1
|
Colombo L, Bonetti G, Maltese PE, Iarossi G, Ziccardi L, Fogagnolo P, De Ruvo V, Murro V, Giorgio D, Falsini B, Placidi G, Martella S, Galantin E, Bertelli M, Rossetti L. Genotypic and Phenotypic Characterization of a Cohort of Patients Affected by Rod Cyclic Nucleotide Channel-Associated Retinitis Pigmentosa. Ophthalmic Res 2024; 67:301-310. [PMID: 38705136 DOI: 10.1159/000538746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/12/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Retinitis pigmentosa (RP), a heterogeneous inherited retinal disorder causing gradual vision loss, affects over 1 million people worldwide. Pathogenic variants in CNGA1 and CNGB1 genes, respectively, accounting for 1% and 4% of cases, impact the cyclic nucleotide-gated channel in rod photoreceptor cells. The aim of this study was to describe and compare genotypic and clinical characteristics of a cohort of patients with CNGA1- or CNGB1-related RP and to explore potential genotype-phenotype correlations. METHODS The following data from patients with CNGA1- or CNGB1-related RP, followed in five Italian inherited retinal degenerations services, were retrospectively collected: genetic variants in CNGA1 and CNGB1, best-corrected visual acuity (BCVA), ellipsoid zone (EZ) width, fundus photographs, and short-wavelength fundus autofluorescence (SW-AF) images. Comparisons and correlation analyses were performed by first dividing the cohort in two groups according to the gene responsible for the disease (CNGA1 and CNGB1 groups). In parallel, the whole cohort of RP patients was divided into two other groups, according to the expected impact of the variants at protein level (low and high group). RESULTS In total, 29 patients were recruited, 11 with CNGA1- and 18 with CNGB1-related RP. In both CNGA1 and CNGB1, 5 novel variants in CNGA1 and 5 in CNGB1 were found. BCVA was comparable between CNGA1 and CNGB1 groups, as well as between low and high groups. CNGA1 group had a larger mean EZ width compared to CNGB1 group, albeit not statistically significant, while EZ width did not differ between low and high groups A statistically significant correlation between EZ width and BCVA as well as between EZ width and age were observed in the whole cohort of RP patients. Fundus photographs of all patients in the cohort showed classic RP pattern, and in SW-AF images an hyperautofluorescent ring was observed in 14/21 patients. CONCLUSION Rod CNG channel-associated RP was demonstrated to be a slowly progressive disease in both CNGA1- and CNGB1-related forms, making it an ideal candidate for gene augmentation therapies.
Collapse
Affiliation(s)
- Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Gabriele Bonetti
- MAGI'S LAB S.R.L., Rovereto, Italy
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Paolo Fogagnolo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Valentino De Ruvo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Vittoria Murro
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Dario Giorgio
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Benedetto Falsini
- Department of Ophthalmology, Bambino Gesù Children's Hospital, Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS/Università Cattolica del S. Cuore, Rome, Italy
| | - Giorgio Placidi
- Ophthalmology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS/Università Cattolica del S. Cuore, Rome, Italy
| | - Salvatore Martella
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Eleonora Galantin
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Matteo Bertelli
- MAGI'S LAB S.R.L., Rovereto, Italy
- MAGI EUREGIO, Bolzano, Italy
- MAGISNAT, Atlanta Tech Park, Peachtree Corners, Georgia, USA
| | - Luca Rossetti
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Yan J, Wang L, Yang QL, Yang QX, He X, Dong Y, Hu Z, Seeliger MW, Jiao K, Paquet-Durand F. T-type voltage-gated channels, Na +/Ca 2+-exchanger, and calpain-2 promote photoreceptor cell death in inherited retinal degeneration. Cell Commun Signal 2024; 22:92. [PMID: 38303059 PMCID: PMC10836022 DOI: 10.1186/s12964-023-01391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 02/03/2024] Open
Abstract
