1
|
Rey Hipolito AG, van der Heijden ME, Sillitoe RV. Physiology of Dystonia: Animal Studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:163-215. [PMID: 37482392 DOI: 10.1016/bs.irn.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is currently ranked as the third most prevalent motor disorder. It is typically characterized by involuntary muscle over- or co-contractions that can cause painful abnormal postures and jerky movements. Dystonia is a heterogenous disorder-across patients, dystonic symptoms vary in their severity, body distribution, temporal pattern, onset, and progression. There are also a growing number of genes that are associated with hereditary dystonia. In addition, multiple brain regions are associated with dystonic symptoms in both genetic and sporadic forms of the disease. The heterogeneity of dystonia has made it difficult to fully understand its underlying pathophysiology. However, the use of animal models has been used to uncover the complex circuit mechanisms that lead to dystonic behaviors. Here, we summarize findings from animal models harboring mutations in dystonia-associated genes and phenotypic animal models with overt dystonic motor signs resulting from spontaneous mutations, neural circuit perturbations, or pharmacological manipulations. Taken together, an emerging picture depicts dystonia as a result of brain-wide network dysfunction driven by basal ganglia and cerebellar dysfunction. In the basal ganglia, changes in dopaminergic, serotonergic, noradrenergic, and cholinergic signaling are found across different animal models. In the cerebellum, abnormal burst firing activity is observed in multiple dystonia models. We are now beginning to unveil the extent to which these structures mechanistically interact with each other. Such mechanisms inspire the use of pre-clinical animal models that will be used to design new therapies including drug treatments and brain stimulation.
Collapse
Affiliation(s)
- Alejandro G Rey Hipolito
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
2
|
El Atiallah I, Bonsi P, Tassone A, Martella G, Biella G, Castagno AN, Pisani A, Ponterio G. Synaptic Dysfunction in Dystonia: Update From Experimental Models. Curr Neuropharmacol 2023; 21:2310-2322. [PMID: 37464831 PMCID: PMC10556390 DOI: 10.2174/1570159x21666230718100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 07/20/2023] Open
Abstract
Dystonia, the third most common movement disorder, refers to a heterogeneous group of neurological diseases characterized by involuntary, sustained or intermittent muscle contractions resulting in repetitive twisting movements and abnormal postures. In the last few years, several studies on animal models helped expand our knowledge of the molecular mechanisms underlying dystonia. These findings have reinforced the notion that the synaptic alterations found mainly in the basal ganglia and cerebellum, including the abnormal neurotransmitters signalling, receptor trafficking and synaptic plasticity, are a common hallmark of different forms of dystonia. In this review, we focus on the major contribution provided by rodent models of DYT-TOR1A, DYT-THAP1, DYT-GNAL, DYT/ PARK-GCH1, DYT/PARK-TH and DYT-SGCE dystonia, which reveal that an abnormal motor network and synaptic dysfunction represent key elements in the pathophysiology of dystonia.
Collapse
Affiliation(s)
- Ilham El Atiallah
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gerardo Biella
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Antonio N. Castagno
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
3
|
Imbriani P, Sciamanna G, El Atiallah I, Cerri S, Hess EJ, Pisani A. Synaptic effects of ethanol on striatal circuitry: therapeutic implications for dystonia. FEBS J 2022; 289:5834-5849. [PMID: 34217152 PMCID: PMC9786552 DOI: 10.1111/febs.16106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 12/30/2022]
Abstract
Alcohol consumption affects motor behavior and motor control. Both acute and chronic alcohol abuse have been extensively investigated; however, the therapeutic efficacy of alcohol on some movement disorders, such as myoclonus-dystonia or essential tremor, still does not have a plausible mechanistic explanation. Yet, there are surprisingly few systematic trials with known GABAergic drugs mimicking the effect of alcohol on neurotransmission. In this brief survey, we aim to summarize the effects of EtOH on striatal function, providing an overview of its cellular and synaptic actions in a 'circuit-centered' view. In addition, we will review both experimental and clinical evidence, in the attempt to provide a plausible mechanistic explanation for alcohol-responsive movement disorders, with particular emphasis on dystonia. Different hypotheses emerge, which may provide a rationale for the utilization of drugs that mimic alcohol effects, predicting potential drug repositioning.
