1
|
Sati L, Varela L, Horvath TL, McGrath J. Creation of true interspecies hybrids: Rescue of hybrid class with hybrid cytoplasm affecting growth and metabolism. SCIENCE ADVANCES 2024; 10:eadq4339. [PMID: 39441922 PMCID: PMC11498210 DOI: 10.1126/sciadv.adq4339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Interspecies hybrids have nuclear contributions from two species but oocyte cytoplasm from only one. Species discordance may lead to altered nuclear reprogramming of the foreign paternal genome. We reasoned that initial reprogramming in same species cytoplasm plus creation of hybrids with zygote cytoplasm from both species, which we describe here, might enhance nuclear reprogramming and promote hybrid development. We report in Mus species that (i) mammalian nuclear/cytoplasmic hybrids can be created, (ii) they allow development and viability of a previously missing and uncharacterized hybrid class, (iii) different oocyte cytoplasm environments lead to different phenotypes of same nuclear hybrid genotype, and (iv) the novel hybrids exhibit sex ratio distortion with the absence of female progeny and represent a mammalian exception to Haldane's rule. Our results emphasize that interspecies hybrid phenotypes are not only the result of nuclear gene epistatic interactions but also cytonuclear interactions and that the latter have major impacts on fetal and placental growth and development.
Collapse
Affiliation(s)
- Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, 07070 Antalya, Turkey
| | - Luis Varela
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - Tamas L. Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - James McGrath
- Departments of Comparative Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
2
|
Legault LM, Dupas T, Breton-Larrivée M, Filion-Bienvenue F, Lemieux A, Langford-Avelar A, McGraw S. Sex-specific DNA methylation and gene expression changes in mouse placentas after early preimplantation alcohol exposure. ENVIRONMENT INTERNATIONAL 2024; 192:109014. [PMID: 39321537 DOI: 10.1016/j.envint.2024.109014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
During pregnancy, exposure to alcohol represents an environmental insult capable of negatively impacting embryonic development. This influence can stem from disruption of molecular profiles, ultimately leading to manifestation of fetal alcohol spectrum disorder. Despite the central role of the placenta in proper embryonic development and successful pregnancy, studies on the placenta in a prenatal alcohol exposure and fetal alcohol spectrum disorder context are markedly lacking. Here, we employed a well-established model for preimplantation alcohol exposure, specifically targeting embryonic day 2.5, corresponding to the 8-cell stage. The exposure was administered to pregnant C57BL/6 female mice through subcutaneous injection, involving two doses of either 2.5 g/kg 50 % ethanol or an equivalent volume of saline at 2-hour intervals. Morphology, DNA methylation and gene expression patterns were assessed in male and female late-gestation (E18.5) placentas. While overall placental morphology was not altered, we found a significant decrease in male ethanol-exposed embryo weights. When looking at molecular profiles, we uncovered numerous differentially methylated regions (DMRs; 991 in males; 1309 in females) and differentially expressed genes (DEGs; 1046 in males; 340 in females) in the placentas. Remarkably, only 21 DMRs and 54 DEGs were common to both sexes, which were enriched for genes involved in growth factor response pathways. Preimplantation alcohol exposure had a greater impact on imprinted genes expression in male placentas (imprinted DEGs: 18 in males; 1 in females). Finally, by using machine learning model (L1 regularization), we were able to precisely discriminate control and ethanol-exposed placentas based on their specific DNA methylation patterns. This is the first study demonstrating that preimplantation alcohol exposure alters the DNA methylation and transcriptomic profiles of late-gestation placentas in a sex-specific manner. Our findings highlight that the DNA methylation profiles of the placenta could serve as a potent predictive molecular signature for early preimplantation alcohol exposure.
Collapse
Affiliation(s)
- Lisa-Marie Legault
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Thomas Dupas
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Mélanie Breton-Larrivée
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Fannie Filion-Bienvenue
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Anthony Lemieux
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Alexandra Langford-Avelar
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Serge McGraw
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada; Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
3
|
Wang J, Zhou X, Han T, Zhang H. Epigenetic signatures of trophoblast lineage and their biological functions. Cells Dev 2024; 179:203934. [PMID: 38942294 DOI: 10.1016/j.cdev.2024.203934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.
Collapse
Affiliation(s)
- Jianqi Wang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaobo Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Reproductive Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tingli Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China; The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Hua Zhang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China.
| |
Collapse
|
4
|
Schuff M, Strong AD, Welborn LK, Ziermann-Canabarro JM. Imprinting as Basis for Complex Evolutionary Novelties in Eutherians. BIOLOGY 2024; 13:682. [PMID: 39336109 PMCID: PMC11428813 DOI: 10.3390/biology13090682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
The epigenetic phenomenon of genomic imprinting is puzzling. While epigenetic modifications in general are widely known in most species, genomic imprinting in the animal kingdom is restricted to autosomes of therian mammals, mainly eutherians, and to a lesser extent in marsupials. Imprinting causes monoallelic gene expression. It represents functional haploidy of certain alleles while bearing the evolutionary cost of diploidization, which is the need of a complex cellular architecture and the danger of producing aneuploid cells by mitotic and meiotic errors. The parent-of-origin gene expression has stressed many theories. Most prominent theories, such as the kinship (parental conflict) hypothesis for maternally versus paternally derived alleles, explain only partial aspects of imprinting. The implementation of single-cell transcriptome analyses and epigenetic research allowed detailed study of monoallelic expression in a spatial and temporal manner and demonstrated a broader but much more complex and differentiated picture of imprinting. In this review, we summarize all these aspects but argue that imprinting is a functional haploidy that not only allows a better gene dosage control of critical genes but also increased cellular diversity and plasticity. Furthermore, we propose that only the occurrence of allele-specific gene regulation mechanisms allows the appearance of evolutionary novelties such as the placenta and the evolutionary expansion of the eutherian brain.
Collapse
Affiliation(s)
- Maximillian Schuff
- Next Fertility St. Gallen, Kürsteinerstrasse 2, 9015 St. Gallen, Switzerland
| | - Amanda D Strong
- Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Washington, DC 20059, USA
| | - Lyvia K Welborn
- Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Washington, DC 20059, USA
| | | |
Collapse
|
5
|
Newman T, Ishihara T, Shaw G, Renfree MB. The structure of the TH/INS locus and the parental allele expressed are not conserved between mammals. Heredity (Edinb) 2024; 133:21-32. [PMID: 38834866 PMCID: PMC11222543 DOI: 10.1038/s41437-024-00689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Parent-of-origin-specific expression of imprinted genes is critical for successful mammalian growth and development. Insulin, coded by the INS gene, is an important growth factor expressed from the paternal allele in the yolk sac placenta of therian mammals. The tyrosine hydroxylase gene TH encodes an enzyme involved in dopamine synthesis. TH and INS are closely associated in most vertebrates, but the mouse orthologues, Th and Ins2, are separated by repeated DNA. In mice, Th is expressed from the maternal allele, but the parental origin of expression is not known for any other mammal so it is unclear whether the maternal expression observed in the mouse represents an evolutionary divergence or an ancestral condition. We compared the length of the DNA segment between TH and INS across species and show that separation of these genes occurred in the rodent lineage with an accumulation of repeated DNA. We found that the region containing TH and INS in the tammar wallaby produces at least five distinct RNA transcripts: TH, TH-INS1, TH-INS2, lncINS and INS. Using allele-specific expression analysis, we show that the TH/INS locus is expressed from the paternal allele in pre- and postnatal tammar wallaby tissues. Determining the imprinting pattern of TH/INS in other mammals might clarify if paternal expression is the ancestral condition which has been flipped to maternal expression in rodents by the accumulation of repeat sequences.
Collapse
Affiliation(s)
- Trent Newman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Fang S, Chang KW, Lefebvre L. Roles of endogenous retroviral elements in the establishment and maintenance of imprinted gene expression. Front Cell Dev Biol 2024; 12:1369751. [PMID: 38505259 PMCID: PMC10948482 DOI: 10.3389/fcell.2024.1369751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
DNA methylation (DNAme) has long been recognized as a host defense mechanism, both in the restriction modification systems of prokaryotes as well as in the transcriptional silencing of repetitive elements in mammals. When DNAme was shown to be implicated as a key epigenetic mechanism in the regulation of imprinted genes in mammals, a parallel with host defense mechanisms was drawn, suggesting perhaps a common evolutionary origin. Here we review recent work related to this hypothesis on two different aspects of the developmental imprinting cycle in mammals that has revealed unexpected roles for long terminal repeat (LTR) retroelements in imprinting, both canonical and noncanonical. These two different forms of genomic imprinting depend on different epigenetic marks inherited from the mature gametes, DNAme and histone H3 lysine 27 trimethylation (H3K27me3), respectively. DNAme establishment in the maternal germline is guided by transcription during oocyte growth. Specific families of LTRs, evading silencing mechanisms, have been implicated in this process for specific imprinted genes. In noncanonical imprinting, maternally inherited histone marks play transient roles in transcriptional silencing during preimplantation development. These marks are ultimately translated into DNAme, notably over LTR elements, for the maintenance of silencing of the maternal alleles in the extraembryonic trophoblast lineage. Therefore, LTR retroelements play important roles in both establishment and maintenance of different epigenetic pathways leading to imprinted expression during development. Because such elements are mobile and highly polymorphic among different species, they can be coopted for the evolution of new species-specific imprinted genes.
Collapse
Affiliation(s)
| | | | - Louis Lefebvre
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Pinard A, Ye W, Fraser SM, Rosenfeld JA, Pichurin P, Hickey SE, Guo D, Cecchi AC, Boerio ML, Guey S, Aloui C, Lee K, Kraemer M, Alyemni SO, Bamshad MJ, Nickerson DA, Tournier-Lasserve E, Haider S, Jin SC, Smith ER, Kahle KT, Jan LY, He M, Milewicz DM. Rare variants in ANO1, encoding a calcium-activated chloride channel, predispose to moyamoya disease. Brain 2023; 146:3616-3623. [PMID: 37253099 PMCID: PMC10473557 DOI: 10.1093/brain/awad172] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/24/2023] [Accepted: 04/16/2023] [Indexed: 06/01/2023] Open
Abstract
Moyamoya disease, a cerebrovascular disease leading to strokes in children and young adults, is characterized by progressive occlusion of the distal internal carotid arteries and the formation of collateral vessels. Altered genes play a prominent role in the aetiology of moyamoya disease, but a causative gene is not identified in the majority of cases. Exome sequencing data from 151 individuals from 84 unsolved families were analysed to identify further genes for moyamoya disease, then candidate genes assessed in additional cases (150 probands). Two families had the same rare variant in ANO1, which encodes a calcium-activated chloride channel, anoctamin-1. Haplotype analyses found the families were related, and ANO1 p.Met658Val segregated with moyamoya disease in the family with an LOD score of 3.3. Six additional ANO1 rare variants were identified in moyamoya disease families. The ANO1 rare variants were assessed using patch-clamp recordings, and the majority of variants, including ANO1 p.Met658Val, displayed increased sensitivity to intracellular Ca2+. Patients harbouring these gain-of-function ANO1 variants had classic features of moyamoya disease, but also had aneurysm, stenosis and/or occlusion in the posterior circulation. Our studies support that ANO1 gain-of-function pathogenic variants predispose to moyamoya disease and are associated with unique involvement of the posterior circulation.
