1
|
Wang P, Li H, Wang Y, Dong F, Li H, Gui X, Ren Y, Gao X, Li X, Liu R. One of the major challenges of masking the bitter taste in medications: an overview of quantitative methods for bitterness. Front Chem 2024; 12:1449536. [PMID: 39206439 PMCID: PMC11349634 DOI: 10.3389/fchem.2024.1449536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Objective The aim of the present study was to carry out a systematic research on bitterness quantification to provide a reference for scholars and pharmaceutical developers to carry out drug taste masking research. Significance: The bitterness of medications poses a significant concern for clinicians and patients. Scientifically measuring the intensity of drug bitterness is pivotal for enhancing drug palatability and broadening their clinical utility. Methods The current study was carried out by conducting a systematic literature review that identified relevant papers from indexed databases. Numerous studies and research are cited and quoted in this article to summarize the features, strengths, and applicability of quantitative bitterness assessment methods. Results In our research, we systematically outlined the classification and key advancements in quantitative research methods for assessing drug bitterness, including in vivo quantification techniques such as traditional human taste panel methods, as well as in vitro quantification methods such as electronic tongue analysis. It focused on the quantitative methods and difficulties of bitterness of natural drugs with complex system characteristics and their difficulties in quantification, and proposes possible future research directions. Conclusion The quantitative methods of bitterness were summarized, which laid an important foundation for the construction of a comprehensive bitterness quantification standard system and the formulation of accurate, efficient and rich taste masking strategies.
Collapse
Affiliation(s)
- Panpan Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Haiyang Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanli Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Fengyu Dong
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Han Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinjing Gui
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province, Education Ministry of China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanna Ren
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaojie Gao
- Zhengzhou Traditional Chinese Medicine Hospital, Zhengzhou, China
| | - Xuelin Li
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province, Education Ministry of China, Henan University of Chinese Medicine, Zhengzhou, China
- Third Level Laboratory of Traditional Chinese Medicine Preparations of the State Administration of Traditional Chinese Medicine, Zhengzhou, China
| | - Ruixin Liu
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province, Education Ministry of China, Henan University of Chinese Medicine, Zhengzhou, China
- Third Level Laboratory of Traditional Chinese Medicine Preparations of the State Administration of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Roelse M, Krasteva N, Pawlizak S, Mai MK, Jongsma MA. Tongue-on-a-Chip: Parallel Recording of Sweet and Bitter Receptor Responses to Sequential Injections of Pure and Mixed Sweeteners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15854-15864. [PMID: 38951504 PMCID: PMC11261611 DOI: 10.1021/acs.jafc.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
A microfluidic tongue-on-a-chip platform has been evaluated relative to the known sensory properties of various sweeteners. Analogous metrics of typical sensory features reported by human panels such as sweet taste thresholds, onset, and lingering, as well as bitter off-flavor and blocking interactions were deduced from the taste receptor activation curves and then compared. To this end, a flow cell containing a receptor cell array bearing the sweet and six bitter taste receptors was transiently exposed to pure and mixed sweetener samples. The sample concentration gradient across time was separately characterized by the injection of fluorescein dye. Subsequently, cellular calcium responses to different doses of advantame, aspartame, saccharine, and sucrose were overlaid with the concentration gradient. Parameters describing the response kinetics compared to the gradient were quantified. Advantame at 15 μM recorded a significantly faster sweetness onset of 5 ± 2 s and a longer lingering time of 39 s relative to sucrose at 100 mM with an onset of 13 ± 2 s and a lingering time of 6 s. Saccharine was shown to activate the bitter receptors TAS2R8, TAS2R31, and TAS2R43, confirming its known off-flavor, whereas addition of cyclamate reduced or blocked this saccharine bitter response. The potential of using this tongue-on-a-chip to bridge the gap with in vitro assays and taste panels is discussed.
Collapse
Affiliation(s)
- Margriet Roelse
- BU
Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Nadejda Krasteva
- Stuttgart
Laboratory 2, Sony Semiconductor Solutions Europe, Sony Europe B.V., Zweigniederlassung Deutschland,
Hedelfinger Str. 61, 70327 Stuttgart, Germany
| | - Steve Pawlizak
- Stuttgart
Laboratory 2, Sony Semiconductor Solutions Europe, Sony Europe B.V., Zweigniederlassung Deutschland,
Hedelfinger Str. 61, 70327 Stuttgart, Germany
| | - Michaela K. Mai
- Stuttgart
Laboratory 2, Sony Semiconductor Solutions Europe, Sony Europe B.V., Zweigniederlassung Deutschland,
Hedelfinger Str. 61, 70327 Stuttgart, Germany
| | - Maarten A. Jongsma
- BU
Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
3
|
Nolden AA, Behrens M, McGeary JE, Meyerhof W, Hayes JE. Differential Activation of TAS2R4 May Recover Ability to Taste Propylthiouracil for Some TAS2R38 AVI Homozygotes. Nutrients 2024; 16:1357. [PMID: 38732607 PMCID: PMC11085076 DOI: 10.3390/nu16091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Bitterness from phenylthiocarbamide and 6-n-propylthiouracil (PROP) varies with polymorphisms in the TAS2R38 gene. Three SNPs form two common (AVI, PAV) and four rare haplotypes (AAI, AAV, PVI, and PAI). AVI homozygotes exhibit higher detection thresholds and lower suprathreshold bitterness for PROP compared to PAV homozygotes and heterozygotes, and these differences may influence alcohol and vegetable intake. Within a diplotype, substantial variation in suprathreshold bitterness persists, and some AVI homozygotes report moderate bitterness at high concentrations. A second receptor encoded by a gene containing a functional polymorphism may explain this. Early work has suggested that PROP might activate TAS2R4 in vitro, but later work did not replicate this. Here, we identify three TAS2R4 SNPs that result in three diplotypes-SLN/SLN, FVS/SLN, and FVS/FVS-which make up 25.1%, 44.9%, and 23.9% of our sample. These TAS2R4 haplotypes show minimal linkage disequilibrium with TAS2R38, so we examined the suprathreshold bitterness as a function of both. The participants (n = 243) rated five PROP concentrations in duplicate, interleaved with other stimuli. As expected, the TAS2R38 haplotypes explained ~29% (p < 0.0001) of the variation in the bitterness ratings, with substantial variation within the haplotypes (AVI/AVI, PAV/AVI, and PAV/PAV). Notably, the TAS2R4 diplotypes (independent of the TAS2R38 haplotypes) explained ~7-8% of the variation in the bitterness ratings (p = 0.0001). Given this, we revisited if PROP could activate heterologously expressed TAS2R4 in HEK293T cells, and calcium imaging indicated 3 mM PROP is a weak TAS2R4 agonist. In sum, our data are consistent with the second receptor hypothesis and may explain the recovery of the PROP tasting phenotype in some AVI homozygotes; further, this finding may potentially help explain the conflicting results on the TAS2R38 diplotype and food intake.
Collapse
Affiliation(s)
- Alissa A. Nolden
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
- Sensory Evaluation Center, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Maik Behrens
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department Molecular Genetics, 14558 Nuthetal, Germany; (M.B.); (W.M.)
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - John E. McGeary
- Center of Innovation in Long Term Services & Supports, VA Providence Healthcare, Providence, RI 02908, USA;
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Wolfgang Meyerhof
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department Molecular Genetics, 14558 Nuthetal, Germany; (M.B.); (W.M.)
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424 Homburg, Germany
| | - John E. Hayes
- Sensory Evaluation Center, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Lang T, Di Pizio A, Risso D, Drayna D, Behrens M. Activation Profile of TAS2R2, the 26th Human Bitter Taste Receptor. Mol Nutr Food Res 2023; 67:e2200775. [PMID: 36929150 PMCID: PMC10239339 DOI: 10.1002/mnfr.202200775] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/02/2022] [Indexed: 03/18/2023]
Abstract
SCOPE To avoid ingestion of potentially harmful substances, humans are equipped with about 25 bitter taste receptor genes (TAS2R) expressed in oral taste cells. Humans exhibit considerable variance in their bitter tasting abilities, which are associated with genetic polymorphisms in bitter taste receptor genes. One of these variant receptor genes, TAS2R2, is initially believed to represent a pseudogene. However, TAS2R2 exists in a putative functional variant within some populations and can therefore be considered as an additional functional bitter taste receptor. METHODS AND RESULTS To learn more about the function of the experimentally neglected TAS2R2, a functional screening with 122 bitter compounds is performed. The study observes responses with eight of the 122 bitter substances and identifies the substance phenylbutazone as a unique activator of TAS2R2 among the family of TAS2Rs, thus filling one more gap in the array of cognate bitter substances. CONCLUSIONS The comprehensive characterization of the receptive range of TAS2R2 allows the classification into the group of TAS2Rs with a medium number of bitter agonists. The variability of bitter taste and its potential influences on food choice in some human populations may be even higher than assumed.
Collapse
Affiliation(s)
- Tatjana Lang
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Davide Risso
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Dennis Drayna
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Maik Behrens
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
5
|
Aoki K, Mori K, Iijima S, Sakon M, Matsuura N, Kobayashi T, Takanashi M, Yoshimura T, Mori N, Katayama T. Association between Genetic Variation in the TAS2R38 Bitter Taste Receptor and Propylthiouracil Bitter Taste Thresholds among Adults Living in Japan Using the Modified 2AFC Procedure with the Quest Method. Nutrients 2023; 15:2415. [PMID: 37242298 PMCID: PMC10222862 DOI: 10.3390/nu15102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Individual taste sensitivity influences food preferences, nutritional control, and health, and differs greatly between individuals. The purpose of this study was to establish a method of measuring and quantifying an individual's taste sensitivity and to evaluate the relationship between taste variation and genetic polymorphisms in humans using agonist specificities of the bitter taste receptor gene, TAS2R38, with the bitter compound 6-n-propylthiouracil (PROP). We precisely detected the threshold of PROP bitter perception by conducting the modified two-alternative forced-choice (2AFC) procedure with the Bayesian staircase procedure of the QUEST method and examined genetic variation in TAS2R38 in a Japanese population. There were significant differences in PROP threshold between the three TAS2R38 genotype pairs for 79 subjects: PAV/PAV vs AVI/AVI, p < 0.001; PAV/AVI vs AVI/AVI, p < 0.001; and PAV/PAV vs PAV/AVI, p < 0.01. Our results quantified individual bitter perception as QUEST threshold values: the PROP bitter perception of individuals with the PAV/PAV or PAV/AVI genotypes was tens to fifty times more sensitive than that of an individual with the AVI/AVI genotype. Our analyses provide a basic model for the accurate estimation of taste thresholds using the modified 2AFC with the QUEST approach.
