1
|
Liu S, Su T, Xia X, Zhou ZH. Native DGC structure rationalizes muscular dystrophy-causing mutations. Nature 2024:10.1038/s41586-024-08324-w. [PMID: 39663457 DOI: 10.1038/s41586-024-08324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disorder marked by progressive muscle wasting leading to premature mortality1,2. Discovery of the DMD gene encoding dystrophin both revealed the cause of DMD and helped identify a family of at least ten dystrophin-associated proteins at the muscle cell membrane, collectively forming the dystrophin-glycoprotein complex (DGC)3-9. The DGC links the extracellular matrix to the cytoskeleton, but, despite its importance, its molecular architecture has remained elusive. Here we determined the native cryo-electron microscopy structure of rabbit DGC and conducted biochemical analyses to reveal its intricate molecular configuration. An unexpected β-helix comprising β-, γ- and δ-sarcoglycan forms an extracellular platform that interacts with α-dystroglycan, β-dystroglycan and α-sarcoglycan, allowing α-dystroglycan to contact the extracellular matrix. In the membrane, sarcospan anchors β-dystroglycan to the β-, γ- and δ-sarcoglycan trimer, while in the cytoplasm, β-dystroglycan's juxtamembrane fragment binds dystrophin's ZZ domain. Through these interactions, the DGC links laminin 2 to intracellular actin. Additionally, dystrophin's WW domain, along with its EF-hand 1 domain, interacts with α-dystrobrevin. A disease-causing mutation mapping to the WW domain weakens this interaction, as confirmed by deletion of the WW domain in biochemical assays. Our findings rationalize more than 110 mutations affecting single residues associated with various muscular dystrophy subtypes and contribute to ongoing therapeutic developments, including protein restoration, upregulation of compensatory genes and gene replacement.
Collapse
Affiliation(s)
- Shiheng Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiantian Su
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xian Xia
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Rahimi Kahmini A, Valera IC, Crawford RQ, Samarah L, Reis G, Elsheikh S, Kanashiro-Takeuchi RM, Mohammadipoor N, Olateju BS, Matthews AR, Parvatiyar MS. Aging reveals a sex-dependent susceptibility of sarcospan-deficient mice to cardiometabolic disease. Am J Physiol Heart Circ Physiol 2024; 327:H1067-H1085. [PMID: 39120469 PMCID: PMC11482229 DOI: 10.1152/ajpheart.00702.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Numerous genes including sarcospan (SSPN) have been designated as obesity-susceptibility genes by human genome-wide association studies. Variants in the SSPN locus have been linked with sex-dependent obesity-associated traits; however, this association has not been investigated in vivo. To delineate the role SSPN plays in regulating metabolism with potential to impact cardiac function, we subjected young and aged global SSPN-deficient (SSPN-/-) male and female mice to obesogenic conditions (60% fat diet). We hypothesized that loss of SSPN combined with metabolic stress would increase susceptibility of mice to cardiometabolic disease. Baseline and end-point assessments of several anthropometric parameters were performed including weight, glucose tolerance, and fat distribution of mice fed control (CD) and high-fat (HFD) diet. Doppler echocardiography was used to monitor cardiac function. White adipose and cardiac tissues were assessed for inflammation by histological, gene expression, and cytokine analysis. Overall, SSPN deficiency protected both sexes and ages from diet-induced obesity, with a greater effect in females. SSPN-/- HFD mice gained less weight than wild-type (WT) cohorts, while SSPN-/- CD groups increased weight. Furthermore, aged SSPN-/- mice developed glucose intolerance regardless of diet. Echocardiography showed preserved systolic function for all groups; however, aged SSPN-/- males exhibited significant increases in left ventricular mass (CD) and signs of diastolic dysfunction (HFD). Cytokine analysis revealed significantly increased IL-1α and IL-17Α in white adipose tissue from young SSPN-/- male mice, which may be protective from diet-induced obesity. Overall, these studies suggest that several sex-dependent mechanisms influence the role SSPN plays in metabolic responses that become evident with age.NEW & NOTEWORTHY Young and aged sarcospan (SSPN)-deficient mice were examined to assess the role of SSPN in obesity and cardiometabolic disease. Both sexes displayed a "leaner" phenotype in response to high-fat diet (HFD). Notably, several sex differences were identified in aged SSPN-deficient mice: 1) females developed glucose intolerance (control and HFD) and 2) males exhibited increased left ventricular mass (control) and diastolic dysfunction (HFD). Therefore, we conclude that SSPN exerts a sex-dependent influence on obesity-associated diseases.
Collapse
Affiliation(s)
- Aida Rahimi Kahmini
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Isela C Valera
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Rhiannon Q Crawford
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Luaye Samarah
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Gisienne Reis
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Salma Elsheikh
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Rosemeire M Kanashiro-Takeuchi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Nazanin Mohammadipoor
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Bolade S Olateju
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Aaron R Matthews
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Michelle S Parvatiyar
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
3
|
Mokhonova EI, Malik R, Mamsa H, Walker J, Gibbs EM, Crosbie RH. The Development of Robust Antibodies to Sarcospan, a Dystrophin- and Integrin-Associated Protein, for Basic and Translational Research. Int J Mol Sci 2024; 25:6121. [PMID: 38892308 PMCID: PMC11173052 DOI: 10.3390/ijms25116121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Sarcospan (SSPN) is a 25-kDa transmembrane protein that is broadly expressed at the cell surface of many tissues, including, but not limited to, the myofibers from skeletal and smooth muscles, cardiomyocytes, adipocytes, kidney epithelial cells, and neurons. SSPN is a core component of the dystrophin-glycoprotein complex (DGC) that links the intracellular actin cytoskeleton with the extracellular matrix. It is also associated with integrin α7β1, the predominant integrin expressed in skeletal muscle. As a tetraspanin-like protein with four transmembrane spanning domains, SSPN functions as a scaffold to facilitate protein-protein interactions at the cell membrane. Duchenne muscular dystrophy, Becker muscular dystrophy, and X-linked dilated cardiomyopathy are caused by the loss of dystrophin at the muscle cell surface and a concomitant loss of the entire DGC, including SSPN. SSPN overexpression ameliorates Duchenne muscular dystrophy in the mdx murine model, which supports SSPN being a viable therapeutic target. Other rescue studies support SSPN as a biomarker for the proper assembly and membrane expression of the DGC. Highly specific and robust antibodies to SSPN are needed for basic research on the molecular mechanisms of SSPN rescue, pre-clinical studies, and biomarker evaluations in human samples. The development of SSPN antibodies is challenged by the presence of its four transmembrane domains and limited antigenic epitopes. To address the significant barrier presented by limited commercially available antibodies, we aimed to generate a panel of robust SSPN-specific antibodies that can serve as a resource for the research community. We created antibodies to three SSPN protein epitopes, including the intracellular N- and C-termini as well as the large extracellular loop (LEL) between transmembrane domains 3 and 4. We developed a panel of rabbit antibodies (poly- and monoclonal) against an N-terminal peptide fragment of SSPN. We used several assays to show that the rabbit antibodies recognize mouse SSPN with a high functional affinity and specificity. We developed mouse monoclonal antibodies against the C-terminal peptide and the large extracellular loop of human SSPN. These antibodies are superior to commercially available antibodies and outperform them in various applications, including immunoblotting, indirect immunofluorescence analysis, immunoprecipitation, and an ELISA. These newly developed antibodies will significantly improve the quality and ease of SSPN detection for basic and translational research.
Collapse
Affiliation(s)
- Ekaterina I. Mokhonova
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ravinder Malik
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hafsa Mamsa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jackson Walker
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth M. Gibbs
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rachelle H. Crosbie
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Hwang HS, Kahmini AR, Prascak J, Cejas-Carbonell A, Valera IC, Champion S, Corrigan M, Mumbi F, Parvatiyar MS. Sarcospan Deficiency Increases Oxidative Stress and Arrhythmias in Hearts after Acute Ischemia-Reperfusion Injury. Int J Mol Sci 2023; 24:11868. [PMID: 37511627 PMCID: PMC10380899 DOI: 10.3390/ijms241411868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The protein sarcospan (SSPN) is an integral member of the dystrophin-glycoprotein complex (DGC) and has been shown to be important in the heart during the development and the response to acute stress. In this study, we investigated the role of SSPN in the cardiac response to acute ischemia-reperfusion (IR) injury in SSPN-deficient (SSPN-/-) mice. First, the hemodynamic response of SSPN-/- mice was tested and was similar to SSPN+/+ (wild-type) mice after isoproterenol injection. Using the in situ Langendorff perfusion method, SSPN-/- hearts were subjected to IR injury and found to have increased infarct size and arrhythmia susceptibility compared to SSPN+/+. Ca2+ handling was assessed in single cardiomyocytes and diastolic Ca2+ levels were increased after acute β-AR stimulation in SSPN+/+ but not SSPN-/-. It was also found that SSPN-/- cardiomyocytes had reduced Ca2+ SR content compared to SSPN+/+ but similar SR Ca2+ release. Next, we used qRT-PCR to examine gene expression of Ca2+ handling proteins after acute IR injury. SSPN-/- hearts showed a significant decrease in L-type Ca2+ channels and a significant increase in Ca2+ release channel (RyR2) expression. Interestingly, under oxidizing conditions reminiscent of IR, SSPN-/- cardiomyocytes, had increased H2O2-induced reactive oxygen species production compared to SSPN+/+. Examination of oxidative stress proteins indicated that NADPH oxidase 4 and oxidized CAMKII were increased in SSPN-/- hearts after acute IR injury. These results suggest that increased arrhythmia susceptibility in SSPN-/- hearts post-IR injury may arise from alterations in Ca2+ handling and a reduced capacity to regulate oxidative stress pathways.