Collapse
Affiliation(s)
- Amélie Pinard
- Department of Internal Medicine, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wenlei Ye
- Howard Hughes Medical Institute, Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Stuart M Fraser
- Department of Pediatrics, Division of Child Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pavel Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55902, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
- Division of Genetic and Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Dongchuan Guo
- Department of Internal Medicine, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alana C Cecchi
- Department of Internal Medicine, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Maura L Boerio
- Department of Internal Medicine, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Stéphanie Guey
- Université de Paris, Inserm U1141, AP-HP Groupe hospitalier Lariboisière Saint Louis, 75019 Paris, France
| | - Chaker Aloui
- Université de Paris, Inserm U1141, AP-HP Groupe hospitalier Lariboisière Saint Louis, 75019 Paris, France
| | - Kwanghyuk Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Markus Kraemer
- Department of Neurology, Alfried Krupp-Hospital, 45131 Essen, Germany
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | | | - Michael J Bamshad
- Division of Genetics Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Elisabeth Tournier-Lasserve
- Université de Paris, Inserm U1141, AP-HP Groupe hospitalier Lariboisière Saint Louis, 75019 Paris, France
- AP-HP, Service de génétique moléculaire neurovasculaire, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l’oeil, Groupe Hospitalier Saint-Louis Lariboisière, 75010 Paris, France
| | - Shozeb Haider
- UCL School of Pharmacy, Bloomsbury, London WC1N 1AX, UK
- UCL Centre for Advanced Research Computing, University College London, London WC1H 9RN, UK
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mu He
- Howard Hughes Medical Institute, Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Dianna M Milewicz
- Department of Internal Medicine, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
8
|
Ahmadi H, Aghebati-Maleki L, Rashidiani S, Csabai T, Nnaemeka OB, Szekeres-Bartho J. Long-Term Effects of ART on the Health of the Offspring. Int J Mol Sci 2023; 24:13564. [PMID: 37686370 PMCID: PMC10487905 DOI: 10.3390/ijms241713564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Assisted reproductive technologies (ART) significantly increase the chance of successful pregnancy and live birth in infertile couples. The different procedures for ART, including in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), intrauterine insemination (IUI), and gamete intrafallopian tube transfer (GIFT), are widely used to overcome infertility-related problems. In spite of its inarguable usefulness, concerns about the health consequences of ART-conceived babies have been raised. There are reports about the association of ART with birth defects and health complications, e.g., malignancies, high blood pressure, generalized vascular functional disorders, asthma and metabolic disorders in later life. It has been suggested that hormonal treatment of the mother, and the artificial environment during the manipulation of gametes and embryos may cause genomic and epigenetic alterations and subsequent complications in the health status of ART-conceived babies. In the current study, we aimed to review the possible long-term consequences of different ART procedures on the subsequent health status of ART-conceived offspring, considering the confounding factors that might account for/contribute to the long-term consequences.
Collapse
Affiliation(s)
- Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
| | - Leili Aghebati-Maleki
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Shima Rashidiani
- Department of Medical Biochemistry, Medical School, Pécs University, 7624 Pécs, Hungary;
| | - Timea Csabai
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
- János Szentágothai Research Centre, Pécs University, 7624 Pécs, Hungary
- Endocrine Studies, Centre of Excellence, Pécs University, 7624 Pécs, Hungary
- National Laboratory of Human Reproduction, 7624 Pécs, Hungary
| | - Obodo Basil Nnaemeka
- Department of Laboratory Diagnostics, Faculty of Health Sciences, Pécs University, 7621 Pécs, Hungary;
| | - Julia Szekeres-Bartho
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
- János Szentágothai Research Centre, Pécs University, 7624 Pécs, Hungary
- Endocrine Studies, Centre of Excellence, Pécs University, 7624 Pécs, Hungary
- National Laboratory of Human Reproduction, 7624 Pécs, Hungary
- MTA—PTE Human Reproduction Research Group, 7624 Pecs, Hungary
| |
Collapse
|
9
|
Rodriguez-Caro F, Moore EC, Good JM. Evolution of parent-of-origin effects on placental gene expression in house mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554674. [PMID: 37662315 PMCID: PMC10473692 DOI: 10.1101/2023.08.24.554674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The mammalian placenta is a hotspot for the evolution of genomic imprinting, a form of gene regulation that involves the parent-specific epigenetic silencing of one allele. Imprinted genes are central to placental development and are thought to contribute to the evolution of reproductive barriers between species. However, it is unclear how rapidly imprinting evolves or how functional specialization among placental tissues influences the evolution of imprinted expression. We compared parent-of-origin expression bias across functionally distinct placental layers sampled from reciprocal crosses within three closely related lineages of mice ( Mus ). Using genome-wide gene expression and DNA methylation data from fetal and maternal tissues, we developed an analytical strategy to minimize pervasive bias introduced by maternal contamination of placenta samples. We corroborated imprinted expression at 42 known imprinted genes and identified five candidate imprinted genes showing parent-of-origin specific expression and DNA methylation. Paternally-biased expression was enriched in the labyrinth zone, a layer specialized in nutrient transfer, and maternally-biased genes were enriched in the junctional zone, which specializes in modulation of maternal physiology. Differentially methylated regions were predominantly determined through epigenetic modification of the maternal genome and were associated with both maternally- and paternally-biased gene expression. Lastly, comparisons between lineages revealed a small set of co-regulated genes showing rapid divergence in expression levels and imprinted status in the M. m. domesticus lineage. Together, our results reveal important links between core functional elements of placental biology and the evolution of imprinted gene expression among closely related rodent species.
Collapse
|
10
|
Richard Albert J, Kobayashi T, Inoue A, Monteagudo-Sánchez A, Kumamoto S, Takashima T, Miura A, Oikawa M, Miura F, Takada S, Hirabayashi M, Korthauer K, Kurimoto K, Greenberg MVC, Lorincz M, Kobayashi H. Conservation and divergence of canonical and non-canonical imprinting in murids. Genome Biol 2023; 24:48. [PMID: 36918927 PMCID: PMC10012579 DOI: 10.1186/s13059-023-02869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/09/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Genomic imprinting affects gene expression in a parent-of-origin manner and has a profound impact on complex traits including growth and behavior. While the rat is widely used to model human pathophysiology, few imprinted genes have been identified in this murid. To systematically identify imprinted genes and genomic imprints in the rat, we use low input methods for genome-wide analyses of gene expression and DNA methylation to profile embryonic and extraembryonic tissues at allele-specific resolution. RESULTS We identify 14 and 26 imprinted genes in these tissues, respectively, with 10 of these genes imprinted in both tissues. Comparative analyses with mouse reveal that orthologous imprinted gene expression and associated canonical DNA methylation imprints are conserved in the embryo proper of the Muridae family. However, only 3 paternally expressed imprinted genes are conserved in the extraembryonic tissue of murids, all of which are associated with non-canonical H3K27me3 imprints. The discovery of 8 novel non-canonical imprinted genes unique to the rat is consistent with more rapid evolution of extraembryonic imprinting. Meta-analysis of novel imprinted genes reveals multiple mechanisms by which species-specific imprinted expression may be established, including H3K27me3 deposition in the oocyte, the appearance of ZFP57 binding motifs, and the insertion of endogenous retroviral promoters. CONCLUSIONS In summary, we provide an expanded list of imprinted loci in the rat, reveal the extent of conservation of imprinted gene expression, and identify potential mechanisms responsible for the evolution of species-specific imprinting.
Collapse
Affiliation(s)
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Azusa Inoue
- YCI Laboratory for Metabolic Epigenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Soichiro Kumamoto
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Asuka Miura
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
| | - Keegan Korthauer
- Department of Statistics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Nara, Japan
| | | | - Matthew Lorincz
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
11
|
Inoue A. Noncanonical imprinting: intergenerational epigenetic inheritance mediated by Polycomb complexes. Curr Opin Genet Dev 2023; 78:102015. [PMID: 36577293 DOI: 10.1016/j.gde.2022.102015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/06/2022] [Accepted: 11/22/2022] [Indexed: 12/27/2022]
Abstract
Genomic imprinting is illustrative of intergenerational epigenetic inheritance. The passage of parental genomes into the embryo is accompanied by epigenetic modifications, resulting in imprinted monoallelic gene expression in mammals. Some imprinted genes are regulated by maternal inheritance of H3K27me3, which is termed noncanonical imprinting. Noncanonical imprinting is established by Polycomb repressive complexes during oogenesis and maintained in preimplantation embryos and extraembryonic tissues, including the placenta. Recent studies of noncanonical imprinting have contributed to our understanding of chromatin regulation in oocytes and early embryos, imprinted X-chromosome inactivation, secondary differentially DNA-methylated regions, and the anomalies of cloned mice. Here, I summarize the current knowledge of noncanonical imprinting and remark on analogous mechanisms in invertebrates and plants.