Collapse
Affiliation(s)
- Paola Imbriani
- Department of Systems MedicineUniversity of Rome ‘Tor Vergata’Italy,IRCCS Fondazione Santa LuciaRomeItaly
| | - Giuseppe Sciamanna
- Department of Systems MedicineUniversity of Rome ‘Tor Vergata’Italy,IRCCS Fondazione Santa LuciaRomeItaly
| | - Ilham El Atiallah
- Department of Systems MedicineUniversity of Rome ‘Tor Vergata’Italy,IRCCS Fondazione Santa LuciaRomeItaly
| | | | - Ellen J. Hess
- Departments of Pharmacology and Chemical Biology and NeurologyEmory UniversityAtlantaGAUSA
| | - Antonio Pisani
- IRCCS Mondino FoundationPaviaItaly,Department of Brain and Behavioral SciencesUniversity of PaviaItaly
| |
Collapse
|
4
|
Yokoi F, Chen HX, Oleas J, Dang MT, Xing H, Dexter KM, Li Y. Characterization of the direct pathway in Dyt1 ΔGAG heterozygous knock-in mice and dopamine receptor 1-expressing-cell-specific Dyt1 conditional knockout mice. Behav Brain Res 2021; 411:113381. [PMID: 34038798 PMCID: PMC8323984 DOI: 10.1016/j.bbr.2021.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
DYT1 dystonia is a movement disorder mainly caused by a trinucleotide deletion (ΔGAG) in DYT1 (TOR1A), coding for torsinA. DYT1 dystonia patients show trends of decreased striatal ligand-binding activities to dopamine receptors 1 (D1R) and 2 (D2R). Dyt1 ΔGAG knock-in (KI) mice, which have the corresponding ΔGAG deletion, similarly exhibit reduced striatal D1R and D2R-binding activities and their expression levels. While the consequences of D2R reduction have been well characterized, relatively little is known about the effect of D1R reduction. Here, locomotor responses to D1R and D2R antagonists were examined in Dyt1 KI mice. Dyt1 KI mice showed significantly less responsiveness to both D1R antagonist SCH 23390 and D2R antagonist raclopride. The electrophysiological recording indicated that Dyt1 KI mice showed a significantly increased paired-pulse ratio of the striatal D1R-expressing medium spiny neurons and altered miniature excitatory postsynaptic currents. To analyze the in vivo torsinA function in the D1R-expressing neurons further, Dyt1 conditional knockout (Dyt1 d1KO) mice in these neurons were generated. Dyt1 d1KO mice had decreased spontaneous locomotor activity and reduced numbers of slips in the beam-walking test. Dyt1 d1KO male mice showed abnormal gait. Dyt1 d1KO mice showed defective striatal D1R maturation. Moreover, the mutant striatal D1R-expressing medium spiny neurons had increased capacitance, decreased sEPSC frequency, and reduced intrinsic excitability. The results suggest that torsinA in the D1R-expressing cells plays an important role in the electrophysiological function and motor performance. Medical interventions to the direct pathway may affect the onset and symptoms of this disorder.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA.
| | - Huan-Xin Chen
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Janneth Oleas
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Mai Tu Dang
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Kelly M Dexter
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA.
| |
Collapse
|
5
|
Cazurro-Gutiérrez A, Marcé-Grau A, Correa-Vela M, Salazar A, Vanegas MI, Macaya A, Bayés À, Pérez-Dueñas B. ε-Sarcoglycan: Unraveling the Myoclonus-Dystonia Gene. Mol Neurobiol 2021; 58:3938-3952. [PMID: 33886091 DOI: 10.1007/s12035-021-02391-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 01/23/2023]
Abstract
Myoclonus-dystonia (MD) is a rare childhood-onset movement disorder, with an estimated prevalence of about 2 per 1,000,.000 in Europe, characterized by myoclonic jerks in combination with focal or segmental dystonia. Pathogenic variants in the gene encoding ε-sarcoglycan (SGCE), a maternally imprinted gene, are the most frequent genetic cause of MD. To date, the exact role of ε-sarcoglycan and the pathogenic mechanisms that lead to MD are still unknown. However, there are more than 40 reported isoforms of human ε-sarcoglycan, pointing to a complex biology of this protein. Additionally, some of these are brain-specific isoforms, which may suggest an important role within the central nervous system. In the present review, we aim to provide an overview of the current state of knowledge of ε-sarcoglycan. We will focus on the genetic landscape of SGCE and the presence and plausible role of ε-sarcoglycan in the brain. Finally, we discuss the importance of the brain-specific isoforms and hypothesize that SGCE may play essential roles in normal synaptic functioning and their alteration will be strongly related to MD.
Collapse
Affiliation(s)
- Ana Cazurro-Gutiérrez
- Paediatric Neurology Research Group, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Research Institute, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Marcé-Grau
- Paediatric Neurology Research Group, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Research Institute, Barcelona, Spain
| | - Marta Correa-Vela
- Paediatric Neurology Research Group, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Research Institute, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ainara Salazar
- Paediatric Neurology Research Group, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Research Institute, Barcelona, Spain
- Paediatric Neurology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - María I Vanegas
- Paediatric Neurology Research Group, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Research Institute, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Alfons Macaya
- Paediatric Neurology Research Group, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Research Institute, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Paediatric Neurology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Àlex Bayés
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain
| | - Belén Pérez-Dueñas
- Paediatric Neurology Research Group, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Research Institute, Barcelona, Spain.
- Universitat Autònoma de Barcelona, Barcelona, Spain.
- Paediatric Neurology Department, Hospital Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
6
|
Kutschenko A, Staege S, Grütz K, Glaß H, Kalmbach N, Gschwendtberger T, Henkel LM, Heine J, Grünewald A, Hermann A, Seibler P, Wegner F. Functional and Molecular Properties of DYT-SGCE Myoclonus-Dystonia Patient-Derived Striatal Medium Spiny Neurons. Int J Mol Sci 2021; 22:3565. [PMID: 33808167 PMCID: PMC8037318 DOI: 10.3390/ijms22073565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/20/2023] Open
Abstract
Myoclonus-dystonia (DYT-SGCE, formerly DYT11) is characterized by alcohol-sensitive, myoclonic-like appearance of fast dystonic movements. It is caused by mutations in the SGCE gene encoding ε-sarcoglycan leading to a dysfunction of this transmembrane protein, alterations in the cerebello-thalamic pathway and impaired striatal plasticity. To elucidate underlying pathogenic mechanisms, we investigated induced pluripotent stem cell (iPSC)-derived striatal medium spiny neurons (MSNs) from two myoclonus-dystonia patients carrying a heterozygous mutation in the SGCE gene (c.298T>G and c.304C>T with protein changes W100G and R102X) in comparison to two matched healthy control lines. Calcium imaging showed significantly elevated basal intracellular Ca2+ content and lower frequency of spontaneous Ca2+ signals in SGCE MSNs. Blocking of voltage-gated Ca2+ channels by verapamil was less efficient in suppressing KCl-induced Ca2+ peaks of SGCE MSNs. Ca2+ amplitudes upon glycine and acetylcholine applications were increased in SGCE MSNs, but not after GABA or glutamate applications. Expression of voltage-gated Ca2+ channels and most ionotropic receptor subunits was not altered. SGCE MSNs showed significantly reduced GABAergic synaptic density. Whole-cell patch-clamp recordings displayed elevated amplitudes of miniature postsynaptic currents and action potentials in SGCE MSNs. Our data contribute to a better understanding of the pathophysiology and the development of novel therapeutic strategies for myoclonus-dystonia.
