR, Heid B, Ahmed SA. 17β-Estradiol and 17α-Ethinyl Estradiol Exhibit Immunologic and Epigenetic Regulatory Effects in NZB/WF1 Female Mice. Endocrinology 2019; 160:101-118. [PMID: 30418530 PMCID: PMC6305969 DOI: 10.1210/en.2018-00824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
17α-Ethinyl estradiol (EE), a synthetic analog of natural estrogen 17β-estradiol (E2), is extensively used in hormonal contraceptives and estrogen replacement therapy, and it has also been found in sewage effluents. Given that E2 is a well-known immunomodulator, surprisingly there has been only limited information on the cellular and molecular immunologic consequences of exposure to EE. To address this fundamental gap, we directly compared the effects of EE with E2 on splenic leukocytes of New Zealand Black × New Zealand White F1 progeny (NZB/WF1) mice during the preautoimmune period. We found that EE and E2 have common, as well as distinctive, immunologic effects, with EE exposure resulting in more profound effects. Both EE and E2 increased numbers of splenic neutrophils, enhanced neutrophil serine proteases and myeloperoxidase expression, promoted the production of nitric oxide and monocyte chemoattractant protein-1, and altered adaptive immune T cell subsets. However, activation of splenic leukocytes through the T cell receptor or Toll-like receptor (TLR)4 revealed not only common (IL-10), but also hormone-specific alterations of cytokines (IFNγ, IL-1β, ΤΝFα, IL-2). Furthermore, in EE-exposed mice, TLR9 stimulation suppressed IFNα, in contrast to increased IFNα from E2-exposed mice. EE and E2 regulated common and hormone-specific expression of immune-related genes. Furthermore, EE exposure resulted in more marked alterations in miRNA expression levels than for E2. Only EE was able to reduce global DNA methylation significantly in splenic leukocytes. Taken together, our novel data revealed that EE and E2 exposure confers more similar effects in innate immune system-related cell development and responses, but has more differential regulatory effects in adaptive immune-related cell development and responses.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Infectious Disease Research Facility (IDRF), Virginia-Maryland College of Veterinary Medicine, Virginia Tech/Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Michael R Edwards
- Department of Biomedical Sciences and Pathobiology, Infectious Disease Research Facility (IDRF), Virginia-Maryland College of Veterinary Medicine, Virginia Tech/Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Infectious Disease Research Facility (IDRF), Virginia-Maryland College of Veterinary Medicine, Virginia Tech/Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Infectious Disease Research Facility (IDRF), Virginia-Maryland College of Veterinary Medicine, Virginia Tech/Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
20
|
Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J Autoimmun 2018; 92:12-34. [PMID: 29861127 DOI: 10.1016/j.jaut.2018.05.008] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in preventing or ameliorating AID. Finally, we suggest that, given consistent observations of microbiota dysbiosis associated with AID and the ability of SCFA and BA to regulate intestinal permeability and inflammation, further mechanistic studies, examining how dietary microbiota modulation can protect against AID, hold considerable potential to tackle increased incidence of AID at the population level.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy; BIOMETRA Department, University of Milan, Italy
| |
Collapse
|
21
|
Kresovich JK, Gann PH, Erdal S, Chen HY, Argos M, Rauscher GH. Candidate gene DNA methylation associations with breast cancer characteristics and tumor progression. Epigenomics 2018; 10:367-378. [PMID: 29528252 PMCID: PMC5925433 DOI: 10.2217/epi-2017-0119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
AIM We examined methylation patterns with aggressive tumor phenotypes and investigated demographic, socioeconomic and reproductive predictors of gene methylation. MATERIALS & METHODS Pyrosequencing quantified methylation of BRCA1, EGFR, GSTM2, RASSF1, TFF1 and Sat 2. We used quantile regression models to calculate adjusted median methylation values by estrogen and progesterone receptor (ER/PR) status. Bivariate associations between participant characteristics and methylation were examined. RESULTS Higher percent methylation of GSTM2 was observed in ER/PR-negative compared with ER/PR-positive tumors in ductal carcinoma in situ (14 vs 2%) and invasive (35 vs 3%) tissue components. Trends in aberrant GSTM2 methylation across tissue components were stronger among ER/PR-negative tumors (p-interaction <0.001). Black women were more likely to have ER/PR-negative tumors (p = 0.01) and show hypermethylation of GSTM2 compared with other women (p = 0.05). CONCLUSION GSTM2 promoter hypermethylation may serve as a potential biomarker of aggressive tumor development and a mechanism for ER/PR-negative tumor progression.
Collapse
Affiliation(s)
- Jacob K Kresovich
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, IL 60612, USA
| | - Peter H Gann
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, IL 60612, USA
- Department of Pathology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Serap Erdal
- Division of Environmental & Occupational Health Sciences, University of Illinois at Chicago School of Public Health, Chicago, IL 60612, USA
| | - Hua Y Chen
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, IL 60612, USA
| | - Maria Argos
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, IL 60612, USA
| | - Garth H Rauscher
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Edwards M, Dai R, Ahmed SA. Our Environment Shapes Us: The Importance of Environment and Sex Differences in Regulation of Autoantibody Production. Front Immunol 2018; 9:478. [PMID: 29662485 PMCID: PMC5890161 DOI: 10.3389/fimmu.2018.00478] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/22/2018] [Indexed: 01/17/2023] Open
Abstract
Consequential differences exist between the male and female immune systems’ ability to respond to pathogens, environmental insults or self-antigens, and subsequent effects on immunoregulation. In general, females when compared with their male counterparts, respond to pathogenic stimuli and vaccines more robustly, with heightened production of antibodies, pro-inflammatory cytokines, and chemokines. While the precise reasons for sex differences in immune response to different stimuli are not yet well understood, females are more resistant to infectious diseases and much more likely to develop autoimmune diseases. Intrinsic (i.e., sex hormones, sex chromosomes, etc.) and extrinsic (microbiome composition, external triggers, and immune modulators) factors appear to impact the overall outcome of immune responses between sexes. Evidence suggests that interactions between environmental contaminants [e.g., endocrine disrupting chemicals (EDCs)] and host leukocytes affect the ability of the immune system to mount a response to exogenous and endogenous insults, and/or return to normal activity following clearance of the threat. Inherently, males and females have differential immune response to external triggers. In this review, we describe how environmental chemicals, including EDCs, may have sex differential influence on the outcome of immune responses through alterations in epigenetic status (such as modulation of microRNA expression, gene methylation, or histone modification status), direct and indirect activation of the estrogen receptors to drive hormonal effects, and differential modulation of microbial sensing and composition of host microbiota. Taken together, an intriguing question develops as to how an individual’s environment directly and indirectly contributes to an altered immune response, dysregulation of autoantibody production, and influence autoimmune disease development. Few studies exist utilizing well-controlled cohorts of both sexes to explore the sex differences in response to EDC exposure and the effects on autoimmune disease development. Translational studies incorporating multiple environmental factors in animal models of autoimmune disease are necessary to determine the interrelationships that occur between potential etiopathological factors. The presence or absence of autoantibodies is not a reliable predictor of disease. Therefore, future studies should incorporate all the susceptibility/influencing factors, coupled with individual genomics, epigenomics, and proteomics, to develop a model that better predicts, diagnoses, and treats autoimmune diseases in a personalized-medicine fashion.