Collapse
Affiliation(s)
- Hyun Seok Hwang
- Department of Nutrition and Integrative Physiology, Florida State University, 107 Chieftan Way, Biomedical Research Facility, Tallahassee, FL 32306-1490, USA
| | - Aida Rahimi Kahmini
- Department of Nutrition and Integrative Physiology, Florida State University, 107 Chieftan Way, Biomedical Research Facility, Tallahassee, FL 32306-1490, USA
| | - Julia Prascak
- Department of Nutrition and Integrative Physiology, Florida State University, 107 Chieftan Way, Biomedical Research Facility, Tallahassee, FL 32306-1490, USA
| | - Alexis Cejas-Carbonell
- Department of Nutrition and Integrative Physiology, Florida State University, 107 Chieftan Way, Biomedical Research Facility, Tallahassee, FL 32306-1490, USA
| | - Isela C Valera
- Department of Nutrition and Integrative Physiology, Florida State University, 107 Chieftan Way, Biomedical Research Facility, Tallahassee, FL 32306-1490, USA
| | - Samantha Champion
- Department of Nutrition and Integrative Physiology, Florida State University, 107 Chieftan Way, Biomedical Research Facility, Tallahassee, FL 32306-1490, USA
| | - Mikayla Corrigan
- Department of Nutrition and Integrative Physiology, Florida State University, 107 Chieftan Way, Biomedical Research Facility, Tallahassee, FL 32306-1490, USA
| | - Florence Mumbi
- Department of Nutrition and Integrative Physiology, Florida State University, 107 Chieftan Way, Biomedical Research Facility, Tallahassee, FL 32306-1490, USA
| | - Michelle S Parvatiyar
- Department of Nutrition and Integrative Physiology, Florida State University, 107 Chieftan Way, Biomedical Research Facility, Tallahassee, FL 32306-1490, USA
| |
Collapse
|
5
|
Stearns-Reider KM, Hicks MR, Hammond KG, Reynolds JC, Maity A, Kurmangaliyev YZ, Chin J, Stieg AZ, Geisse NA, Hohlbauch S, Kaemmer S, Schmitt LR, Pham TT, Yamauchi K, Novitch BG, Wollman R, Hansen KC, Pyle AD, Crosbie RH. Myoscaffolds reveal laminin scarring is detrimental for stem cell function while sarcospan induces compensatory fibrosis. NPJ Regen Med 2023; 8:16. [PMID: 36922514 PMCID: PMC10017766 DOI: 10.1038/s41536-023-00287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
We developed an on-slide decellularization approach to generate acellular extracellular matrix (ECM) myoscaffolds that can be repopulated with various cell types to interrogate cell-ECM interactions. Using this platform, we investigated whether fibrotic ECM scarring affected human skeletal muscle progenitor cell (SMPC) functions that are essential for myoregeneration. SMPCs exhibited robust adhesion, motility, and differentiation on healthy muscle-derived myoscaffolds. All SPMC interactions with fibrotic myoscaffolds from dystrophic muscle were severely blunted including reduced motility rate and migration. Furthermore, SMPCs were unable to remodel laminin dense fibrotic scars within diseased myoscaffolds. Proteomics and structural analysis revealed that excessive collagen deposition alone is not pathological, and can be compensatory, as revealed by overexpression of sarcospan and its associated ECM receptors in dystrophic muscle. Our in vivo data also supported that ECM remodeling is important for SMPC engraftment and that fibrotic scars may represent one barrier to efficient cell therapy.
Collapse
Affiliation(s)
- Kristen M Stearns-Reider
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael R Hicks
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Katherine G Hammond
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Joseph C Reynolds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alok Maity
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yerbol Z Kurmangaliyev
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jesse Chin
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Adam Z Stieg
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Sophia Hohlbauch
- Asylum Research, An Oxford Instruments Company, Santa Barbara, CA, 93117, USA
| | - Stefan Kaemmer
- Park Systems, 3040 Olcott St, Santa Clara, CA, 95054, USA
| | - Lauren R Schmitt
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, Aurora, CO, 80045, USA
| | - Thanh T Pham
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, Aurora, CO, 80045, USA
| | - Ken Yamauchi
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bennett G Novitch
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Roy Wollman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, Aurora, CO, 80045, USA
| | - April D Pyle
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
High-Throughput Screening to Identify Modulators of Sarcospan. Methods Mol Biol 2022; 2587:479-493. [PMID: 36401045 DOI: 10.1007/978-1-0716-2772-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High-throughput screening enables the discovery of disease-modifying small molecules. Here, we describe the development of a scalable, cell-based assay to screen for small molecules that modulate sarcospan for the treatment of Duchenne muscular dystrophy. We detail the hit validation pipeline, which includes secondary screening, gene/protein quantification, and an in vitro membrane stability assay.
Collapse
|
7
|
The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun Biol 2022; 5:1022. [PMID: 36168044 PMCID: PMC9515174 DOI: 10.1038/s42003-022-03980-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Dystrophin is the central protein of the dystrophin-glycoprotein complex (DGC) in skeletal and heart muscle cells. Dystrophin connects the actin cytoskeleton to the extracellular matrix (ECM). Severing the link between the ECM and the intracellular cytoskeleton has a devastating impact on the homeostasis of skeletal muscle cells, leading to a range of muscular dystrophies. In addition, the loss of a functional DGC leads to progressive dilated cardiomyopathy and premature death. Dystrophin functions as a molecular spring and the DGC plays a critical role in maintaining the integrity of the sarcolemma. Additionally, evidence is accumulating, linking the DGC to mechanosignalling, albeit this role is still less understood. This review article aims at providing an up-to-date perspective on the DGC and its role in mechanotransduction. We first discuss the intricate relationship between muscle cell mechanics and function, before examining the recent research for a role of the dystrophin glycoprotein complex in mechanotransduction and maintaining the biomechanical integrity of muscle cells. Finally, we review the current literature to map out how DGC signalling intersects with mechanical signalling pathways to highlight potential future points of intervention, especially with a focus on cardiomyopathies. A review of the function of the Dystrophic Glycoprotein Complex (DGC) in mechanosignaling provides an overview of the various components of DGC and potential mechanopathogenic mechanisms, particularly as they relate to muscular dystrophy.
Collapse
|
8
|
Ebrahimi M, Lad H, Fusto A, Tiper Y, Datye A, Nguyen CT, Jacques E, Moyle LA, Nguyen T, Musgrave B, Chávez-Madero C, Bigot A, Chen C, Turner S, Stewart BA, Pegoraro E, Vitiello L, Gilbert PM. De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle. Acta Biomater 2021; 132:227-244. [PMID: 34048976 DOI: 10.1016/j.actbio.2021.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The biological basis of Duchenne muscular dystrophy (DMD) pathology is only partially characterized and there are still few disease-modifying therapies available, therein underlying the value of strategies to model and study DMD. Dystrophin, the causative gene of DMD, is responsible for linking the cytoskeleton of muscle fibers to the extracellular matrix beyond the sarcolemma. We posited that disease-associated phenotypes not yet captured by two-dimensional culture methods would arise by generating multinucleated muscle cells within a three-dimensional (3D) extracellular matrix environment. Herein we report methods to produce 3D human skeletal muscle microtissues (hMMTs) using clonal, immortalized myoblast lines established from healthy and DMD donors. We also established protocols to evaluate immortalized hMMT self-organization and myotube maturation, as well as calcium handling, force generation, membrane stability (i.e., creatine kinase activity and Evans blue dye permeability) and contractile apparatus organization following electrical-stimulation. In examining hMMTs generated with a cell line wherein the dystrophin gene possessed a duplication of exon 2, we observed rare dystrophin-positive myotubes, which were not seen in 2D cultures. Further, we show that treating DMD hMMTs with a β1-integrin activating antibody, improves contractile apparatus maturation and stability. Hence, immortalized myoblast-derived DMD hMMTs offer a pre-clinical system with which to investigate the potential of duplicated exon skipping strategies and those that protect muscle cells from contraction-induced injury. STATEMENT OF SIGNIFICANCE: Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder that is caused by mutation of the dystrophin gene. The biological basis of DMD pathology is only partially characterized and there is no cure for this fatal disease. Here we report a method to produce 3D human skeletal muscle microtissues (hMMTs) using immortalized human DMD and healthy myoblasts. Morphological and functional assessment revealed DMD-associated pathophysiology including impaired calcium handling and de novo formation of dystrophin-positive revertant muscle cells in immortalized DMD hMMTs harbouring an exon 2 duplication, a feature of many DMD patients that has not been recapitulated in culture prior to this report. We further demonstrate that this "DMD in a dish" system can be used as a pre-clinical assay to test a putative DMD therapeutic and study the mechanism of action.