Collapse
Grants
- Karlheinz-Hartmann-Stiftung (Hannover, Germany), Ellen-Schmidt-Program (Hannover, Germany), Hermann and Lilly Schilling Stiftung für medizinische Forschung im Stifterverband, German Research Foundation (FOR2488) Karlheinz-Hartmann-Stiftung (Hannover, Germany), Ellen-Schmidt-Program (Hannover, Germany), Hermann and Lilly Schilling Stiftung für medizinische Forschung im Stifterverband, German Research Foundation (FOR2488)
Collapse
Affiliation(s)
- Anna Kutschenko
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
| | - Selma Staege
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
- Center for Systems Neuroscience, Bünteweg 2, 30559 Hannover, Germany
| | - Karen Grütz
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (K.G.); (A.G.); (P.S.)
| | - Hannes Glaß
- Translational Neurodegeneration Section “Albrecht-Kossel“, Department of Neurology, University Medical Center, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany; (H.G.); (A.H.)
| | - Norman Kalmbach
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
| | - Thomas Gschwendtberger
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
- Center for Systems Neuroscience, Bünteweg 2, 30559 Hannover, Germany
| | - Lisa M. Henkel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
- Center for Systems Neuroscience, Bünteweg 2, 30559 Hannover, Germany
| | - Johanne Heine
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (K.G.); (A.G.); (P.S.)
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel“, Department of Neurology, University Medical Center, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany; (H.G.); (A.H.)
- German Center for Neurodegenerative Diseases Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (K.G.); (A.G.); (P.S.)
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
- Center for Systems Neuroscience, Bünteweg 2, 30559 Hannover, Germany
| |
Collapse
|
7
|
Yokoi F, Oleas J, Xing H, Liu Y, Dexter KM, Misztal C, Gerard M, Efimenko I, Lynch P, Villanueva M, Alsina R, Krishnaswamy S, Vaillancourt DE, Li Y. Decreased number of striatal cholinergic interneurons and motor deficits in dopamine receptor 2-expressing-cell-specific Dyt1 conditional knockout mice. Neurobiol Dis 2020; 134:104638. [PMID: 31618684 PMCID: PMC7323754 DOI: 10.1016/j.nbd.2019.104638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022] Open
Abstract
DYT1 early-onset generalized torsion dystonia is a hereditary movement disorder characterized by abnormal postures and repeated movements. It is caused mainly by a heterozygous trinucleotide deletion in DYT1/TOR1A, coding for torsinA. The mutation may lead to a partial loss of torsinA function. Functional alterations of the basal ganglia circuits have been implicated in this disease. Striatal dopamine receptor 2 (D2R) levels are significantly decreased in DYT1 dystonia patients and in the animal models of DYT1 dystonia. D2R-expressing cells, such as the medium spiny neurons in the indirect pathway, striatal cholinergic interneurons, and dopaminergic neurons in the basal ganglia circuits, contribute to motor performance. However, the function of torsinA in these neurons and its contribution to the motor symptoms is not clear. Here, D2R-expressing-cell-specific Dyt1 conditional knockout (d2KO) mice were generated and in vivo effects of torsinA loss in the corresponding cells were examined. The Dyt1 d2KO mice showed significant reductions of striatal torsinA, acetylcholine metabolic enzymes, Tropomyosin receptor kinase A (TrkA), and cholinergic interneurons. The Dyt1 d2KO mice also showed significant reductions of striatal D2R dimers and tyrosine hydroxylase without significant alteration in striatal monoamine contents or the number of dopaminergic neurons in the substantia nigra. The Dyt1 d2KO male mice showed motor deficits in the accelerated rotarod and beam-walking tests without overt dystonic symptoms. Moreover, the Dyt1 d2KO male mice showed significant correlations between striatal monoamines and locomotion. The results suggest that torsinA in the D2R-expressing cells play a critical role in the development or survival of the striatal cholinergic interneurons, expression of striatal D2R mature form, and motor performance. Medical interventions to compensate for the loss of torsinA function in these neurons may affect the onset and symptoms of this disease.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States.
| | - Janneth Oleas
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Hong Xing
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Yuning Liu
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Kelly M Dexter
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Carly Misztal
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Melinda Gerard
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Iakov Efimenko
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Patrick Lynch
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Matthew Villanueva
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Raul Alsina
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Shiv Krishnaswamy
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611-8205, United States; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-8205, United States; Department of Neurology and Center for Movement Disorders and Neurorestoration, College of Medicine, University of Florida, Gainesville, FL 32611-8205, United States
| | - Yuqing Li
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States.