Collapse
Affiliation(s)
- Kyoko Aoki
- Department of Advanced Medical Treatment & Nutritional Science, United Graduate School of Child Development, Osaka University, Suita 565-0871, Osaka, Japan; (K.M.); (N.M.); (T.K.)
| | - Kanetaka Mori
- Department of Advanced Medical Treatment & Nutritional Science, United Graduate School of Child Development, Osaka University, Suita 565-0871, Osaka, Japan; (K.M.); (N.M.); (T.K.)
- Division of Math, Sciences, and Information Technology in Education, Osaka Kyoiku University, Kashiwara 582-8582, Osaka, Japan
| | - Shohei Iijima
- Osaka Prefectural Hospital Organization, Osaka International Cancer Institute, Chuo-ku 541-8567, Osaka, Japan; (S.I.); (M.S.)
| | - Masato Sakon
- Osaka Prefectural Hospital Organization, Osaka International Cancer Institute, Chuo-ku 541-8567, Osaka, Japan; (S.I.); (M.S.)
| | - Nariaki Matsuura
- Department of Advanced Medical Treatment & Nutritional Science, United Graduate School of Child Development, Osaka University, Suita 565-0871, Osaka, Japan; (K.M.); (N.M.); (T.K.)
- Osaka Prefectural Hospital Organization, Osaka International Cancer Institute, Chuo-ku 541-8567, Osaka, Japan; (S.I.); (M.S.)
| | | | | | - Takeshi Yoshimura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita 565-0871, Osaka, Japan
| | - Norio Mori
- Department of Advanced Medical Treatment & Nutritional Science, United Graduate School of Child Development, Osaka University, Suita 565-0871, Osaka, Japan; (K.M.); (N.M.); (T.K.)
- Department of Psychiatry and Neurology, Fukude Nishi Hospital, Iwata 437-1216, Shizuoka, Japan
| | - Taiichi Katayama
- Department of Advanced Medical Treatment & Nutritional Science, United Graduate School of Child Development, Osaka University, Suita 565-0871, Osaka, Japan; (K.M.); (N.M.); (T.K.)
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita 565-0871, Osaka, Japan
| |
Collapse
|
6
|
Skurk T, Krämer T, Marcinek P, Malki A, Lang R, Dunkel A, Krautwurst T, Hofmann TF, Krautwurst D. Sweetener System Intervention Shifted Neutrophils from Homeostasis to Priming. Nutrients 2023; 15:nu15051260. [PMID: 36904259 PMCID: PMC10005247 DOI: 10.3390/nu15051260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Non-nutritive sweeteners (NNS) are part of personalized nutrition strategies supporting healthy glycemic control. In contrast, the consumption of non-nutritive sweeteners has been related to person-specific and microbiome-dependent glycemic impairments. Reports on the effects of NNS on our highly individual cellular immune system are sparse. The recent identification of taste receptor expression in a variety of immune cells, however, suggested their immune-modulatory relevance. METHODS We studied the influence of a beverage-typical NNS system on the transcriptional profiling of sweetener-cognate taste receptors, selected cytokines and their receptors, and on Ca2+ signaling in isolated blood neutrophils. We determined plasma concentrations of saccharin, acesulfame-K, and cyclamate by HPLC-MS/MS, upon ingestion of a soft drink-typical sweetener surrogate. In an open-labeled, randomized intervention study, we determined pre- versus post-intervention transcript levels by RT-qPCR of sweetener-cognate taste receptors and immune factors. RESULTS Here we show that the consumption of a food-typical sweetener system modulated the gene expression of cognate taste receptors and induced the transcriptional regulation signatures of early homeostasis- and late receptor/signaling- and inflammation-related genes in blood neutrophils, shifting their transcriptional profile from homeostasis to priming. Notably, sweeteners at postprandial plasma concentrations facilitated fMLF (N-formyl-Met-Leu-Phe)-induced Ca2+ signaling. CONCLUSIONS Our results support the notion of sweeteners priming neutrophils to higher alertness towards their adequate stimuli.
Collapse
Affiliation(s)
- Thomas Skurk
- ZIEL Institute for Food and Health, Core Facility Human Studies, TUM School for Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Tamara Krämer
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Patrick Marcinek
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Agne Malki
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Roman Lang
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Tiffany Krautwurst
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Thomas F. Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
7
|
Wooding SP, Ramirez VA. Global population genetics and diversity in the TAS2R bitter taste receptor family. Front Genet 2022; 13:952299. [PMID: 36303543 PMCID: PMC9592824 DOI: 10.3389/fgene.2022.952299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Bitter taste receptors (TAS2Rs) are noted for their role in perception, and mounting evidence suggests that they mediate responses to compounds entering airways, gut, and other tissues. The importance of these roles suggests that TAS2Rs have been under pressure from natural selection. To determine the extent of variation in TAS2Rs on a global scale and its implications for human evolution and behavior, we analyzed patterns of diversity in the complete 25 gene repertoire of human TAS2Rs in ∼2,500 subjects representing worldwide populations. Across the TAS2R family as a whole, we observed 721 single nucleotide polymorphisms (SNPs) including 494 nonsynonymous SNPs along with 40 indels and gained and lost start and stop codons. In addition, computational predictions identified 169 variants particularly likely to affect receptor function, making them candidate sources of phenotypic variation. Diversity levels ranged widely among loci, with the number of segregating sites ranging from 17 to 41 with a mean of 32 among genes and per nucleotide heterozygosity (π) ranging from 0.02% to 0.36% with a mean of 0.12%. FST ranged from 0.01 to 0.26 with a mean of 0.13, pointing to modest differentiation among populations. Comparisons of observed π and FST values with their genome wide distributions revealed that most fell between the 5th and 95th percentiles and were thus consistent with expectations. Further, tests for natural selection using Tajima’s D statistic revealed only two loci departing from expectations given D’s genome wide distribution. These patterns are consistent with an overall relaxation of selective pressure on TAS2Rs in the course of recent human evolution.
Collapse
Affiliation(s)
- Stephen P. Wooding
- Department of Anthropology, University of California, Merced, Merced, CA, United States
- *Correspondence: Stephen P. Wooding,
| | - Vicente A. Ramirez
- Department of Public Health, University of California, Merced, Merced, CA, United States
| |
Collapse
|
8
|
Yang Z, Chen H, Lu Y, Gao Y, Sun H, Wang J, Jin L, Chu J, Xu S. Genetic evidence of tri-genealogy hypothesis on the origin of ethnic minorities in Yunnan. BMC Biol 2022; 20:166. [PMID: 35864541 PMCID: PMC9306206 DOI: 10.1186/s12915-022-01367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Yunnan is located in Southwest China and consists of great cultural, linguistic, and genetic diversity. However, the genomic diversity of ethnic minorities in Yunnan is largely under-investigated. To gain insights into population history and local adaptation of Yunnan minorities, we analyzed 242 whole-exome sequencing data with high coverage (~ 100-150 ×) of Yunnan minorities representing Achang, Jingpo, Dai, and Deang, who were linguistically assumed to be derived from three ancient lineages (the tri-genealogy hypothesis), i.e., Di-Qiang, Bai-Yue, and Bai-Pu. RESULTS Yunnan minorities show considerable genetic differences. Di-Qiang populations likely migrated from the Tibetan area about 6700 years ago. Genetic divergence between Bai-Yue and Di-Qiang was estimated to be 7000 years, and that between Bai-Yue and Bai-Pu was estimated to be 5500 years. Bai-Pu is relatively isolated, but gene flow from surrounding Di-Qiang and Bai-Yue populations was also found. Furthermore, we identified genetic variants that are differentiated within Yunnan minorities possibly due to the living circumstances and habits. Notably, we found that adaptive variants related to malaria and glucose metabolism suggest the adaptation to thalassemia and G6PD deficiency resulting from malaria resistance in the Dai population. CONCLUSIONS We provided genetic evidence of the tri-genealogy hypothesis as well as new insights into the genetic history and local adaptation of the Yunnan minorities.
Collapse
Affiliation(s)
- Zhaoqing Yang
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yang Gao
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Hao Sun
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Jiayou Chu
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China.
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China.
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
9
|
Bitter Taste Receptors Expression in Human Granulosa and Cumulus Cells: New Perspectives in Female Fertility. Cells 2021; 10:cells10113127. [PMID: 34831350 PMCID: PMC8619861 DOI: 10.3390/cells10113127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Bitter taste receptors (TAS2RS) expression is not restricted to the oral cavity and the presence of these receptors in the male reproductive system and sperm provides insights into their possible role in human reproduction. To elucidate the potential role of TAS2Rs in the female reproductive system, we investigated the expression and localization of bitter taste receptors and the components of signal transduction cascade involved in the pathway of taste receptors in somatic follicular cells obtained from women undergoing assisted reproductive techniques. We found that TAS2R genes are expressed in both cumulus (CCs) and granulosa (GCs) cells, with TAS2R14 being the most highly expressed bitter receptor subtype. Interestingly, a slight increase in the expression of TAS2R14 and TAS2R43 was shown in both GCs and CCs in young women (p < 0.05), while a negative correlation may be established between the number of oocytes collected at the pickup and the expression of TAS2R43. Regarding α-gustducin and α-transducin, two Gα subunits expressed in the taste buds on the tongue, we provide evidence for their expression in CCs and GCs, with α-gustducin showing two additional isoforms in GCs. Finally, we shed light on the possible downstream transduction pathway initiated by taste receptor activation in the female reproductive system. Our study, showing for the first time the expression of taste receptors in the somatic ovarian follicle cells, significantly extends the current knowledge of the biological role of TAS2Rs for human female fertility.