Collapse
Affiliation(s)
- Azusa Inoue
- Laboratory for Epigenome Inheritance, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Tokyo Metropolitan University, Hachioji 192-0397, Japan.
| |
Collapse
|
12
|
Martini P, Sales G, Diamante L, Perrera V, Colantuono C, Riccardo S, Cacchiarelli D, Romualdi C, Martello G. BrewerIX enables allelic expression analysis of imprinted and X-linked genes from bulk and single-cell transcriptomes. Commun Biol 2022; 5:146. [PMID: 35177756 PMCID: PMC8854590 DOI: 10.1038/s42003-022-03087-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Genomic imprinting and X chromosome inactivation (XCI) are two prototypical epigenetic mechanisms whereby a set of genes is expressed mono-allelically in order to fine-tune their expression levels. Defects in genomic imprinting have been observed in several neurodevelopmental disorders, in a wide range of tumours and in induced pluripotent stem cells (iPSCs). Single Nucleotide Variants (SNVs) are readily detectable by RNA-sequencing allowing the determination of whether imprinted or X-linked genes are aberrantly expressed from both alleles, although standardised analysis methods are still missing. We have developed a tool, named BrewerIX, that provides comprehensive information about the allelic expression of a large, manually-curated set of imprinted and X-linked genes. BrewerIX does not require programming skills, runs on a standard personal computer, and can analyze both bulk and single-cell transcriptomes of human and mouse cells directly from raw sequencing data. BrewerIX confirmed previous observations regarding the bi-allelic expression of some imprinted genes in naive pluripotent cells and extended them to preimplantation embryos. BrewerIX also identified misregulated imprinted genes in breast cancer cells and in human organoids and identified genes escaping XCI in human somatic cells. We believe BrewerIX will be useful for the study of genomic imprinting and XCI during development and reprogramming, and for detecting aberrations in cancer, iPSCs and organoids. Due to its ease of use to non-computational biologists, its implementation could become standard practice during sample assessment, thus raising the robustness and reproducibility of future studies.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Biology, University of Padova, Padua, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Padua, Italy
| | - Linda Diamante
- Department of Molecular Medicine, Medical School, University of Padova, Padua, Italy
| | - Valentina Perrera
- Department of Molecular Medicine, Medical School, University of Padova, Padua, Italy
- International School for Advanced Studies (SISSA/ISAS), Trieste, 34136, Italy
| | - Chiara Colantuono
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Sara Riccardo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | | | | |
Collapse
|
13
|
Genetic Studies on Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:111-136. [PMID: 36350508 PMCID: PMC9815518 DOI: 10.1007/978-3-031-11454-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytosine methylation at the C5-position-generating 5-methylcytosine (5mC)-is a DNA modification found in many eukaryotic organisms, including fungi, plants, invertebrates, and vertebrates, albeit its levels vary greatly in different organisms. In mammals, cytosine methylation occurs predominantly in the context of CpG dinucleotides, with the majority (60-80%) of CpG sites in their genomes being methylated. DNA methylation plays crucial roles in the regulation of chromatin structure and gene expression and is essential for mammalian development. Aberrant changes in DNA methylation and genetic alterations in enzymes and regulators involved in DNA methylation are associated with various human diseases, including cancer and developmental disorders. In mammals, DNA methylation is mediated by two families of DNA methyltransferases (Dnmts), namely Dnmt1 and Dnmt3 proteins. Over the last three decades, genetic manipulations of these enzymes, as well as their regulators, in mice have greatly contributed to our understanding of the biological functions of DNA methylation in mammals. In this chapter, we discuss genetic studies on mammalian Dnmts, focusing on their roles in embryogenesis, cellular differentiation, genomic imprinting, and human diseases.
Collapse
|
14
|
Kobayashi EH, Shibata S, Oike A, Kobayashi N, Hamada H, Okae H, Arima T. Genomic imprinting in human placentation. Reprod Med Biol 2022; 21:e12490. [PMID: 36465588 PMCID: PMC9713850 DOI: 10.1002/rmb2.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Genomic imprinting (GI) is a mammalian-specific epigenetic phenomenon that has been implicated in the evolution of the placenta in mammals. Methods Embryo transfer procedures and trophoblast stem (TS) cells were used to re-examine mouse placenta-specific GI genes. For the analysis of human GI genes, cytotrophoblast cells isolated from human placental tissues were used. Using human TS cells, the biological roles of human GI genes were examined. Main findings (1) Many previously identified mouse GI genes were likely to be falsely identified due to contaminating maternal cells. (2) Human placenta-specific GI genes were comprehensively determined, highlighting incomplete erasure of germline DNA methylation in the human placenta. (3) Human TS cells retained normal GI patterns. (4) Complete hydatidiform mole-derived TS cells were characterized by aberrant GI and enhanced trophoblastic proliferation. The maternally expressed imprinted gene p57KIP2 may be responsible for the enhanced proliferation. (5) The primate-specific microRNA cluster on chromosome 19, which is a placenta-specific GI gene, is essential for self-renewal and differentiation of human TS cells. Conclusion Genomic imprinting plays diverse and important roles in human placentation. Experimental analyses using TS cells suggest that the GI maintenance is necessary for normal placental development in humans.
Collapse
Affiliation(s)
- Eri H. Kobayashi
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Shun Shibata
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Akira Oike
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Norio Kobayashi
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Hirotaka Hamada
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Hiroaki Okae
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Takahiro Arima
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| |
Collapse
|
15
|
Zeng TB, Pierce N, Liao J, Szabó PE. H3K9 methyltransferase EHMT2/G9a controls ERVK-driven noncanonical imprinted genes. Epigenomics 2021; 13:1299-1314. [PMID: 34519223 DOI: 10.2217/epi-2021-0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Paternal allele-specific expression of noncanonical imprinted genes in the extraembryonic lineages depends on an H3K27me3-based imprint in the oocyte, which is not a lasting mark. We hypothesized that EHMT2, the main euchromatic H3K9 dimethyltransferase, also has a role in controlling noncanonical imprinting. Methods: We carried out allele-specific total RNA-seq analysis in the ectoplacental cone of somite-matched 8.5 days post coitum embryos using reciprocal mouse crosses. Results: We found that the maternal allele of noncanonical imprinted genes was derepressed from its ERVK promoter in the Ehmt2-/- ectoplacental cone. In Ehmt2-/- embryos, loss of DNA methylation accompanied biallelic derepression of the ERVK promoters. Canonical imprinting and imprinted X chromosome inactivation were generally undisturbed. Conclusion: EHMT2 is essential for repressing the maternal allele in noncanonical imprinting.
Collapse
Affiliation(s)
- Tie-Bo Zeng
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Nicholas Pierce
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ji Liao
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Piroska E Szabó
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
16
|
Zfp57 inactivation illustrates the role of ICR methylation in imprinted gene expression during neural differentiation of mouse ESCs. Sci Rep 2021; 11:13802. [PMID: 34226608 PMCID: PMC8257706 DOI: 10.1038/s41598-021-93297-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/23/2021] [Indexed: 12/05/2022] Open
Abstract
ZFP57 is required to maintain the germline-marked differential methylation at imprinting control regions (ICRs) in mouse embryonic stem cells (ESCs). Although DNA methylation has a key role in genomic imprinting, several imprinted genes are controlled by different mechanisms, and a comprehensive study of the relationship between DMR methylation and imprinted gene expression is lacking. To address the latter issue, we differentiated wild-type and Zfp57-/- hybrid mouse ESCs into neural precursor cells (NPCs) and evaluated allelic expression of imprinted genes. In mutant NPCs, we observed a reduction of allelic bias of all the 32 genes that were imprinted in wild-type cells, demonstrating that ZFP57-dependent methylation is required for maintaining or acquiring imprinted gene expression during differentiation. Analysis of expression levels showed that imprinted genes expressed from the non-methylated chromosome were generally up-regulated, and those expressed from the methylated chromosome were down-regulated in mutant cells. However, expression levels of several imprinted genes acquiring biallelic expression were not affected, suggesting the existence of compensatory mechanisms that control their RNA level. Since neural differentiation was partially impaired in Zfp57-mutant cells, this study also indicates that imprinted genes and/or non-imprinted ZFP57-target genes are required for proper neurogenesis in cultured ESCs.
Collapse
|
17
|
Li J, Chen W, Li D, Gu S, Liu X, Dong Y, Jin L, Zhang C, Li S. Conservation of Imprinting and Methylation of MKRN3, MAGEL2 and NDN Genes in Cattle. Animals (Basel) 2021; 11:1985. [PMID: 34359112 PMCID: PMC8300276 DOI: 10.3390/ani11071985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
Genomic imprinting is the epigenetic mechanism of transcriptional regulation that involves differential DNA methylation modification. Comparative analysis of imprinted genes between species can help us to investigate the biological significance and regulatory mechanisms of genomic imprinting. MKRN3, MAGEL2 and NDN are three maternally imprinted genes identified in the human PWS/AS imprinted locus. This study aimed to assess the allelic expression of MKRN3, MAGEL2 and NDN and to examine the differentially methylated regions (DMRs) of bovine PWS/AS imprinted domains. An expressed single-nucleotide polymorphism (SNP)-based approach was used to investigate the allelic expression of MKRN3, MAGEL2 and NDN genes in bovine adult tissues and placenta. Consistent with the expression in humans and mice, we found that the MKRN3, MAGEL2 and NDN genes exhibit monoallelic expression in bovine somatic tissues and the paternal allele expressed in the bovine placenta. Three DMRs, PWS-IC, MKRN3 and NDN DMR, were identified in the bovine PWS/AS imprinted region by analysis of the DNA methylation status in bovine tissues using the bisulfite sequencing method and were located in the promoter and exon 1 of the SNRPN gene, NDN promoter and 5' untranslated region (5'UTR) of MKRN3 gene, respectively. The PWS-IC DMR is a primary DMR inherited from the male or female gamete, but NDN and MKRN3 DMR are secondary DMRs that occurred after fertilization by examining the methylation status in gametes.
Collapse
Affiliation(s)
- Junliang Li
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Weina Chen
- Department of Traditional Chinese Medicine, Hebei University, Baoding 071000, China;
| | - Dongjie Li
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050081, China;
| | - Shukai Gu
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Xiaoqian Liu
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Yanqiu Dong
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Lanjie Jin
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Cui Zhang
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Shijie Li
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| |
Collapse
|
18
|
Abstract
Genomic imprinting is the monoallelic expression of a gene based on parent of origin and is a consequence of differential epigenetic marking between the male and female germlines. Canonically, genomic imprinting is mediated by allelic DNA methylation. However, recently it has been shown that maternal H3K27me3 can result in DNA methylation-independent imprinting, termed "noncanonical imprinting." In this review, we compare and contrast what is currently known about the underlying mechanisms, the role of endogenous retroviral elements, and the conservation of canonical and noncanonical genomic imprinting.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| |
Collapse
|
19
|
Dini P, Kalbfleisch T, Uribe-Salazar JM, Carossino M, Ali HES, Loux SC, Esteller-Vico A, Norris JK, Anand L, Scoggin KE, Rodriguez Lopez CM, Breen J, Bailey E, Daels P, Ball BA. Parental bias in expression and interaction of genes in the equine placenta. Proc Natl Acad Sci U S A 2021; 118:e2006474118. [PMID: 33853939 PMCID: PMC8072238 DOI: 10.1073/pnas.2006474118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most autosomal genes in the placenta show a biallelic expression pattern. However, some genes exhibit allele-specific transcription depending on the parental origin of the chromosomes on which the copy of the gene resides. Parentally expressed genes are involved in the reciprocal interaction between maternal and paternal genes, coordinating the allocation of resources between fetus and mother. One of the main challenges of studying parental-specific allelic expression (allele-specific expression [ASE]) in the placenta is the maternal cellular remnant at the fetomaternal interface. Horses (Equus caballus) have an epitheliochorial placenta in which both the endometrial epithelium and the epithelium of the chorionic villi are juxtaposed with minimal extension into the uterine mucosa, yet there is no information available on the allelic gene expression of equine chorioallantois (CA). In the current study, we present a dataset of 1,336 genes showing ASE in the equine CA (https://pouya-dini.github.io/equine-gene-db/) along with a workflow for analyzing ASE genes. We further identified 254 potentially imprinted genes among the parentally expressed genes in the equine CA and evaluated the expression pattern of these genes throughout gestation. Our gene ontology analysis implies that maternally expressed genes tend to decrease the length of gestation, while paternally expressed genes extend the length of gestation. This study provides fundamental information regarding parental gene expression during equine pregnancy, a species with a negligible amount of maternal cellular remnant in its placenta. This information will provide the basis for a better understanding of the role of parental gene expression in the placenta during gestation.