| |
Collapse
|
8
|
Yokoi F, Jiang F, Dexter K, Salvato B, Li Y. Improved survival and overt "dystonic" symptoms in a torsinA hypofunction mouse model. Behav Brain Res 2019; 381:112451. [PMID: 31891745 DOI: 10.1016/j.bbr.2019.112451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
DYT1 dystonia is an inherited movement disorder without obvious neurodegeneration. Multiple mutant mouse models exhibit motor deficits without overt "dystonic" symptoms and neurodegeneration. However, some mouse models do. Among the later models, the N-CKO mouse model, which has a heterozygous Tor1a/Dyt1 knockout (KO) in one allele and Nestin-cre-mediated conditional KO in the other, exhibits a severe lack of weight gain, neurodegeneration, overt "dystonic" symptoms, such as overt leg extension, weak walking, twisted hindpaw and stiff hindlimb, and complete infantile lethality. However, it is not clear if the overt dystonic symptoms were caused by the neurodegeneration in the dying N-CKO mice. Here, the effects of improved maternal care and nutrition during early life on the symptoms in N-CKO mice were analyzed by culling the litter and providing wet food to examine whether the overt dystonic symptoms and severe lack of weight gain are caused by malnutrition-related neurodegeneration. Although the N-CKO mice in this study replicated the severe lack of weight gain and overt "dystonic" symptoms during the lactation period regardless of culling at postnatal day zero or later, there was no significant difference in the brain astrocytes and apoptosis between the N-CKO and control mice. Moreover, more than half of the N-CKO mice with culling survived past the lactation period. The surviving adult N-CKO mice did not display overt "dystonic" symptoms, and in addition they still exhibited small body weight. The results suggest that the overt "dystonic" symptoms in the N-CKO mice were independent of prominent neurodegeneration, which negates the role of neurodegeneration in the pathogenesis of DYT1 dystonia.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fangfang Jiang
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA; Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Kelly Dexter
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bryan Salvato
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Washburn S, Fremont R, Moreno-Escobar MC, Angueyra C, Khodakhah K. Acute cerebellar knockdown of Sgce reproduces salient features of myoclonus-dystonia (DYT11) in mice. eLife 2019; 8:52101. [PMID: 31868164 PMCID: PMC6959989 DOI: 10.7554/elife.52101] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Myoclonus dystonia (DYT11) is a movement disorder caused by loss-of-function mutations in SGCE and characterized by involuntary jerking and dystonia that frequently improve after drinking alcohol. Existing transgenic mouse models of DYT11 exhibit only mild motor symptoms, possibly due to rodent-specific developmental compensation mechanisms, which have limited the study of neural mechanisms underlying DYT11. To circumvent potential compensation, we used short hairpin RNA (shRNA) to acutely knock down Sgce in the adult mouse and found that this approach produced dystonia and repetitive, myoclonic-like, jerking movements in mice that improved after administration of ethanol. Acute knockdown of Sgce in the cerebellum, but not the basal ganglia, produced motor symptoms, likely due to aberrant cerebellar activity. The acute knockdown model described here reproduces the salient features of DYT11 and provides a platform to study the mechanisms underlying symptoms of the disorder, and to explore potential therapeutic options.
Collapse
Affiliation(s)
- Samantha Washburn
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Rachel Fremont
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Maria Camila Moreno-Escobar
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Chantal Angueyra
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| |
Collapse
|
10
|
Menozzi E, Balint B, Latorre A, Valente EM, Rothwell JC, Bhatia KP. Twenty years on: Myoclonus-dystonia and ε-sarcoglycan - neurodevelopment, channel, and signaling dysfunction. Mov Disord 2019; 34:1588-1601. [PMID: 31449710 DOI: 10.1002/mds.27822] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/19/2019] [Accepted: 07/14/2019] [Indexed: 12/26/2022] Open
Abstract
Myoclonus-dystonia is a clinical syndrome characterized by a typical childhood onset of myoclonic jerks and dystonia involving the neck, trunk, and upper limbs. Psychiatric symptomatology, namely, alcohol dependence and phobic and obsessive-compulsive disorder, is also part of the clinical picture. Zonisamide has demonstrated effectiveness at reducing both myoclonus and dystonia, and deep brain stimulation seems to be an effective and long-lasting therapeutic option for medication-refractory cases. In a subset of patients, myoclonus-dystonia is associated with pathogenic variants in the epsilon-sarcoglycan gene, located on chromosome 7q21, and up to now, more than 100 different pathogenic variants of the epsilon-sarcoglycan gene have been described. In a few families with a clinical phenotype resembling myoclonus-dystonia associated with distinct clinical features, variants have been identified in genes involved in novel pathways such as calcium channel regulation and neurodevelopment. Because of phenotypic similarities with epsilon-sarcoglycan gene-related myoclonus-dystonia, these conditions can be collectively classified as "myoclonus-dystonia syndromes." In the present article, we present myoclonus-dystonia caused by epsilon-sarcoglycan gene mutations, with a focus on genetics and underlying disease mechanisms. Second, we review those conditions falling within the spectrum of myoclonus-dystonia syndromes, highlighting their genetic background and involved pathways. Finally, we critically discuss the normal and pathological function of the epsilon-sarcoglycan gene and its product, suggesting a role in the stabilization of the dopaminergic membrane via regulation of calcium homeostasis and in the neurodevelopmental process involving the cerebello-thalamo-pallido-cortical network. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Biomedical, Metabolic and Neural Sciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
11
|
Abstract