Collapse
Affiliation(s)
- Majid Ebrahimi
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Heta Lad
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Aurora Fusto
- Department of Neuroscience, University of Padua, Padua, 35128, Italy
| | - Yekaterina Tiper
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Asiman Datye
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Christine T Nguyen
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada; Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L1C6, Canada
| | - Erik Jacques
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Louise A Moyle
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Thy Nguyen
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Brennen Musgrave
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Carolina Chávez-Madero
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Anne Bigot
- Sorbonne Universite, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Paris UMRS974, France
| | - Chun Chen
- Pliant Therapeutics, Inc, South San Francisco, California 94080, USA
| | - Scott Turner
- Pliant Therapeutics, Inc, South San Francisco, California 94080, USA
| | - Bryan A Stewart
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada; Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L1C6, Canada
| | - Elena Pegoraro
- Department of Neuroscience, University of Padua, Padua, 35128, Italy
| | - Libero Vitiello
- Department of Biology, University of Padua, Padua 35131, Italy; Interuniversity Institute of Myology (IIM), Italy
| | - Penney M Gilbert
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada.
| |
Collapse
|
9
|
Xia W, Ni Z, Zhang Z, Sang H, Liu H, Chen Z, Jiang L, Yin C, Huang J, Li L, Lei X. Case Report: A Boy From a Consanguineous Family Diagnosed With Congenital Muscular Dystrophy Caused by Integrin Alpha 7 ( ITGA7) Mutation. Front Genet 2021; 12:706823. [PMID: 34552617 PMCID: PMC8450528 DOI: 10.3389/fgene.2021.706823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction: Congenital muscular dystrophy (CMD) is a group of early-onset disorders with clinical and genetic heterogeneity. Patients always present with muscle weakness typically from birth to early infancy, delay or arrest of gross motor development, and joint and/or spinal rigidity. There are various genes related to the development of CMD. Among them, mutations in integrin alpha 7 (ITGA7) is a rare subtype. The identification of disease-causing genes facilitates the diagnosis and treatment of CMD. Methods: We screened ITGA7 mutations in four people by whole exome sequencing and targeted sequencing from a consanguineous family. We then carried out electromyography and neuroelectrophysiological examinations to clarify a clinical picture of the patient diagnosed with CMD. Results: We report a Chinese boy diagnosed with CMD who carries a homozygous variant (c.1088dupG, p.H364Sfs*15) of the ITGA7 gene. According to the genotype analysis of his family members, this is an autosomal recessive inheritance. Conclusions: Our case further shows that ITGA7 mutation is related to CMD. Genetic counseling and multidisciplinary management of CMD play an important role in helping patients and their family. Further elucidation of the significant clinical and genetic heterogeneity, therapeutic targets, and the clinical care for patients remains our challenge for the future.
Collapse
Affiliation(s)
- Wenqing Xia
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurology, Hangzhou First People's Hospital, Hangzhou, China
| | - Zhumei Ni
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfei Sang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurology, Hangzhou First People's Hospital, Hangzhou, China
| | - Huifang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, SAR China
| | - Zhenzhen Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University, Hangzhou, China
| | - Lin Jiang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurology, Hangzhou First People's Hospital, Hangzhou, China
| | - Congguo Yin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurology, Hangzhou First People's Hospital, Hangzhou, China
| | - Jinyu Huang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingfei Li
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurology, Hangzhou First People's Hospital, Hangzhou, China
| | - Xiaoguang Lei
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Valera IC, Wacker AL, Hwang HS, Holmes C, Laitano O, Landstrom AP, Parvatiyar MS. Essential roles of the dystrophin-glycoprotein complex in different cardiac pathologies. Adv Med Sci 2021; 66:52-71. [PMID: 33387942 DOI: 10.1016/j.advms.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The dystrophin-glycoprotein complex (DGC), situated at the sarcolemma dynamically remodels during cardiac disease. This review examines DGC remodeling as a common denominator in diseases affecting heart function and health. Dystrophin and the DGC serve as broad cytoskeletal integrators that are critical for maintaining stability of muscle membranes. The presence of pathogenic variants in genes encoding proteins of the DGC can cause absence of the protein and/or alterations in other complex members leading to muscular dystrophies. Targeted studies have allowed the individual functions of affected proteins to be defined. The DGC has demonstrated its dynamic function, remodeling under a number of conditions that stress the heart. Beyond genetic causes, pathogenic processes also impinge on the DGC, causing alterations in the abundance of dystrophin and associated proteins during cardiac insult such as ischemia-reperfusion injury, mechanical unloading, and myocarditis. When considering new therapeutic strategies, it is important to assess DGC remodeling as a common factor in various heart diseases. The DGC connects the internal F-actin-based cytoskeleton to laminin-211 of the extracellular space, playing an important role in the transmission of mechanical force to the extracellular matrix. The essential functions of dystrophin and the DGC have been long recognized. DGC based therapeutic approaches have been primarily focused on muscular dystrophies, however it may be a beneficial target in a number of disorders that affect the heart. This review provides an account of what we now know, and discusses how this knowledge can benefit persistent health conditions in the clinic.
Collapse
Affiliation(s)
- Isela C Valera
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Amanda L Wacker
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Hyun Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Christina Holmes
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL, USA
| | - Orlando Laitano
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
11
|
Gibbs EM, McCourt JL, Shin KM, Hammond KG, Marshall JL, Crosbie RH. Loss of sarcospan exacerbates pathology in mdx mice, but does not affect utrophin amelioration of disease. Hum Mol Genet 2021; 30:149-159. [PMID: 33432327 PMCID: PMC8091037 DOI: 10.1093/hmg/ddaa264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/26/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023] Open
Abstract
The dystrophin-glycoprotein complex (DGC) is a membrane adhesion complex that provides structural stability at the sarcolemma by linking the myocyte's internal cytoskeleton and external extracellular matrix. In Duchenne muscular dystrophy (DMD), the absence of dystrophin leads to the loss of the DGC at the sarcolemma, resulting in sarcolemmal instability and progressive muscle damage. Utrophin (UTRN), an autosomal homolog of dystrophin, is upregulated in dystrophic muscle and partially compensates for the loss of dystrophin in muscle from patients with DMD. Here, we examine the interaction between Utr and sarcospan (SSPN), a small transmembrane protein that is a core component of both UTRN-glycoprotein complex (UGC) and DGC. We show that additional loss of SSPN causes an earlier onset of disease in dystrophin-deficient mdx mice by reducing the expression of the UGC at the sarcolemma. In order to further evaluate the role of SSPN in maintaining therapeutic levels of Utr at the sarcolemma, we tested the effect of Utr transgenic overexpression in mdx mice lacking SSPN (mdx:SSPN -/-:Utr-Tg). We found that overexpression of Utr restored SSPN to the sarcolemma in mdx muscle but that the ablation of SSPN in mdx muscle reduced Utr at the membrane. Nevertheless, Utr overexpression reduced central nucleation and improved grip strength in both lines. These findings demonstrate that high levels of Utr transgenic overexpression ameliorate the mdx phenotype independently of SSPN expression but that loss of SSPN may impair Utr-based mechanisms that rely on lower levels of Utr protein.
Collapse
Affiliation(s)
- Elizabeth M Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Jackie L McCourt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Kara M Shin
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Katherine G Hammond
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Poovathumkadavil P, Jagla K. Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila. Cells 2020; 9:cells9061543. [PMID: 32630420 PMCID: PMC7349286 DOI: 10.3390/cells9061543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
In the fruit fly, Drosophila melanogaster, the larval somatic muscles or the adult thoracic flight and leg muscles are the major voluntary locomotory organs. They share several developmental and structural similarities with vertebrate skeletal muscles. To ensure appropriate activity levels for their functions such as hatching in the embryo, crawling in the larva, and jumping and flying in adult flies all muscle components need to be maintained in a functionally stable or homeostatic state despite constant strain. This requires that the muscles develop in a coordinated manner with appropriate connections to other cell types they communicate with. Various signaling pathways as well as extrinsic and intrinsic factors are known to play a role during Drosophila muscle development, diversification, and homeostasis. In this review, we discuss genetic control mechanisms of muscle contraction, development, and homeostasis with particular emphasis on the contractile unit of the muscle, the sarcomere.
Collapse
|
13
|
Fontelonga TM, Jordan B, Nunes AM, Barraza-Flores P, Bolden N, Wuebbles RD, Griner LM, Hu X, Ferrer M, Marugan J, Southall N, Burkin DJ. Sunitinib promotes myogenic regeneration and mitigates disease progression in the mdx mouse model of Duchenne muscular dystrophy. Hum Mol Genet 2020; 28:2120-2132. [PMID: 30806670 DOI: 10.1093/hmg/ddz044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, muscle degenerative disease causing premature death of affected children. DMD is characterized by mutations in the dystrophin gene that result in a loss of the dystrophin protein. Loss of dystrophin causes an associated reduction in proteins of the dystrophin glycoprotein complex, leading to contraction-induced sarcolemmal weakening, muscle tearing, fibrotic infiltration and rounds of degeneration and failed regeneration affecting satellite cell populations. The α7β1 integrin has been implicated in increasing myogenic capacity of satellite cells, therefore restoring muscle viability, increasing muscle force and preserving muscle function in dystrophic mouse models. In this study, we show that a Food and Drug Administration (FDA)-approved small molecule, Sunitinib, is a potent α7 integrin enhancer capable of promoting myogenic regeneration by stimulating satellite cell activation and increasing myofiber fusion. Sunitinib exerts its regenerative effects via transient inhibition of SHP-2 and subsequent activation of the STAT3 pathway. Treatment of mdx mice with Sunitinib demonstrated decreased membrane leakiness and damage owing to myofiber regeneration and enhanced support at the extracellular matrix. The decreased myofiber damage translated into a significant increase in muscle force production. This study identifies an already FDA-approved compound, Sunitinib, as a possible DMD therapeutic with the potential to treat other muscular dystrophies in which there is defective muscle repair.