Collapse
Affiliation(s)
- Pouya Dini
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Theodore Kalbfleisch
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202
| | - José M Uribe-Salazar
- Department of Biochemistry and Molecular Medicine, Genome Center, Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, CA 95616
| | - Mariano Carossino
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
- Theriogenology Department, Faculty of Veterinary Medicine, University of Mansoura, 35516, Egypt
| | - Shavahn C Loux
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Alejandro Esteller-Vico
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Jamie K Norris
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Lakshay Anand
- Environmental Epigenetics and Genetics Group, Department of Horticulture, University of Kentucky, Lexington, KY 40546
| | - Kirsten E Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Carlos M Rodriguez Lopez
- Environmental Epigenetics and Genetics Group, Department of Horticulture, University of Kentucky, Lexington, KY 40546
| | - James Breen
- South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Ernest Bailey
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Peter Daels
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Barry A Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503;
| |
Collapse
|
20
|
Wanigasuriya I, Gouil Q, Kinkel SA, Tapia Del Fierro A, Beck T, Roper EA, Breslin K, Stringer J, Hutt K, Lee HJ, Keniry A, Ritchie ME, Blewitt ME. Smchd1 is a maternal effect gene required for genomic imprinting. eLife 2020; 9:55529. [PMID: 33186096 PMCID: PMC7665889 DOI: 10.7554/elife.55529] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic imprinting establishes parental allele-biased expression of a suite of mammalian genes based on parent-of-origin specific epigenetic marks. These marks are under the control of maternal effect proteins supplied in the oocyte. Here we report epigenetic repressor Smchd1 as a novel maternal effect gene that regulates the imprinted expression of ten genes in mice. We also found zygotic SMCHD1 had a dose-dependent effect on the imprinted expression of seven genes. Together, zygotic and maternal SMCHD1 regulate three classic imprinted clusters and eight other genes, including non-canonical imprinted genes. Interestingly, the loss of maternal SMCHD1 does not alter germline DNA methylation imprints pre-implantation or later in gestation. Instead, what appears to unite most imprinted genes sensitive to SMCHD1 is their reliance on polycomb-mediated methylation as germline or secondary imprints, therefore we propose that SMCHD1 acts downstream of polycomb imprints to mediate its function.
Collapse
Affiliation(s)
- Iromi Wanigasuriya
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Quentin Gouil
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Sarah A Kinkel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Andrés Tapia Del Fierro
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Tamara Beck
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Ellise A Roper
- Faculty of Health and Medicine, The University of Newcastle, Newcastle, Australia
| | - Kelsey Breslin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jessica Stringer
- Monash Biomedicine Discovery institute, Monash University, Clayton, Australia
| | - Karla Hutt
- Monash Biomedicine Discovery institute, Monash University, Clayton, Australia
| | - Heather J Lee
- Faculty of Health and Medicine, The University of Newcastle, Newcastle, Australia
| | - Andrew Keniry
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Department of Medical Biology, The University of Melbourne, Parkville, Australia.,The Department of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Marnie E Blewitt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
21
|
Shibata S, Kobayashi EH, Kobayashi N, Oike A, Okae H, Arima T. Unique features and emerging in vitro models of human placental development. Reprod Med Biol 2020; 19:301-313. [PMID: 33071632 PMCID: PMC7542016 DOI: 10.1002/rmb2.12347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background The placenta is an essential organ for the normal development of mammalian fetuses. Most of our knowledge on the molecular mechanisms of placental development has come from the analyses of mice, especially histopathological examination of knockout mice. Choriocarcinoma and immortalized cell lines have also been used for basic research on the human placenta. However, these cells are quite different from normal trophoblast cells. Methods In this review, we first provide an overview of mouse and human placental development with particular focus on the differences in the anatomy, transcription factor networks, and epigenetic characteristics between these species. Next, we discuss pregnancy complications associated with abnormal placentation. Finally, we introduce emerging in vitro models to study the human placenta, including human trophoblast stem (TS) cells, trophoblast and endometrium organoids, and artificial embryos. Main findings The placental structure and development differ greatly between humans and mice. The recent establishment of human TS cells and trophoblast and endometrial organoids enhances our understanding of the mechanisms underlying human placental development. Conclusion These in vitro models will greatly advance our understanding of human placental development and potentially contribute to the elucidation of the causes of infertility and other pregnancy complications.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Eri H Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Norio Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Akira Oike
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Hiroaki Okae
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Takahiro Arima
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| |
Collapse
|
22
|
de Souza MM, Zerlotini A, Rocha MIP, Bruscadin JJ, Diniz WJDS, Cardoso TF, Cesar ASM, Afonso J, Andrade BGN, Mudadu MDA, Mokry FB, Tizioto PC, de Oliveira PSN, Niciura SCM, Coutinho LL, Regitano LCDA. Allele-specific expression is widespread in Bos indicus muscle and affects meat quality candidate genes. Sci Rep 2020; 10:10204. [PMID: 32576896 PMCID: PMC7311436 DOI: 10.1038/s41598-020-67089-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/20/2020] [Indexed: 11/09/2022] Open
Abstract
Differences between the expression of the two alleles of a gene are known as allele-specific expression (ASE), a common event in the transcriptome of mammals. Despite ASE being a source of phenotypic variation, its occurrence and effects on genetic prediction of economically relevant traits are still unexplored in bovines. Furthermore, as ASE events are likely driven by cis-regulatory mutations, scanning them throughout the bovine genome represents a significant step to elucidate the mechanisms underlying gene expression regulation. To address this question in a Bos indicus population, we built the ASE profile of the skeletal muscle tissue of 190 Nelore steers, using RNA sequencing data and SNPs genotypes from the Illumina BovineHD BeadChip (770 K bp). After quality control, 820 SNPs showed at least one sample with ASE. These SNPs were widespread among all autosomal chromosomes, being 32.01% found in 3'UTR and 31.41% in coding regions. We observed a considerable variation of ASE profile among individuals, which highlighted the need for biological replicates in ASE studies. Functional analysis revealed that ASE genes play critical biological functions in the development and maintenance of muscle tissue. Additionally, some of these genes were previously reported as associated with beef production and quality traits in livestock, thus indicating a possible source of bias on genomic predictions for these traits.
Collapse
Affiliation(s)
- Marcela Maria de Souza
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Adhemar Zerlotini
- Bioinformatic Multi-user Laboratory, Embrapa Informática Agropecuária, Campinas, SP, Brazil
| | - Marina Ibelli Pereira Rocha
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Jennifer Jessica Bruscadin
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Wellison Jarles da Silva Diniz
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | - Juliana Afonso
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | - Fabiana Barichello Mokry
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Chen Z, Zhang Y. Maternal H3K27me3-dependent autosomal and X chromosome imprinting. Nat Rev Genet 2020; 21:555-571. [PMID: 32514155 DOI: 10.1038/s41576-020-0245-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Genomic imprinting and X-chromosome inactivation (XCI) are classic epigenetic phenomena that involve transcriptional silencing of one parental allele. Germline-derived differential DNA methylation is the best-studied epigenetic mark that initiates imprinting, but evidence indicates that other mechanisms exist. Recent studies have revealed that maternal trimethylation of H3 on lysine 27 (H3K27me3) mediates autosomal maternal allele-specific gene silencing and has an important role in imprinted XCI through repression of maternal Xist. Furthermore, loss of H3K27me3-mediated imprinting contributes to the developmental defects observed in cloned embryos. This novel maternal H3K27me3-mediated non-canonical imprinting mechanism further emphasizes the important role of parental chromatin in development and could provide the basis for improving the efficiency of embryo cloning.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA. .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. .,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
24
|
Abstract
As the maternal–foetal interface, the placenta is essential for the establishment and progression of healthy pregnancy, regulating both foetal growth and maternal adaptation to pregnancy. The evolution and functional importance of genomic imprinting are inextricably linked to mammalian placentation. Recent technological advances in mapping and manipulating the epigenome in embryogenesis in mouse models have revealed novel mechanisms regulating genomic imprinting in placental trophoblast, the physiological implications of which are only just beginning to be explored. This review will highlight important recent discoveries and exciting new directions in the study of placental imprinting. The placenta is essential for healthy pregnancy because it supports the growth of the baby, helps the mother’s body adapt, and provides a connection between mother and the developing baby. Studying gene regulation and the early steps in placental development is challenging in human pregnancy, so mouse models have been key in building our understanding of these processes. In particular, these studies have identified a subset of genes that are essential for placentation, termed imprinted genes. Imprinted genes are those that are expressed from only one copy, depending on whether they were inherited from mom or dad. In this review, I describe recent novel approaches used to study the mechanisms regulating these imprinted genes in mouse models, and I highlight several new discoveries. It has become apparent that the regulation of imprinted genes in placenta is often unique from other tissues and that there are species-specific mechanisms allowing the evolution of new imprinted genes specifically in the placenta.
Collapse
Affiliation(s)
- Courtney W. Hanna
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Bogutz AB, Brind'Amour J, Kobayashi H, Jensen KN, Nakabayashi K, Imai H, Lorincz MC, Lefebvre L. Evolution of imprinting via lineage-specific insertion of retroviral promoters. Nat Commun 2019; 10:5674. [PMID: 31831741 PMCID: PMC6908575 DOI: 10.1038/s41467-019-13662-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023] Open
Abstract
Imprinted genes are expressed from a single parental allele, with the other allele often silenced by DNA methylation (DNAme) established in the germline. While species-specific imprinted orthologues have been documented, the molecular mechanisms underlying the evolutionary switch from biallelic to imprinted expression are unknown. During mouse oogenesis, gametic differentially methylated regions (gDMRs) acquire DNAme in a transcription-guided manner. Here we show that oocyte transcription initiating in lineage-specific endogenous retroviruses (ERVs) is likely responsible for DNAme establishment at 4/6 mouse-specific and 17/110 human-specific imprinted gDMRs. The latter are divided into Catarrhini- or Hominoidea-specific gDMRs embedded within transcripts initiating in ERVs specific to these primate lineages. Strikingly, imprinting of the maternally methylated genes Impact and Slc38a4 was lost in the offspring of female mice harboring deletions of the relevant murine-specific ERVs upstream of these genes. Our work reveals an evolutionary mechanism whereby maternally silenced genes arise from biallelically expressed progenitors. Although many species-specific imprinted genes have been identified, how the evolutionary switch from biallelic to imprinted expression occurs is still unknown. Here authors find that lineage-specific ERVs active as oocyte promoters can induce de novo DNA methylation at gDMRs and imprinting.