Inherited retinal degenerations (IRDs) are a group of untreatable and commonly blinding diseases characterized by progressive photoreceptor loss. IRD pathology has been linked to an excessive activation of cyclic nucleotide-gated channels (CNGC) leading to Na+- and Ca2+-influx, subsequent activation of voltage-gated Ca2+-channels (VGCC), and further Ca2+ influx. However, a connection between excessive Ca2+ influx and photoreceptor loss has yet to be proven.Here, we used whole-retina and single-cell RNA-sequencing to compare gene expression between the rd1 mouse model for IRD and wild-type (wt) mice. Differentially expressed genes indicated links to several Ca2+-signalling related pathways. To explore these, rd1 and wt organotypic retinal explant cultures were treated with the intracellular Ca2+-chelator BAPTA-AM or inhibitors of different Ca2+-permeable channels, including CNGC, L-type VGCC, T-type VGCC, Ca2+-release-activated channel (CRAC), and Na+/Ca2+ exchanger (NCX). Moreover, we employed the novel compound NA-184 to selectively inhibit the Ca2+-dependent protease calpain-2. Effects on the retinal activity of poly(ADP-ribose) polymerase (PARP), sirtuin-type histone-deacetylase, calpains, as well as on activation of calpain-1, and - 2 were monitored, cell death was assessed via the TUNEL assay.While rd1 photoreceptor cell death was reduced by BAPTA-AM, Ca2+-channel blockers had divergent effects: While inhibition of T-type VGCC and NCX promoted survival, blocking CNGCs and CRACs did not. The treatment-related activity patterns of calpains and PARPs corresponded to the extent of cell death. Remarkably, sirtuin activity and calpain-1 activation were linked to photoreceptor protection, while calpain-2 activity was related to degeneration. In support of this finding, the calpain-2 inhibitor NA-184 protected rd1 photoreceptors.These results suggest that Ca2+ overload in rd1 photoreceptors may be triggered by T-type VGCCs and NCX. High Ca2+-levels likely suppress protective activity of calpain-1 and promote retinal degeneration via activation of calpain-2. Overall, our study details the complexity of Ca2+-signalling in photoreceptors and emphasizes the importance of targeting degenerative processes specifically to achieve a therapeutic benefit for IRDs. Video Abstract.
Collapse
Affiliation(s)
- Jie Yan
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Lan Wang
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Qian-Lu Yang
- The Third Affiliated Hospital of Kunming Medical University &Yunnan Cancer Hospital, Kunming, Yunnan, 650118, China
| | - Qian-Xi Yang
- The Third Affiliated Hospital of Kunming Medical University &Yunnan Cancer Hospital, Kunming, Yunnan, 650118, China
| | - Xinyi He
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, 72076, Germany
- High-resolution Functional Imaging and Test Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Yujie Dong
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - Zhulin Hu
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Kangwei Jiao
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|
3
|
Scalabrino ML, Thapa M, Wang T, Sampath AP, Chen J, Field GD. Late gene therapy limits the restoration of retinal function in a mouse model of retinitis pigmentosa. Nat Commun 2023; 14:8256. [PMID: 38086857 PMCID: PMC10716155 DOI: 10.1038/s41467-023-44063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Retinitis pigmentosa is an inherited photoreceptor degeneration that begins with rod loss followed by cone loss. This cell loss greatly diminishes vision, with most patients becoming legally blind. Gene therapies are being developed, but it is unknown how retinal function depends on the time of intervention. To uncover this dependence, we utilize a mouse model of retinitis pigmentosa capable of artificial genetic rescue. This model enables a benchmark of best-case gene therapy by removing variables that complicate answering this question. Complete genetic rescue was performed at 25%, 50%, and 70% rod loss (early, mid and late, respectively). Early and mid treatment restore retinal output to near wild-type levels. Late treatment retinas exhibit continued, albeit slowed, loss of sensitivity and signal fidelity among retinal ganglion cells, as well as persistent gliosis. We conclude that gene replacement therapies delivered after 50% rod loss are unlikely to restore visual function to normal. This is critical information for administering gene therapies to rescue vision.