Collapse
Affiliation(s)
- Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Brennan Jordan
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Andreia M Nunes
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Nicholas Bolden
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Ryan D Wuebbles
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Lesley Mathews Griner
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Xin Hu
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Marc Ferrer
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Juan Marugan
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Noel Southall
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| |
Collapse
|
14
|
Shu C, Kaxon-Rupp AN, Collado JR, Damoiseaux R, Crosbie RH. Development of a high-throughput screen to identify small molecule enhancers of sarcospan for the treatment of Duchenne muscular dystrophy. Skelet Muscle 2019; 9:32. [PMID: 31831063 PMCID: PMC6907331 DOI: 10.1186/s13395-019-0218-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is caused by loss of sarcolemma connection to the extracellular matrix. Transgenic overexpression of the transmembrane protein sarcospan (SSPN) in the DMD mdx mouse model significantly reduces disease pathology by restoring membrane adhesion. Identifying SSPN-based therapies has the potential to benefit patients with DMD and other forms of muscular dystrophies caused by deficits in muscle cell adhesion. METHODS Standard cloning methods were used to generate C2C12 myoblasts stably transfected with a fluorescence reporter for human SSPN promoter activity. Assay development and screening were performed in a core facility using liquid handlers and imaging systems specialized for use with a 384-well microplate format. Drug-treated cells were analyzed for target gene expression using quantitative PCR and target protein expression using immunoblotting. RESULTS We investigated the gene expression profiles of SSPN and its associated proteins during myoblast differentiation into myotubes, revealing an increase in expression after 3 days of differentiation. We created C2C12 muscle cells expressing an EGFP reporter for SSPN promoter activity and observed a comparable increase in reporter levels during differentiation. Assay conditions for high-throughput screening were optimized for a 384-well microplate format and a high-content imager for the visualization of reporter levels. We conducted a screen of 3200 compounds and identified seven hits, which include an overrepresentation of L-type calcium channel antagonists, suggesting that SSPN gene activity is sensitive to calcium. Further validation of a select hit revealed that the calcium channel inhibitor felodipine increased SSPN transcript and protein levels in both wild-type and dystrophin-deficient myotubes, without increasing differentiation. CONCLUSIONS We developed a stable muscle cell line containing the promoter region of the human SSPN protein fused to a fluorescent reporter. Using the reporter cells, we created and validated a scalable, cell-based assay that is able to identify compounds that increase SSPN promoter reporter, transcript, and protein levels in wild-type and dystrophin-deficient muscle cells.
Collapse
Affiliation(s)
- Cynthia Shu
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, USA.,Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.,Center for Duchenne Muscular Dystrophy, University of California Los Angeles, Los Angeles, USA
| | - Ariana N Kaxon-Rupp
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
| | - Judd R Collado
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
| | - Robert Damoiseaux
- Department of Molecular and Medicinal Pharmacology, University of California Los Angeles, Los Angeles, USA.,California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Rachelle H Crosbie
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, USA. .,Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA. .,Center for Duchenne Muscular Dystrophy, University of California Los Angeles, Los Angeles, USA. .,Department of Neurology David Geffen School of Medicine, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
| |
Collapse
|
15
|
Hughes DC, Marcotte GR, Baehr LM, West DWD, Marshall AG, Ebert SM, Davidyan A, Adams CM, Bodine SC, Baar K. Alterations in the muscle force transfer apparatus in aged rats during unloading and reloading: impact of microRNA-31. J Physiol 2019; 596:2883-2900. [PMID: 29726007 DOI: 10.1113/jp275833] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Force transfer is integral for maintaining skeletal muscle structure and function. One important component is dystrophin. There is limited understanding of how force transfer is impacted by age and loading. Here, we investigate the force transfer apparatus in muscles of adult and old rats exposed to periods of disuse and reloading. Our results demonstrate an increase in dystrophin protein during the reloading phase in the adult tibialis anterior muscle that is delayed in the old muscle. The consequence of this delay is an increased susceptibility towards contraction-induced muscle injury. Central to the lack of dystrophin protein is an increase in miR-31, a microRNA that inhibits dystrophin translation. In vivo electroporation with a miR-31 sponge led to increased dystrophin protein and decreased contraction-induced muscle injury in old skeletal muscle. Overall, our results detail the importance of the force transfer apparatus and provide new mechanisms for contraction-induced injury in ageing skeletal muscle. ABSTRACT In healthy muscle, the dystrophin-associated glycoprotein complex (DGC), the integrin/focal adhesion complex, intermediate filaments and Z-line proteins transmit force from the contractile proteins to the extracellular matrix. How loading and age affect these proteins is poorly understood. The experiments reported here sought to determine the effect of ageing on the force transfer apparatus following muscle unloading and reloading. Adult (9 months) and old (28 months) rats were subjected to 14 days of hindlimb unloading and 1, 3, 7 and 14 days of reloading. The DGC complex, intermediate filament and Z-line protein and mRNA levels, as well as dystrophin-targeting miRNAs (miR-31, -146b and -374) were examined in the tibialis anterior (TA) and medial gastrocnemius muscles at both ages. There was a significant increase in dystrophin protein levels (2.79-fold) upon 3 days of reloading in the adult TA muscle that did not occur in the old rats (P ≤ 0.05), and the rise in dystrophin protein occurred independent of dystrophin mRNA. The disconnect between dystrophin protein and mRNA levels can partially be explained by age-dependent differences in miR-31. The impaired dystrophin response in aged muscle was followed by an increase in other force transfer proteins (β-dystroglycan, desmuslin and LIM) that was not sufficient to prevent membrane disruption and muscle injury early in the reloading period. Inserting a miR-31 sponge increased dystrophin protein and decreased contraction-induced injury in the TA (P ≤ 0.05). Collectively, these data suggest that increased miR-31 with age contributes to an impaired dystrophin response and increased muscle injury after disuse.
Collapse
Affiliation(s)
- David C Hughes
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
| | - George R Marcotte
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
| | - Leslie M Baehr
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| | - Daniel W D West
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| | - Andrea G Marshall
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.,Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Scott M Ebert
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Arik Davidyan
- Molecular, Cellular, and Integrative Physiology Graduate Group, University of California Davis, Davis, CA, USA
| | - Christopher M Adams
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Sue C Bodine
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.,Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.,Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| |
Collapse
|
16
|
Parvatiyar MS, Brownstein AJ, Kanashiro-Takeuchi RM, Collado JR, Dieseldorff Jones KM, Gopal J, Hammond KG, Marshall JL, Ferrel A, Beedle AM, Chamberlain JS, Renato Pinto J, Crosbie RH. Stabilization of the cardiac sarcolemma by sarcospan rescues DMD-associated cardiomyopathy. JCI Insight 2019; 5:123855. [PMID: 31039133 PMCID: PMC6629091 DOI: 10.1172/jci.insight.123855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/23/2019] [Indexed: 02/02/2023] Open
Abstract
In the current preclinical study, we demonstrate the therapeutic potential of sarcospan (SSPN) overexpression to alleviate cardiomyopathy associated with Duchenne muscular dystrophy (DMD) utilizing dystrophin-deficient mdx mice with utrophin haploinsufficiency that more accurately represent the severe disease course of human DMD. SSPN interacts with dystrophin, the DMD disease gene product, and its autosomal paralog utrophin, which is upregulated in DMD as a partial compensatory mechanism. SSPN transgenic mice have enhanced abundance of fully glycosylated α-dystroglycan, which may further protect dystrophin-deficient cardiac membranes. Baseline echocardiography reveals SSPN improves systolic function and hypertrophic indices in mdx and mdx:utr-heterozygous mice. Assessment of SSPN transgenic mdx mice by hemodynamic pressure-volume methods highlights enhanced systolic performance compared to mdx controls. SSPN restores cardiac sarcolemma stability, the primary defect in DMD disease, reduces fibrotic response and improves contractile function. We demonstrate that SSPN ameliorates more advanced cardiac disease in the context of diminished sarcolemma expression of utrophin and β1D integrin that mitigate disease severity and partially restores responsiveness to β-adrenergic stimulation. Overall, our current and previous findings suggest SSPN overexpression in DMD mouse models positively impacts skeletal, pulmonary and cardiac performance by addressing the stability of proteins at the sarcolemma that protect the heart from injury, supporting SSPN and membrane stabilization as a therapeutic target for DMD.