Collapse
Affiliation(s)
- Michael Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
23
|
Shi G, Yoshida Y, Yuki K, Nishimura T, Kawata Y, Kawashima M, Iwaisako K, Yoshikawa K, Kurebayashi J, Toi M, Noda M. Pattern of RECK CpG methylation as a potential marker for predicting breast cancer prognosis and drug-sensitivity. Oncotarget 2018; 7:82158-82169. [PMID: 27058625 PMCID: PMC5347682 DOI: 10.18632/oncotarget.8620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/28/2016] [Indexed: 02/03/2023] Open
Abstract
The membrane-anchored glycoprotein RECK negatively regulates multiple metalloproteinases and is frequently downregulated in tumors. Forced RECK expression in cancer cells results in suppression of tumor angiogenesis, invasion, and metastasis in xenograft models. A previous methylome study on breast cancer tissues detected inverse correlation between RECK CpG methylation (in an intron-1 region) and relapse-free survival. In this study, we focused on another region of the RECK CpG island (a promoter/exon-1 region) and found an inverse correlation between its methylation and RECK-inducibility by an HDAC inhibitor, MS275, among a panel of breast cancer cell lines (n=15). In clinical samples (n=62), RECK intron-1 methylation was prevalent among luminal breast cancers as reported previously (26 of 38 cases; 68%) and particularly enriched in tumors of the ER+PR- subclass (10 of 10 cases) and of higher histological grades (Grade 2 and 3; 28 of 43 cases; P=0.006). In about a half of these cases, promoter/exon-1 methylation was absent, and hence, RECK may be inducible by certain drugs such as MS275. Our results indicate the value of combined use of two RECK methylation markers for predicting prognosis and drug-sensitivity of breast cancers.
Collapse
Affiliation(s)
- Gongping Shi
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoko Yoshida
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kanako Yuki
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomomi Nishimura
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukiko Kawata
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Kawashima
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keiko Iwaisako
- Department of Target Therapy and Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kiyotsugu Yoshikawa
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junichi Kurebayashi
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Masakazu Toi
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Breast Surgery, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
24
|
He JY, Han P, Zhang Y, Liu YD, Song SJ, Feng GK, An Y, Zhou AJ, Wang HB, Yuan L, Lin ZR, Xia TL, Li MZ, Liu YM, Huang XM, Zhang H, Zhong Q. Overexpression of Nogo receptor 3 (NgR3) correlates with poor prognosis and contributes to the migration of epithelial cells of nasopharyngeal carcinoma patients. J Mol Med (Berl) 2018; 96:265-279. [PMID: 29327067 DOI: 10.1007/s00109-017-1618-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/15/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022]
Abstract
Lymph node metastasis (N classification) is one of the most important prognostic factors of nasopharyngeal carcinoma (NPC), and nerve involvement is associated with the transition of the N category in NPC patients. Although the nervous system has been reported to participate in many types of cancer progression, its functions in NPC progression remains unknown. Through analysis of gene profiling data, we demonstrate an enrichment of genes associated with neuronal development and differentiation in NPC tissues and cell lines. Among these genes, Nogo receptor 3 (NgR3), which was originally identified in the nervous system and plays a role in nerve development and regeneration, was inappropriately overexpressed in NPC cells and tissues. Immunohistochemical analysis demonstrated that the overexpression of NgR3 was correlated with poor prognosis in NPC patients. Overexpression of NgR3 promoted, and knocking down NgR3 inhibited, NPC cell migration and invasion in vitro and metastasis in vivo. The ability of NgR3 to promote cell migration was triggered by the downregulation of E-cadherin and enhanced cytoskeletal rearrangement and cell polarity, which were correlated with the activation of focal adhesion kinase (FAK). Collectively, NgR3 is a novel indicator of poor outcomes in NPC patients and plays an important role in driving the progression of NPC. These results suggest a potential link between the nervous system and NPC progression. KEY MESSAGES Genes involved in the neuronal biological process are enriched in nasopharyngeal carcinoma. Overexpression of NgR3 correlates with poor prognosis of nasopharyngeal carcinoma. NgR3 promotes NPC cell migration by downregulating E-cadherin. NgR3 promotes NPC cell polarity and enhances the formation of NPC cell pseudopodia by activating FAK/Src pathway.
Collapse
Affiliation(s)
- Jiang-Yi He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116000, China
| | - Ping Han
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yong-Dong Liu
- Department of Pathology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Shi-Jian Song
- Guangdong Experimental High School, 51 Zhongshan 4th Road, Guangzhou, 510375, China
| | - Guo-Kai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yu An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ai-Jun Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hong-Bo Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Li Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi-Rui Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Man-Zhi Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Min Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiao-Ming Huang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China. .,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116000, China.
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China. .,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
25
|
Abstract
Self-sustained and synchronized to environmental stimuli, circadian clocks are under genetic and epigenetic regulation. Recent findings have greatly increased our understanding of epigenetic plasticity governed by circadian clock. Thus, the link between circadian clock and epigenetic machinery is reciprocal. Circadian clock can affect epigenetic features including genomic DNA methylation, noncoding RNA, mainly miRNA expression, and histone modifications resulted in their 24-h rhythms. Concomitantly, these epigenetic events can directly modulate cyclic system of transcription and translation of core circadian genes and indirectly clock output genes. Significant findings interlocking circadian clock, epigenetics, and cancer have been revealed, particularly in breast, colorectal, and blood cancers. Aberrant methylation of circadian gene promoter regions and miRNA expression affected circadian gene expression, together with 24-h expression oscillation pace have been frequently observed.
Collapse
|
26
|
Lin HH, Farkas ME. Altered Circadian Rhythms and Breast Cancer: From the Human to the Molecular Level. Front Endocrinol (Lausanne) 2018; 9:219. [PMID: 29780357 PMCID: PMC5945923 DOI: 10.3389/fendo.2018.00219] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/18/2018] [Indexed: 01/20/2023] Open
Abstract
Circadian clocks are fundamental, time-tracking systems that allow organisms to adapt to the appropriate time of day and drive many physiological and cellular processes. Altered circadian rhythms can result from night-shift work, chronic jet lag, exposure to bright lights at night, or other conditioning, and have been shown to lead to increased likelihood of cancer, metabolic and cardiovascular diseases, and immune dysregulation. In cases of cancer, worse patient prognoses and drug resistance during treatment have also been observed. Breast, colon, prostate, lung, and ovarian cancers and hepatocellular carcinoma have all been linked in one way or another with altered circadian rhythms. Critical elements at the molecular level of the circadian system have been associated with cancer, but there have been fairly few studies in this regard. In this mini-review, we specifically focus on the role of altered circadian rhythms in breast cancer, providing an overview of studies performed at the epidemiological level through assessments made in animal and cellular models of the disease. We also address the disparities present among studies that take into account the rhythmicity of core clock and other proteins, and those which do not, and offer insights to the use of small molecules for studying the connections between circadian rhythms and cancer. This article will provide the reader with a concise, but thorough account of the research landscape as it pertains to altered circadian rhythms and breast cancer.