Dystonia can be seen in a number of different phenotypes that may arise from different etiologies. The pathophysiological substrate of dystonia is related to three lines of research. The first postulate a loss of inhibition which may account for the excess of movement and for the overflow phenomena. A second abnormality is sensory dysfunction which is related to the mild sensory complaints in patients with focal dystonias and may be responsible for some of the motor dysfunction. Finally, there are strong pieces of evidence from animal and human studies suggesting that alterations of synaptic plasticity characterized by a disruption of homeostatic plasticity, with a prevailing facilitation of synaptic potentiation may play a pivotal role in primary dystonia. These working hypotheses have been generalized in all form of dystonia. On the other hand, several pieces of evidence now suggest that the pathophysiology may be slightly different in the different types of dystonia. Therefore, in the present review, we would like to discuss the neural mechanisms underlying the different forms of dystonia to disentangle the different weight and role of environmental and predisposing factors.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Diane Ruge
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
12
|
Maltese M, Martella G, Imbriani P, Schuermans J, Billion K, Sciamanna G, Farook F, Ponterio G, Tassone A, Santoro M, Bonsi P, Pisani A, Goodchild RE. Abnormal striatal plasticity in a DYT11/SGCE myoclonus dystonia mouse model is reversed by adenosine A2A receptor inhibition. Neurobiol Dis 2017; 108:128-139. [PMID: 28823931 DOI: 10.1016/j.nbd.2017.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 02/02/2023] Open
Abstract
Striatal dysfunction is implicated in many movement disorders. However, the precise nature of defects often remains uncharacterized, which hinders therapy development. Here we examined striatal function in a mouse model of the incurable movement disorder, myoclonus dystonia, caused by SGCE mutations. Using RNAseq we found surprisingly normal gene expression, including normal levels of neuronal subclass markers to strongly suggest that striatal microcircuitry is spared by the disease insult. We then functionally characterized Sgce mutant medium spiny projection neurons (MSNs) and cholinergic interneurons (ChIs). This revealed normal intrinsic electrophysiological properties and normal responses to basic excitatory and inhibitory neurotransmission. Nevertheless, high-frequency stimulation in Sgce mutants failed to induce normal long-term depression (LTD) at corticostriatal glutamatergic synapses. We also found that pharmacological manipulation of MSNs by inhibiting adenosine 2A receptors (A2AR) restores LTD, again pointing to structurally intact striatal circuitry. The fact that Sgce loss specifically inhibits LTD implicates this neurophysiological defect in myoclonus dystonia, and emphasizes that neurophysiological changes can occur in the absence of broad striatal dysfunction. Further, the positive effect of A2AR antagonists indicates that this drug class be tested in DYT11/SGCE dystonia.
Collapse
Affiliation(s)
- M Maltese
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - G Martella
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Fondazione Santa Lucia IRCCS, Rome, Italy.
| | - P Imbriani
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Jeroen Schuermans
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Karolien Billion
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, 3000 Leuven, Belgium.
| | - G Sciamanna
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Fondazione Santa Lucia IRCCS, Rome, Italy.
| | - Febin Farook
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - G Ponterio
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Fondazione Santa Lucia IRCCS, Rome, Italy.
| | - A Tassone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Fondazione Santa Lucia IRCCS, Rome, Italy.
| | - M Santoro
- Fondazione Don Gnocchi, Milan, Italy.
| | - P Bonsi
- Fondazione Santa Lucia IRCCS, Rome, Italy.
| | - A Pisani
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Fondazione Santa Lucia IRCCS, Rome, Italy.
| | - Rose E Goodchild
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, 3000 Leuven, Belgium.
| |
Collapse
|
13
|
Torres JAKL, Rosales RL. Nonmotor Symptoms in Dystonia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 134:1335-1371. [DOI: 10.1016/bs.irn.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Xiao J, Vemula SR, Xue Y, Khan MM, Carlisle FA, Waite AJ, Blake DJ, Dragatsis I, Zhao Y, LeDoux MS. Role of major and brain-specific Sgce isoforms in the pathogenesis of myoclonus-dystonia syndrome. Neurobiol Dis 2016; 98:52-65. [PMID: 27890709 DOI: 10.1016/j.nbd.2016.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/06/2016] [Accepted: 11/17/2016] [Indexed: 01/09/2023] Open
Abstract
Loss-of-function mutations in SGCE, which encodes ε-sarcoglycan (ε-SG), cause myoclonus-dystonia syndrome (OMIM159900, DYT11). A "major" ε-SG protein derived from CCDS5637.1 (NM_003919.2) and a "brain-specific" protein, that includes sequence derived from alternative exon 11b (CCDS47642.1, NM_001099400.1), are reportedly localized in post- and pre-synaptic membrane fractions, respectively. Moreover, deficiency of the "brain-specific" isoform and other isoforms derived from exon 11b may be central to the pathogenesis of DYT11. However, no animal model supports this hypothesis. Gene-trapped ES cells (CMHD-GT_148G1-3, intron 9 of NM_011360) were used to generate a novel Sgce mouse model (C57BL/6J background) with markedly reduced expression of isoforms derived from exons 3' to exon 9 of NM_011360. Among those brain regions analyzed in adult (2month-old) wild-type (WT) mice, cerebellum showed the highest relative expression of isoforms incorporating exon 11b. Homozygotes (SgceGt(148G1)Cmhd/Gt(148G1)Cmhd or SgceGt/Gt) and paternal heterozygotes (Sgcem+/pGt, m-maternal, p-paternal) showed 60 to 70% reductions in expression of total Sgce. Although expression of the major (NM_011360) and brain-specific (NM_001130189) isoforms was markedly reduced, expression of short isoforms was preserved and relatively small amounts of chimeric ε-SG/β-galactosidase fusion protein was produced by the Sgce gene-trap locus. Immunoaffinity purification followed by mass spectrometry assessments of Sgcem+/pGt mouse brain using pan- or brain-specific ε-SG antibodies revealed significant reductions of ε-SG and other interacting sarcoglycans. Genome-wide gene-expression data using RNA derived from adult Sgcem+/pGt mouse cerebellum showed that the top up-regulated genes were involved in cell cycle, cellular development, cell death and survival, while the top down-regulated genes were associated with protein synthesis, cellular development, and cell death and survival. In comparison to WT littermates, Sgcem+/pGt mice exhibited "tiptoe" gait and stimulus-induced appendicular posturing between Postnatal Days 14 to 16. Abnormalities noted in older Sgcem+/pGt mice included reduced body weight, altered gait dynamics, and reduced open-field activity. Overt spontaneous or stimulus-sensitive myoclonus was not apparent on the C57BL/6J background or mixed C57BL/6J-BALB/c and C57BL/6J-129S2 backgrounds. Our data confirm that mouse Sgce is a maternally imprinted gene and suggests that short Sgce isoforms may compensate, in part, for deficiency of major and brain-specific Sgce isoforms.