Collapse
Affiliation(s)
- Miranda L Scalabrino
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Mishek Thapa
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Tian Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alapakkam P Sampath
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Greg D Field
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Occelli LM, Zobel L, Stoddard J, Wagner J, Pasmanter N, Querubin J, Renner LM, Reynaga R, Winkler PA, Sun K, Marinho LFLP, O'Riordan CR, Frederick A, Lauer A, Tsang SH, Hauswirth WW, McGill TJ, Neuringer M, Michalakis S, Petersen-Jones SM. Development of a translatable gene augmentation therapy for CNGB1-retinitis pigmentosa. Mol Ther 2023; 31:2028-2041. [PMID: 37056049 PMCID: PMC10362398 DOI: 10.1016/j.ymthe.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023] Open
Abstract
In this study, we investigate a gene augmentation therapy candidate for the treatment of retinitis pigmentosa (RP) due to cyclic nucleotide-gated channel beta 1 (CNGB1) mutations. We use an adeno-associated virus serotype 5 with transgene under control of a novel short human rhodopsin promoter. The promoter/capsid combination drives efficient expression of a reporter gene (AAV5-RHO-eGFP) exclusively in rod photoreceptors in primate, dog, and mouse following subretinal delivery. The therapeutic vector (AAV5-RHO-CNGB1) delivered to the subretinal space of CNGB1 mutant dogs restores rod-mediated retinal function (electroretinographic responses and vision) for at least 12 months post treatment. Immunohistochemistry shows human CNGB1 is expressed in rod photoreceptors in the treated regions as well as restoration of expression and trafficking of the endogenous alpha subunit of the rod CNG channel required for normal channel formation. The treatment reverses abnormal accumulation of the second messenger, cyclic guanosine monophosphate, which occurs in rod photoreceptors of CNGB1 mutant dogs, confirming formation of a functional CNG channel. In vivo imaging shows long-term preservation of retinal structure. In conclusion, this study establishes the long-term efficacy of subretinal delivery of AAV5-RHO-CNGB1 to rescue the disease phenotype in a canine model of CNGB1-RP, confirming its suitability for future clinical development.
Collapse
Affiliation(s)
- Laurence M Occelli
- College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48864, USA
| | - Lena Zobel
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Jonathan Stoddard
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185(th) Avenue, Beaverton, OR 97005, USA
| | - Johanna Wagner
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Nathaniel Pasmanter
- College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48864, USA
| | - Janice Querubin
- College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48864, USA
| | - Lauren M Renner
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185(th) Avenue, Beaverton, OR 97005, USA
| | - Rene Reynaga
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185(th) Avenue, Beaverton, OR 97005, USA
| | - Paige A Winkler
- College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48864, USA
| | - Kelian Sun
- College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48864, USA
| | - Luis Felipe L P Marinho
- College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48864, USA
| | | | - Amy Frederick
- Genomic Medicine Unit, Sanofi, 225 Second Avenue, Waltham, MA 02451, USA
| | - Andreas Lauer
- Casey Eye Institute, Oregon Health & Science University, 515 Campus Drive, Portland, OR 97239, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Columbia Stem Cell Initiative, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Box 100284 HSC, Gainesville, FL 32610, USA
| | - Trevor J McGill
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185(th) Avenue, Beaverton, OR 97005, USA; Casey Eye Institute, Oregon Health & Science University, 515 Campus Drive, Portland, OR 97239, USA
| | - Martha Neuringer
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185(th) Avenue, Beaverton, OR 97005, USA; Casey Eye Institute, Oregon Health & Science University, 515 Campus Drive, Portland, OR 97239, USA
| | - Stylianos Michalakis
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany.
| | - Simon M Petersen-Jones
- College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48864, USA.
| |
Collapse
|
5
|
Gerhardt MJ, Petersen-Jones SM, Michalakis S. CNG channel-related retinitis pigmentosa. Vision Res 2023; 208:108232. [PMID: 37054604 PMCID: PMC10373105 DOI: 10.1016/j.visres.2023.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023]
Abstract
The genes CNGA1 and CNGB1 encode the alpha and beta subunits of the rod CNG channel, a ligand-gated cation channel whose activity is controlled by cyclic guanosine monophosphate (cGMP). Autosomal inherited mutations in either of the genes lead to a progressive rod-cone retinopathy known as retinitis pigmentosa (RP). The rod CNG channel is expressed in the plasma membrane of the outer segment and functions as a molecular switch that converts light-mediated changes in cGMP into a voltage and Ca2+ signal. Here, we will first review the molecular properties and physiological role of the rod CNG channel and then discuss the characteristics of CNG-related RP. Finally, we will summarize recent activities in the field of gene therapy aimed at developing therapies for CNG-related RP.