Collapse
|
10
|
Wooding SP, Ramirez VA, Behrens M. Bitter taste receptors: Genes, evolution and health. Evol Med Public Health 2021; 9:431-447. [PMID: 35154779 PMCID: PMC8830313 DOI: 10.1093/emph/eoab031] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/05/2021] [Indexed: 02/01/2023] Open
Abstract
Bitter taste perception plays vital roles in animal behavior and fitness. By signaling the presence of toxins in foods, particularly noxious defense compounds found in plants, it enables animals to avoid exposure. In vertebrates, bitter perception is initiated by TAS2Rs, a family of G protein-coupled receptors expressed on the surface of taste buds. There, oriented toward the interior of the mouth, they monitor the contents of foods, drinks and other substances as they are ingested. When bitter compounds are encountered, TAS2Rs respond by triggering neural pathways leading to sensation. The importance of this role placed TAS2Rs under selective pressures in the course of their evolution, leaving signatures in patterns of gene gain and loss, sequence polymorphism, and population structure consistent with vertebrates' diverse feeding ecologies. The protective value of bitter taste is reduced in modern humans because contemporary food supplies are safe and abundant. However, this is not always the case. Some crops, particularly in the developing world, retain surprisingly high toxicity and bitterness remains an important measure of safety. Bitter perception also shapes health through its influence on preference driven behaviors such as diet choice, alcohol intake and tobacco use. Further, allelic variation in TAS2Rs is extensive, leading to individual differences in taste sensitivity that drive these behaviors, shaping susceptibility to disease. Thus, bitter taste perception occupies a critical intersection between ancient evolutionary processes and modern human health.
Collapse
Affiliation(s)
- Stephen P Wooding
- Department of Anthropology and Health Sciences Research Institute, University of California, Merced, CA, USA
| | - Vicente A Ramirez
- Department of Public Health, University of California, Merced, CA, USA
| | - Maik Behrens
- Maik Behrens, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
11
|
Schmid C, Brockhoff A, Shoshan-Galeczki YB, Kranz M, Stark TD, Erkaya R, Meyerhof W, Niv MY, Dawid C, Hofmann T. Comprehensive structure-activity-relationship studies of sensory active compounds in licorice (Glycyrrhiza glabra). Food Chem 2021; 364:130420. [PMID: 34182369 DOI: 10.1016/j.foodchem.2021.130420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
Licorice saponins, the main constituents of Glycyrrhiza glabra L. roots, are highly appreciated by the consumer for their pleasant sweet and long lasting licorice taste. The objective of the present study was to understand the molecular features that contribute to bitter, sweet and licorice sensation of licorice roots, and whether individual compounds elicit more than one of these sensations. Therefore, a sensomics approach was conducted, followed by purification of the compounds with highest sensory impact, and by synthesis as well as full characterization via HRESIMS, ESIMS/MS and 1D/2D-NMR experiments. This led to the discovery and structure determination of 28 sweet, bitter and licorice tasting key phytochemicals, including two unknown compounds. A combination of sensorial, cell-based and computational analysis revealed distinct structural features, such as spatial arrangement of functional groups in the triterpenoid E-ring, driving to different taste sensations and sweet receptor hTAS1R2/R3 stimulation.
Collapse
Affiliation(s)
- Christian Schmid
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Anne Brockhoff
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Yaron Ben Shoshan-Galeczki
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot and The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Maximilian Kranz
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Timo D Stark
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Rukiye Erkaya
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Wolfgang Meyerhof
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Center for Integrative Physiology and Molecular Medicine, Saarland University, Kirrberger Straße 100, 66421 Homburg, Germany
| | - Masha Y Niv
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot and The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Corinna Dawid
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Thomas Hofmann
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| |
Collapse
|
12
|
Chen J, Lei Y, Zhang Y, He S, Liu L, Dong X. Beyond sweetness: The high-intensity sweeteners and farm animals. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Lang T, Lang R, Di Pizio A, Mittermeier VK, Schlagbauer V, Hofmann T, Behrens M. Numerous Compounds Orchestrate Coffee's Bitterness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6692-6700. [PMID: 32437139 DOI: 10.1021/acs.jafc.0c01373] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coffee is one of the most consumed hot beverages worldwide and is highly regarded because of its stimulating effect despite having a pronounced bitterness. Even though numerous bitter ingredients have been identified, the detailed molecular basis for coffee's bitterness is not well understood except for caffeine, which activates five human bitter taste receptors. We elucidated the contribution of other bitter coffee constituents in addition to caffeine with functional calcium imaging experiments using mammalian cells expressing the cDNAs of human bitter taste receptors, sensory experiments, and in silico modeling approaches. We identified two human bitter taste receptors, TAS2R43 and TAS2R46, that responded to the bitter substance mozambioside with much higher sensitivity than to caffeine. Further, the structurally related bitter substances bengalensol, cafestol, and kahweol also activated the same pair of bitter taste receptors much more potently than the prototypical coffee bitter substance caffeine. However, for kahweol, a potent but weak activator of TAS2R43 and TAS2R46, we observed an inhibitory effect when simultaneously applied together with mozambioside to TAS2R43 expressing cells. Molecular modeling experiments showed overlapping binding sites in the receptor's ligand binding cavity that suggest that the partial agonist kahweol might be useful to reduce the overall bitterness of coffee-containing beverages. Taken together, we found that the bitterness of coffee is determined by a complex interaction of multiple bitter compounds with several human bitter taste receptors.
Collapse
Affiliation(s)
- Tatjana Lang
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Roman Lang
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Verena Karolin Mittermeier
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Verena Schlagbauer
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
14
|
Fotsing JR, Darmohusodo V, Patron AP, Ching BW, Brady T, Arellano M, Chen Q, Davis TJ, Liu H, Servant G, Zhang L, Williams M, Saganich M, Ditschun T, Tachdjian C, Karanewsky DS. Discovery and Development of S6821 and S7958 as Potent TAS2R8 Antagonists. J Med Chem 2020; 63:4957-4977. [PMID: 32330040 DOI: 10.1021/acs.jmedchem.0c00388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In humans, bitter taste is mediated by 25 TAS2Rs. Many compounds, including certain active pharmaceutical ingredients, excipients, and nutraceuticals, impart their bitter taste (or in part) through TAS2R8 activation. However, effective TAS2R8 blockers that can either suppress or reduce the bitterness of these compounds have not been described. We are hereby reporting a series of novel 3-(pyrazol-4-yl) imidazolidine-2,4-diones as potent and selective TAS2R8 antagonists. In human sensory tests, S6821 and S7958, two of the most potent analogues from the series, demonstrated efficacy in blocking TAS2R8-mediated bitterness and were selected for development. Following data evaluation by expert panels of a number of national and multinational regulatory bodies, including the US, the EU, and Japan, S6821 and S7958 were approved as safe under conditions of intended use as bitter taste blockers.
Collapse
Affiliation(s)
- Joseph R Fotsing
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Vincent Darmohusodo
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Andrew P Patron
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Brett W Ching
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Thomas Brady
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Melissa Arellano
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Qing Chen
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Timothy J Davis
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Hanghui Liu
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Guy Servant
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Lan Zhang
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Mark Williams
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Michael Saganich
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Tanya Ditschun
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Catherine Tachdjian
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Donald S Karanewsky
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| |
Collapse
|
15
|
Lee P, Oh H, Kim SY, Kim Y. Effects of
d
‐allulose as a sucrose substitute on the physicochemical, textural, and sensorial properties of pound cakes. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Phyrim Lee
- Department of Integrated Biomedical and Life Sciences Korea University Seoul Republic of Korea
| | - Hyeonbin Oh
- Department of Integrated Biomedical and Life Sciences Korea University Seoul Republic of Korea
| | - Si Yeon Kim
- Department of Integrated Biomedical and Life Sciences Korea University Seoul Republic of Korea
| | - Young‐Soon Kim
- Department of Integrated Biomedical and Life Sciences Korea University Seoul Republic of Korea
- Department of Food & Nutrition Korea University Seoul Republic of Korea
| |
Collapse
|
16
|
Nolden AA, Feeney EL. Genetic Differences in Taste Receptors: Implications for the Food Industry. Annu Rev Food Sci Technol 2020; 11:183-204. [PMID: 31922882 DOI: 10.1146/annurev-food-032519-051653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inborn genetic differences in chemosensory receptors can lead to differences in perception and preference for foods and beverages. These differences can drive market segmentation for food products as well as contribute to nutritional status. This knowledge may be essential in the development of foods and beverages because the sensory profiles may not be experienced in the same way across individuals. Rather, distinct consumer groups may exist with different underlying genetic variations. Identifying genetic factors associated with individual variability can help better meet consumer needs through an enhanced understanding of perception and preferences. This review provides an overview of taste and chemesthetic sensations and their receptors, highlighting recent advances linking genetic variations in chemosensory genes to perception, food preference and intake, and health. With growing interest in personalized foods, this information is useful for both food product developers and nutrition health professionals alike.