Collapse
Affiliation(s)
- Jianfeng Xiao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Satya R Vemula
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yi Xue
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad M Khan
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Francesca A Carlisle
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cathays, Cardiff, CF24 4HQ, Great Britain, United Kingdom
| | - Adrian J Waite
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cathays, Cardiff, CF24 4HQ, Great Britain, United Kingdom
| | - Derek J Blake
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cathays, Cardiff, CF24 4HQ, Great Britain, United Kingdom
| | - Ioannis Dragatsis
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yu Zhao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mark S LeDoux
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
15
|
DeAndrade MP, Trongnetrpunya A, Yokoi F, Cheetham CC, Peng N, Wyss JM, Ding M, Li Y. Electromyographic evidence in support of a knock-in mouse model of DYT1 Dystonia. Mov Disord 2016; 31:1633-1639. [PMID: 27241685 DOI: 10.1002/mds.26677] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION DYT1 dystonia is an autosomal-dominant movement disorder characterized by abnormal, often repetitive, movements and postures. Its hallmark feature is sustained or intermittent contractions of muscles involving co-contractions of antagonist muscle pairs. The symptoms are relieved with the anticholinergic drug trihexyphenidyl. The primary mutation is a trinucleotide deletion (ΔGAG) in DYT1/TOR1A, which codes for torsinA. Previous studies showed that (1) heterozygous Dyt1 ΔGAG knock-in mice, which have an analogous mutation in the endogenous gene, exhibit motor deficits and altered corticostriatal synaptic plasticity in the brain and (2) these deficits can be rescued by trihexyphenidyl. However, brain imaging studies suggest that the Dyt1 knock-in mouse models nonmanifesting mutation carriers of DYT1 dystonia. The aim of this work was to examine the hallmark features of DYT1 dystonia in the Dyt1 knock-in mice by analyzing muscular activities. METHODS Wireless telemetry devices with biopotential channels were implanted to the bicep and the rectus femori muscles in Dyt1 knock-in mice, and muscular activities were recorded before and after trihexyphenidyl administration. RESULTS (1) Consistent with DYT1 dystonia patients, Dyt1 knock-in mice showed sustained contractions and co-contractions of the antagonistic bicep femoris and rectus femoris. (2) The abnormal muscle contractions were normalized by trihexyphenidyl. CONCLUSION The results suggest that the motor deficits in Dyt1 knock-in mice are likely produced by abnormal muscle contractions, and Dyt1 knock-in mice can potentially be used as a manifesting disease model to study pathophysiology and develop novel therapeutics. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mark P DeAndrade
- Department of Neurology, College of Medicine,, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Amy Trongnetrpunya
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Fumiaki Yokoi
- Department of Neurology, College of Medicine,, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Chad C Cheetham
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ning Peng
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - J Michael Wyss
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Yuqing Li
- Department of Neurology, College of Medicine,, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
Rachad L, El Kadmiri N, Slassi I, El Otmani H, Nadifi S. Genetic Aspects of Myoclonus–Dystonia Syndrome (MDS). Mol Neurobiol 2016; 54:939-942. [DOI: 10.1007/s12035-016-9712-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/11/2016] [Indexed: 11/30/2022]
|
17
|
McCann H, Fung VSC, Klein C, Halliday GM. Unusual α-synuclein and cerebellar pathologies in a case of hereditary myoclonus-dystonia without SGCE mutation. Neuropathol Appl Neurobiol 2015; 41:837-42. [PMID: 25582306 DOI: 10.1111/nan.12216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 01/07/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Heather McCann
- Sydney Brain Bank, Neuroscience Research Australia, Sydney, Australia
| | - Victor S C Fung
- Sydney Medical School, University of Sydney, Sydney, Australia.,Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney, Australia
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Glenda M Halliday
- Sydney Brain Bank, Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, UNSW Medicine, Sydney, Australia
| |
Collapse
|
18
|
Yokoi F, Chen HX, Dang MT, Cheetham CC, Campbell SL, Roper SN, Sweatt JD, Li Y. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice. PLoS One 2015; 10:e0120916. [PMID: 25799505 PMCID: PMC4370625 DOI: 10.1371/journal.pone.0120916] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/28/2015] [Indexed: 12/19/2022] Open
Abstract
DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE)). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE) does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Huan-Xin Chen
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mai Tu Dang
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Chad C. Cheetham
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Susan L. Campbell
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven N. Roper
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - J. David Sweatt
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yuqing Li
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
19
|
Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog Neurobiol 2015; 127-128:91-107. [PMID: 25697043 DOI: 10.1016/j.pneurobio.2015.02.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023]
Abstract
Dystonia is a movement disorder of both genetic and non-genetic causes, which typically results in twisted posturing due to abnormal muscle contraction. Evidence from dystonia patients and animal models of dystonia indicate a crucial role for the striatal cholinergic system in the pathophysiology of dystonia. In this review, we focus on striatal circuitry and the centrality of the acetylcholine system in the function of the basal ganglia in the control of voluntary movement and ultimately clinical manifestation of movement disorders. We consider the impact of cholinergic interneurons (ChIs) on dopamine-acetylcholine interactions and examine new evidence for impairment of ChIs in dysfunction of the motor systems producing dystonic movements, particularly in animal models. We have observed paradoxical excitation of ChIs in the presence of dopamine D2 receptor agonists and impairment of striatal synaptic plasticity in a mouse model of DYT1 dystonia, which are improved by administration of recently developed M1 receptor antagonists. These findings have been confirmed across multiple animal models of DYT1 dystonia and may represent a common endophenotype by which to investigate dystonia induced by other types of genetic and non-genetic causes and to investigate the potential effectiveness of pharmacotherapeutics and other strategies to improve dystonia.