Collapse
|
27
|
Reprimo, a Potential p53-Dependent Tumor Suppressor Gene, Is Frequently Hypermethylated in Estrogen Receptor α-Positive Breast Cancer. Int J Mol Sci 2017; 18:ijms18081525. [PMID: 28809778 PMCID: PMC5577992 DOI: 10.3390/ijms18081525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 01/31/2023] Open
Abstract
Aberrant DNA methylation is a hallmark of many cancers. Currently, there are four intrinsic molecular subtypes in breast cancer (BC): Luminal A, B, Her2-positive, and triple negative (TNBC). Recently, The Cancer Genome Atlas (TCGA) project has revealed that Luminal subtypes have higher levels of genome-wide methylation that may be a result of Estrogen/Estrogen receptor α (E2/ERα) signaling pathway activation. In this study, we analyze promoter CpG-island (CGIs) of the Reprimo (RPRM) gene in breast cancers (n = 77), cell lines (n = 38), and normal breast tissue (n = 10) using a MBDCap-seq database. Then, a validation cohort (n = 26) was used to confirm the results found in the MBDCap-seq platform. A differential methylation pattern was found between BC and cell lines compared to normal breast tissue. In BC, a higher DNA methylation was observed in tissues that were ERα-positive than in ERα-negative ones; more precisely, subtypes Luminal A compared to TNBC. Also, significant reverse correlation was observed between DNA methylation and RPRM mRNA expression in BC. Our data suggest that ERα expression in BC may affect the DNA methylation of CGIs in the RPRM gene. This approach suggests that DNA methylation status in CGIs of some tumor suppressor genes could be driven by E2 availability, subsequently inducing the activation of the ERα pathway.
Collapse
|
28
|
Hatching enzymes disrupt aberrant gonadal degeneration by the autophagy/apoptosis cell fate decision. Sci Rep 2017; 7:3183. [PMID: 28600501 PMCID: PMC5466654 DOI: 10.1038/s41598-017-03314-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/25/2017] [Indexed: 11/19/2022] Open
Abstract
Environmental stressors, gonadal degenerative diseases and tumour development can significantly alter the oocyte physiology, and species fertility and fitness. To expand the molecular understanding about oocyte degradation, we isolated several spliced variants of Japanese anchovy hatching enzymes (AcHEs; ovastacin homologue) 1 and 2, and analysed their potential in oocyte sustenance. Particularly, AcHE1b, an ovary-specific, steroid-regulated, methylation-dependent, stress-responsive isoform, was neofunctionalized to regulate autophagic oocyte degeneration. AcHE1a and 2 triggered apoptotic degeneration in vitellogenic and mature oocytes, respectively. Progesterone, starvation, and high temperature elevated the total degenerating oocyte population and AcHE1b transcription by hyper-demethylation. Overexpression, knockdown and intracellular zinc ion chelation study confirmed the functional significance of AcHE1b in autophagy induction, possibly to mitigate the stress effects in fish, via ion-homeostasis. Our finding chronicles the importance of AcHEs in stress-influenced apoptosis/autophagy cell fate decision and may prove significant in reproductive failure assessments, gonadal health maintenance and ovarian degenerative disease therapy.
Collapse
|
29
|
Epigenetic Bases of Aberrant Glycosylation in Cancer. Int J Mol Sci 2017; 18:ijms18050998. [PMID: 28481247 PMCID: PMC5454911 DOI: 10.3390/ijms18050998] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
In this review, the sugar portions of glycoproteins, glycolipids, and glycosaminoglycans constitute the glycome, and the genes involved in their biosynthesis, degradation, transport and recognition are referred to as “glycogenes“. The extreme complexity of the glycome requires the regulatory layer to be provided by the epigenetic mechanisms. Almost all types of cancers present glycosylation aberrations, giving rise to phenotypic changes and to the expression of tumor markers. In this review, we discuss how cancer-associated alterations of promoter methylation, histone methylation/acetylation, and miRNAs determine glycomic changes associated with the malignant phenotype. Usually, increased promoter methylation and miRNA expression induce glycogene silencing. However, treatment with demethylating agents sometimes results in silencing, rather than in a reactivation of glycogenes, suggesting the involvement of distant methylation-dependent regulatory elements. From a therapeutic perspective aimed at the normalization of the malignant glycome, it appears that miRNA targeting of cancer-deranged glycogenes can be a more specific and promising approach than the use of drugs, which broad target methylation/acetylation. A very specific type of glycosylation, the addition of GlcNAc to serine or threonine (O-GlcNAc), is not only regulated by epigenetic mechanisms, but is an epigenetic modifier of histones and transcription factors. Thus, glycosylation is both under the control of epigenetic mechanisms and is an integral part of the epigenetic code.
Collapse
|
30
|
Iwaya T, Sawada G, Amano S, Kume K, Ito C, Endo F, Konosu M, Shioi Y, Akiyama Y, Takahara T, Otsuka K, Nitta H, Koeda K, Mizuno M, Nishizuka S, Sasaki A, Mimori K. Downregulation of ST6GALNAC1 is associated with esophageal squamous cell carcinoma development. Int J Oncol 2016; 50:441-447. [PMID: 28035351 DOI: 10.3892/ijo.2016.3817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/16/2016] [Indexed: 11/06/2022] Open
Abstract
Tylosis is an inherited disorder characterized by abnormal palmoplantar skin thickening and a highly elevated risk of esophageal squamous cell carcinoma (ESCC). Analyses of tylosis in families have localized the responsible gene locus to a region of chromosome 17q25.1. Frequent loss of heterozygosity (LOH) in 17q25.1 was also observed in the sporadic form of ESCC. A putative tumor suppressor gene for ESCC may exist at this locus. We investigated the expression patterns of genes on 17q25.1 in tumor and corresponding normal tissues from patients with sporadic ESCC using RNA sequence analysis. For candidate genes, quantitative real-time reverse transcription-PCR (qRT-PCR), direct sequence, LOH and methylation analyses were performed using 93 clinical ESCC samples and 10 cell lines. A significant downregulation of ST6GALNAC1 was demonstrated in ESCC tissues compared to its expression in normal tissues by qRT-PCR (n=93, p<0.0001). Frequent LOH (17/27, 62.9%) and hyper‑methylation in ST6GALNAC1 were also observed in all cell lines. Our results indicated that ST6GALNAC1 was downregulated in sporadic ESCC via hyper-methylation and LOH, and it may be a candidate responsible gene for ESCC. Furthermore, recent studies suggest that multiple genes on chromosome 17q25 are involved in ESCC development.