Collapse
Affiliation(s)
- Maximilian J Gerhardt
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstraße 8, 80336 München, Germany
| | - Simon M Petersen-Jones
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, United States
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstraße 8, 80336 München, Germany.
| |
Collapse
|
6
|
Scalabrino ML, Thapa M, Wang T, Sampath AP, Chen J, Field GD. Late gene therapy limits the restoration of retinal function in a mouse model of retinitis pigmentosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536035. [PMID: 37066264 PMCID: PMC10104154 DOI: 10.1101/2023.04.07.536035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Retinitis pigmentosa is an inherited photoreceptor degeneration that begins with rod loss followed by cone loss and eventual blindness. Gene therapies are being developed, but it is unknown how retinal function depends on the time of intervention. To uncover this dependence, we utilized a mouse model of retinitis pigmentosa capable of artificial genetic rescue. This model enables a benchmark of best-case gene therapy by removing the variables that complicate the ability to answer this vital question. Complete genetic rescue was performed at 25%, 50%, and 70% rod loss (early, mid and late, respectively). Early and mid treatment restored retinal function to near wild-type levels, specifically the sensitivity and signal fidelity of retinal ganglion cells (RGCs), the 'output' neurons of the retina. However, some anatomical defects persisted. Late treatment retinas exhibited continued, albeit slowed, loss of sensitivity and signal fidelity among RGCs, as well as persistent gliosis. We conclude that gene replacement therapies delivered after 50% rod loss are unlikely to restore visual function to normal. This is critical information for administering gene therapies to rescue vision.
Collapse
Affiliation(s)
- Miranda L Scalabrino
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles CA
- Department of Neurobiology, Duke University School of Medicine, Durham NC
| | - Mishek Thapa
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles CA
- Department of Neurobiology, Duke University School of Medicine, Durham NC
| | - Tian Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles CA
| | - Alapakkam P Sampath
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles CA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles CA
| | - Greg D Field
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles CA
- Department of Neurobiology, Duke University School of Medicine, Durham NC
| |
Collapse
|
7
|
Biology, Pathobiology and Gene Therapy of CNG Channel-Related Retinopathies. Biomedicines 2023; 11:biomedicines11020269. [PMID: 36830806 PMCID: PMC9953513 DOI: 10.3390/biomedicines11020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The visual process begins with the absorption of photons by photopigments of cone and rod photoreceptors in the retina. In this process, the signal is first amplified by a cyclic guanosine monophosphate (cGMP)-based signaling cascade and then converted into an electrical signal by cyclic nucleotide-gated (CNG) channels. CNG channels are purely ligand-gated channels whose activity can be controlled by cGMP, which induces a depolarizing Na+/Ca2+ current upon binding to the channel. Structurally, CNG channels belong to the superfamily of pore-loop cation channels and share structural similarities with hyperpolarization-activated cyclic nucleotide (HCN) and voltage-gated potassium (KCN) channels. Cone and rod photoreceptors express distinct CNG channels encoded by homologous genes. Mutations in the genes encoding the rod CNG channel (CNGA1 and CNGB1) result in retinitis-pigmentosa-type blindness. Mutations in the genes encoding the cone CNG channel (CNGA3 and CNGB3) lead to achromatopsia. Here, we review the molecular properties of CNG channels and describe their physiological and pathophysiological roles in the retina. Moreover, we summarize recent activities in the field of gene therapy aimed at developing the first gene therapies for CNG channelopathies.