Collapse
Affiliation(s)
- Aaron B Bogutz
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Julie Brind'Amour
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kristoffer N Jensen
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kazuhiko Nakabayashi
- Division of Developmental Genomics, Research Institute, National Center for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Hiroo Imai
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Matthew C Lorincz
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Louis Lefebvre
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
26
|
Loss of p57 KIP2 expression confers resistance to contact inhibition in human androgenetic trophoblast stem cells. Proc Natl Acad Sci U S A 2019; 116:26606-26613. [PMID: 31792181 PMCID: PMC6936680 DOI: 10.1073/pnas.1916019116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Complete hydatidiform moles (CHMs) develop from androgenetic conceptuses and are characterized by enhanced proliferation of trophoblast cells and a significantly higher risk of trophoblast tumors. Loss of the maternal genome and duplication of the paternal genome are considered to be responsible for the phenotype, but the detailed mechanism remains unclear. Here, we report the derivation of trophoblast stem (TS) cells from CHMs. These cells have reduced sensitivity to contact inhibition of cell proliferation and exhibit aberrant expression of imprinted genes, which are expressed from only 1 parental allele. We also reveal that the maternally expressed imprinted gene p57KIP2 would be responsible for the enhanced proliferation of CHM-derived TS cells. Our findings provide an insight into the pathogenesis of CHMs. A complete hydatidiform mole (CHM) is androgenetic in origin and characterized by enhanced trophoblastic proliferation and the absence of fetal tissue. In 15 to 20% of cases, CHMs are followed by malignant gestational trophoblastic neoplasms including choriocarcinoma. Aberrant genomic imprinting may be responsible for trophoblast hypertrophy in CHMs, but the detailed mechanisms are still elusive, partly due to the lack of suitable animal or in vitro models. We recently developed a culture system of human trophoblast stem (TS) cells. In this study, we apply this system to CHMs for a better understanding of their molecular pathology. CHM-derived TS cells, designated as TSmole cells, are morphologically similar to biparental TS (TSbip) cells and express TS-specific markers such as GATA3, KRT7, and TFAP2C. Interestingly, TSmole cells have a growth advantage over TSbip cells only after they reach confluence. We found that p57KIP2, a maternally expressed gene encoding a cyclin-dependent kinase inhibitor, is strongly induced by increased cell density in TSbip cells, but not in TSmole cells. Knockout and overexpression studies suggest that loss of p57KIP2 expression would be the major cause of the reduced sensitivity to contact inhibition in CHMs. Our findings shed light on the molecular mechanism underlying the pathogenesis of CHMs and could have broad implications in tumorigenesis beyond CHMs because silencing of p57KIP2 is frequently observed in a variety of human tumors.
Collapse
|
27
|
Chen Z, Yin Q, Inoue A, Zhang C, Zhang Y. Allelic H3K27me3 to allelic DNA methylation switch maintains noncanonical imprinting in extraembryonic cells. SCIENCE ADVANCES 2019; 5:eaay7246. [PMID: 32064321 PMCID: PMC6989337 DOI: 10.1126/sciadv.aay7246] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/05/2019] [Indexed: 05/08/2023]
Abstract
Faithful maintenance of genomic imprinting is essential for mammalian development. While germline DNA methylation-dependent (canonical) imprinting is relatively stable during development, the recently found oocyte-derived H3K27me3-mediated noncanonical imprinting is mostly transient in early embryos, with some genes important for placental development maintaining imprinted expression in the extraembryonic lineage. How these noncanonical imprinted genes maintain their extraembryonic-specific imprinting is unknown. Here, we report that maintenance of noncanonical imprinting requires maternal allele-specific de novo DNA methylation [i.e., somatic differentially methylated regions (DMRs)] at implantation. The somatic DMRs are located at the gene promoters, with paternal allele-specific H3K4me3 established during preimplantation development. Genetic manipulation revealed that both maternal EED and zygotic DNMT3A/3B are required for establishing somatic DMRs and maintaining noncanonical imprinting. Thus, our study not only reveals the mechanism underlying noncanonical imprinting maintenance but also sheds light on how histone modifications in oocytes may shape somatic DMRs in postimplantation embryos.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Qiangzong Yin
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Azusa Inoue
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Chunxia Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
- Corresponding author.
| |
Collapse
|
28
|
Gigante S, Gouil Q, Lucattini A, Keniry A, Beck T, Tinning M, Gordon L, Woodruff C, Speed TP, Blewitt ME, Ritchie ME. Using long-read sequencing to detect imprinted DNA methylation. Nucleic Acids Res 2019; 47:e46. [PMID: 30793194 PMCID: PMC6486641 DOI: 10.1093/nar/gkz107] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/14/2019] [Accepted: 02/08/2019] [Indexed: 02/01/2023] Open
Abstract
Systematic variation in the methylation of cytosines at CpG sites plays a critical role in early development of humans and other mammals. Of particular interest are regions of differential methylation between parental alleles, as these often dictate monoallelic gene expression, resulting in parent of origin specific control of the embryonic transcriptome and subsequent development, in a phenomenon known as genomic imprinting. Using long-read nanopore sequencing we show that, with an average genomic coverage of ∼10, it is possible to determine both the level of methylation of CpG sites and the haplotype from which each read arises. The long-read property is exploited to characterize, using novel methods, both methylation and haplotype for reads that have reduced basecalling precision compared to Sanger sequencing. We validate the analysis both through comparison of nanopore-derived methylation patterns with those from Reduced Representation Bisulfite Sequencing data and through comparison with previously reported data. Our analysis successfully identifies known imprinting control regions (ICRs) as well as some novel differentially methylated regions which, due to their proximity to hitherto unknown monoallelically expressed genes, may represent new ICRs.
Collapse
Affiliation(s)
- Scott Gigante
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia.,Department of Genetics, Yale University, 333 Cedar Street, New Haven CT 06510, USA
| | - Quentin Gouil
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne VIC 3010, Australia
| | - Alexis Lucattini
- Australian Genome Research Facility, 305 Grattan Street, Melbourne VIC 3000, Australia
| | - Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne VIC 3010, Australia
| | - Tamara Beck
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia
| | - Matthew Tinning
- Australian Genome Research Facility, 305 Grattan Street, Melbourne VIC 3000, Australia
| | - Lavinia Gordon
- Australian Genome Research Facility, 305 Grattan Street, Melbourne VIC 3000, Australia
| | - Chris Woodruff
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia
| | - Terence P Speed
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia.,School of Mathematics and Statistics, The University of Melbourne, Melbourne VIC 3010, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne VIC 3010, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne VIC 3010, Australia.,School of Mathematics and Statistics, The University of Melbourne, Melbourne VIC 3010, Australia
| |
Collapse
|
29
|
Li X, Li MJ, Yang Y, Bai Y. Effects of reprogramming on genomic imprinting and the application of pluripotent stem cells. Stem Cell Res 2019; 41:101655. [PMID: 31734645 DOI: 10.1016/j.scr.2019.101655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/27/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells are considered to be the ideal candidates for cell-based therapies in humans. In this regard, both nuclear transfer embryonic stem (ntES) cells and induced pluripotent stem (iPS) cells are particularly advantageous because patient-specific autologous ntES and iPS cells can avoid immunorejection and other side effects that may be present in the allogenic pluripotent stem cells derived from unrelated sources. However, they have been found to contain deleterious genetic and epigenetic changes that may hinder their therapeutic applications. Indeed, deregulation of genomic imprinting has been frequently observed in reprogrammed ntES and iPS cells. We will survey the recent studies on genomic imprinting in pluripotent stem cells, particularly in iPS cells. In a previous study published about six years ago, genomic imprinting was found to be variably lost in mouse iPS clones. Intriguingly, de novo DNA methylation also occurred at the previously unmethylated imprinting control regions (ICRs) in a high percentage of iPS clones. These unexpected results were confirmed by a recent independent study with a similar approach. Since dysregulation of genomic imprinting can cause many human diseases including cancer and neurological disorders, these recent findings on genomic imprinting in reprogramming may have some implications for therapeutic applications of pluripotent stem cells.
Collapse
Affiliation(s)
- Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Max Jiahua Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yun Bai
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
30
|
Leng L, Sun J, Huang J, Gong F, Yang L, Zhang S, Yuan X, Fang F, Xu X, Luo Y, Bolund L, Peters BA, Lu G, Jiang T, Xu F, Lin G. Single-Cell Transcriptome Analysis of Uniparental Embryos Reveals Parent-of-Origin Effects on Human Preimplantation Development. Cell Stem Cell 2019; 25:697-712.e6. [DOI: 10.1016/j.stem.2019.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 06/27/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022]
|
31
|
Rhon-Calderon EA, Vrooman LA, Riesche L, Bartolomei MS. The effects of Assisted Reproductive Technologies on genomic imprinting in the placenta. Placenta 2019; 84:37-43. [PMID: 30871810 DOI: 10.1016/j.placenta.2019.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/29/2022]
Abstract
The placenta is a complex and poorly understood organ, which serves as the connection between the mother and the developing fetus. Genomic imprinting, defined as a regulatory process resulting in the expression of a gene in a parent-of-origin-specific manner, plays an important role in fetal development and placental function. Disturbances that occur during the establishment and maintenance of imprinting could compromise the placenta and fetus, and ultimately, offspring health. Assisted Reproductive Technologies (ART) have been widely used to overcome infertility, however experimental studies have shown that ART procedures affect placentation and the expression of imprinted genes. Here we briefly review the role of imprinted genes in placental development and the evidence from mouse and human studies suggesting ART disrupts imprinted gene regulation in the placenta.
Collapse
Affiliation(s)
- Eric A Rhon-Calderon
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA
| | - Lisa A Vrooman
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA
| | - Laren Riesche
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA; Department of Family and Community Health, Claire M. Fagin School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA.
| |
Collapse
|
32
|
Lei J, Nie Q, Chen DB. A single-cell epigenetic model for paternal psychological stress-induced transgenerational reprogramming in offspring. Biol Reprod 2019; 98:846-855. [PMID: 29506130 DOI: 10.1093/biolre/ioy050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/25/2018] [Indexed: 12/16/2022] Open
Abstract
Experimental evidence shows that parental psychological stress affects the long-term health of offspring in an inheritable fashion. Although epigenetic mechanisms, including DNA methylation, miRNA, and histone modifications, are involved in transgenerational programming, the underlining mechanisms of transgenerational inheritance remain unsolved. Here, we present a single-cell-based computational model for transgenerational inheritance for investigating the long-term dynamics of phenotype changes in response to parental stress. The model is based on a recent study that has identified the imprinted sperm gene Sfmbt2 as a key target, and incorporates crosstalks among drastically different time scales in mammalian development, including DNA methylation, transcription, cell division, and population dynamics. Computational analysis of the model suggests a positive feedback to DNA methylation in the promoter region of sperm Sfmbt2 gene that provides a possible mechanism to mediate the parental psychological stress reprogramming in offspring. This approach provides a modeling framework for the understanding of the roles that epigenetics play in transgenerational inheritance.