Collapse
Affiliation(s)
- Takeshi Iwaya
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Genta Sawada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka, University, Suita 565-0871, Japan
| | - Suburu Amano
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Kohei Kume
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Chie Ito
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Fumitaka Endo
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Masafumi Konosu
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Yoshihiro Shioi
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Yuji Akiyama
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Takeshi Takahara
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Koki Otsuka
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Hiroyuki Nitta
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Keisuke Koeda
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Masaru Mizuno
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Satoshi Nishizuka
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Akira Sasaki
- Department of Surgery, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| |
Collapse
|
31
|
Takamochi K, Ohmiya H, Itoh M, Mogushi K, Saito T, Hara K, Mitani K, Kogo Y, Yamanaka Y, Kawai J, Hayashizaki Y, Oh S, Suzuki K, Kawaji H. Novel biomarkers that assist in accurate discrimination of squamous cell carcinoma from adenocarcinoma of the lung. BMC Cancer 2016; 16:760. [PMID: 27681076 PMCID: PMC5041559 DOI: 10.1186/s12885-016-2792-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 09/16/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Targeted therapies based on the molecular and histological features of cancer types are becoming standard practice. The most effective regimen in lung cancers is different between squamous cell carcinoma (SCC) and adenocarcinoma (AD). Therefore a precise diagnosis is crucial, but this has been difficult, particularly for poorly differentiated SCC (PDSCC) and AD without a lepidic growth component (non-lepidic AD). Biomarkers enabling a precise diagnosis are therefore urgently needed. METHODS Cap Analysis of Gene Expression (CAGE) is a method used to quantify promoter activities across the whole genome by determining the 5' ends of capped RNA molecules with next-generation sequencing. We performed CAGE on 97 frozen tissues from surgically resected lung cancers (22 SCC and 75 AD), and confirmed the findings by immunohistochemical analysis (IHC) in an independent group (29 SCC and 45 AD). RESULTS Using the genome-wide promoter activity profiles, we confirmed that the expression of known molecular markers used in IHC for SCC (CK5, CK6, p40 and desmoglein-3) and AD (TTF-1 and napsin A) were different between SCC and AD. We identified two novel marker candidates, SPATS2 for SCC and ST6GALNAC1 for AD, as showing comparable performance and complementary utility to the known markers in discriminating PDSCC and non-lepidic AD. We subsequently confirmed their utility at the protein level by IHC in an independent group. CONCLUSIONS We identified two genes, SPATS2 and ST6GALNAC1, as novel complemental biomarkers discriminating SCC and AD. These findings will contribute to a more accurate diagnosis of NSCLC, which is crucial for precision medicine for lung cancer.
Collapse
Affiliation(s)
- Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3, Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Hiroko Ohmiya
- Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, 1-7-22 Suehiro-cho, Tsurumi-ku, 230-0045, Yokohama, Japan
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Kaoru Mogushi
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, 1-3, Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, 1-3, Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Kieko Hara
- Department of Human Pathology, Juntendo University School of Medicine, 1-3, Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Keiko Mitani
- Department of Human Pathology, Juntendo University School of Medicine, 1-3, Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Yasushi Kogo
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yasunari Yamanaka
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Jun Kawai
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yoshihide Hayashizaki
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Shiaki Oh
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3, Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3, Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Hideya Kawaji
- Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, 1-7-22 Suehiro-cho, Tsurumi-ku, 230-0045, Yokohama, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
32
|
Differential network analysis reveals the genome-wide landscape of estrogen receptor modulation in hormonal cancers. Sci Rep 2016; 6:23035. [PMID: 26972162 PMCID: PMC4789788 DOI: 10.1038/srep23035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/23/2016] [Indexed: 12/14/2022] Open
Abstract
Several mutual information (MI)-based algorithms have been developed to identify dynamic gene-gene and function-function interactions governed by key modulators (genes, proteins, etc.). Due to intensive computation, however, these methods rely heavily on prior knowledge and are limited in genome-wide analysis. We present the modulated gene/gene set interaction (MAGIC) analysis to systematically identify genome-wide modulation of interaction networks. Based on a novel statistical test employing conjugate Fisher transformations of correlation coefficients, MAGIC features fast computation and adaption to variations of clinical cohorts. In simulated datasets MAGIC achieved greatly improved computation efficiency and overall superior performance than the MI-based method. We applied MAGIC to construct the estrogen receptor (ER) modulated gene and gene set (representing biological function) interaction networks in breast cancer. Several novel interaction hubs and functional interactions were discovered. ER+ dependent interaction between TGFβ and NFκB was further shown to be associated with patient survival. The findings were verified in independent datasets. Using MAGIC, we also assessed the essential roles of ER modulation in another hormonal cancer, ovarian cancer. Overall, MAGIC is a systematic framework for comprehensively identifying and constructing the modulated interaction networks in a whole-genome landscape. MATLAB implementation of MAGIC is available for academic uses at https://github.com/chiuyc/MAGIC.
Collapse
|
33
|
Benevolenskaya EV, Islam ABMMK, Ahsan H, Kibriya MG, Jasmine F, Wolff B, Al-Alem U, Wiley E, Kajdacsy-Balla A, Macias V, Rauscher GH. DNA methylation and hormone receptor status in breast cancer. Clin Epigenetics 2016; 8:17. [PMID: 26884818 PMCID: PMC4754852 DOI: 10.1186/s13148-016-0184-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/08/2016] [Indexed: 11/10/2022] Open
Abstract
Background We examined whether differences in tumor DNA methylation were associated with more aggressive hormone receptor-negative breast cancer in an ethnically diverse group of patients in the Breast Cancer Care in Chicago (BCCC) study and using data from The Cancer Genome Atlas (TCGA). Results DNA was extracted from formalin-fixed, paraffin-embedded samples on 75 patients (21 White, 31 African-American, and 23 Hispanic) (training dataset) enrolled in the BCCC. Hormone receptor status was defined as negative if tumors were negative for both estrogen and progesterone (ER/PR) receptors (N = 22/75). DNA methylation was analyzed at 1505 CpG sites within 807 gene promoters using the Illumina GoldenGate assay. Differential DNA methylation as a predictor of hormone receptor status was tested while controlling for false discovery rate and assigned to the gene closest to the respective CpG site. Next, those genes that predicted ER/PR status were validated using TCGA data with respect to DNA methylation (validation dataset), and correlations between CpG methylation and gene expression were examined. In the training dataset, 5.7 % of promoter mean methylation values (46/807) were associated with receptor status at P < 0.05; for 88 % of these (38/46), hypermethylation was associated with receptor-positive disease. Hypermethylation for FZD9, MME, BCAP31, HDAC9, PAX6, SCGB3A1, PDGFRA, IGFBP3, and PTGS2 genes most strongly predicted receptor-positive disease. Twenty-one of 24 predictor genes from the training dataset were confirmed in the validation dataset. The level of DNA methylation at 19 out 22 genes, for which gene expression data were available, was associated with gene activity. Conclusions Higher levels of promoter methylation strongly correlate with hormone receptor positive status of breast tumors. For most of the genes identified in our training dataset as ER/PR receptor status predictors, DNA methylation correlated with stable gene expression level. The predictors performed well when evaluated on independent set of samples, with different racioethnic distribution, thus providing evidence that this set of DNA methylation biomarkers will likely generalize to prospective patient samples. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0184-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizaveta V Benevolenskaya