Collapse
Affiliation(s)
- Alissa A Nolden
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA;
| | - Emma L Feeney
- Institute of Food and Health, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
17
|
Diószegi J, Llanaj E, Ádány R. Genetic Background of Taste Perception, Taste Preferences, and Its Nutritional Implications: A Systematic Review. Front Genet 2019; 10:1272. [PMID: 31921309 PMCID: PMC6930899 DOI: 10.3389/fgene.2019.01272] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023] Open
Abstract
Background: The rise in nutrition-related morbidity and mortality requires public health intervention programs targeting nutritional behavior. In addition to socio-economical, socio-cultural, psychological determinants, taste is one of the main factors that influence food choices. Differences in taste perception and sensitivity may be explained by genetic variations, therefore the knowledge of the extent to which genetic factors influence the development of individual taste preferences and eating patterns is important for public policy actions addressing nutritional behaviors. Our aim was to review genetic polymorphisms accounting for variability in taste and food preferences to contribute to an improved understanding of development of taste and food preferences. Methods: The electronic databases PubMed, Scopus, and Web of Science were searched using MeSH in PubMed and free text terms for articles published between January 1, 2000 and April 13, 2018. The search strategy was conducted following the PRISMA statement. The quality of the included studies was assessed by the validated Q-Genie tool. Results: Following the PRISMA flowchart, finally 103 articles were included in the review. Among the reviewed studies, 43 were rated to have good quality, 47 were rated to have moderate quality, and 13 were rated to have low quality. The majority of the studies assessed the association of genetic variants with the bitter taste modality, followed by articles analyzing the impact of polymorphisms on sweet and fat preferences. The number of studies investigating the association between umami, salty, and sour taste qualities and genetic polymorphisms was limited. Conclusions: Our findings suggest that a significant association exists between TAS2R38 variants (rs713598, rs1726866, rs10246939) and bitter and sweet taste preference. Other confirmed results are related to rs1761667 (CD36) and fat taste responsiveness. Otherwise further research is essential to confirm results of studies related to genetic variants and individual taste sensitivity. This knowledge may enhance our understanding of the development of individual taste and related food preferences and food choices that will aid the development of tailored public health strategy to reduce nutrition-related disease and morbidity.
Collapse
Affiliation(s)
- Judit Diószegi
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | - Erand Llanaj
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Róza Ádány
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary.,Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary.,WHO Collaborating Centre on Vulnerability and Health, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Reyes MM, Gravina SA, Hayes JE. Evaluation of Sweetener Synergy in Humans by Isobole Analyses. Chem Senses 2019; 44:571-582. [PMID: 31424498 DOI: 10.1093/chemse/bjz056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The chemical senses and pharmaceuticals fundamentally depend on similar biological processes, but novel molecule discovery has classically been approached from vastly different vantage points. From the perspective of ingredient and flavor companies, there are countless ingredients that act via largely unknown mechanisms, whereas the pharmaceutical industry has numerous mechanisms in search of novel compounds. Mixtures of agonists can result in synergistic (superadditive) responses, which can be quantified via isobole analysis, a well-proven clinical approach in pharmacology. For the food and beverage industries, bulk (caloric) sweeteners like sugars are a key ingredient in sweetened foods and beverages, but consumers also desire products with fewer calories, which has led to the development of sweet enhancers and sweetener blends intended to achieve synergy or superadditivity. Synergistic mixtures are highly attractive targets commercially as they enable lower usage levels and enhanced efficacy. Although the psychophysical literature contains numerous prior reports of sweetener synergy, others have also noted that classical additive models fail to account for nonlinear dose-response functions. To address this shortcoming, here we systematically apply the isobole method from pharmacology to quantify the presence or absence of psychophysical synergy for binary pairs of sweeteners in a series of 15 separate experiments, each with ~100 adult volunteers (total n = 1576). Generally, these data support the hypothesis that structurally similar sweeteners acting as agonists will not synergize, whereas structurally dissimilar sweeteners binding to overlapping or distal sites can act as allosteric agonists or agonist-antagonists, respectively.
Collapse
Affiliation(s)
- M Michelle Reyes
- Sensory Evaluation Center, The Pennsylvania State University, University Park, PA, USA.,Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | - John E Hayes
- Sensory Evaluation Center, The Pennsylvania State University, University Park, PA, USA.,Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
19
|
|
20
|
Abstract
The study of taste has been guided throughout much of its history by the conceptual framework of psychophysics, where the focus was on quantification of the subjective experience of the taste sensations. By the mid-20th century, data from physiologic studies had accumulated sufficiently to assemble a model for the function of receptors that must mediate the initial stimulus of tastant molecules in contact with the tongue. But the study of taste as a receptor-mediated event did not gain momentum until decades later when the actual receptor proteins and attendant signaling mechanisms were identified and localized to the highly specialized taste-responsive cells of the tongue. With those discoveries a new opportunity to examine taste as a function of receptor activity has come into focus. Pharmacology is the science designed specifically for the experimental interrogation and quantitative characterization of receptor function at all levels of inquiry from molecules to behavior. This review covers the history of some of the major concepts that have shaped thinking and experimental approaches to taste, the seminal discoveries that have led to elucidation of receptors for taste, and how applying principles of receptor pharmacology can enhance understanding of the mechanisms of taste physiology and perception.
Collapse
Affiliation(s)
- R Kyle Palmer
- Opertech Bio, Inc., Pennovation Center, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Abstract
This chapter summarizes the available data about taste receptor functions and their role in perception of food with emphasis on the human system. In addition we illuminate the widespread presence of these receptors throughout the body and discuss some of their extraoral functions. Finally, we describe clinical aspects where taste receptor signaling could be relevant.
Collapse
Affiliation(s)
- Jonas C Töle
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
22
|
Hwang LD, Gharahkhani P, Breslin PAS, Gordon SD, Zhu G, Martin NG, Reed DR, Wright MJ. Bivariate genome-wide association analysis strengthens the role of bitter receptor clusters on chromosomes 7 and 12 in human bitter taste. BMC Genomics 2018; 19:678. [PMID: 30223776 PMCID: PMC6142396 DOI: 10.1186/s12864-018-5058-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022] Open
Abstract
Background Human perception of bitter substances is partially genetically determined. Previously we discovered a single nucleotide polymorphism (SNP) within the cluster of bitter taste receptor genes on chromosome 12 that accounts for 5.8% of the variance in the perceived intensity rating of quinine, and we strengthened the classic association between TAS2R38 genotype and the bitterness of propylthiouracil (PROP). Here we performed a genome-wide association study (GWAS) using a 40% larger sample (n = 1999) together with a bivariate approach to detect previously unidentified common variants with small effects on bitter perception. Results We identified two signals, both with small effects (< 2%), within the bitter taste receptor clusters on chromosomes 7 and 12, which influence the perceived bitterness of denatonium benzoate and sucrose octaacetate respectively. We also provided the first independent replication for an association of caffeine bitterness on chromosome 12. Furthermore, we provided evidence for pleiotropic effects on quinine, caffeine, sucrose octaacetate and denatonium benzoate for the three SNPs on chromosome 12 and the functional importance of the SNPs for denatonium benzoate bitterness. Conclusions These findings provide new insights into the genetic architecture of bitter taste and offer a useful starting point for determining the biological pathways linking perception of bitter substances. Electronic supplementary material The online version of this article (10.1186/s12864-018-5058-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang-Dar Hwang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia. .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia. .,Faculty of Medicine, University of Queensland, Brisbane, Queensland, 4006, Australia. .,University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, 4102, Australia.
| | - Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Paul A S Breslin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, 19104, USA.,Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Danielle R Reed
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, 19104, USA
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia.,Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
23
|
Douglas JE, Mansfield CJ, Arayata CJ, Cowart BJ, Colquitt LR, Maina IW, Blasetti MT, Cohen NA, Reed DR. Taste Exam: A Brief and Validated Test. J Vis Exp 2018. [PMID: 30176005 DOI: 10.3791/56705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The emerging importance of taste in medicine and biomedical research, and new knowledge about its genetic underpinnings, has motivated us to supplement classic taste-testing methods in two ways. First, we explain how to do a brief assessment of the mouth, including the tongue, to ensure that taste papillae are present and to note evidence of relevant disease. Second, we draw on genetics to validate taste test data by comparing reports of perceived bitterness intensity and inborn receptor genotypes. Discordance between objective measures of genotype and subjective reports of taste experience can identify data collection errors, distracted subjects or those who have not understood or followed instructions. Our expectation is that fast and valid taste tests may persuade researchers and clinicians to assess taste regularly, making taste testing as common as testing for hearing and vision. Finally, because many tissues of the body express taste receptors, taste responses may provide a proxy for tissue sensitivity elsewhere in the body and, thereby, serve as a rapid, point-of-care test to guide diagnosis and a research tool to evaluate taste receptor protein function.
Collapse
Affiliation(s)
- Jennifer E Douglas
- Perelman School of Medicine at the University of Pennsylvania; Monell Chemical Senses Center
| | | | | | | | | | - Ivy W Maina
- Perelman School of Medicine at the University of Pennsylvania; Monell Chemical Senses Center
| | - Mariel T Blasetti
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Hospital of the University of Pennsylvania
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Hospital of the University of Pennsylvania
| | | |
Collapse
|
24
|
Behrens M, Meyerhof W. Vertebrate Bitter Taste Receptors: Keys for Survival in Changing Environments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2204-2213. [PMID: 28013542 DOI: 10.1021/acs.jafc.6b04835] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research on bitter taste receptors has made enormous progress during recent years. Although in the early period after the discovery of this highly interesting receptor family special emphasis was placed on the deorphanization of mainly human bitter taste receptors, the research focus has shifted to sophisticated structure-function analyses, the discovery of small-molecule interactors, and the pharmacological profiling of nonhuman bitter taste receptors. These findings allowed novel perspectives on, for example, evolutionary and ecological questions that have arisen and that are discussed.