Collapse
Affiliation(s)
- Jinzhi Lei
- Zhou Pei-Yuan Center for Applied Mathematics, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Qing Nie
- Department of Mathematics, Department of Developmental and Cell Biology, Center for Mathematical and Computational Biology, University of California, Irvine, Irvine, California, USA
| | - Dong-Bao Chen
- Department of Obstetrics and Gynecology, University of California Irvine, Irvine, California, USA
| |
Collapse
|
33
|
Pilvar D, Reiman M, Pilvar A, Laan M. Parent-of-origin-specific allelic expression in the human placenta is limited to established imprinted loci and it is stably maintained across pregnancy. Clin Epigenetics 2019; 11:94. [PMID: 31242935 PMCID: PMC6595585 DOI: 10.1186/s13148-019-0692-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
Background Genomic imprinting, mediated by parent-of-origin-specific epigenetic silencing, adjusts the gene expression dosage in mammals. We aimed to clarify parental allelic expression in the human placenta for 396 claimed candidate imprinted genes and to assess the evidence for the proposed enrichment of imprinted expression in the placenta. The study utilized RNA-Seq-based transcriptome and genotyping data from 54 parental-placental samples representing the three trimesters of gestation, and term cases of preeclampsia, gestational diabetes, and fetal growth disturbances. Results Almost half of the targeted genes (n = 179; 45%) were either not transcribed or showed limited expression in the human placenta. After filtering for the presence of common exonic SNPs, adequacy of sequencing reads and informative families, 91 genes were retained (43 loci form Geneimprint database; 48 recently proposed genes). Only 11/91 genes (12.1%) showed confident signals of imprinting (binomial test, Bonferroni corrected P < 0.05; > 90% transcripts originating from one parental allele). The confirmed imprinted genes exhibit enriched placental expression (PHLDA2, H19, IGF2, MEST, ZFAT, PLAGL1, AIM1) or are transcribed additionally only in the adrenal gland (MEG3, RTL1, PEG10, DLK1). Parental monoallelic expression showed extreme stability across gestation and in term pregnancy complications. A distinct group of additional 14 genes exhibited a statistically significant bias in parental allelic proportions defined as having 65–90% of reads from one parental allele (e.g., KLHDC10, NLRP2, RHOBTB3, DNMT1). Molecular mechanisms behind biased parental expression are still to be clarified. However, 66 of 91 (72.5%) analyzed candidate imprinted genes showed no signals of deviation from biallelic expression. Conclusions As placental tissue is not included in The Genotype-Tissue Expression (GTEx) project, the study contributed to fill the gap in the knowledge concerning parental allelic expression. A catalog of parental allelic proportions and gene expression of analyzed loci across human gestation and in term pregnancy complications is provided as additional files. The study outcome suggested that true imprinting in the human placenta is restricted to well-characterized loci. High expression of imprinted genes during mid-pregnancy supports their critical role in developmental programming. Consistent with the data on other GTEx tissues, the number of human imprinted genes appears to be overestimated. Electronic supplementary material The online version of this article (10.1186/s13148-019-0692-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Pilvar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Str, 19 50411, Tartu, Estonia
| | - Mario Reiman
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Str, 19 50411, Tartu, Estonia
| | - Arno Pilvar
- Veeuss OÜ, Jaama tn 185-49, 50705, Tartu, Tartu, Estonia
| | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Str, 19 50411, Tartu, Estonia.
| |
Collapse
|
34
|
Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC. Genomic Imprinting and Physiological Processes in Mammals. Cell 2019; 176:952-965. [PMID: 30794780 DOI: 10.1016/j.cell.2019.01.043] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
Complex multicellular organisms, such as mammals, express two complete sets of chromosomes per nucleus, combining the genetic material of both parents. However, epigenetic studies have demonstrated violations to this rule that are necessary for mammalian physiology; the most notable parental allele expression phenomenon is genomic imprinting. With the identification of endogenous imprinted genes, genomic imprinting became well-established as an epigenetic mechanism in which the expression pattern of a parental allele influences phenotypic expression. The expanding study of genomic imprinting is revealing a significant impact on brain functions and associated diseases. Here, we review key milestones in the field of imprinting and discuss mechanisms and systems in which imprinted genes exert a significant role.
Collapse
Affiliation(s)
- Valter Tucci
- Department of Neuroscience and Brain Technologies - Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 44H, UK
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
35
|
Mozaffari SV, DeCara JM, Shah SJ, Sidore C, Fiorillo E, Cucca F, Lang RM, Nicolae DL, Ober C. Parent-of-origin effects on quantitative phenotypes in a large Hutterite pedigree. Commun Biol 2019; 2:28. [PMID: 30675526 PMCID: PMC6338666 DOI: 10.1038/s42003-018-0267-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
The impact of the parental origin of associated alleles in GWAS has been largely ignored. Yet sequence variants could affect traits differently depending on whether they are inherited from the mother or the father, as in imprinted regions, where identical inherited DNA sequences can have different effects based on the parental origin. To explore parent-of-origin effects (POEs), we studied 21 quantitative phenotypes in a large Hutterite pedigree to identify variants with single parent (maternal-only or paternal-only) effects, and then variants with opposite parental effects. Here we show that POEs, which can be opposite in direction, are relatively common in humans, have potentially important clinical effects, and will be missed in traditional GWAS. We identified POEs with 11 phenotypes, most of which are risk factors for cardiovascular disease. Many of the loci identified are characteristic of imprinted regions and are associated with the expression of nearby genes.
Collapse
Affiliation(s)
- Sahar V. Mozaffari
- Department of Human Genetics, University of Chicago, Chicago, IL 60637 USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637 USA
| | - Jeanne M. DeCara
- Department of Medicine, University of Chicago, Chicago, IL 60637 USA
| | - Sanjiv J. Shah
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042 Italy
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042 Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042 Italy
- Dipartimento di Scienze Biomediche, Universita di Sassari, Sassari, 07100 Italy
| | - Roberto M. Lang
- Department of Medicine, University of Chicago, Chicago, IL 60637 USA
| | - Dan L. Nicolae
- Department of Human Genetics, University of Chicago, Chicago, IL 60637 USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637 USA
- Department of Medicine, University of Chicago, Chicago, IL 60637 USA
- Department of Statistics, University of Chicago, Chicago, IL 60637 USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637 USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637 USA
| |
Collapse
|
36
|
Suzuki D, Morimoto H, Yoshimura K, Kono T, Ogawa H. The Differentiation Potency of Trophoblast Stem Cells from Mouse Androgenetic Embryos. Stem Cells Dev 2019; 28:290-302. [PMID: 30526365 DOI: 10.1089/scd.2018.0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In mice, trophoblast stem (TS) cells are derived from the polar trophectoderm of blastocysts. TS cells cultured in the presence of fibroblast growth factor 4 (Fgf4) are in an undifferentiated state and express undifferentiated marker genes such as Cdx2. After removing Fgf4 from the culture medium, TS cells drastically reduce the expression of undifferentiated marker genes, stop cell proliferation, and differentiate into all trophoblast cell subtypes. To clarify the roles of the parental genomes in placentation, we previously established TS cells from androgenetic embryos (AGTS cells). AGTS cells are in the undifferentiated state when cultured with Fgf4 and express undifferentiated marker genes. After removing Fgf4, AGTS cells differentiate into trophoblast giant cells (TGCs), but not into spongiotrophoblast cells, and some of the AGTS cells continue to proliferate. In this study, we investigated the differentiation potency of AGTS cells by analyzing the expression of undifferentiated marker genes and all trophoblast cell subtype-specific genes. After removing Fgf4, some undifferentiated marker genes (Cdx2, Eomes and Elf5) continued to be expressed. Interestingly, TGCs differentiated from AGTS cells also expressed Cdx2, but not Prl3d1. Moreover, the expression of Gcm1 and Synb was induced after the differentiation, indicating that AGTS cells preferentially differentiated into labyrinth progenitor cells. Cdx2 knockdown resulted in increased Prl3d1 expression, suggesting that Fgf4-independent Cdx2 expression inhibited the functional TGCs. Moreover, Fgf4-independent Cdx2 expression was activated by Gab1, one of the paternally expressed imprinted genes via the mitogen-activated protein kinase kinase (MEK)-extracellular signal regulated protein kinase (ERK) pathway. These results suggested that the paternal genome activates the MEK-ERK pathway without the Fgf4 signal, accelerates the differentiation into labyrinth progenitor cells and controls the function of TGCs.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiromu Morimoto
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kaoru Yoshimura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
37
|
Inoue A, Chen Z, Yin Q, Zhang Y. Maternal Eed knockout causes loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes Dev 2018; 32:1525-1536. [PMID: 30463900 PMCID: PMC6295166 DOI: 10.1101/gad.318675.118] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
Abstract
In this study, Inoue et al. investigated the regulatory mechanisms and functions of the maternal H3K27me3 mechanism. They found that maternal Eed, an essential component of the Polycomb group complex 2 (PRC2), is required for establishing H3K27me3 imprinting, and their results also reveal unique XCI dynamics in the absence of Xist imprinting. Genomic imprinting is essential for mammalian development. Recent studies have revealed that maternal histone H3 Lys27 trimethylation (H3K27me3) can mediate DNA methylation-independent genomic imprinting. However, the regulatory mechanisms and functions of this new imprinting mechanism are largely unknown. Here we demonstrate that maternal Eed, an essential component of the Polycomb group complex 2 (PRC2), is required for establishing H3K27me3 imprinting. We found that all H3K27me3-imprinted genes, including Xist, lose their imprinted expression in Eed maternal knockout (matKO) embryos, resulting in male-biased lethality. Surprisingly, although maternal X-chromosome inactivation (XmCI) occurs in Eed matKO embryos at preimplantation due to loss of Xist imprinting, it is resolved at peri-implantation. Ultimately, both X chromosomes are reactivated in the embryonic cell lineage prior to random XCI, and only a single X chromosome undergoes random XCI in the extraembryonic cell lineage. Thus, our study not only demonstrates an essential role of Eed in H3K27me3 imprinting establishment but also reveals a unique XCI dynamic in the absence of Xist imprinting.