Collapse
Affiliation(s)
- Michelle S. Parvatiyar
- Department of Integrative Biology & Physiology and
- Center for Duchenne Muscular Dystrophy, UCLA, Los Angeles, California, USA
| | - Alexandra J. Brownstein
- Department of Integrative Biology & Physiology and
- Center for Duchenne Muscular Dystrophy, UCLA, Los Angeles, California, USA
| | - Rosemeire M. Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | - Jay Gopal
- Department of Integrative Biology & Physiology and
| | - Katherine G. Hammond
- Department of Integrative Biology & Physiology and
- Center for Duchenne Muscular Dystrophy, UCLA, Los Angeles, California, USA
| | - Jamie L. Marshall
- Department of Integrative Biology & Physiology and
- Center for Duchenne Muscular Dystrophy, UCLA, Los Angeles, California, USA
| | - Abel Ferrel
- Department of Integrative Biology & Physiology and
| | - Aaron M. Beedle
- Department of Pharmaceutical Sciences, Binghamton University State University of New York, Binghamton, New York, USA
| | | | - Jose Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Rachelle H. Crosbie
- Department of Integrative Biology & Physiology and
- Center for Duchenne Muscular Dystrophy, UCLA, Los Angeles, California, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
17
|
Jiang Q, Bao C, Yang Y, Liu A, Liu F, Huang H, Ye H. Transcriptome profiling of claw muscle of the mud crab (Scylla paramamosain) at different fattening stages. PLoS One 2017; 12:e0188067. [PMID: 29141033 PMCID: PMC5687733 DOI: 10.1371/journal.pone.0188067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/31/2017] [Indexed: 01/29/2023] Open
Abstract
In crustaceans, muscle growth and development is complicated, and to date substantial knowledge gaps exist. In this study, the claw muscle, hepatopancreas and nervous tissue of the mud crab (Scylla paramamosain) were collected at three fattening stages for sequence by the Illumina sequencing. A total of 127.87 Gb clean data with no less than 3.94 Gb generated for each sample and the cycleQ30 percentages were more than 86.13% for all samples. De Bruijn assembly of these clean data produced 94,853 unigenes, thereinto, 50,059 unigenes were found in claw muscle. A total of 121 differentially expressed genes (DEGs) were revealed in claw muscle from the three fattening stages with a Padj value < 0.01, including 63 genes with annotation. Functional annotation and enrichment analysis showed that the DEGs clusters represented the predominant gene catalog with roles in biochemical processes (glycolysis, phosphorylation and regulation of transcription), molecular function (ATP binding, 6-phosphofructokinase activity, and sequence-specific DNA binding) and cellular component (6-phosphofructokinase complex, plasma membrane, and integral component of membrane). qRT-PCR was employed to further validate certain DEGs. Single nucleotide polymorphism (SNP) analysis obtained 159,322, 125,963 and 166,279 potential SNPs from the muscle transcriptome at stage B, stage C and stage D, respectively. In addition, there were sixteen neuropeptide transcripts being predicted in the claw muscle. The present study provides a comprehensive transcriptome of claw muscle of S. paramamosain during fattening, providing a basis for screening the functional genes that may affect muscle growth of S. paramamosain.
Collapse
Affiliation(s)
- Qingling Jiang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chenchang Bao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ya’nan Yang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - An Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Collaborative Innovation Center for Development and Utilization of Marine Biological Resources, Xiamen, China
- * E-mail:
| |
Collapse
|
18
|
Gawor M, Prószyński TJ. The molecular cross talk of the dystrophin-glycoprotein complex. Ann N Y Acad Sci 2017; 1412:62-72. [DOI: 10.1111/nyas.13500] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Marta Gawor
- Laboratory of Synaptogenesis; Nencki Institute of Experimental Biology; Polish Academy of Sciences Warsaw Poland
| | - Tomasz J. Prószyński
- Laboratory of Synaptogenesis; Nencki Institute of Experimental Biology; Polish Academy of Sciences Warsaw Poland
| |
Collapse
|
19
|
Iyer A, Koch AJ, Holaska JM. Expression Profiling of Differentiating Emerin-Null Myogenic Progenitor Identifies Molecular Pathways Implicated in Their Impaired Differentiation. Cells 2017; 6:cells6040038. [PMID: 29065506 PMCID: PMC5755497 DOI: 10.3390/cells6040038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022] Open
Abstract
Mutations in the gene encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD), a disorder causing progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. RNA sequencing was performed on differentiating wildtype and emerin-null myogenic progenitors to identify molecular pathways implicated in EDMD, 340 genes were uniquely differentially expressed during the transition from day 0 to day 1 in wildtype cells. 1605 genes were uniquely expressed in emerin-null cells; 1706 genes were shared among both wildtype and emerin-null cells. One thousand and forty-seven transcripts showed differential expression during the transition from day 1 to day 2. Four hundred and thirty-one transcripts showed altered expression in both wildtype and emerin-null cells. Two hundred and ninety-five transcripts were differentially expressed only in emerin-null cells and 321 transcripts were differentially expressed only in wildtype cells. DAVID, STRING and Ingenuity Pathway Analysis identified pathways implicated in impaired emerin-null differentiation, including cell signaling, cell cycle checkpoints, integrin signaling, YAP/TAZ signaling, stem cell differentiation, and multiple muscle development and myogenic differentiation pathways. Functional enrichment analysis showed biological functions associated with the growth of muscle tissue and myogenesis of skeletal muscle were inhibited. The large number of differentially expressed transcripts upon differentiation induction suggests emerin functions during transcriptional reprograming of progenitors to committed myoblasts.
Collapse
Affiliation(s)
- Ashvin Iyer
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA 19104, USA.
| | - Adam J Koch
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA.
| | - James M Holaska
- Department of Biomedical Sciences, Rm 534, Cooper Medical School of Rowan University, 401 South Broadway St., Camden, NJ 08028, USA.
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA 19104, USA.
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
20
|
Van Ry PM, Fontelonga TM, Barraza-Flores P, Sarathy A, Nunes AM, Burkin DJ. ECM-Related Myopathies and Muscular Dystrophies: Pros and Cons of Protein Therapies. Compr Physiol 2017; 7:1519-1536. [PMID: 28915335 DOI: 10.1002/cphy.c150033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Extracellular matrix (ECM) myopathies and muscular dystrophies are a group of genetic diseases caused by mutations in genes encoding proteins that provide critical links between muscle cells and the extracellular matrix. These include structural proteins of the ECM, muscle cell receptors, enzymes, and intracellular proteins. Loss of adhesion within the myomatrix results in progressive muscle weakness. For many ECM muscular dystrophies, symptoms can occur any time after birth and often result in reduced life expectancy. There are no cures for the ECM-related muscular dystrophies and treatment options are limited to palliative care. Several therapeutic approaches have been explored to treat muscular dystrophies including gene therapy, gene editing, exon skipping, embryonic, and adult stem cell therapy, targeting genetic modifiers, modulating inflammatory responses, or preventing muscle degeneration. Recently, protein therapies that replace components of the defective myomatrix or enhance muscle and/or extracellular matrix integrity and function have been explored. Preclinical studies for many of these biologics have been promising in animal models of these muscle diseases. This review aims to summarize the ECM muscular dystrophies for which protein therapies are being developed and discuss the exciting potential and possible limitations of this approach for treating this family of devastating genetic muscle diseases. © 2017 American Physiological Society. Compr Physiol 7:1519-1536, 2017.
Collapse
Affiliation(s)
- Pam M Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Apurva Sarathy
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Andreia M Nunes
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA.,Departamento de Biologia Animal, Centro de Ecologia, Evolucao e Alteracoes Ambientais, Faculdade de Ciencias, Universidade de Lisboa, Lisbon, Portugal
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
21
|
Gibbs EM, Marshall JL, Ma E, Nguyen TM, Hong G, Lam JS, Spencer MJ, Crosbie-Watson RH. High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD. Hum Mol Genet 2017; 25:5395-5406. [PMID: 27798107 PMCID: PMC5418831 DOI: 10.1093/hmg/ddw356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/13/2016] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder that causes progressive muscle weakness, ultimately leading to early mortality in affected teenagers and young adults. Previous work from our lab has shown that a small transmembrane protein called sarcospan (SSPN) can enhance the recruitment of adhesion complex proteins to the cell surface. When human SSPN is expressed at three-fold levels in mdx mice, this increase in adhesion complex abundance improves muscle membrane stability, preventing many of the histopathological changes associated with DMD. However, expressing higher levels of human SSPN (ten-fold transgenic expression) causes a severe degenerative muscle phenotype in wild-type mice. Since SSPN-mediated stabilization of the sarcolemma represents a promising therapeutic strategy in DMD, it is important to determine whether SSPN can be introduced at high levels without toxicity. Here, we show that mouse SSPN (mSSPN) can be overexpressed at 30-fold levels in wild-type mice with no deleterious effects. In mdx mice, mSSPN overexpression improves dystrophic pathology and sarcolemmal stability. We show that these mice exhibit increased resistance to eccentric contraction-induced damage and reduced fatigue following exercise. mSSPN overexpression improved pulmonary function and reduced dystrophic histopathology in the diaphragm. Together, these results demonstrate that SSPN overexpression is well tolerated in mdx mice and improves sarcolemma defects that underlie skeletal muscle and pulmonary dysfunction in DMD.