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), M/C 669, 900 S. Ashland Ave., Chicago, 60607 IL USA
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Habibul Ahsan
- Department of Health Sciences, The University of Chicago, Chicago, USA
| | | | - Farzana Jasmine
- Department of Health Sciences, The University of Chicago, Chicago, USA
| | | | - Umaima Al-Alem
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago (UIC), M/C 923, Chicago, 60612 IL USA
| | - Elizabeth Wiley
- Department of Pathology, University of Illinois at Chicago, Chicago, USA
| | | | - Virgilia Macias
- Department of Pathology, University of Illinois at Chicago, Chicago, USA
| | - Garth H Rauscher
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago (UIC), M/C 923, Chicago, 60612 IL USA
| |
Collapse
|
34
|
Cava C, Bertoli G, Castiglioni I. Integrating genetics and epigenetics in breast cancer: biological insights, experimental, computational methods and therapeutic potential. BMC SYSTEMS BIOLOGY 2015; 9:62. [PMID: 26391647 PMCID: PMC4578257 DOI: 10.1186/s12918-015-0211-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Development of human cancer can proceed through the accumulation of different genetic changes affecting the structure and function of the genome. Combined analyses of molecular data at multiple levels, such as DNA copy-number alteration, mRNA and miRNA expression, can clarify biological functions and pathways deregulated in cancer. The integrative methods that are used to investigate these data involve different fields, including biology, bioinformatics, and statistics. RESULTS These methodologies are presented in this review, and their implementation in breast cancer is discussed with a focus on integration strategies. We report current applications, recent studies and interesting results leading to the identification of candidate biomarkers for diagnosis, prognosis, and therapy in breast cancer by using both individual and combined analyses. CONCLUSION This review presents a state of art of the role of different technologies in breast cancer based on the integration of genetics and epigenetics, and shares some issues related to the new opportunities and challenges offered by the application of such integrative approaches.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| |
Collapse
|
35
|
Strifert K. An epigenetic basis for autism spectrum disorder risk and oral contraceptive use. Med Hypotheses 2015; 85:1006-11. [PMID: 26364046 DOI: 10.1016/j.mehy.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/19/2015] [Accepted: 09/01/2015] [Indexed: 11/15/2022]
Abstract
In the United States 1 in 68 children are diagnosed with autism spectrum disorder (ASD). Although the etiology is unknown, many scientists believe ASD is caused by a combination of genetic and environmental factors and/or epigenetic factors. The widespread use of oral contraceptives is one environmental risk factor that has been greatly overlooked in the biomedical literature. Oral contraceptives, synthetic hormones created to imitate natural human hormones and disrupt endogenous endocrine function to inhibit pregnancy, may be causing the harmful neurodevelopmental effects that result in the increased prevalence of ASD. It is conceivable that the synthetic hormones repeatedly assault the oocyte causing persistent changes in expression of the estrogen receptor beta gene. Ethinylestradiol, a known endocrine disruptor, may trigger DNA methylation of the estrogen receptor beta gene causing decreased mRNA resulting in impaired brain estrogen signaling in progeny. In addition, it is possible the deleterious effects are transgenerational as the estrogen receptor gene and many of its targets may be imprinted and the methylation marks protected from global demethylation and preserved through fertilization and beyond to progeny generations. This article will delineate the hypothesis that ethinylestradiol activates DNA methylation of the estrogen receptor beta gene causing decreased mRNA resulting in diminished brain estrogen signaling in offspring of mothers exposed to oral contraceptives. Considering the detrimental epigenetic and transgenerational effects proposed, it calls for further study.
Collapse
Affiliation(s)
- Kim Strifert
- Graduate School at the University of Alabama at Birmingham, UAB School of Public Health, 1665 University Blvd. # Rpjb22a, Birmingham, AL 35233, United States.
| |
Collapse
|
36
|
Karsli-Ceppioglu S, Dagdemir A, Judes G, Ngollo M, Penault-Llorca F, Pajon A, Bignon YJ, Bernard-Gallon D. Epigenetic mechanisms of breast cancer: an update of the current knowledge. Epigenomics 2015; 6:651-64. [PMID: 25531258 DOI: 10.2217/epi.14.59] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epigenetic alterations are heritable changes in gene expression that occur without causing any change in DNA sequence. They are important key factors for cancer development and prognosis. Breast cancer is induced by the accumulation of altered gene regulation. Besides genetic mutations, epigenetics mechanisms have an important role in breast cancer tumorigenesis. Investigations related with aberrant epigenetic regulations in breast cancer focus on initiating molecular mechanisms in cancer development, identification of new biomarkers to predict breast cancer aggressiveness and the potential of epigenetic therapy. In this review, we will summarize the recent knowledge about the role of epigenetic alterations related with DNA methylation and histone modification in breast cancer. In addition, altered regulation of breast cancer specific genes and the potential of epigenetic therapy will be discussed according to epigenetic mechanisms.
Collapse
|
37
|
Fridrichova I, Smolkova B, Kajabova V, Zmetakova I, Krivulcik T, Mego M, Cierna Z, Karaba M, Benca J, Pindak D, Bohac M, Repiska V, Danihel L. CXCL12 and ADAM23 hypermethylation are associated with advanced breast cancers. Transl Res 2015; 165:717-30. [PMID: 25620615 DOI: 10.1016/j.trsl.2014.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 12/31/2022]
Abstract
More than 25% of the patients with breast cancer (BC) develop metastatic disease. In the present study, we investigated the relationship between DNA methylation levels in genes regulating cell growth, invasiveness, and metastasis and advanced BCs and evaluated the clinical utility of methylation profiles for detecting metastatic potential. Pyrosequencing was used to quantify methylation levels in 11 cancer-associated genes in primary tumors (PTs), lymph node metastases (LNMs), plasma (PL), and blood cells from 206 patients with invasive BC. Protein expression was evaluated using immunohistochemistry. PTs showed hypermethylation of A isoform of the RAS-association domain family 1 (RASSF1A), adenomatous polyposis coli (APC), chemokine C-X-C motif ligand 12 (CXCL12), and disintegrin and metalloprotease domain 23 (ADAM23) (means 38.98%, 24.84%, 12.04%, and 10.01%, respectively). Positive correlations were identified between methylations in PTs and LNMs, but not between PL and PTs. The cumulative methylation of PTs and LNMs manifested similar spectrums of methylated genes that indicate the maintaining of aberrant methylation during breast tumorigenesis. Significantly increased methylation levels in RASSF1A, APC, CXCL12, and ADAM23 were found in estrogen receptor (ER) positive BCs in comparison with ER negative cases. Regarding these results, the evaluation of DNA methylation could be more informative in testing of patients with ER positive BC. The risk for LNMs development and higher proliferation of cancer cells measured through Ki-67 expression was increased by hypermethylation of CXCL12 and ADAM23, respectively. Therefore, the quantification of CXCL12 and ADAM23 methylation could be useful for the prediction of advanced stage of BC.