Collapse
Affiliation(s)
- Azusa Inoue
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Zhiyuan Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Qiangzong Yin
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
38
|
Nishitani K, Hayakawa K, Tanaka S. Extracellular glucose levels in cultures of undifferentiated mouse trophoblast stem cells affect gene expression during subsequent differentiation with replicable cell line-dependent variation. J Reprod Dev 2018; 65:19-27. [PMID: 30318498 PMCID: PMC6379769 DOI: 10.1262/jrd.2018-083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mouse trophoblast stem cells (TSCs) have been established and maintained using hyperglycemic conditions (11 mM glucose) for no apparent good reason. Because glucose metabolites are used as
resources for cellular energy production, biosynthesis, and epigenetic modifications, differences in extracellular glucose levels may widely affect cellular function. Since the hyperglycemic
culture conditions used for TSC culture have not been fully validated, the effect of extracellular glucose levels on the properties of TSCs remains unclear. To address this issue, we
investigated the gene expression of stemness-related transcription factors in TSCs cultured in the undifferentiated state under various glucose concentrations. We also examined the
expression of trophoblast subtype markers during differentiation, after returning the glucose concentration to the conventional culture concentration (11 mM). As a result, it appeared that
the extracellular glucose conditions in the stem state not only affected the gene expression of stemness-related transcription factors before differentiation but also affected the expression
of marker genes after differentiation, with some line-to-line variation. In the TS4 cell line, which showed the largest glucose concentration-dependent fluctuations in gene expression among
all the lines examined, low glucose (1 mM glucose, LG) augmented H3K27me3 levels. An Ezh2 inhibitor prevented these LG-induced changes in gene expression, suggesting the possible involvement
of H3K27me3 in the changes in gene expression seen in LG. These results collectively indicate that the response of the TSCs to the change in the extracellular glucose concentration is cell
line-dependent and a part of which may be epigenetically memorized.
Collapse
Affiliation(s)
- Kenta Nishitani
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Koji Hayakawa
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Satoshi Tanaka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
39
|
Cuellar Partida G, Laurin C, Ring SM, Gaunt TR, McRae AF, Visscher PM, Montgomery GW, Martin NG, Hemani G, Suderman M, Relton CL, Davey Smith G, Evans DM. Genome-wide survey of parent-of-origin effects on DNA methylation identifies candidate imprinted loci in humans. Hum Mol Genet 2018; 27:2927-2939. [PMID: 29860447 PMCID: PMC6077796 DOI: 10.1093/hmg/ddy206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
Genomic imprinting is an epigenetic mechanism leading to parent-of-origin silencing of alleles. So far, the precise number of imprinted regions in humans is uncertain. In this study, we leveraged genome-wide DNA methylation in whole blood measured longitudinally at three time points (birth, childhood and adolescence) and genome-wide association studies (GWAS) data in 740 mother-child duos from the Avon Longitudinal Study of parents and children to identify candidate imprinted loci. We reasoned that cis-meQTLs at genomic regions that were imprinted would show strong evidence of parent-of-origin associations with DNA methylation, enabling the detection of imprinted regions. Using this approach, we identified genome-wide significant cis-meQTLs that exhibited parent-of-origin effects (POEs) at 82 loci, 34 novel and 48 regions previously implicated in imprinting (3.7-10<P < 10-300). Using an independent dataset from the Brisbane Systems Genetic Study, we replicated 76 out of the 82 identified loci. POEs were remarkably consistent across time points and were so strong at some loci that methylation levels enabled good discrimination of parental transmissions at these and surrounding genomic regions. The implication is that parental allelic transmissions could be modelled at many imprinted (and linked) loci in GWAS of unrelated individuals given a combination of genetic and methylation data. Novel regions showing parent of origin effects on methylation will require replication using a different technology and further functional experiments to confirm that such effects arise through a genomic imprinting mechanism.
Collapse
Affiliation(s)
- Gabriel Cuellar Partida
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Charles Laurin
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Susan M Ring
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom R Gaunt
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Allan F McRae
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Peter M Visscher
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Grant W Montgomery
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | | | - Gibran Hemani
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Suderman
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline L Relton
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - David M Evans
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia.,Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
40
|
Wang Z, Sun B, Zhu F. Molecular characterization of glutaminyl-peptide cyclotransferase(QPCT)in Scylla paramamosain and its role in Vibrio alginolyticus and white spot syndrome virus (WSSV) infection. FISH & SHELLFISH IMMUNOLOGY 2018; 78:299-309. [PMID: 29709591 DOI: 10.1016/j.fsi.2018.04.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Glutaminyl-peptide cyclotransferase (QPCT) catalyzes the posttranslational modification of an N-terminal glutamate of proteins to pyroglutamate. This renders the protein more resistant to protease degradation, more susceptible to hydrophobic interactions, aggregation, and neurotoxic. In this study, we evaluated the influence of QPCT in the crab Scylla paramamosain infected with white spot syndrome virus (WSSV) or with Vibrio alginolyticus. A cDNA clone, encompassing the entire 2445 bp of the S. paramamosain QPCT gene, containing a 1113 bp open reading frame (ORF) encoding a 370 amino acid protein was cloned from S. paramamosain. Real-time PCR indicated that QPCT was primarily expressed in the digestive tract of S. paramamosain, was up-regulated in hemocytes after infection with V. alginolyticus, and down-regulated in hemocytes after infection with WSSV. Knockdown of QPCT expression by double-stranded RNA (QPCT-dsRNA) resulted in down-regulation of prophenoloxidase (proPO) and crustin antimicrobial peptide, whereas myosin-II-essential-light-chain-like-protein was significantly up-regulated in hemocytes at 24 h post QPCT-dsRNA treatment. WSSV challenge in crabs treated with QPCT-dsRNA resulted in a reduction in viral burden and in the apoptotic rate of crab hemocytes, while the phagocytic activity of crab hemocytes and overall mortality rate were increased. This suggests that WSSV might take advantage of QPCT to benefit its replication. In contrast, V. alginolyticus infection in crabs treated with QPCT-dsRNA indicated that the apoptotic rate and phagocytic activity of hemocytes, and overall incidence of mortality, were increased compared to mock-treated animals, indicating that QPCT might be a resistance factor in bacterial infection. These results increase our understanding of the function of QPCT and its role in the innate immunity of S. paramamosain.
Collapse
Affiliation(s)
- Ziyan Wang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Baozhen Sun
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Fei Zhu
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
41
|
Marjonen H, Toivonen M, Lahti L, Kaminen-Ahola N. Early prenatal alcohol exposure alters imprinted gene expression in placenta and embryo in a mouse model. PLoS One 2018; 13:e0197461. [PMID: 29763474 PMCID: PMC5953443 DOI: 10.1371/journal.pone.0197461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can harm the embryonic development and cause life-long consequences in offspring’s health. To clarify the molecular mechanisms of PAE we have used a mouse model of early alcohol exposure, which is based on maternal ad libitum ingestion of 10% (v/v) ethanol for the first eight days of gestation (GD 0.5–8.5). Owing to the detected postnatal growth-restricted phenotype in the offspring of this mouse model and both prenatal and postnatal growth restriction in alcohol-exposed humans, we focused on imprinted genes Insulin-like growth factor 2 (Igf2), H19, Small Nuclear Ribonucleoprotein Polypeptide N (Snrpn) and Paternally expressed gene 3 (Peg3), which all are known to be involved in embryonic and placental growth and development. We studied the effects of alcohol on DNA methylation level at the Igf2/H19 imprinting control region (ICR), Igf2 differentially methylated region 1, Snrpn ICR and Peg3 ICR in 9.5 embryonic days old (E9.5) embryos and placentas by using MassARRAY EpiTYPER. To determine alcohol-induced alterations globally, we also examined methylation in long interspersed nuclear elements (Line-1) in E9.5 placentas. We did not observe any significant alcohol-induced changes in DNA methylation levels. We explored effects of PAE on gene expression of E9.5 embryos as well as E9.5 and E16.5 placentas by using quantitative PCR. The expression of growth promoter gene Igf2 was decreased in the alcohol-exposed E9.5 and E16.5 placentas. The expression of negative growth controller H19 was significantly increased in the alcohol-exposed E9.5 embryos compared to controls, and conversely, a trend of decreased expression in alcohol-exposed E9.5 and E16.5 placentas were observed. Furthermore, increased Snrpn expression in alcohol-exposed E9.5 embryos was also detected. Our study indicates that albeit no alterations in the DNA methylation levels of studied sequences were detected by EpiTYPER, early PAE can affect the expression of imprinted genes in both developing embryo and placenta.
Collapse
Affiliation(s)
- Heidi Marjonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mia Toivonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Laura Lahti
- Department of Biological and Environmental Sciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Nina Kaminen-Ahola
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
42
|
Kikuchi K, Sasaki K, Akizawa H, Tsukahara H, Bai H, Takahashi M, Nambo Y, Hata H, Kawahara M. Identification and expression analysis of cDNA encoding insulin-like growth factor 2 in horses. J Reprod Dev 2018; 64:57-64. [PMID: 29151450 PMCID: PMC5830359 DOI: 10.1262/jrd.2017-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) is responsible for a broad range of physiological processes during fetal development and adulthood, but genomic analyses of IGF2 containing the 5ʹ- and
3ʹ-untranslated regions (UTRs) in equines have been limited. In this study, we characterized the IGF2 mRNA containing the UTRs, and determined its expression pattern in the fetal tissues of horses. The
complete equine IGF2 mRNA sequence harboring another exon approximately 2.8 kb upstream from the canonical transcription start site was identified as a new transcript variant. As this upstream exon did
not contain the start codon, the amino acid sequence was identical to the canonical variant. Analysis of the deduced amino acid sequence revealed that the protein possessed two major domains, IlGF and IGF2_C, and
analysis of IGF2 sequence polymorphism in fetal tissues of Hokkaido native horse and Thoroughbreds revealed a single nucleotide polymorphism (T to C transition) at position 398 in Thoroughbreds, which
caused an amino acid substitution at position 133 in the IGF2 sequence. Furthermore, the expression pattern of the IGF2 mRNA in the fetal tissues of horses was determined for the first time, and was
found to be consistent with those of other species. Taken together, these results suggested that the transcriptional and translational products of the IGF2 gene have conserved functions in the fetal
development of mammals, including horses.