Collapse
|
8
|
Inamdar SM, Lankford CK, Baker SA. Photoreceptor Ion Channels in Signaling and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:269-276. [PMID: 37440044 DOI: 10.1007/978-3-031-27681-1_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Photoreceptors (PRs) in the neural retina convert photon capture into an electrical signal that is communicated across a chemical synapse to second-order neurons in the retina and on through the rest of the visual pathway. This information is decoded in the visual cortex to create images. The activity of PRs depends on the concerted action of several voltage-gated ion channels that will be discussed in this chapter.
Collapse
Affiliation(s)
- Shivangi M Inamdar
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA.
| | - Colten K Lankford
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Sheila A Baker
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
Leroy BP, Fischer MD, Flannery JG, MacLaren RE, Dalkara D, Scholl HPN, Chung DC, Spera C, Viriato D, Banhazi J. Gene Therapy for Inherited Retinal Disease: Long-Term Durability of Effect. Ophthalmic Res 2022; 66:179-196. [PMID: 36103843 DOI: 10.1159/000526317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/27/2022] [Indexed: 12/23/2023]
Abstract
The recent approval of voretigene neparvovec (Luxturna®) for patients with biallelic RPE65 mutation-associated inherited retinal dystrophy with viable retinal cells represents an important step in the development of ocular gene therapies. Herein, we review studies investigating the episomal persistence of different recombinant adeno-associated virus (rAAV) vector genomes and the preclinical and clinical evidence of long-term effects of different RPE65 gene replacement therapies. A targeted review of articles published between 1974 and January 2021 in Medline®, Embase®, and other databases was conducted, followed by a descriptive longitudinal analysis of the clinical trial outcomes of voretigene neparvovec. Following an initial screening, 14 publications examining the episomal persistence of different rAAV genomes and 71 publications evaluating gene therapies in animal models were included. Viral genomes were found to persist for at least 22 months (longest study follow-up) as transcriptionally active episomes. Treatment effects lasting almost a decade were reported in canine disease models, with more pronounced effects the earlier the intervention. The clinical trial outcomes of voretigene neparvovec are consistent with preclinical findings and reveal sustained results for up to 7.5 years for the full-field light sensitivity threshold test and 5 years for the multi-luminance mobility test in the Phase I and Phase III trials, respectively. In conclusion, the therapeutic effect of voretigene neparvovec lasts for at least a decade in animal models and 7.5 years in human subjects. Since retinal cells can retain functionality over their lifetime after transduction, these effects may be expected to last even longer in patients with a sufficient number of outer retinal cells at the time of intervention.
Collapse
Affiliation(s)
- Bart P Leroy
- Department of Ophthalmology & Centre for Medical Genetics, Ghent University Hospital & Ghent University, Ghent, Belgium
- Division of Ophthalmology & Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
- Oxford Eye Hospital, University of Oxford NHS Foundation Trust and NIHR Oxford Biomedical Research Centre, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - John G Flannery
- School of Optometry and the Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, USA
| | - Robert E MacLaren
- Oxford Eye Hospital, University of Oxford NHS Foundation Trust and NIHR Oxford Biomedical Research Centre, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
10
|
Scalabrino ML, Thapa M, Chew LA, Zhang E, Xu J, Sampath AP, Chen J, Field GD. Robust cone-mediated signaling persists late into rod photoreceptor degeneration. eLife 2022; 11:e80271. [PMID: 36040015 PMCID: PMC9560159 DOI: 10.7554/elife.80271] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Rod photoreceptor degeneration causes deterioration in the morphology and physiology of cone photoreceptors along with changes in retinal circuits. These changes could diminish visual signaling at cone-mediated light levels, thereby limiting the efficacy of treatments such as gene therapy for rescuing normal, cone-mediated vision. However, the impact of progressive rod death on cone-mediated signaling remains unclear. To investigate the fidelity of retinal ganglion cell (RGC) signaling throughout disease progression, we used a mouse model of rod degeneration (Cngb1neo/neo). Despite clear deterioration of cone morphology with rod death, cone-mediated signaling among RGCs remained surprisingly robust: spatiotemporal receptive fields changed little and the mutual information between stimuli and spiking responses was relatively constant. This relative stability held until nearly all rods had died and cones had completely lost well-formed outer segments. Interestingly, RGC information rates were higher and more stable for natural movies than checkerboard noise as degeneration progressed. The main change in RGC responses with photoreceptor degeneration was a decrease in response gain. These results suggest that gene therapies for rod degenerative diseases are likely to prolong cone-mediated vision even if there are changes to cone morphology and density.