Collapse
Affiliation(s)
- Maik Behrens
- Department of Molecular Genetics , German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee 114-116 , 14558 Nuthetal , Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics , German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee 114-116 , 14558 Nuthetal , Germany
| |
Collapse
|
25
|
Jiang J, Qi L, Wei Q, Shi F. Effects of daily exposure to saccharin sodium and rebaudioside A on the ovarian cycle and steroidogenesis in rats. Reprod Toxicol 2018; 76:35-45. [DOI: 10.1016/j.reprotox.2017.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
|
26
|
Behrens M, Blank K, Meyerhof W. Blends of Non-caloric Sweeteners Saccharin and Cyclamate Show Reduced Off-Taste due to TAS2R Bitter Receptor Inhibition. Cell Chem Biol 2017; 24:1199-1204.e2. [DOI: 10.1016/j.chembiol.2017.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 06/09/2017] [Accepted: 08/01/2017] [Indexed: 11/26/2022]
|
27
|
Caffeine induces gastric acid secretion via bitter taste signaling in gastric parietal cells. Proc Natl Acad Sci U S A 2017; 114:E6260-E6269. [PMID: 28696284 DOI: 10.1073/pnas.1703728114] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Caffeine, generally known as a stimulant of gastric acid secretion (GAS), is a bitter-tasting compound that activates several taste type 2 bitter receptors (TAS2Rs). TAS2Rs are expressed in the mouth and in several extraoral sites, e.g., in the gastrointestinal tract, in which their functional role still needs to be clarified. We hypothesized that caffeine evokes effects on GAS by activation of oral and gastric TAS2Rs and demonstrate that caffeine, when administered encapsulated, stimulates GAS, whereas oral administration of a caffeine solution delays GAS in healthy human subjects. Correlation analysis of data obtained from ingestion of the caffeine solution revealed an association between the magnitude of the GAS response and the perceived bitterness, suggesting a functional role of oral TAS2Rs in GAS. Expression of TAS2Rs, including cognate TAS2Rs for caffeine, was shown in human gastric epithelial cells of the corpus/fundus and in HGT-1 cells, a model for the study of GAS. In HGT-1 cells, various bitter compounds as well as caffeine stimulated proton secretion, whereby the caffeine-evoked effect was (i) shown to depend on one of its cognate receptor, TAS2R43, and adenylyl cyclase; and (ii) reduced by homoeriodictyol (HED), a known inhibitor of caffeine's bitter taste. This inhibitory effect of HED on caffeine-induced GAS was verified in healthy human subjects. These findings (i) demonstrate that bitter taste receptors in the stomach and the oral cavity are involved in the regulation of GAS and (ii) suggest that bitter tastants and bitter-masking compounds could be potentially useful therapeutics to regulate gastric pH.
Collapse
|
28
|
Risso DS, Giuliani C, Antinucci M, Morini G, Garagnani P, Tofanelli S, Luiselli D. A bio-cultural approach to the study of food choice: The contribution of taste genetics, population and culture. Appetite 2017; 114:240-247. [DOI: 10.1016/j.appet.2017.03.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 12/14/2022]
|
29
|
Abstract
Many people avidly consume foods and drinks containing caffeine, despite its bitter taste. Here, we review what is known about caffeine as a bitter taste stimulus. Topics include caffeine's action on the canonical bitter taste receptor pathway and caffeine's action on noncanonical receptor-dependent and -independent pathways in taste cells. Two conclusions are that (1) caffeine is a poor prototypical bitter taste stimulus because it acts on bitter taste receptor-independent pathways, and (2) caffeinated products most likely stimulate "taste" receptors in nongustatory cells. This review is relevant for taste researchers, manufacturers of caffeinated products, and caffeine consumers.
Collapse
Affiliation(s)
- Rachel L Poole
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | | |
Collapse
|
30
|
Hayes JE, Johnson SL. Sensory Aspects of Bitter and Sweet Tastes During Early Childhood. ACTA ACUST UNITED AC 2017. [DOI: 10.1097/nt.0000000000000201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Lipchock SV, Spielman AI, Mennella JA, Mansfield CJ, Hwang LD, Douglas JE, Reed DR. Caffeine Bitterness is Related to Daily Caffeine Intake and Bitter Receptor mRNA Abundance in Human Taste Tissue. Perception 2017; 46:245-256. [PMID: 28118781 DOI: 10.1177/0301006616686098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We investigated whether the abundance of bitter receptor mRNA expression from human taste papillae is related to an individual's perceptual ratings of bitter intensity and habitual intake of bitter drinks. Ratings of the bitterness of caffeine and quinine and three other bitter stimuli (urea, propylthiouracil, and denatonium benzoate) were compared with relative taste papilla mRNA abundance of bitter receptors that respond to the corresponding bitter stimuli in cell-based assays ( TAS2R4, TAS2R10, TAS2R38, TAS2R43, and TAS2R46). We calculated caffeine and quinine intake from a food frequency questionnaire. The bitterness of caffeine was related to the abundance of the combined mRNA expression of these known receptors, r = 0.47, p = .05, and self-reported daily caffeine intake, t(18) = 2.78, p = .012. The results of linear modeling indicated that 47% of the variance among subjects in the rating of caffeine bitterness was accounted for by these two factors (habitual caffeine intake and taste receptor mRNA abundance). We observed no such relationships for quinine but consumption of its primary dietary form (tonic water) was uncommon. Overall, diet and TAS2R gene expression in taste papillae are related to individual differences in caffeine perception.
Collapse
Affiliation(s)
| | - Andrew I Spielman
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, NY, USA
| | | | | | | | | | | |
Collapse
|
32
|
Bobowski N, Reed DR, Mennella JA. Variation in the TAS2R31 bitter taste receptor gene relates to liking for the nonnutritive sweetener Acesulfame-K among children and adults. Sci Rep 2016; 6:39135. [PMID: 27966661 PMCID: PMC5155417 DOI: 10.1038/srep39135] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/17/2016] [Indexed: 01/08/2023] Open
Abstract
The nonnutritive sweetener (NNS) acesulfame potassium (Ace-K) elicits a bitter off-taste that varies among adults due to polymorphisms in a bitter taste receptor gene. Whether polymorphisms affect liking for Ace-K by children, who live in different sensory worlds, is unknown. We examined hedonic response to Ace-K among children compared to adults, and whether response was related to common variants of the TAS2R31 bitter taste receptor gene and to NNS intake. Children (N = 48) and their mothers (N = 34) rated liking of Ace-K, and mothers reported whether they or their children ever consume NNSs via questionnaire. Participants were genotyped for TAS2R31 variant sites associated with adult perception of Ace-K (R35W, L162M, A227V, and V240I). Regardless of age, more participants with 1 or no copies than with 2 copies of the TAS2R31 WMVI haplotype liked Ace-K (p = 0.01). NNS-sweetened products were consumed by 50% and 15% of mothers and children, respectively, with no association between intake and TAS2R31. The TAS2R31 WMVI haplotype was partly responsible for children’s hedonic response to Ace-K, highlighting a potential role for inborn differences in vulnerability to overconsumption of Ace-K-containing products. Currently available methods to measure NNS intake yield crude estimates at best, suggesting self-reports are not reflective of actual intake.
Collapse
Affiliation(s)
- Nuala Bobowski
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104-3308, USA
| | - Danielle R Reed
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104-3308, USA
| | - Julie A Mennella
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104-3308, USA
| |
Collapse
|
33
|
McMullen MK. Neural Transmission from Oropharyngeal Bitter Receptors to the Medulla is Partially or Completely Labelled-Line. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The ground breaking advances in taste cell receptor cell physiology over the last 20 years have established a functional basis which enables neural pathways to be mapped. There is only one, or perhaps several, types of taste receptors for salt, sour, sweet and umami (meaty) tastes and stimulation of each receptor type elicits responses in different cognitive regions. These findings support the labelled-line neural pathway model. In contrast, there are 25 types of the bitter taste receptors which all produce the same cognitive sensation, a finding which supports the across-fiber pattern model. This paper compiles the findings of several human studies investigating the impact of bitter tastants on postprandial hemodynamics, to demonstrate that diverse bitter tastants are capable of eliciting a range of characteristic reflex cephalic phase responses in the autonomic and cardiovascular systems. These findings indicate that neural pathways from the oropharyngeal bitter taste receptors to the nucleus of the solitary tract are either partially or completely labelled-line. Consequently, the hedonics of a bitter tastant are not an accurate indicator of the cephalic phase responses elicited by the tastant. The finding that secondary metabolites present in dietary condiments modulate autonomic activity and in particular postprandial hemodynamics is novel and adds a new dimension to our understanding of the ways in which humans are influenced by their diet, both in health and disease. These findings suggest that condiments play a role in food digestion, unrelated to their hedonistic qualities. Consequently, condiments may be of significance to those with digestive disorders and especially for diabetics experiencing gastroparesis and/or postprandial hypotension. Additionally, the findings suggest a noninvasive method to assess the integrity of multiple neural pathways. For investigators exploring the effect of condiments on autonomic reflexes, traditional cuisines may be a valuable source as they are full of uncharted human recordings.