Collapse
Affiliation(s)
- Elizabeth M Gibbs
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Jamie L Marshall
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Eva Ma
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Thien M Nguyen
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Grace Hong
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Jessica S Lam
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Melissa J Spencer
- Center for Duchenne Muscular Dystrophy.,Molecular Biology Institute, University of California Los Angeles CA 90095, USA
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy.,Department of Neurology David Geffen School of Medicine.,Molecular Biology Institute, University of California Los Angeles CA 90095, USA
| |
Collapse
|
22
|
Peter AK, Miller G, Capote J, DiFranco M, Solares-Pérez A, Wang EL, Heighway J, Coral-Vázquez RM, Vergara J, Crosbie-Watson RH. Nanospan, an alternatively spliced isoform of sarcospan, localizes to the sarcoplasmic reticulum in skeletal muscle and is absent in limb girdle muscular dystrophy 2F. Skelet Muscle 2017; 7:11. [PMID: 28587652 PMCID: PMC5461684 DOI: 10.1186/s13395-017-0127-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/12/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Sarcospan (SSPN) is a transmembrane protein that interacts with the sarcoglycans (SGs) to form a tight subcomplex within the dystrophin-glycoprotein complex that spans the sarcolemma and interacts with laminin in the extracellular matrix. Overexpression of SSPN ameliorates Duchenne muscular dystrophy in murine models. METHODS Standard cloning approaches were used to identify nanospan, and nanospan-specific polyclonal antibodies were generated and validated. Biochemical isolation of skeletal muscle membranes and two-photon laser scanning microscopy were used to analyze nanospan localization in muscle from multiple murine models. Duchenne muscular dystrophy biopsies were analyzed by immunoblot analysis of protein lysates as well as indirect immunofluorescence analysis of muscle cryosections. RESULTS Nanospan is an alternatively spliced isoform of sarcospan. While SSPN has four transmembrane domains and is a core component of the sarcolemmal dystrophin-glycoprotein complex, nanospan is a type II transmembrane protein that does not associate with the dystrophin-glycoprotein complex. We demonstrate that nanospan is enriched in the sarcoplasmic reticulum (SR) fractions and is not present in the T-tubules. SR fractions contain membranes from three distinct structural regions: a region flanking the T-tubules (triadic SR), a SR region across the Z-line (ZSR), and a longitudinal SR region across the M-line (LSR). Analysis of isolated murine muscles reveals that nanospan is mostly associated with the ZSR and triadic SR, and only minimally with the LSR. Furthermore, nanospan is absent from the SR of δ-SG-null (Sgcd-/-) skeletal muscle, a murine model for limb girdle muscular dystrophy 2F. Analysis of skeletal muscle biopsies from Duchenne muscular dystrophy patients reveals that nanospan is preferentially expressed in type I (slow) fibers in both control and Duchenne samples. Furthermore, nanospan is significantly reduced in Duchenne biopsies. CONCLUSIONS Alternative splicing of proteins from the SG-SSPN complex produces δ-SG3, microspan, and nanospan that localize to the ZSR and the triadic SR, where they may play a role in regulating resting calcium levels as supported by previous studies (Estrada et al., Biochem Biophys Res Commun 340:865-71, 2006). Thus, alternative splicing of SSPN mRNA generates three protein isoforms (SSPN, microspan, and nanospan) that differ in the number of transmembrane domains affecting subcellular membrane association into distinct protein complexes.
Collapse
Affiliation(s)
- Angela K Peter
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
- Present Address: Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Gaynor Miller
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
- Present Address: Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Joana Capote
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marino DiFranco
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alhondra Solares-Pérez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Emily L Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
| | - Jim Heighway
- Cancer Communications and Consultancy Ltd, Knutsford, Cheshire, UK
| | - Ramón M Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Julio Vergara
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Alexander MS, Rozkalne A, Colletta A, Spinazzola JM, Johnson S, Rahimov F, Meng H, Lawlor MW, Estrella E, Kunkel LM, Gussoni E. CD82 Is a Marker for Prospective Isolation of Human Muscle Satellite Cells and Is Linked to Muscular Dystrophies. Cell Stem Cell 2016; 19:800-807. [PMID: 27641304 DOI: 10.1016/j.stem.2016.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/17/2016] [Accepted: 08/05/2016] [Indexed: 12/23/2022]
Abstract
Cell-surface markers for prospective isolation of stem cells from human skeletal muscle have been difficult to identify. Such markers would be powerful tools for studying satellite cell function during homeostasis and in pathogenesis of diseases such as muscular dystrophies. In this study, we show that the tetraspanin KAI/CD82 is an excellent marker for prospectively isolating stem cells from human fetal and adult skeletal muscle. Human CD82+ muscle cells robustly engraft into a mouse model of muscular dystrophy. shRNA knockdown of CD82 in myogenic cells reduces myoblast proliferation, suggesting it is functionally involved in muscle homeostasis. CD82 physically interacts with alpha7beta1 integrin (α7β1-ITG) and with α-sarcoglycan, a member of the Dystrophin-Associated Glycoprotein Complex (DAPC), both of which have been linked to muscular dystrophies. Consistently, CD82 expression is decreased in Duchenne muscular dystrophy patients. Together, these findings suggest that CD82 function may be important for muscle stem cell function in muscular disorders.
Collapse
Affiliation(s)
- Matthew S Alexander
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA
| | - Anete Rozkalne
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alessandro Colletta
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Boston University School of Medicine, Boston, MA 02215, USA
| | - Janelle M Spinazzola
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA
| | - Samuel Johnson
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Fedik Rahimov
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elicia Estrella
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Role of integrin α7β1 signaling in myoblast differentiation on aligned polydioxanone scaffolds. Acta Biomater 2016; 39:44-54. [PMID: 27142254 DOI: 10.1016/j.actbio.2016.04.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 12/30/2022]
Abstract
UNLABELLED The aligned structural environment in skeletal muscle is believed to be a crucial component in functional muscle regeneration. Myotube formation is increased on aligned biomaterials, but we do not fully understand the mechanisms that direct this enhanced fusion. Previous studies indicate that the α7 integrin subunit is upregulated during myoblast differentiation, suggesting that signaling via α7β1 mediates the effect of alignment. To test this hypothesis, we took advantage of an in vitro model using random and aligned polydioxanone (PDO) matrices and C2C12 myoblasts. We measured expression and production of myoblast markers: paired box-7 (Pax7), myogenic differentiation factor-1 (MyoD), myogenin (MyoG), myogenic factor-6 (Myf6), and myosin heavy chain (MyHC). To examine the role of α7β1 signaling, we measured expression and production of α7, α5, and β1 and myoblast markers in wild type cells and in cells silenced for α7 and assessed effects of silencing on myogenic differentiation. Downstream signaling via ERK1/2 mitogen activated protein kinase (MAPK) was examined using a specific MEK1/2 inhibitor. Alignment increased mRNAs and protein for early (MyoD) and late (MyoG, MyHC) myoblast markers in comparison to non-aligned matrices, and these levels corresponded with increased α7 protein. α7-silencing reduced MyoG and MyHC protein in cells cultured on tissue culture polystyrene and aligned PDO matrices compared to wild type cells. Inhibition of ERK1/2 blocked effects of alignment. These data suggest that alignment regulates myogenic differentiation via α7β1 integrin signaling and ERK1/2 mediated gene expression. STATEMENT OF SIGNIFICANCE Muscle regeneration in severe muscle injuries is complex, requiring a sequence of events to promote healing and not fibrosis. Aligned biomaterials that recapitulate muscle environments hold potential to facilitate regeneration, but it is important to understand cell-substrate signaling to form functional muscle. A critical component of muscle signaling is integrin α7β1, where mice lacking α7 exhibit a dystrophic phenotype and impaired regeneration. Here, we report the role of α7β1 signaling in myoblast differentiation on aligned biomaterials. α7-silenced myoblasts were found to regulate myogenic differentiation and demonstrate defective fusion. Our data shows reduced levels of myogenin and myosin heavy chain protein, while MyoD remains unchanged. These results support the hypothesis that α7β1 signaling plays a role in substrate-dependent tissue engineering strategies.
Collapse
|
25
|
Abstract
The dystrophin complex stabilizes the plasma membrane of striated muscle cells. Loss of function mutations in the genes encoding dystrophin, or the associated proteins, trigger instability of the plasma membrane, and myofiber loss. Mutations in dystrophin have been extensively cataloged, providing remarkable structure-function correlation between predicted protein structure and clinical outcomes. These data have highlighted dystrophin regions necessary for in vivo function and fueled the design of viral vectors and now, exon skipping approaches for use in dystrophin restoration therapies. However, dystrophin restoration is likely more complex, owing to the role of the dystrophin complex as a broad cytoskeletal integrator. This review will focus on dystrophin restoration, with emphasis on the regions of dystrophin essential for interacting with its associated proteins and discuss the structural implications of these approaches.
Collapse
Affiliation(s)
- Quan Q Gao
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, Chicago, Illinois, USA
| |
Collapse
|
26
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
27
|
Parvatiyar MS, Marshall JL, Nguyen RT, Jordan MC, Richardson VA, Roos KP, Crosbie-Watson RH. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy. J Am Heart Assoc 2015; 4:JAHA.115.002481. [PMID: 26702077 PMCID: PMC4845268 DOI: 10.1161/jaha.115.002481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin‐associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin‐binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. Methods and Results SSPN‐null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β‐adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN‐null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α‐, δ‐, and γ‐subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdxTG) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. Conclusions SSPN regulates sarcolemmal expression of laminin‐binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy.