Collapse
|
20
|
|
21
|
Genetic animal models of dystonia: common features and diversities. Prog Neurobiol 2014; 121:91-113. [PMID: 25034123 DOI: 10.1016/j.pneurobio.2014.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 01/13/2023]
Abstract
Animal models are pivotal for studies of pathogenesis and treatment of disorders of the central nervous system which in its complexity cannot yet be modeled in vitro or using computer simulations. The choice of a specific model to test novel therapeutic strategies for a human disease should be based on validity of the model for the approach: does the model reflect symptoms, pathogenesis and treatment response present in human patients? In the movement disorder dystonia, prior to the availability of genetically engineered mice, spontaneous mutants were chosen based on expression of dystonic features, including abnormal muscle contraction, movements and postures. Recent discovery of a number of genes and gene products involved in dystonia initiated research on pathogenesis of the disorder, and the creation of novel models based on gene mutations. Here we present a review of current models of dystonia, with a focus on genetic rodent models, which will likely be first choice in the future either for pathophysiological or for preclinical drug testing or both. In order to help selection of a model depending on expression of a specific feature of dystonia, this review is organized by symptoms and current knowledge of pathogenesis of dystonia. We conclude that albeit there is increasing need for research on pathogenesis of the disease and development of improved models, current models do replicate features of dystonia and are useful tools to develop urgently demanded treatment for this debilitating disorder.
Collapse
|
22
|
Oleas J, Yokoi F, DeAndrade MP, Pisani A, Li Y. Engineering animal models of dystonia. Mov Disord 2014; 28:990-1000. [PMID: 23893455 DOI: 10.1002/mds.25583] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/25/2013] [Accepted: 05/29/2013] [Indexed: 12/19/2022] Open
Abstract
Dystonia is a neurological disorder characterized by abnormal involuntary movements that are prolonged and often cause twisting and turning. Several genetically modified worms, fruit flies, and rodents have been generated as models of genetic dystonias, in particular DYT1, DYT11, and DYT12 dystonias. Although these models do not show overt dystonic symptoms, the rodent models exhibit motor deficits in specialized behavioral tasks, such as the rotarod and beam-walking tests. For example, in a rodent model of DYT12 dystonia, which is generally stress triggered, motor deficits are observed only after the animal is stressed. Moreover, in a rodent model of DYT1 dystonia, the motor and electrophysiological deficits can be rescued by trihexyphenidyl, a common anticholinergic medication used to treat dystonic symptoms in human patients. Biochemically, the DYT1 and DYT11 animal models also share some similarities to patients, such as a reduction in striatal D2 dopamine receptor and binding activities. In addition, conditional knockout mouse models for DYT1 and DYT11 dystonia demonstrate that loss of the causal dystonia-related proteins in the striatum leads to motor deficits. Interestingly, loss of the DYT1 dystonia causal protein in Purkinje cells shows an improvement in motor performance, suggesting that gene therapy targeting of the cerebellum or intervention in its downstream pathways may be useful. Finally, recent studies using DYT1 dystonia worm and mouse models led to a potential novel therapeutic agent, which is currently undergoing clinical trials. These results indicate that genetic animal models are powerful tools to elucidate the pathophysiology and to further develop new therapeutics for dystonia.
Collapse
Affiliation(s)
- Janneth Oleas
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
23
|
Casper C, Kalliolia E, Warner TT. Recent advances in the molecular pathogenesis of dystonia-plus syndromes and heredodegenerative dystonias. Curr Neuropharmacol 2013; 11:30-40. [PMID: 23814535 PMCID: PMC3580789 DOI: 10.2174/157015913804999432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/17/2012] [Accepted: 08/29/2012] [Indexed: 12/04/2022] Open
Abstract
The majority of studies investigating the molecular pathogenesis and cell biology underlying dystonia have been performed in individuals with primary dystonia. This includes monogenic forms such as DYT1and DYT6 dystonia, and primary focal dystonia which is likely to be multifactorial in origin. In recent years there has been renewed interest in non-primary forms of dystonia including the dystonia-plus syndromes and heredodegenerative disorders. These are caused by a variety of genetic mutations and their study has contributed to our understanding of the neuronal dysfunction that leads to dystonia These findings have reinforced themes identified from study of primary dystonia including abnormal dopaminergic signalling, cellular trafficking and mitochondrial function. In this review we highlight recent advances in the understanding of the dystonia-plus syndromes and heredodegenerative dystonias.