Collapse
Affiliation(s)
- Miranda L Scalabrino
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Mishek Thapa
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Lindsey A Chew
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Esther Zhang
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Jason Xu
- Department of Statistical Science, Duke UniversityDurhamUnited States
| | - Alapakkam P Sampath
- Jules Stein Eye Institute, University of California, Los AngelesLos AngelesUnited States
| | - Jeannie Chen
- Zilkha Neurogenetics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Greg D Field
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
11
|
The Natural History of CNGB1-Related Retinopathy: A Longitudinal Phenotypic Analysis. Int J Mol Sci 2022; 23:ijms23126785. [PMID: 35743231 PMCID: PMC9245601 DOI: 10.3390/ijms23126785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Cyclic nucleotide-gated channel β 1 (CNGB1) encodes a subunit of the rod cyclic nucleotide-gated channel. Pathogenic variants in CNGB1 are responsible for 4% of autosomal recessive retinitis pigmentosa (RP). Several treatment strategies show promise for treating inherited retinal degenerations, however relevant metrics of progression and sensitive clinical trial endpoints are needed to assess therapeutic efficacy. This study reports the natural history of CNGB1-related RP with a longitudinal phenotypic analysis of 33 molecularly-confirmed patients with a mean follow-up period of 4.5 ± 3.9 years (range 0-17). The mean best corrected visual acuity (BCVA) of the right eye was 0.31 ± 0.43 logMAR at baseline and 0.47 ± 0.63 logMAR at the final visit over the study period. The ellipsoid zone (EZ) length was measurable in at least one eye of 23 patients and had a mean rate of constriction of 178 ± 161 µm per year (range 1.0-661 µm), with 57% of patients having a decrease in EZ length of greater than 250 µm in a simulated two-year trial period. Hyperautofluorescent outer ring (hyperAF) area was measurable in 17 patients, with 10 patients not displaying a ring phenotype. The results support previous findings of CNGB1-related RP being a slowly progressive disease with patients maintaining visual acuity. Prospective deep phenotyping studies assessing multimodal retinal imaging and functional measures are now required to determine clinical endpoints to be used in a trial.
Collapse
|
12
|
Qian X, Liu H, Fu S, Lu J, Hung YT, Turner C, Gu H, Chen R. AAV8-Mediated Gene Therapy Rescues Retinal Degeneration Phenotype in a Tlcd3b Knockout Mouse Model. Invest Ophthalmol Vis Sci 2022; 63:11. [PMID: 35275174 PMCID: PMC8934561 DOI: 10.1167/iovs.63.3.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to assess the therapeutic efficacy of rAAV8-hGRK1-Tlcd3b in a Tlcd3b-/- mouse model of retinal generation and validate TLCD3B's role as a ceramide synthase in vivo. Methods Using Tlcd3b-/- mice as an inherited retinal disease animal model, we performed subretinal injection of rAAV8-hGRK1-Tlcd3b and evaluated the efficacy of gene replacement therapy. Tlcd3b-/- mice were treated at two time points: postnatal day 21 (P21) and postnatal day 120 (P120) with various dosages. Results Tlcd3b overexpression rescued retinal degeneration in the mutant mice, as indicated by significantly improved photoreceptor function and preservation of photoreceptor cells over the course of 1 year. Although Tlcd3b is expressed in all cell types in the retina, photoreceptor cell-specific expression of Tlcd3b is sufficient to rescue the phenotype, indicating the primary function of TLCD3B is in photoreceptors. Consistent with the idea that TLCD3B is a ceramide synthase, mass spectrometry analyses of the mutant retina indicate the reduction of C16-, C18-, and C20-ceramides in the retina, which are restored with Tlcd3b overexpression. Conclusions Our findings demonstrated the therapeutic efficacy of gene therapy in treating Tlcd3b mutant retina, laying the foundation for developing future therapy for TLCD3B retinopathy.