Collapse
Affiliation(s)
- Michelle S Parvatiyar
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Reginald T Nguyen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.)
| | - Maria C Jordan
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA (M.C.J., K.P.R.)
| | - Vanitra A Richardson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Kenneth P Roos
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA (M.C.J., K.P.R.)
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA (R.H.C.W.)
| |
Collapse
|
28
|
Hou X, Yang Y, Zhu S, Hua C, Zhou R, Mu Y, Tang Z, Li K. Comparison of skeletal muscle miRNA and mRNA profiles among three pig breeds. Mol Genet Genomics 2015; 291:559-73. [PMID: 26458558 DOI: 10.1007/s00438-015-1126-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022]
Abstract
The pig is an important source of animal protein, and is also an ideal model for human disease. There are significant differences in growth rate, muscle mass, and meat quality between different breeds. To understand the molecular mechanisms underlying porcine skeletal muscle phenotypes, we performed mRNA and miRNA profiling of muscle from three different breeds of pig, Landrace (lean-type), Tongcheng (obese-type), and Wuzhishan (mini-type) by Solexa sequencing. Forty-three genes and 106 miRNAs were differentially expressed between Landrace and Tongcheng pigs, 92 genes and 151 miRNAs were differentially expressed between Tongcheng and Wuzhishan pigs, and 145 genes and 156 miRNAs were differential expressed between Landrace and Wuzhishan pigs. Gene ontology analysis suggested that genes differentially expressed between Landrace and Tongcheng pigs were mainly involved in the biological processes of oxidative stress and muscle organ development. Meanwhile, for Tongcheng vs Wuzhishan and Landrace vs Wuzhishan pigs, the differentially expressed genes were involved in fatty acid metabolism, oxidative stress, muscle contraction, and muscle organ development, processes that are closely related to meat quality. To investigate the molecular mechanisms underlying meat quality diversity based on differentially expressed genes and miRNAs, interaction networks were constructed, according to target prediction results and integration analysis of up-regulated genes with down-regulated miRNAs or down-regulated genes with up-regulated miRNAs. Our findings identify candidate genes and miRNAs associated with muscle development and indicate their potential roles in muscle phenotype variance between different pig breeds. These results serve as a foundation for further studies on muscle development and molecular breeding.
Collapse
Affiliation(s)
- Xinhua Hou
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yalan Yang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, People's Republic of China
| | - Shiyun Zhu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Chaoju Hua
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Rong Zhou
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yulian Mu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Zhonglin Tang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China. .,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, People's Republic of China.
| | - Kui Li
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| |
Collapse
|
29
|
Galectin-1 Protein Therapy Prevents Pathology and Improves Muscle Function in the mdx Mouse Model of Duchenne Muscular Dystrophy. Mol Ther 2015; 23:1285-1297. [PMID: 26050991 DOI: 10.1038/mt.2015.105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/27/2015] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease caused by mutations in the dystrophin gene, leading to the loss of a critical component of the sarcolemmal dystrophin glycoprotein complex. Galectin-1 is a small 14 kDa protein normally found in skeletal muscle and has been shown to be a modifier of immune response, muscle repair, and apoptosis. Galectin-1 levels are elevated in the muscle of mouse and dog models of DMD. Together, these findings led us to hypothesize that Galectin-1 may serve as a modifier of disease progression in DMD. To test this hypothesis, recombinant mouse Galectin-1 was produced and used to treat myogenic cells and the mdx mouse model of DMD. Here we show that intramuscular and intraperitoneal injections of Galectin-1 into mdx mice prevented pathology and improved muscle function in skeletal muscle. These improvements were a result of enhanced sarcolemmal stability mediated by elevated utrophin and α7β1 integrin protein levels. Together our results demonstrate for the first time that Galectin-1 may serve as an exciting new protein therapeutic for the treatment of DMD.
Collapse
|
30
|
Marshall JL, Oh J, Chou E, Lee JA, Holmberg J, Burkin DJ, Crosbie-Watson RH. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin. Hum Mol Genet 2014; 24:2011-22. [PMID: 25504048 DOI: 10.1093/hmg/ddu615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in loss of the dystrophin-glycoprotein complex, a laminin receptor that connects the myofiber to its surrounding extracellular matrix. Utrophin, a dystrophin ortholog that is normally localized to the neuromuscular junction, is naturally upregulated in DMD muscle, which partially compensates for the loss of dystrophin. Transgenic overexpression of utrophin causes broad sarcolemma localization of utrophin, restoration of laminin binding and amelioration of disease in the mdx mouse model of DMD. We previously demonstrated that overexpression of sarcospan, a dystrophin- and utrophin-binding protein, ameliorates mdx muscular dystrophy. Sarcospan boosts levels of utrophin to therapeutic levels at the sarcolemma, where attachment to laminin is restored. However, understanding the compensatory mechanism is complicated by concomitant upregulation of α7β1 integrin, which also binds laminin. Similar to the effects of utrophin, transgenic overexpression of α7 integrin prevents DMD disease in mice and is accompanied by increased abundance of utrophin around the extra-synaptic sarcolemma. In order to investigate the mechanisms underlying sarcospan 'rescue' of muscular dystrophy, we created double-knockout mice to test the contributions of utrophin or α7 integrin. We show that sarcospan-mediated amelioration of muscular dystrophy in DMD mice is dependent on the presence of both utrophin and α7β1 integrin, even when they are individually expressed at therapeutic levels. Furthermore, we found that association of sarcospan into laminin-binding complexes is dependent on utrophin and α7β1 integrin.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Jennifer Oh
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Eric Chou
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Joy A Lee
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Johan Holmberg
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Dean J Burkin
- Department of Pharmacology, Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy, Molecular Biology Institute, Department of Neurology, University of California, Los Angeles, CA 90095, USA and
| |
Collapse
|
31
|
Ogasawara R, Nakazato K, Sato K, Boppart MD, Fujita S. Resistance exercise increases active MMP and β1-integrin protein expression in skeletal muscle. Physiol Rep 2014; 2:2/11/e12212. [PMID: 25413329 PMCID: PMC4255818 DOI: 10.14814/phy2.12212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent studies indicate that matrix metalloproteinases (MMPs) and critical linkage proteins in the extracellular matrix (ECM) regulate skeletal muscle mass, although the effects of resistance training (RT) on protein expression and activity are unclear. Thus, the purpose of the present study was to investigate the effects of RT on MMP activity and expression of ECM-related proteins. Ten male Sprague-Dawley rats were randomly assigned to 1 bout (1B) or 18 bouts (18B) of electrical stimulation. The right gastrocnemius muscle was isometrically contracted via percutaneous electrical stimulation (five sets of 5 sec stimulation × five contractions/set with 5 sec interval between contractions and 3 min rest between sets) once (1B) or every other day for 5 weeks (18B). The left leg served as a control. Activity of MMP-2 and MMP-9, determined via gelatin zymography, was increased (P < 0.05) immediately after 1B. However, MMP activation was not evident following 18B. No changes in collagen IV, laminin α2, α7-integrin, or ILK protein expression were detected immediately following 1B or 18B. However, β1-integrin protein expression was significantly increased (P < 0.05) with 18B. Our results suggest that resistance exercise activates MMPs during the initial phase of RT but this response is attenuated with continuation of RT.
Collapse
Affiliation(s)
- Riki Ogasawara
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koji Sato
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Marni D Boppart
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
32
|
Townsend D. Finding the sweet spot: assembly and glycosylation of the dystrophin-associated glycoprotein complex. Anat Rec (Hoboken) 2014; 297:1694-705. [PMID: 25125182 PMCID: PMC4135523 DOI: 10.1002/ar.22974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/27/2014] [Indexed: 01/12/2023]
Abstract
The dystrophin-associated glycoprotein complex (DGC) is a collection of glycoproteins that are essential for the normal function of striated muscle and many other tissues. Recent genetic studies have implicated the components of this complex in over a dozen forms of muscular dystrophy. Furthermore, disruption of the DGC has been implicated in many forms of acquired disease. This review aims to summarize the current state of knowledge regarding the processing and assembly of dystrophin-associated proteins with a focus primarily on the dystroglycan heterodimer and the sarcoglycan complex. These proteins form the transmembrane portion of the DGC and undergo a complex multi-step processing with proteolytic cleavage, differential assembly, and both N- and O-glycosylation. The enzymes responsible for this processing and a model describing the sequence and subcellular localization of these events are discussed.