Collapse
Affiliation(s)
- Ivana Fridrichova
- Department of Genetics, Cancer Research Institute of SAS, Bratislava, Slovak Republic.
| | - Bozena Smolkova
- Department of Genetics, Cancer Research Institute of SAS, Bratislava, Slovak Republic
| | - Viera Kajabova
- Department of Genetics, Cancer Research Institute of SAS, Bratislava, Slovak Republic
| | - Iveta Zmetakova
- Department of Genetics, Cancer Research Institute of SAS, Bratislava, Slovak Republic
| | - Tomas Krivulcik
- Department of Genetics, Cancer Research Institute of SAS, Bratislava, Slovak Republic
| | - Michal Mego
- Faculty of Medicine, Second Department of Oncology, Comenius University, National Cancer Institute, Bratislava, Slovak Republic
| | - Zuzana Cierna
- Faculty of Medicine, Institute of Pathological Anatomy, Comenius University, University Hospital, Bratislava, Slovak Republic
| | - Marian Karaba
- Department of Surgical Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Juraj Benca
- Department of Surgical Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Daniel Pindak
- Department of Surgical Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Martin Bohac
- Department of Plastic, Aesthetic and Reconstructive Surgery, University Hospital, Bratislava, Slovak Republic
| | - Vanda Repiska
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, Comenius University, University Hospital, Bratislava, Slovak Republic
| | - Ludovit Danihel
- Faculty of Medicine, Institute of Pathological Anatomy, Comenius University, University Hospital, Bratislava, Slovak Republic; Pathological-Anatomical Workplace, Health Care Surveillance Authority, Bratislava, Slovak Republic
| |
Collapse
|
38
|
Figueroa JD, Yang H, Garcia-Closas M, Davis S, Meltzer P, Lissowska J, Horne HN, Sherman ME, Lee M. Integrated analysis of DNA methylation, immunohistochemistry and mRNA expression, data identifies a methylation expression index (MEI) robustly associated with survival of ER-positive breast cancer patients. Breast Cancer Res Treat 2015; 150:457-466. [PMID: 25773928 DOI: 10.1007/s10549-015-3314-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/18/2015] [Indexed: 12/17/2022]
Abstract
Identification of prognostic gene expression signatures may enable improved decisions about management of breast cancer. To identify a prognostic signature for breast cancer, we performed DNA methylation profiling and identified methylation markers that were associated with expression of ER, PR, HER2, CK5/6, and EGFR proteins. Methylation markers that were correlated with corresponding mRNA expression levels were identified using 208 invasive tumors from a population-based case-control study conducted in Poland. Using this approach, we defined the methylation expression index (MEI) signature that was based on a weighted sum of mRNA levels of 57 genes. Classification of cases as low or high MEI scores was related to survival using Cox regression models. In the Polish study, women with ER-positive low MEI cancers had reduced survival at a median of 5.20 years of follow-up, HR = 2.85 95 % CI = 1.25-6.47. Low MEI was also related to decreased survival in four independent datasets totaling over 2500 ER-positive breast cancers. These results suggest that integrated analysis of tumor expression markers, DNA methylation, and mRNA data may be an important approach for identifying breast cancer prognostic signatures. Prospective assessment of MEI along with other prognostic signatures should be evaluated in future studies.
Collapse
Affiliation(s)
| | - Howard Yang
- National Cancer Institute, NIH, HHS, Bethesda, MD
| | | | - Sean Davis
- National Cancer Institute, NIH, HHS, Bethesda, MD
| | - Paul Meltzer
- National Cancer Institute, NIH, HHS, Bethesda, MD
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, Cancer Center and M. Sklodowska-Curie Institute of Oncology, Warsaw, Poland
| | | | | | - Maxwell Lee
- National Cancer Institute, NIH, HHS, Bethesda, MD
| |
Collapse
|
39
|
Lin IH, Chen DT, Chang YF, Lee YL, Su CH, Cheng C, Tsai YC, Ng SC, Chen HT, Lee MC, Chen HW, Suen SH, Chen YC, Liu TT, Chang CH, Hsu MT. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes. PLoS One 2015; 10:e0118453. [PMID: 25706888 PMCID: PMC4338251 DOI: 10.1371/journal.pone.0118453] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/20/2015] [Indexed: 01/18/2023] Open
Abstract
Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs) and the hypomethylation of the megabase-sized partially methylated domains (PMDs) are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI) was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma) dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.
Collapse
Affiliation(s)
- I-Hsuan Lin
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Dow-Tien Chen
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Feng Chang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ling Lee
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hsin Su
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ching Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chien Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Swee-Chuan Ng
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Tan Chen
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Chen Lee
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Hong-Wei Chen
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hui Suen
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Cheng Chen
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Tze-Tze Liu
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Chuan-Hsiung Chang
- Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Ta Hsu
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
40
|
Methylation profiling of 48 candidate genes in tumor and matched normal tissues from breast cancer patients. Breast Cancer Res Treat 2015; 149:767-79. [DOI: 10.1007/s10549-015-3276-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/13/2015] [Indexed: 10/23/2022]
|
41
|
Barrow TM, Barault L, Ellsworth RE, Harris HR, Binder AM, Valente AL, Shriver CD, Michels KB. Aberrant methylation of imprinted genes is associated with negative hormone receptor status in invasive breast cancer. Int J Cancer 2015; 137:537-47. [PMID: 25560175 DOI: 10.1002/ijc.29419] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 12/19/2014] [Indexed: 11/07/2022]
Abstract
Epigenetic regulation of imprinted genes enables monoallelic expression according to parental origin, and its disruption is implicated in many cancers and developmental disorders. The expression of hormone receptors is significant in breast cancer because they are indicators of cancer cell growth rate and determine response to endocrine therapies. We investigated the frequency of aberrant events and variation in DNA methylation at nine imprinted sites in invasive breast cancer and examined the association with estrogen and progesterone receptor status. Breast tissue and blood from patients with invasive breast cancer (n = 38) and benign breast disease (n = 30) were compared with those from healthy individuals (n = 36), matched with the cancer patients by age at diagnosis, ethnicity, body mass index, menopausal status and familial history of cancer. DNA methylation and allele-specific expression were analyzed by pyrosequencing. Tumor-specific methylation changes at IGF2 DMR2 were observed in 59% of cancer patients, IGF2 DMR0 in 38%, DIRAS3 DMR in 36%, GRB10 ICR in 23%, PEG3 DMR in 21%, MEST ICR in 19%, H19 ICR in 18%, KvDMR in 8% and SNRPN/SNURF ICR in 4%. Variation in methylation was significantly greater in breast tissue from cancer patients compared with that in healthy individuals and benign breast disease. Aberrant methylation of three or more sites was significantly associated with negative estrogen-alpha (Fisher's exact test, p = 0.02) and progesterone-A (p = 0.02) receptor status. Aberrant events and increased variation in imprinted gene DNA methylation, therefore, seem to be frequent in invasive breast cancer and are associated with negative estrogen and progesterone receptor status, without loss of monoallelic expression.