Collapse
Affiliation(s)
- Catharina Casper
- Department of Clinical Neurosciences, UCL Institute of Neurology, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | | | | |
Collapse
|
24
|
van der Salm SMA, van der Meer JN, Nederveen AJ, Veltman DJ, van Rootselaar AF, Tijssen MAJ. Functional MRI study of response inhibition in myoclonus dystonia. Exp Neurol 2013; 247:623-9. [PMID: 23474191 DOI: 10.1016/j.expneurol.2013.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Myoclonus-dystonia (MD) is a movement disorder characterized by myoclonic jerks, dystonic postures and psychiatric co-morbidity. A mutation in the DYT11 gene underlies half of MD cases. We hypothesize that MD results from a dysfunctional basal ganglia network causing insufficient inhibitory motor control. To test this hypothesis functional MRI (fMRI) was performed using a validated "Go/No go" task, in order to localize blood-oxygen-level dependence (BOLD) effects corresponding to Response Inhibition (RI). METHODS Twenty-four MD patients (fifteen DYT11 positive) and 24 matched controls responded with a button press to Go (Go-Response) or No go (referred to as 'Stop') cues, resulting in analyses of accurate response suppression to Stop cues (Stop-Inhibit), and incorrect responses to Go cues (Go-Inhibit), or to Stop cues (Stop-Response). RESULTS Response accuracy in patients was impaired due to frequent Go-Inhibit errors. Image analysis of the Stop-Inhibit contrast demonstrated frontal, caudate and cingular activity in both groups. Compared to controls, MD patients showed increased primary motor cortex and insular activation. During Go-Inhibit trials, patients revealed increased activity in the contralateral thalamus (ventral lateral nucleus) and dorso-lateral-prefrontal cortex. In a post-hoc analysis comparing MD patients, DYT11 positive patients demonstrated anterior cerebellum hyperactivation on all contrasts and increased putaminal activation in the Stop-Response contrast. CONCLUSIONS This study demonstrates a distinct association of motor symptoms in MD with the ventral lateral nucleus of the thalamus. Cerebellar dysfunction distinguishes DYT11 positive from negative patients. We suggest that MD might be best considered as a disorder of the cortico-ponto-cerebello-thalamo-cortical system.
Collapse
Affiliation(s)
- Sandra M A van der Salm
- Department of Neurology and Clinical Neurophysiology of the Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Yokoi F, Dang MT, Li Y. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out. Behav Brain Res 2012; 230:389-98. [PMID: 22391119 PMCID: PMC3322286 DOI: 10.1016/j.bbr.2012.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/11/2012] [Accepted: 02/17/2012] [Indexed: 01/23/2023]
Abstract
Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Mai Tu Dang
- Department of Neurology, Hospital of University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuqing Li
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| |
Collapse
|
26
|
DeAndrade MP, Zhang L, Doroodchi A, Yokoi F, Cheetham CC, Chen HX, Roper SN, Sweatt JD, Li Y. Enhanced hippocampal long-term potentiation and fear memory in Btbd9 mutant mice. PLoS One 2012; 7:e35518. [PMID: 22536397 PMCID: PMC3334925 DOI: 10.1371/journal.pone.0035518] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 03/17/2012] [Indexed: 01/01/2023] Open
Abstract
Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS), a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS.
Collapse
Affiliation(s)
- Mark P. DeAndrade
- Interdisciplinary Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Li Zhang
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Atbin Doroodchi
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Fumiaki Yokoi
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Chad C. Cheetham
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Huan-Xin Chen
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Steven N. Roper
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - J. David Sweatt
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yuqing Li
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
27
|
Zhang L, Yokoi F, Parsons DS, Standaert DG, Li Y. Alteration of striatal dopaminergic neurotransmission in a mouse model of DYT11 myoclonus-dystonia. PLoS One 2012; 7:e33669. [PMID: 22438980 PMCID: PMC3306281 DOI: 10.1371/journal.pone.0033669] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/14/2012] [Indexed: 11/29/2022] Open
Abstract
Background DYT11 myoclonus-dystonia (M-D) syndrome is a neurological movement disorder characterized by myoclonic jerks and dystonic postures or movement that can be alleviated by alcohol. It is caused by mutations in SGCE encoding ε-sarcoglycan (ε-SG); the mouse homolog of this gene is Sgce. Paternally-inherited Sgce heterozygous knockout (Sgce KO) mice exhibit myoclonus, motor impairment and anxiety- and depression-like behaviors, modeling several clinical symptoms observed in DYT11 M-D patients. The behavioral deficits are accompanied by abnormally high levels of dopamine and its metabolites in the striatum of Sgce KO mice. Neuroimaging studies of DYT11 M-D patients show reduced dopamine D2 receptor (D2R) availability, although the possibility of increased endogenous dopamine, and consequently, competitive D2R occupancy cannot be ruled out. Methodology/Principal Findings The protein levels of striatal D2R, dopamine transporter (DAT), and dopamine D1 receptor (D1R) in Sgce KO mice were analyzed by Western blot. The striatal dopamine release after amphetamine injection in Sgce KO mice were analyzed by microdialysis in vivo. The striatal D2R was significantly decreased in Sgce KO mice without altering DAT and D1R. Sgce KO mice also exhibited a significant increase of dopamine release after amphetamine injection in comparison to wild-type (WT) littermates. Conclusion/Significance The results suggest ε-SG may have a role in the regulation of D2R expression. The loss of ε-SG results in decreased striatal D2R, and subsequently leads to increased discharge of dopamine which could contribute to the behavioral impairment observed in DYT11 dystonia patients and in Sgce KO mice. The results suggest that reduction of striatal D2R and enhanced striatal dopamine release may contribute to the pathophysiology of DYT11 M-D patients.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, School of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Fumiaki Yokoi
- Department of Neurology, School of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Dee S. Parsons
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David G. Standaert
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yuqing Li
- Department of Neurology, School of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|