Collapse
Affiliation(s)
- Dewayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
33
|
Palma-Flores C, Ramírez-Sánchez I, Rosas-Vargas H, Canto P, Coral-Vázquez RM. Description of a utrophin associated protein complex in lipid raft domains of human artery smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1047-54. [PMID: 24060563 DOI: 10.1016/j.bbamem.2013.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 09/06/2013] [Accepted: 09/12/2013] [Indexed: 01/08/2023]
Abstract
The dystrophin-associated protein complex (DAPC) is a multimeric complex that links the extracellular matrix to the actin cytoskeleton, and in some cases dystrophin can be substituted by its autosomal homologue utrophin to form the utrophin-associated protein complex (UAPC). Both complexes maintain the stability of plasma membrane during contraction process and play an important role in transmembrane signaling. Mutations in members of the DAPC are associated with muscular dystrophy and dilated cardiomyopathy. In a previous study with human umbilical cord vessels, we observed that utrophin colocalize with caveolin-1 (Cav-1) which proposed the presence of UAPC in the plasma membrane of vascular smooth muscle (VSM). In the current study, we demonstrated by immunofluorescence analysis, co-immunoprecipitation assays, and subcellular fractionation by sucrose gradients, the existence of an UAPC in lipid raft domains of human umbilical artery smooth muscle cells (HUASMC). This complex is constituted by utrophin, β-DG, ε-SG, α-smooth muscle actin, Cav-1, endothelial nitric oxide synthase (eNOS) and cavin-1. It was also observed the presence of dystrophin, utrophin Dp71, β-SG, δ-SG, δ-SG3 and sarcospan in non-lipid raft fractions. Furthermore, the knockdown of α/β-DG was associated with the decrease in both the synthesis of nitric oxide (NO) and the presence of the phosphorylated (active) form of eNOS; and with a reduction in the downstream activation of some cGMP signaling transduction pathway components. Together these results show the presence of an UAPC complex in HUASMC that may participate in the activity regulation of eNOS and in the vascular function.
Collapse
Affiliation(s)
- Carlos Palma-Flores
- División de Investigación Biomédica, Subdirección de Enseñanza e Investigación, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, México, D.F., Mexico
| | - Israel Ramírez-Sánchez
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F., Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Medico Nacional Siglo XXI-IMSS, Av. Cuauhtémoc No 330, Col Doctores, Delegación Cuauhtémoc, 06725 México, D.F., Mexico
| | - Patricia Canto
- División de Investigación Biomédica, Subdirección de Enseñanza e Investigación, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, México, D.F., Mexico
| | - Ramón Mauricio Coral-Vázquez
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F., Mexico; Subdirección de Enseñanza e Investigación, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, México, D.F., Mexico.
| |
Collapse
|
34
|
Van Ry PM, Minogue P, Hodges BL, Burkin DJ. Laminin-111 improves muscle repair in a mouse model of merosin-deficient congenital muscular dystrophy. Hum Mol Genet 2013; 23:383-96. [PMID: 24009313 DOI: 10.1093/hmg/ddt428] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a severe and fatal muscle-wasting disease with no cure. MDC1A patients and the dy(W-/-) mouse model exhibit severe muscle weakness, demyelinating neuropathy, failed muscle regeneration and premature death. We have recently shown that laminin-111, a form of laminin found in embryonic skeletal muscle, can substitute for the loss of laminin-211/221 and prevent muscle disease progression in the dy(W-/-) mouse model. What is unclear from these studies is whether laminin-111 can restore failed regeneration to laminin-α2-deficient muscle. To investigate the potential of laminin-111 protein therapy to improve muscle regeneration, laminin-111 or phosphate-buffered saline-treated laminin-α2-deficient muscle was damaged with cardiotoxin and muscle regeneration quantified. Our results show laminin-111 treatment promoted an increase in myofiber size and number, and an increased expression of α7β1 integrin, Pax7, myogenin and embryonic myosin heavy chain, indicating a restoration of the muscle regenerative program. Together, our results show laminin-111 restores muscle regeneration to laminin-α2-deficient muscle and further supports laminin-111 protein as a therapy for the treatment of MDC1A.
Collapse
Affiliation(s)
- Pam M Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA and
| | | | | | | |
Collapse
|
35
|
Hakim CH, Burkin DJ, Duan D. Alpha 7 integrin preserves the function of the extensor digitorum longus muscle in dystrophin-null mice. J Appl Physiol (1985) 2013; 115:1388-92. [PMID: 23990247 DOI: 10.1152/japplphysiol.00602.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dystrophin-associated glycoprotein complex (DGC) and the α7β1-integrin complex are two independent protein complexes that link the extracellular matrix with the cytoskeleton in muscle cells. These associations stabilize the sarcolemma during force transmission. Loss of either one of these complexes leads to muscular dystrophy. Dystrophin is a major component of the DGC. Its absence results in Duchenne muscular dystrophy (DMD). Because α7-integrin overexpression has been shown to ameliorate muscle histopathology in mouse models of DMD, we hypothesize that the α7β1-integrin complex can help preserve muscle function. To test this hypothesis, we evaluated muscle force, elasticity, and the viscous property of the extensor digitorum longus muscle in 19-day-old normal BL6, dystrophin-null mdx4cv, α7-integrin-null, and dystrophin/α7-integrin double knockout mice. While nominal changes were found in single knockout mice, contractility and passive properties were significantly compromised in α7-integrin double knockout mice. Our results suggest that DGC and α7β1-integrin complexes may compensate each other to maintain normal skeletal muscle function. α7β1-Integrin upregulation may hold promise to treat not only histological, but also physiological, defects in DMD.
Collapse
Affiliation(s)
- Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri
| | | | | |
Collapse
|
36
|
Marshall JL, Kwok Y, McMorran BJ, Baum LG, Crosbie-Watson RH. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy. FEBS J 2013; 280:4210-29. [PMID: 23601082 DOI: 10.1111/febs.12295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/12/2013] [Indexed: 12/23/2022]
Abstract
Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
37
|
AAV-mediated overexpression of human α7 integrin leads to histological and functional improvement in dystrophic mice. Mol Ther 2013; 21:520-5. [PMID: 23319059 DOI: 10.1038/mt.2012.281] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle disease caused by mutations in the DMD gene, with loss of its gene product, dystrophin. Dystrophin helps link integral membrane proteins to the actin cytoskeleton and stabilizes the sarcolemma during muscle activity. We investigated an alternative therapeutic approach to dystrophin replacement by overexpressing human α7 integrin (ITGA7) using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal and cardiac muscle that links the extracellular matrix (ECM) to the actin skeleton. It is modestly upregulated in DMD muscle and has been proposed to be an important modifier of dystrophic symptoms. We delivered rAAV8.MCK.ITGA7 to the lower limb of mdx mice through isolated limb perfusion (ILP) of the femoral artery. We demonstrated ~50% of fibers in the tibialis anterior (TA) and extensor digitorum longus (EDL) overexpressing α7 integrin at the sarcolemma following AAV gene transfer. The increase in ITGA7 in skeletal muscle significantly protected against loss of force following eccentric contraction-induced injury compared with untreated (contralateral) muscles while specific force following tetanic contraction was unchanged. Reversal of additional dystrophic features included reduced Evans blue dye (EBD) uptake and increased muscle fiber diameter. Taken together, this data shows that rAAV8.MCK.ITGA7 gene transfer stabilizes the sarcolemma potentially preserving mdx muscle from further damage. This therapeutic approach demonstrates promise as a viable treatment for DMD with further implications for other forms of muscular dystrophy.
Collapse
|
38
|
Marshall JL, Crosbie-Watson RH. Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet Muscle 2013; 3:1. [PMID: 23282144 PMCID: PMC3599653 DOI: 10.1186/2044-5040-3-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/27/2012] [Indexed: 01/09/2023] Open
Abstract
Purification of the proteins associated with dystrophin, the gene product responsible for Duchenne muscular dystrophy, led to the discovery of the dystrophin-glycoprotein complex. Sarcospan, a 25-kDa transmembrane protein, was the last component to be identified and its function in skeletal muscle has been elusive. This review will focus on progress over the last decade revealing that sarcospan is an important regulator of muscle cell adhesion, strength, and regeneration. Investigations using several transgenic mouse models demonstrate that overexpression of sarcospan in the mouse model for Duchenne muscular dystrophy ameliorates pathology and restores muscle cell binding to laminin. Sarcospan improves cell surface expression of the dystrophin- and utrophin-glycoprotein complexes as well as α7β1 integrin, which are the three major laminin-binding complexes in muscle. Utrophin and α7β1 integrin compensate for the loss of dystrophin and the finding that sarcospan increases their abundance at the extra-synaptic sarcolemma supports the use of sarcospan as a therapeutic target. Newly discovered phenotypes in sarcospan-deficient mice, including a reduction in specific force output and increased drop in force in the diaphragm muscle, result from decreased utrophin and dystrophin expression and further reveal sarcospan’s role in determining abundance of these complexes. Dystrophin protein levels and the specific force output of the diaphragm muscle are further reduced upon genetic removal of α7 integrin (Itga7) in SSPN-deficient mice, demonstrating that interactions between integrin and sarcospan are critical for maintenance of the dystrophin-glycoprotein complex and force production of the diaphragm muscle. Sarcospan is a major regulator of Akt signaling pathways and sarcospan-deficiency significantly impairs muscle regeneration, a process that is dependent on Akt activation. Intriguingly, sarcospan regulates glycosylation of a specific subpopulation of α-dystroglycan, the laminin-binding receptor associated with dystrophin and utrophin, localized to the neuromuscular junction. Understanding the basic mechanisms responsible for assembly and trafficking of the dystrophin- and utrophin-glycoprotein complexes to the cell surface is lacking and recent studies suggest that sarcospan plays a role in these essential processes.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E, Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|