Collapse
Affiliation(s)
- Timothy M Barrow
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Ludovic Barault
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rachel E Ellsworth
- Clinical Breast Care Project, Henry M. Jackson Foundation for the Advancement of Military Medicine, Windber, PA
| | - Holly R Harris
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alexandra M Binder
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Allyson L Valente
- Clinical Breast Care Project, Windber Research Institute, Windber, PA
| | - Craig D Shriver
- Clinical Breast Care Project, Walter Reed National Military Medical Center, Bethesda, MD
| | - Karin B Michels
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany.,Department of Epidemiology, Harvard School of Public Health, Boston, MA
| |
Collapse
|
42
|
Song M, Lee HW, Kang D. The potential application of personalized preventive research. Jpn J Clin Oncol 2014; 44:1017-24. [PMID: 25249379 DOI: 10.1093/jjco/hyu135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
With increases in life expectancy, the focus has shifted to living a healthier, longer life. By concentrating on preventing diseases before occurrence, researchers aim to diminish the increasing gap in medical costs and health inequalities prevalent across many nations. Although we have entered an era of post-genomics, we are still in infancy in terms of personalized preventive research. Personalized preventive research has and will continue to improve with advancements in the use of biomarkers and risk assessment. More evidence based on well-designed epidemiologic studies is required to provide comprehensive preventive medical care based on genetic and non-genetic profile data. The realization of personalized preventive research requires building of evidence through appropriate methodology, verification of results through translational studies as well as development and application of prediction models.
Collapse
Affiliation(s)
- Minkyo Song
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul
| | - Hwi-Won Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Barrow TM, Michels KB. Epigenetic epidemiology of cancer. Biochem Biophys Res Commun 2014; 455:70-83. [PMID: 25124661 DOI: 10.1016/j.bbrc.2014.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/15/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023]
Abstract
Epigenetic epidemiology includes the study of variation in epigenetic traits and the risk of disease in populations. Its application to the field of cancer has provided insight into how lifestyle and environmental factors influence the epigenome and how epigenetic events may be involved in carcinogenesis. Furthermore, it has the potential to bring benefit to patients through the identification of diagnostic markers that enable the early detection of disease and prognostic markers that can inform upon appropriate treatment strategies. However, there are a number of challenges associated with the conduct of such studies, and with the identification of biomarkers that can be applied to the clinical setting. In this review, we delineate the challenges faced in the design of epigenetic epidemiology studies in cancer, including the suitability of blood as a surrogate tissue and the capture of genome-wide DNA methylation. We describe how epigenetic epidemiology has brought insight into risk factors associated with lung, breast, colorectal and bladder cancer and review relevant research. We discuss recent findings on the identification of epigenetic diagnostic and prognostic biomarkers for these cancers.
Collapse
Affiliation(s)
- Timothy M Barrow
- Institute for Prevention and Tumor Epidemiology, Freiburg Medical Center, University of Freiburg, 79106, Germany; German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Karin B Michels
- Institute for Prevention and Tumor Epidemiology, Freiburg Medical Center, University of Freiburg, 79106, Germany; Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Cabej NR. On the origin of information in epigenetic structures in metazoans. Med Hypotheses 2014; 83:378-86. [PMID: 25037317 DOI: 10.1016/j.mehy.2014.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 06/14/2014] [Accepted: 06/18/2014] [Indexed: 11/27/2022]
Abstract
Epigenetic inheritance implies the existence of epigenetic information. Great progress has been made in recent years in understanding the role of the changes in epigenetic structures (methylated DNA, histone acetylation/deacetylation and chromatin remodelling) as well as the role of miRNA (MIR) expression patterns in epigenetic processes. However, as of yet, we do not have a satisfactory understanding of the origin of epigenetic information stored in, and conveyed by, these structures. We do not know whether these structures are the ultimate source of the information or whether they are simply media for storing and transmitting epigenetic information for gene expression from upstream sources to the phenotype. Herein an attempt is made to ascertain the ultimate sources of the epigenetic information they contain and transmit by tracing back the causal chain leading to the changes in epigenetic structures.
Collapse
Affiliation(s)
- Nelson R Cabej
- Department of Biology, University of Tirana, Tirana, Albania.
| |
Collapse
|
45
|
Ung M, Ma X, Johnson KC, Christensen BC, Cheng C. Effect of estrogen receptor α binding on functional DNA methylation in breast cancer. Epigenetics 2014; 9:523-32. [PMID: 24434785 DOI: 10.4161/epi.27688] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epigenetic modifications introduce an additional layer of regulation that drastically expands the instructional capability of the human genome. The regulatory consequences of DNA methylation is context dependent; it can induce, enhance, and suppress gene expression, or have no effect on gene regulation. Therefore, it is essential to account for the genomic location of its occurrence and the protein factors it associates with to improve our understanding of its function and effects. Here, we use ENCODE ChIP-seq and DNase I hypersensitivity data, along with large-scale breast cancer genomic data from The Cancer Genome Atlas (TCGA) to computationally dissect the intricacies of DNA methylation in regulation of cancer transcriptomes. In particular, we identified a relationship between estrogen receptor α (ERα) activity and DNA methylation patterning in breast cancer. We found compelling evidence that methylation status of DNA sequences at ERα binding sites is tightly coupled with ERα activity. Furthermore, we predicted several transcription factors including FOXA1, GATA1, and SUZ12 to be associated with breast cancer by examining the methylation status of their binding sites in breast cancer. Lastly, we determine that methylated CpGs highly correlated with gene expression are enriched in regions 1kb or more downstream of TSSs, suggesting more significant regulatory roles for CpGs distal to gene TSSs. Our study provides novel insights into the role of ERα in breast cancers.
Collapse
Affiliation(s)
- Matthew Ung
- Department of Genetics; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - Xiaotu Ma
- Department of Molecular and Cell Biology; Center for Systems Biology; The University of Texas at Dallas; Dallas, TX USA
| | - Kevin C Johnson
- Department of Community and Family Medicine; Section of Biostatistics and Epidemiology; Geisel School of Medicine at Dartmouth; Lebanon, NH USA; Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - Brock C Christensen
- Department of Community and Family Medicine; Section of Biostatistics and Epidemiology; Geisel School of Medicine at Dartmouth; Lebanon, NH USA; Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - Chao Cheng
- Department of Genetics; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Institute for Quantitative Biomedical Sciences; Geisel School of Medicine at Dartmouth; Lebanon, NH USA; Norris Cotton Cancer Center; Geisel School of Medicine at Dartmouth; Lebanon, NH USA
| |
Collapse
|
46
|
Kim TW, Kim B, Kim JH, Kang S, Park SB, Jeong G, Kang HS, Kim SJ. Nuclear-encoded mitochondrial MTO1 and MRPL41 are regulated in an opposite epigenetic mode based on estrogen receptor status in breast cancer. BMC Cancer 2013; 13:502. [PMID: 24160266 PMCID: PMC4015551 DOI: 10.1186/1471-2407-13-502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/22/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MTO1 and MRPL41 are nuclear-encoded mitochondrial genes encoding a mitochondrial tRNA-modifying enzyme and a mitochondrial ribosomal protein, respectively. Although both genes have been known to have potential roles in cancer, little is known about their molecular regulatory mechanism, particularly from an epigenetic approach. In this study, we aimed to address their epigenetic regulation through the estrogen receptor (ER) in breast cancer. METHODS Digital differential display (DDD) was conducted to identify mammary gland-specific gene candidates including MTO1 and MRPL41. Promoter CpG methylation and expression in breast cancer cell lines and tissues were examined by methylation-specific PCR and real time RT-PCR. Effect of estradiol (E2), tamoxifen, and trichostatin A (TSA) on gene expression was examined in ER + and ER- breast cancer cell lines. Chromatin immunoprecipitation and luciferase reporter assay were performed to identify binding and influencing of the ER to the promoters. RESULTS Examination of both cancer tissues and cell lines revealed that the two genes showed an opposite expression pattern according to ER status; higher expression of MTO1 and MRPL41 in ER- and ER+ cancer types, respectively, and their expression levels were inversely correlated with promoter methylation. Tamoxifen, E2, and TSA upregulated MTO1 expression only in ER+ cells with no significant changes in ER- cells. However, these chemicals upregulated MRPL41 expression only in ER- cells without significant changes in ER+ cells, except for tamoxifen that induced downregulation. Chromatin immunoprecipitation and luciferase reporter assay identified binding and influencing of the ER to the promoters and the binding profiles were differentially regulated in ER+ and ER- cells. CONCLUSIONS These results indicate that different epigenetic status including promoter methylation and different responses through the ER are involved in the differential expression of MTO1 and MRPL41 in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Han-Sung Kang
- Department of Life Science, Dongguk University-Seoul, Seoul 100-715, Korea.