Collapse
|
34
|
Roudnitzky N, Risso D, Drayna D, Behrens M, Meyerhof W, Wooding SP. Copy Number Variation in TAS2R Bitter Taste Receptor Genes: Structure, Origin, and Population Genetics. Chem Senses 2016; 41:649-59. [PMID: 27340135 DOI: 10.1093/chemse/bjw067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bitter taste receptor genes (TAS2Rs) harbor extensive diversity, which is broadly distributed across human populations and strongly associated with taste response phenotypes. The majority of TAS2R variation is composed of single-nucleotide polymorphisms. However, 2 closely positioned loci at 12p13, TAS2R43 and -45, harbor high-frequency deletion (Δ) alleles in which genomic segments are absent, resulting in copy number variation (CNV). To resolve their chromosomal structure and organization, we generated maps using long-range contig alignments and local sequencing across the TAS2R43-45 region. These revealed that the deletion alleles (43Δ and 45Δ) are 37.8 and 32.2kb in length, respectively and span the complete coding region of each gene (~1kb) along with extensive up- and downstream flanking sequence, producing separate CNVs at the 2 loci. Comparisons with a chimpanzee genome, which contained intact homologs of TAS2R43, -45, and nearby TAS2Rs, indicated that the deletions evolved recently, through unequal recombination in a cluster of closely related loci. Population genetic analyses in 946 subjects from 52 worldwide populations revealed that copy number ranged from 0 to 2 at both TAS2R43 and TAS2R45, with 43Δ and 45Δ occurring at high global frequencies (0.33 and 0.18). Estimated recombination rates between the loci were low (ρ = 2.7×10(-4); r = 6.6×10(-9)) and linkage disequilibrium was high (D' = 1.0), consistent with their adjacent genomic positioning and recent origin. Geographic variation pointed to an African origin for the deletions. However, no signatures of natural selection were found in population structure or integrated haplotype scores spanning the region, suggesting that patterns of diversity at TAS2R43 and -45 are primarily due to genetic drift.
Collapse
Affiliation(s)
- Natacha Roudnitzky
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Davide Risso
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA and
| | - Dennis Drayna
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA and
| | - Maik Behrens
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Stephen P Wooding
- Health Sciences Research Institute, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| |
Collapse
|
35
|
Doty RL, Tourbier IA, Pham DL, Cuzzocreo JL, Udupa JK, Karacali B, Beals E, Fabius L, Leon-Sarmiento FE, Moonis G, Kim T, Mihama T, Geckle RJ, Yousem DM. Taste dysfunction in multiple sclerosis. J Neurol 2016; 263:677-88. [PMID: 26810729 PMCID: PMC5399510 DOI: 10.1007/s00415-016-8030-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 02/06/2023]
Abstract
Empirical studies of taste function in multiple sclerosis (MS) are rare. Moreover, a detailed assessment of whether quantitative measures of taste function correlate with the punctate and patchy myelin-related lesions found throughout the CNS of MS patients has not been made. We administered a 96-trial test of sweet (sucrose), sour (citric acid), bitter (caffeine) and salty (NaCl) taste perception to the left and right anterior (CN VII) and posterior (CN IX) tongue regions of 73 MS patients and 73 matched controls. The number and volume of lesions were assessed using quantitative MRI in 52 brain regions of 63 of the MS patients. Taste identification scores were significantly lower in the MS patients for sucrose (p = 0.0002), citric acid (p = 0.0001), caffeine (p = 0.0372) and NaCl (p = 0.0004) and were present in both anterior and posterior tongue regions. The percent of MS patients with identification scores falling below the 5th percentile of controls was 15.07 % for caffeine, 21.9 % for citric acid, 24.66 % for sucrose, and 31.50 % for NaCl. Such scores were inversely correlated with lesion volumes in the temporal, medial frontal, and superior frontal lobes, and with the number of lesions in the left and right superior frontal lobes, right anterior cingulate gyrus, and left parietal operculum. Regardless of the subject group, women outperformed men on the taste measures. These findings indicate that a sizable number of MS patients exhibit taste deficits that are associated with MS-related lesions throughout the brain.
Collapse
Affiliation(s)
- Richard L Doty
- Smell and Taste Center, Perelman School of Medicine, University of Pennsylvania, 5 Ravdin Building, 3400 Spruce Street, Philadelphia, PA, 19104-4823, USA.
- Department of Otorhinolarynology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Isabelle A Tourbier
- Smell and Taste Center, Perelman School of Medicine, University of Pennsylvania, 5 Ravdin Building, 3400 Spruce Street, Philadelphia, PA, 19104-4823, USA
- Department of Otorhinolarynology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD, USA
| | - Jennifer L Cuzzocreo
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, 21287, MD, USA
| | - Jayaram K Udupa
- Medical Imaging Section, Department of Radiology, Perelman School of Medicine, University of Pennsylvlania, Philadelphia, 19104, PA, USA
| | - Bilge Karacali
- Electrical and Electronics Engineering Department, İzmir Institute of Technology, Urla, Izmir, 35430, Turkey
| | - Evan Beals
- Smell and Taste Center, Perelman School of Medicine, University of Pennsylvania, 5 Ravdin Building, 3400 Spruce Street, Philadelphia, PA, 19104-4823, USA
- Department of Psychology, Michigan State University, 48824, East Lansing, MI, USA
| | - Laura Fabius
- Smell and Taste Center, Perelman School of Medicine, University of Pennsylvania, 5 Ravdin Building, 3400 Spruce Street, Philadelphia, PA, 19104-4823, USA
- Department of Otorhinolarynology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fidias E Leon-Sarmiento
- Smell and Taste Center, Perelman School of Medicine, University of Pennsylvania, 5 Ravdin Building, 3400 Spruce Street, Philadelphia, PA, 19104-4823, USA
- Department of Otorhinolarynology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gul Moonis
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Taehoon Kim
- Smell and Taste Center, Perelman School of Medicine, University of Pennsylvania, 5 Ravdin Building, 3400 Spruce Street, Philadelphia, PA, 19104-4823, USA
- Department of Otorhinolarynology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Toru Mihama
- Smell and Taste Center, Perelman School of Medicine, University of Pennsylvania, 5 Ravdin Building, 3400 Spruce Street, Philadelphia, PA, 19104-4823, USA
- Department of Otorhinolarynology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rena J Geckle
- Department of Radiology, The Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - David M Yousem
- Department of Radiology, The Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| |
Collapse
|
36
|
Nolden AA, McGeary JE, Hayes JE. Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes. Physiol Behav 2016; 156:117-27. [PMID: 26785164 PMCID: PMC4898060 DOI: 10.1016/j.physbeh.2016.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 02/01/2023]
Abstract
To date, the majority of research exploring associations with genetic variability in bitter taste receptors has understandably focused on compounds and foods that are predominantly or solely perceived as bitter. However, other chemosensory stimuli are also known to elicit bitterness as a secondary sensation. Here we investigated whether TAS2R variation explains individual differences in bitterness elicited by chemesthetic stimuli, including capsaicin, piperine and ethanol. We confirmed that capsaicin, piperine and ethanol elicit bitterness in addition to burning/stinging sensations. Variability in perceived bitterness of capsaicin and ethanol were significantly associated with TAS2R38 and TAS2R3/4/5 diplotypes. For TAS2R38, PAV homozygotes perceived greater bitterness from capsaicin and ethanol presented on circumvallate papillae, compared to heterozygotes and AVI homozygotes. For TAS2R3/4/5, CCCAGT homozygotes rated the greatest bitterness, compared to heterozygotes and TTGGAG homozygotes, for both ethanol and capsaicin when presented on circumvallate papillae. Additional work is needed to determine how these and other chemesthetic stimuli differ in bitterness perception across concentrations and presentation methods. Furthermore, it would be beneficial to determine which TAS2R receptors are activated in vitro by chemesthetic compounds.
Collapse
Affiliation(s)
- Alissa A Nolden
- Sensory Evaluation Center, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA; Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | - John E McGeary
- Providence Veterans Affairs Medical Center, Providence, RI, USA; Division of Behavior Genetics, Rhode Island Hospital, Brown University, Providence, RI, USA; Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
| | - John E Hayes
- Sensory Evaluation Center, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA; Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
37
|
Marcinek P, Geithe C, Krautwurst D. Chemosensory G Protein-Coupled Receptors (GPCR) in Blood Leukocytes. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Roudnitzky N, Behrens M, Engel A, Kohl S, Thalmann S, Hübner S, Lossow K, Wooding SP, Meyerhof W. Receptor Polymorphism and Genomic Structure Interact to Shape Bitter Taste Perception. PLoS Genet 2015; 11:e1005530. [PMID: 26406243 PMCID: PMC4583475 DOI: 10.1371/journal.pgen.1005530] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/25/2015] [Indexed: 12/22/2022] Open
Abstract
The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R) genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine) in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects’ genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype-phenotype associations were seen, e.g. for absinthin, the bitter principle of the beverage absinth. These findings illustrate the extent to which genetic influences on taste are complex, yet arise from both receptor activation patterns and linkage structure among receptor genes. Human bitter taste is believed to protect us from the ingestion of poisonous substances, thereby shaping food rejections. Bitter perception differs, however, across individuals, due to genetic variations in the ~25 bitter taste receptor (TAS2R) genes. A famous example known since the 1930s is the inherited bitter taste sensitivity to phenylthiocarbamide, which is associated with genetic polymorphisms in a single TAS2R gene. Yet, such simple receptor-substance associations do not reflect the full complexity of bitter perception, since individual bitter substances frequently activate several TAS2Rs. Here, we provide an in-depth analysis of the genetic variability influencing human bitter taste. While each study subject carried a different set of genetic polymorphisms, we found that most variations reside in just six blocks, each harboring only one to five haplotypes. Thus, besides simple associations between taste and TAS2R gene polymorphisms, we revealed complex associations dependent on linkage between several high- and low-sensitivity alleles. Indeed, subjects carried either sensitive or insensitive alleles for receptors sensitive to grosheimin, a bitter compound in artichoke, or at least one sensitive allele for receptors specific for absinthin, the bitter principle of absinth. In short, simple associations and complex genomic linkage determine sensitivity to selected dietary bitter compounds.