Collapse
Affiliation(s)
- Kohta Kikuchi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Keisuke Sasaki
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan.,Present: Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hiroki Akizawa
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hayato Tsukahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Masashi Takahashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Yasuo Nambo
- Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, Hokkaido 057-0171, Japan.,Present: Department of Clinical Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Hiroshi Hata
- Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido 060-0811, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| |
Collapse
|
43
|
Abstract
Inheritance of DNA methylation states from gametes determines genomic imprinting in mammals. A new study shows that repressive chromatin in oocytes can also confer imprinting.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
44
|
Pathak R, Feil R. Oocyte-derived histone H3 lysine 27 methylation controls gene expression in the early embryo. Nat Struct Mol Biol 2017; 24:685-686. [DOI: 10.1038/nsmb.3456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Andergassen D, Dotter CP, Wenzel D, Sigl V, Bammer PC, Muckenhuber M, Mayer D, Kulinski TM, Theussl HC, Penninger JM, Bock C, Barlow DP, Pauler FM, Hudson QJ. Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression. eLife 2017; 6. [PMID: 28806168 PMCID: PMC5555720 DOI: 10.7554/elife.25125] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/14/2017] [Indexed: 01/02/2023] Open
Abstract
To determine the dynamics of allelic-specific expression during mouse development, we analyzed RNA-seq data from 23 F1 tissues from different developmental stages, including 19 female tissues allowing X chromosome inactivation (XCI) escapers to also be detected. We demonstrate that allelic expression arising from genetic or epigenetic differences is highly tissue-specific. We find that tissue-specific strain-biased gene expression may be regulated by tissue-specific enhancers or by post-transcriptional differences in stability between the alleles. We also find that escape from X-inactivation is tissue-specific, with leg muscle showing an unexpectedly high rate of XCI escapers. By surveying a range of tissues during development, and performing extensive validation, we are able to provide a high confidence list of mouse imprinted genes including 18 novel genes. This shows that cluster size varies dynamically during development and can be substantially larger than previously thought, with the Igf2r cluster extending over 10 Mb in placenta. DOI:http://dx.doi.org/10.7554/eLife.25125.001
Collapse
Affiliation(s)
- Daniel Andergassen
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph P Dotter
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniel Wenzel
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Verena Sigl
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp C Bammer
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Markus Muckenhuber
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniela Mayer
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tomasz M Kulinski
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Denise P Barlow
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian M Pauler
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Quanah J Hudson
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
46
|
Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 2017; 547:419-424. [PMID: 28723896 PMCID: PMC9674007 DOI: 10.1038/nature23262] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/01/2017] [Indexed: 12/22/2022]
Abstract
Mammalian sperm and oocytes have different epigenetic landscapes and are organized in different fashion. Following fertilization, the initially distinct parental epigenomes become largely equalized with the exception of certain loci including imprinting control regions (ICRs). How parental chromatin becomes equalized and how ICRs escape from this reprogramming is largely unknown. Here we profiled parental allele-specific DNase I hypersensitive sites (DHSs) in mouse zygotes and morula embryos, and investigated the epigenetic mechanisms underlying allelic DHSs. Integrated analyses of DNA methylome and H3K27me3 ChIP-seq data sets revealed 76 genes with paternal allele-specific DHSs that are devoid of DNA methylation but harbor maternal allele-specific H3K27me3. Interestingly, these genes are paternally expressed in preimplantation embryos, and ectopic removal of H3K27me3 induces maternal allele expression. H3K27me3-dependent imprinting is largely lost in the embryonic cell lineage, but at least 5 genes maintain their imprinting in the extra-embryonic cell lineage. The 5 genes include all previously identified DNA methylation-independent imprinted autosomal genes. Thus, our study identifies maternal H3K27me3 as a DNA methylation-independent imprinting mechanism.
Collapse
|
47
|
A Generalized Linear Model for Decomposing Cis-regulatory, Parent-of-Origin, and Maternal Effects on Allele-Specific Gene Expression. G3-GENES GENOMES GENETICS 2017; 7:2227-2234. [PMID: 28515049 PMCID: PMC5499130 DOI: 10.1534/g3.117.042895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Joint quantification of genetic and epigenetic effects on gene expression is important for understanding the establishment of complex gene regulation systems in living organisms. In particular, genomic imprinting and maternal effects play important roles in the developmental process of mammals and flowering plants. However, the influence of these effects on gene expression are difficult to quantify because they act simultaneously with cis-regulatory mutations. Here we propose a simple method to decompose cis-regulatory (i.e., allelic genotype), genomic imprinting [i.e., parent-of-origin (PO)], and maternal [i.e., maternal genotype (MG)] effects on allele-specific gene expression using RNA-seq data obtained from reciprocal crosses. We evaluated the efficiency of method using a simulated dataset and applied the method to whole-body Drosophila and mouse trophoblast stem cell (TSC) and liver RNA-seq data. Consistent with previous studies, we found little evidence of PO and MG effects in adult Drosophila samples. In contrast, we identified dozens and hundreds of mouse genes with significant PO and MG effects, respectively. Interestingly, a similar number of genes with significant PO effect were detect in mouse TSCs and livers, whereas more genes with significant MG effect were observed in livers. Further application of this method will clarify how these three effects influence gene expression levels in different tissues and developmental stages, and provide novel insight into the evolution of gene expression regulation.
Collapse
|
48
|
Hamada H, Okae H, Toh H, Chiba H, Hiura H, Shirane K, Sato T, Suyama M, Yaegashi N, Sasaki H, Arima T. Allele-Specific Methylome and Transcriptome Analysis Reveals Widespread Imprinting in the Human Placenta. Am J Hum Genet 2016; 99:1045-1058. [PMID: 27843122 DOI: 10.1016/j.ajhg.2016.08.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/31/2016] [Indexed: 10/20/2022] Open
Abstract
DNA methylation is globally reprogrammed after fertilization, and as a result, the parental genomes have similar DNA-methylation profiles after implantation except at the germline differentially methylated regions (gDMRs). We and others have previously shown that human blastocysts might contain thousands of transient maternally methylated gDMRs (transient mDMRs), whose maternal methylation is lost in embryonic tissues after implantation. In this study, we performed genome-wide allelic DNA methylation analyses of purified trophoblast cells from human placentas and, surprisingly, found that more than one-quarter of the transient-in-embryo mDMRs maintained their maternally biased DNA methylation. RNA-sequencing-based allelic expression analyses revealed that some of the placenta-specific mDMRs were associated with expression of imprinted genes (e.g., TIGAR, SLC4A7, PROSER2-AS1, and KLHDC10), and three imprinted gene clusters were identified. This approach also identified some X-linked gDMRs. Comparisons of the data with those from other mammals revealed that genomic imprinting in the placenta is highly variable. These findings highlight the incomplete erasure of germline DNA methylation in the human placenta; understanding this erasure is important for understanding normal placental development and the pathogenesis of developmental disorders with imprinting effects.
Collapse
|
49
|
Yeo S, Hodgkinson CA, Zhou Z, Jung J, Leung M, Yuan Q, Goldman D. The abundance of cis-acting loci leading to differential allele expression in F1 mice and their relationship to loci harboring genes affecting complex traits. BMC Genomics 2016; 17:620. [PMID: 27515598 PMCID: PMC4982227 DOI: 10.1186/s12864-016-2922-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/07/2016] [Indexed: 12/16/2022] Open
Abstract
Background Genome-wide surveys have detected cis-acting quantitative trait loci altering levels of RNA transcripts (RNA-eQTLs) by associating SNV alleles to transcript levels. However, the sensitivity and specificity of detection of cis- expression quantitative trait loci (eQTLs) by genetic approaches, reliant as it is on measurements of transcript levels in recombinant inbred strains or offspring from arranged crosses, is unknown, as is their relationship to QTL’s for complex phenotypes. Results We used transcriptome-wide differential allele expression (DAE) to detect cis-eQTLs in forebrain and kidney from reciprocal crosses between three mouse inbred strains, 129S1/SvlmJ, DBA/2J, and CAST/EiJ and C57BL/6 J. Two of these crosses were previously characterized for cis-eQTLs and QTLs for various complex phenotypes by genetic analysis of recombinant inbred (RI) strains. 5.4 %, 1.9 % and 1.5 % of genes assayed in forebrain of B6/129SF1, B6/DBAF1, and B6/CASTF1 mice, respectively, showed differential allelic expression, indicative of cis-acting alleles at these genes. Moreover, the majority of DAE QTLs were observed to be tissue-specific with only a small fraction showing cis-effects in both tissues. Comparing DAE QTLs in F1 mice to cis-eQTLs previously mapped in RI strains we observed that many of the cis-eQTLs were not confirmed by DAE. Additionally several novel DAE-QTLs not identified as cis-eQTLs were identified suggesting that there are differences in sensitivity and specificity for QTL detection between the two methodologies. Strain specific DAE QTLs in B6/DBAF1 mice were located in excess at candidate genes for alcohol use disorders, seizures, and angiogenesis previously implicated by genetic linkage in C57BL/6J × DBA/2JF2 mice or BXD RI strains. Conclusions Via a survey for differential allele expression in F1 mice, a substantial proportion of genes were found to have alleles altering expression in cis-acting fashion. Comparing forebrain and kidney, many or most of these alleles were tissue-specific in action. The identification of strain specific DAE QTLs, can assist in assessment of candidate genes located within the large intervals associated with trait QTLs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2922-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seungeun Yeo
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Zhifeng Zhou
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Jeesun Jung
- Laboratory of Epidemiology and Biometry, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Ming Leung
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Qiaoping Yuan
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - David Goldman
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA.
| |
Collapse
|
50
|
Branco MR, King M, Perez-Garcia V, Bogutz AB, Caley M, Fineberg E, Lefebvre L, Cook SJ, Dean W, Hemberger M, Reik W. Maternal DNA Methylation Regulates Early Trophoblast Development. Dev Cell 2016; 36:152-63. [PMID: 26812015 PMCID: PMC4729543 DOI: 10.1016/j.devcel.2015.12.027] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 11/27/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
Abstract
Critical roles for DNA methylation in embryonic development are well established, but less is known about its roles during trophoblast development, the extraembryonic lineage that gives rise to the placenta. We dissected the role of DNA methylation in trophoblast development by performing mRNA and DNA methylation profiling of Dnmt3a/3b mutants. We find that oocyte-derived methylation plays a major role in regulating trophoblast development but that imprinting of the key placental regulator Ascl2 is only partially responsible for these effects. We have identified several methylation-regulated genes associated with trophoblast differentiation that are involved in cell adhesion and migration, potentially affecting trophoblast invasion. Specifically, trophoblast-specific DNA methylation is linked to the silencing of Scml2, a Polycomb Repressive Complex 1 protein that drives loss of cell adhesion in methylation-deficient trophoblast. Our results reveal that maternal DNA methylation controls multiple differentiation-related and physiological processes in trophoblast via both imprinting-dependent and -independent mechanisms. Oocyte-derived DNA methylation is an important regulator of trophoblast transcription DNA methylation controls trophoblast cell adhesion Silencing of Polycomb gene Scml2 is necessary for normal trophoblast development
Collapse
Affiliation(s)
- Miguel R Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK.
| | - Michelle King
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Vicente Perez-Garcia
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Aaron B Bogutz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew Caley
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Elena Fineberg
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Louis Lefebvre
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Simon J Cook
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Wendy Dean
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Myriam Hemberger
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|