| | | |
Collapse
|
47
|
Bu D, Lewis CM, Sarode V, Chen M, Ma X, Lazorwitz AM, Rao R, Leitch M, Moldrem A, Andrews V, Gazdar A, Euhus D. Identification of Breast Cancer DNA Methylation Markers Optimized for Fine-Needle Aspiration Samples. Cancer Epidemiol Biomarkers Prev 2013; 22:2212-21. [DOI: 10.1158/1055-9965.epi-13-0208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Day TK, Bianco-Miotto T. Common gene pathways and families altered by DNA methylation in breast and prostate cancers. Endocr Relat Cancer 2013; 20:R215-32. [PMID: 23818572 DOI: 10.1530/erc-13-0204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epigenetic modifications, such as DNA methylation, are widely studied in cancer as they are stable and easy to measure genome wide. DNA methylation changes have been used to differentiate benign from malignant tissue and to predict tumor recurrence or patient outcome. Multiple genome wide DNA methylation studies in breast and prostate cancers have identified genes that are differentially methylated in malignant tissue compared with non-malignant tissue or in association with hormone receptor status or tumor recurrence. Although this has identified potential biomarkers for diagnosis and prognosis, what is highlighted by reviewing these studies is the similarities between breast and prostate cancers. In particular, the gene families/pathways targeted by DNA methylation in breast and prostate cancers have significant overlap and include homeobox genes, zinc finger transcription factors, S100 calcium binding proteins, and potassium voltage-gated family members. Many of the gene pathways targeted by aberrant methylation in breast and prostate cancers are not targeted in other cancers, suggesting that some of these targets may be specific to hormonal cancers. Genome wide DNA methylation profiles in breast and prostate cancers will not only define more specific and sensitive biomarkers for cancer diagnosis and prognosis but also identify novel therapeutic targets, which may be direct targets of agents that reverse DNA methylation or which may target novel gene families that are themselves DNA methylation targets.
Collapse
Affiliation(s)
- Tanya K Day
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, Hanson Institute, Adelaide Prostate Cancer Research Centre, The University of Adelaide, South Australia, Australia
| | | |
Collapse
|
49
|
Kang S, Kim B, Park SB, Jeong G, Kang HS, Liu R, Kim SJ. Stage-specific methylome screen identifies that NEFL is downregulated by promoter hypermethylation in breast cancer. Int J Oncol 2013; 43:1659-65. [PMID: 24026393 DOI: 10.3892/ijo.2013.2094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/26/2013] [Indexed: 11/06/2022] Open
Abstract
Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of breast cancers, and an increasing number of marker genes have been identified. However, few genes which show methylation change in accordance with the progression of breast cancer have been identified. To identify genes which consistently undergo promoter methylation alterations as the tumor develops from a benign to a malignant form, genome-wide methylation databases of breast cancer cell lines from stage I to stage IV were analyzed. Heatmap and cluster analysis revealed that the genome-wide methylation changes showed a good accordance with tumor progression. Seven out of 14,495 genes were found to be consistently increased alongside the promoter methylation level through the normal cell line to the cancer stage IV cell lines. NEFL, one of the in silico hypermethylated genes in cancer, showed hypermethylation and lower expression in the cancer cell line MDA-MB-231, as well as in cancer tissues (methylation, p<0.05; expression, p<0.01). The expression was restored by inducing demethylation of the promoter in MDA-MB-231 cells. Our findings may lend credence to the possibility of using tumor stage-specific alterations in methylation patterns as biomarkers for estimating prognosis and assessing treatment options for breast cancer.
Collapse
Affiliation(s)
- Seongeun Kang
- Department of Life Science, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Jeong YJ, Jeong HY, Lee SM, Bong JG, Park SH, Oh HK. Promoter methylation status of the FHIT gene and Fhit expression: association with HER2/neu status in breast cancer patients. Oncol Rep 2013; 30:2270-8. [PMID: 23969757 DOI: 10.3892/or.2013.2668] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/30/2013] [Indexed: 11/06/2022] Open
Abstract
Aberrant DNA methylation has been recognized to contribute to breast carcinogenesis, and promoter hypermethylation of several tumor suppressor genes has been correlated with decreased gene expression. The fragile histidine triad (FHIT) gene is a putative tumor suppressor gene in breast and other types of cancer, and loss of Fhit expression has been observed in breast cancer. The aim of the present study was to evaluate the association between methylation of the FHIT gene and its expression in breast cancer, and to investigate whether methylation and expression of the FHIT gene correlates with clinicopathological characteristics in relation to human epidermal growth factor receptor 2 (HER2) status. Pyrosequencing of bisulfite-treated DNA was performed to study the methylation status of the FHIT gene in 60 breast cancer samples. We examined the expression of Fhit using tissue microarrays by immunohistochemical staining. FHIT methylation was detected in 96.7% and the positive expression rate of Fhit was 87.3% of the patients. The mean methylation level of the FHIT gene was associated with intratumoral inflammation. Methylation level of the FHIT gene had no significant differences according to molecular subtypes. Loss of Fhit expression was associated with large tumor size, basal-like subtype and positive expression of EGFR. In HER2-negative breast cancer, loss of Fhit expression was significantly associated with tumor size, estrogen receptor status and Ki-67 proliferation index. No significant correlation between methylation of the FHIT gene and its expression was observed in the present study. Our results suggest that loss of Fhit expression in breast cancer is associated with poor prognostic features, and it is also relevant to the results in HER2-negative breast cancer. Further studies with larger sample sizes and longer follow-up are required to clarify the predictive and prognostic value of Fhit expression and the FHIT gene methylation status in breast cancer.
Collapse
Affiliation(s)
- Young Ju Jeong
- Department of Surgery, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|