Collapse
Affiliation(s)
- Natacha Roudnitzky
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Genetics, Nuthetal, Germany
| | - Maik Behrens
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Genetics, Nuthetal, Germany
| | - Anika Engel
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Genetics, Nuthetal, Germany
| | - Susann Kohl
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Genetics, Nuthetal, Germany
| | - Sophie Thalmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Genetics, Nuthetal, Germany
| | - Sandra Hübner
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Genetics, Nuthetal, Germany
| | - Kristina Lossow
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Genetics, Nuthetal, Germany
| | - Stephen P. Wooding
- Health Sciences Research Institute, University of California, Merced, California, United States of America
| | - Wolfgang Meyerhof
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Genetics, Nuthetal, Germany
- * E-mail:
| |
Collapse
|
39
|
Fujikura K. Multiple loss-of-function variants of taste receptors in modern humans. Sci Rep 2015; 5:12349. [PMID: 26307445 PMCID: PMC4549710 DOI: 10.1038/srep12349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/26/2015] [Indexed: 12/20/2022] Open
Abstract
Despite recent advances in the knowledge of interindividual taste differences, the underlying genetic backgrounds have remained to be fully elucidated. Much of the taste variation among different mammalian species can be explained by pseudogenization of taste receptors. Here I investigated whether the most recent disruptions of taste receptor genes segregate with their intact forms in modern humans by analyzing 14 ethnically diverse populations. The results revealed an unprecedented prevalence of 25 segregating loss-of-function (LoF) taste receptor variants, identifying one of the most pronounced cases of functional population diversity in the human genome. LoF variant frequency in taste receptors (2.10%) was considerably higher than the overall LoF frequency in human genome (0.16%). In particular, molecular evolutionary rates of candidate sour (14.7%) and bitter (1.8%) receptors were far higher in humans than those of sweet (0.02%), salty (0.05%), and umami (0.17%) receptors compared with other carnivorous mammals, although not all of the taste receptors were identified. Many LoF variants are population-specific, some of which arose even after population differentiation, not before divergence of the modern and archaic human. I conclude that modern humans might have been losing some sour and bitter receptor genes because of high-frequency LoF variants.
Collapse
Affiliation(s)
- Kohei Fujikura
- Kobe University School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
40
|
Devillier P, Naline E, Grassin-Delyle S. The pharmacology of bitter taste receptors and their role in human airways. Pharmacol Ther 2015; 155:11-21. [PMID: 26272040 DOI: 10.1016/j.pharmthera.2015.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The receptors involved in bitter taste perception (bitter taste receptors--T2Rs) constitute a family of G-protein-coupled receptors, of which around 29 subtypes have been identified in humans. T2R expression was initially thought to be confined to the oral cavity but has recently been described in a range of other tissues (such as the heart, gut, nasal cavity and lungs) and cell types (chemosensory, smooth muscle, endothelial, epithelial and inflammatory cells). Although it is still not clear whether endogenous T2R agonists exist, the T2R receptors recognize many natural and synthetic compounds, such as the acyl-homoserine lactones produced by bacteria, caffeine, chloroquine, and erythromycin. In the upper airways, T2Rs are involved in neurogenic inflammation and bacterial clearance. Their known effects in the lungs are exerted at three different levels. Firstly, T2R agonists increase the beating frequency of cilia on epithelial cells. Secondly, the T2Rs induce bronchial smooth muscle cells to relax. Thirdly, the T2R receptors expressed on immune cells (such as macrophages and mast cells) modulate production of pro-inflammatory mediators. Furthermore, T2R agonists are effective in inhibiting lung inflammation or smooth muscle contraction in ex vivo and asthma animal models, and are known to be involved in bacterial killing in the nasal cavity and enhancing lung function in humans. This review focuses on the pharmacology and physiological functions of T2R receptors in the upper and lower airways. It presents recently acquired knowledge suggesting that T2Rs may become valuable drug targets in the treatment of diseases such as asthma and chronic rhinosinusitis.
Collapse
Affiliation(s)
- Philippe Devillier
- Laboratoire de Pharmacologie, UPRES EA220, Hôpital Foch, 11 rue Guillaume Lenoir, 92150 Suresnes, France; Université Versailles Saint Quentin en Yvelines, UFR Sciences de la Santé, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| | - Emmanuel Naline
- Laboratoire de Pharmacologie, UPRES EA220, Hôpital Foch, 11 rue Guillaume Lenoir, 92150 Suresnes, France; Université Versailles Saint Quentin en Yvelines, UFR Sciences de la Santé, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| | - Stanislas Grassin-Delyle
- Laboratoire de Pharmacologie, UPRES EA220, Hôpital Foch, 11 rue Guillaume Lenoir, 92150 Suresnes, France; Université Versailles Saint Quentin en Yvelines, UFR Sciences de la Santé, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France.
| |
Collapse
|
41
|
Beckett EL, Martin C, Yates Z, Veysey M, Duesing K, Lucock M. Bitter taste genetics--the relationship to tasting, liking, consumption and health. Food Funct 2015; 5:3040-54. [PMID: 25286017 DOI: 10.1039/c4fo00539b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bitter is the most complex of human tastes, and is arguably the most important. Aversion to bitter taste is important for detecting toxic compounds in food; however, many beneficial nutrients also taste bitter and these may therefore also be avoided as a consequence of bitter taste. While many polymorphisms in TAS2R genes may result in phenotypic differences that influence the range and sensitivity of bitter compounds detected, the full extent to which individuals differ in their abilities to detect bitter compounds remains unknown. Simple logic suggests that taste phenotypes influence food preferences, intake and consequently health status. However, it is becoming clear that genetics only plays a partial role in predicting preference, intake and health outcomes, and the complex, pleiotropic relationships involved are yet to be fully elucidated.
Collapse
Affiliation(s)
- Emma L Beckett
- School of Environmental and Life Sciences, University of Newcastle, Brush Rd, Ourimbah, NSW 2258, Australia.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Humans have acquired many distinct evolutionary traits after the human-chimpanzee divergence. These phenotypes have resulted from genetic changes that occurred in the human genome and were retained by natural selection. Comparative primate genome analyses reveal that loss-of-function mutations are common in the human genome. Some of these gene inactivation events were revealed to be associated with the emergence of advantageous phenotypes and were therefore positively selected and fixed in modern humans (the "less-ismore" hypothesis). Representative cases of human gene inactivation and their functional implications are presented in this review. Functional studies of additional inactive genes will provide insight into the molecular mechanisms underlying acquisition of various human-specific traits.
Collapse
Affiliation(s)
| | | | | | - Yoonsoo Hahn
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
43
|
Sandau MM, Goodman JR, Thomas A, Rucker JB, Rawson NE. A functional comparison of the domestic cat bitter receptors Tas2r38 and Tas2r43 with their human orthologs. BMC Neurosci 2015; 16:33. [PMID: 26037485 PMCID: PMC4453034 DOI: 10.1186/s12868-015-0170-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 05/07/2015] [Indexed: 01/29/2023] Open
Abstract
Background Domestic cats (felis catus) have a reputation for being rather unpredictable in their dietary choices. While their appetite for protein or savory flavors is consistent with their nutritional needs, their preference among protein-sufficient dietary options may relate to differences in the response to other flavor characteristics. Studies of domestic cat taste perception are limited, in part, due to the lack of receptor sequence information. Several studies have described the phylogenetic relationship of specific cat taste receptor sequences as compared with other carnivores. For example, domestic cats are obligate carnivores and their receptor Tas1r2, associated with the human perception of sweet, is present only as a pseudogene. Similarly, the cat perception of bitter may differ from that of other mammals due to variations in their repertoire of bitter receptor (Tas2r) genes. This report includes the first functional characterization of domestic cat taste receptors. Results We functionally expressed two uncharacterized domestic sequences Tas2r38 and Tas2r43 and deorphanized the receptors using a cellular functional assay. Statistical significance was determined using an unpaired, two-tailed t-test. The cat sequence for Tas2r38 contains 3 major amino acid residues known to confer the taster phenotype (PAI), which is associated with sensitivity to the bitter compounds PROP and PTC. However, in contrast to human TAS2R38, cat Tas2r38 is activated by PTC but not by PROP. Furthermore, like its human counterpart, cat Tas2r43 is activated by aloin and denatonium, but differs from the human TAS2R43 by insensitivity to saccharin. The responses of both cat receptors to the bitter ligands were concentration-dependent and were inhibited by the human bitter blocker probenecid. Conclusions These data demonstrate that the response profiles of the cat bitter receptors Tas2r38 and Tas2r43 are distinct from those of their orthologous human receptors. Results with cat Tas2r38 also demonstrate that additional residues beyond those classically associated with PROP sensitivity in humans influence the sensitivity to PROP and PTC. Functional studies of the human bitter receptor family are being applied to the development of food and medicinal products with more appealing flavor profiles. Our work lays the foundation for similar work applied to felines. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0170-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Anu Thomas
- Integral Molecular, Inc., Philadelphia, PA, USA.
| | | | | |
Collapse
|
44
|
Hayes JE, Feeney EL, Nolden AA, McGeary JE. Quinine Bitterness and Grapefruit Liking Associate with Allelic Variants in TAS2R31. Chem Senses 2015; 40:437-43. [PMID: 26024668 DOI: 10.1093/chemse/bjv027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multiple psychophysical gene-association studies suggest a single nucleotide polymorphism (SNP) within the bitter receptor gene TAS2R19 on chromosome 12 may be functional. Previously, the Arg299Cys SNP (rs10772420) has been associated with differential bitterness of quinine and differential liking for grapefruit juice. However, quinine does not activate TAS2R19 in vitro; likewise, limonin and naringin, bitter compounds in grapefruit, do not activate TAS2R19 in vitro. Here, we examined quinine bitterness (whole-mouth swish-and-spit stimuli and regionally delivered quinine across 4 loci) and remembered liking for grapefruit juice to test whether they associate with SNPs in another nearby gene, TASR2R31. We observed SNP-phenotype associations between whole-mouth quinine bitterness and self-reported liking for grapefruit juice with SNPs in TAS2R31, and regional quinine bitterness followed a similar trend, but did not reach significance. Present data provide independent replication of prior associations reported for TAS2R19. However, we also observed strong linkage disequilibrium (LD) between TAS2R19 and TAS2R31 SNPs. When present data are considered in light of existing functional expression data, this suggests phenotypic associations reported previously for rs10772420 may potentially be due to LD between this SNP and polymorphism(s) in, or closer to, TAS2R31. If confirmed, this would reduce the number of TAS2Rs with putatively functional polymorphisms to 5.
Collapse
Affiliation(s)
- John E Hayes
- Sensory Evaluation Center, Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA,
| | - Emma L Feeney
- Sensory Evaluation Center, Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alissa A Nolden
- Sensory Evaluation Center, Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - John E McGeary
- Providence Veterans Affairs Medical Center, Providence, RI 02908, USA, Division of Behavior Genetics, Rhode Island Hospital and Center for Alcohol and Addiction Studies, Brown University, Providence, RI 02912, USA
| |
Collapse
|
45
|
Roura E, Aldayyani A, Thavaraj P, Prakash S, Greenway D, Thomas WG, Meyerhof W, Roudnitzky N, Foster SR. Variability in Human Bitter Taste Sensitivity to Chemically Diverse Compounds Can Be Accounted for by Differential TAS2R Activation. Chem Senses 2015; 40:427-35. [PMID: 25999325 DOI: 10.1093/chemse/bjv024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human population displays high variation in taste perception. Differences in individual taste sensitivity may also impact on nutrient intake and overall appetite. A well-characterized example is the variable perception of bitter compounds such as 6-n-propylthiouracil (PROP) and phenylthiocarbamide (PTC), which can be accounted for at the molecular level by polymorphic variants in the specific type 2 taste receptor (TAS2R38). This phenotypic variation has been associated with influencing dietary preference and other behaviors, although the generalization of PROP/PTC taster status as a predictor of sensitivity to other tastes is controversial. Here, we proposed that the taste sensitivities of different bitter compounds would be correlated only when they activate the same bitter taste receptor. Thirty-four volunteers were exposed to 8 bitter compounds that were selected based on their potential to activate overlapping and distinct repertoires of TAS2Rs. Taste intensity ratings were evaluated using the general Labeled Magnitude Scale. Our data demonstrate a strong interaction between the intensity for bitter substances when they activate common TAS2Rs. Consequently, PROP/PTC sensitivity was not a reliable predictor of general bitter sensitivity. In addition, our findings provide a novel framework to predict taste sensitivity based on their specific T2R activation profile.
Collapse
Affiliation(s)
- Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia,
| | - Asya Aldayyani
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia, School of Agriculture and Food Science, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Pridhuvi Thavaraj
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sangeeta Prakash
- School of Agriculture and Food Science, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Delma Greenway
- School of Agriculture and Food Science, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, Germany
| | - Natacha Roudnitzky
- Department of Molecular Genetics, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, Germany
| | - Simon R Foster
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia and
| |
Collapse
|
46
|
Malki A, Fiedler J, Fricke K, Ballweg I, Pfaffl MW, Krautwurst D. Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. J Leukoc Biol 2015; 97:533-45. [PMID: 25624459 DOI: 10.1189/jlb.2a0714-331rr] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Our cellular immune system has to cope constantly with foodborne substances that enter the bloodstream postprandially. Here, they may activate leukocytes via specific but yet mostly unknown receptors. Ectopic RNA expression out of gene families of chemosensory receptors, i.e., the ∼400 ORs, ∼25 TAS2R bitter-taste receptors, and the TAS1R umami- and sweet-taste receptor dimers by which we typically detect foodborne substances, has been reported in a variety of peripheral tissues unrelated to olfaction or taste. In the present study, we have now discovered, by gene-specific RT-PCR experiments, the mRNA expression of most of the Class I ORs (TAS1R) and TAS2R in 5 different types of blood leukocytes. Surprisingly, we did not detect Class II OR mRNA. By RT-qPCR, we show the mRNA expression of human chemosensory receptors and their cow orthologs in PMN, thus suggesting an evolutionary concept. By immunocytochemistry, we demonstrate that some olfactory and taste receptors are expressed, on average, in 40-60% of PMN and T or B cells and largely coexpress in the same subpopulation of PMN. The mRNA expression and the size of subpopulations expressing certain chemosensory receptors varied largely among individual blood samples, suggesting a regulated expression of olfactory and taste receptors in these cells. Moreover, we show mRNA expression of their downstream signaling molecules and demonstrate that PTX abolishes saccharin- or 2-PEA-induced PMN chemotactic migration, indicating a role for Gi-type proteins. In summary, our data suggest "chemosensory"-type subpopulations of circulating leukocytes.
Collapse
Affiliation(s)
- Agne Malki
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Julia Fiedler
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Kristina Fricke
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Ines Ballweg
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Michael W Pfaffl
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Dietmar Krautwurst
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| |
Collapse
|
47
|
Doty RL. Neurotoxic exposure and impairment of the chemical senses of taste and smell. HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:299-324. [PMID: 26563795 DOI: 10.1016/b978-0-444-62627-1.00016-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The chemical senses of taste and smell determine the flavor of foods and beverages, guide appropriate food intake, and warn of such environmental hazards as spoiled or poisonous food, leaking natural gas, smoke, and airborne pollutants. This chapter addresses the influences of neurotoxic exposures on human chemoreception and provides basic information on the adverse influences of such exposures on rodent epithelia. The focus of the chapter is in olfaction, given dearth of empiric research on the effects of neurotoxic chemical exposures on the sense of taste, i.e., sweet, sour, bitter, salty, and savory sensations. As will be apparent from the chapter, numerous neurotoxins--many of which are encountered in industrial workplaces--alter the ability to smell, including solvents, metals, and particulate matter. The olfactory system is particularly vulnerable to such agents since its receptors are more or less directly exposed to the outside environment. Importantly, some such agents can enter the brain via the olfactory nerve or surrounding perineural spaces, bypassing the blood-brain barrier and damaging central nervous system structures and inducing pathologic processes that appear to be similar to those seen in neurodegenerative diseases such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Richard L Doty
- Smell and Taste Center, Department of Otorhinolaryngology; Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Torregrossa AM, Loney GC, Smith JC, Eckel LA. Examination of the perception of sweet- and bitter-like taste qualities in sucralose preferring and avoiding rats. Physiol Behav 2014; 140:96-103. [PMID: 25497078 DOI: 10.1016/j.physbeh.2014.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 01/12/2023]
Abstract
Sucralose avoiding rats detect a bitter-like taste quality in concentrations of sucralose that are strongly preferred over water by sucralose preferring rats. Here, we investigated whether sucralose preferrers (SP) also detect a bitter-like quality in sucralose that may be masked by an increased perception of sucralose's sweet-like quality. A microstructural analysis of sucralose intake revealed that, at concentrations they avoided in preference tests, sucralose avoiders (SA) consumed smaller and fewer bouts of sucralose than SP. Interestingly, the concentration-dependent increase in sucralose preference in SP was not associated with larger bouts or increased lick rate, two measures that are expected to increase with increasing perceived sweetness. This suggests that SP can detect an aversive quality in sucralose, but this perception of a presumably bitter-like quality may be masked by increased salience of a sweet-like quality that sustains high levels of intake in SP. Further evidence for increased sweet-taste perception in SP, relative to SA, was obtained in a second study in which SP consumed more of a palatable sweet-milk diet than SA. These are the first data to suggest that SP are not blind to the bitter-like quality in sucralose, and that there may be differences in sweet-taste perception between SP and SA.
Collapse
Affiliation(s)
- A-M Torregrossa
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - G C Loney
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - J C Smith
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - L A Eckel
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
49
|
Doty RL, Nsoesie MT, Chung I, Osman A, Pawasarat I, Caulfield J, Hurtig H, Silas J, Dubroff J, Duda JE, Ying GS, Tekeli H, Leon-Sarmiento FE. Taste function in early stage treated and untreated Parkinson's disease. J Neurol 2014; 262:547-57. [PMID: 25480568 DOI: 10.1007/s00415-014-7589-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/12/2014] [Accepted: 11/15/2014] [Indexed: 10/24/2022]
Abstract
Since brain stem regions associated with early Parkinson's disease (PD) pathology encroach upon those involved in taste function, the ability to taste may be compromised in PD. However, studies on this point have been contradictory. We administered well-validated whole-mouth and regional taste tests that incorporated multiple concentrations of sucrose, citric acid, caffeine, and sodium chloride to 29 early stage PD patients and 29 age-, sex-, and race-matched controls. Electrogustometry was also performed on the anterior tongue. The PD cohort was tested both on and off dopamine-related medications in counterbalanced test sessions. While whole-mouth taste identification test scores for all stimuli were, on average, nominally lower for the PD patients than for the controls, a trend in the opposite direction was noted for the intensity ratings at the lower stimulus concentrations for all stimuli except caffeine. Moreover, regional testing found that PD subjects tended to rate the stimuli, relative to the controls, as more intense on the anterior tongue and less intense on the posterior tongue. No significant associations were evident between taste test scores and UPDRS scores, L-DOPA medication equivalency values, or [(99m)Tc]TRODAT-1 SPECT imaging of dopamine transporter uptake within the striatum and associated regions. Our findings suggest that suprathreshold measures of taste function are influenced by PD and that this disease differentially influences taste function on anterior (CN VII) and posterior (CN IX) tongue regions. Conceivably PD-related damage to CN IX releases central inhibition on CN VII at the level of the brainstem, resulting in enhanced taste intensity on the anterior tongue.
Collapse
Affiliation(s)
- Richard L Doty
- Department of Otorhinolaryngology, Head and Neck Surgery, Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hayakawa T, Suzuki-Hashido N, Matsui A, Go Y. Frequent Expansions of the Bitter Taste Receptor Gene Repertoire during Evolution of Mammals in the Euarchontoglires Clade. Mol Biol Evol 2014; 31:2018-31. [DOI: 10.1093/molbev/msu144] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|