Collapse
Affiliation(s)
- Xinye Qian
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Hehe Liu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- School of Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Jiaxiong Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Yu-Ting Hung
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, United States
| | - Cassidy Turner
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, United States
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, United States
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
13
|
Das S, Popp V, Power M, Groeneveld K, Yan J, Melle C, Rogerson L, Achury M, Schwede F, Strasser T, Euler T, Paquet-Durand F, Nache V. Redefining the role of Ca 2+-permeable channels in photoreceptor degeneration using diltiazem. Cell Death Dis 2022; 13:47. [PMID: 35013127 PMCID: PMC8748460 DOI: 10.1038/s41419-021-04482-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022]
Abstract
Hereditary degeneration of photoreceptors has been linked to over-activation of Ca2+-permeable channels, excessive Ca2+-influx, and downstream activation of Ca2+-dependent calpain-type proteases. Unfortunately, after more than 20 years of pertinent research, unequivocal evidence proving significant and reproducible photoreceptor protection with Ca2+-channel blockers is still lacking. Here, we show that both D- and L-cis enantiomers of the anti-hypertensive drug diltiazem were very effective at blocking photoreceptor Ca2+-influx, most probably by blocking the pore of Ca2+-permeable channels. Yet, unexpectedly, this block neither reduced the activity of calpain-type proteases, nor did it result in photoreceptor protection. Remarkably, application of the L-cis enantiomer of diltiazem even led to a strong increase in photoreceptor cell death. These findings shed doubt on the previously proposed links between Ca2+ and retinal degeneration and are highly relevant for future therapy development as they may serve to refocus research efforts towards alternative, Ca2+-independent degenerative mechanisms.
Collapse
Affiliation(s)
- Soumyaparna Das
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Valerie Popp
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Michael Power
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076, Tübingen, Germany
| | - Kathrin Groeneveld
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany.,Biomolecular Photonics Group, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Jie Yan
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Christian Melle
- Biomolecular Photonics Group, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Luke Rogerson
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076, Tübingen, Germany
| | - Marlly Achury
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Frank Schwede
- BIOLOG Life Science Institute GmbH & Co KG, 28199, Bremen, Germany
| | - Torsten Strasser
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076, Tübingen, Germany
| | | | - Vasilica Nache
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
14
|
Wu S, Mao Y, Liu Q, Yan X, Zhang J, Wang N. Sustained Release of Gas6 via mPEG-PLGA Nanoparticles Enhances the Therapeutic Effects of MERTK Gene Therapy in RCS Rats. Front Med (Lausanne) 2022; 8:794299. [PMID: 34970569 PMCID: PMC8712650 DOI: 10.3389/fmed.2021.794299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Previous researches utilizing MER proto-oncogene tyrosine kinase (MERTK) gene therapy in Royal College of Surgeons (RCS) rats evidenced its effectiveness in treating MERTK-associated retinitis pigmentosa (RP). Specific ligands for receptor tyrosine kinases, such as growth arrest-specific 6 (Gas6), may enhance retinal phagocytosis via the MERTK receptor, and consequently, enhance the therapeutic effects of gene therapy. In order to overcome the short life effect of the injected Gas6 protein, we constructed a Gas6 loaded methoxy-poly (ethylene glyeol)-poly (lactic-co-glycolic acid) (mPEG-PLGA) nanoparticles (Gas6 NPs) system which allowed for localized and sustained Gas6 protein release, and therefore, a prolonged biological effect. Our data demonstrated that Gas6 protein release from Gas6 NPs preserved the bioactivity and promoted retinal pigment epithelium (RPE) phagocytosis in vitro. In vivo studies showed that RCS rats in the hMERTK/Gas6 NPs group exhibiting the highest electroretinogram responses and more complete retinal structure than that in other groups, further demonstrating that the co-administration of AAV2-BEST1-hMERTK and Gas6 NPs could protect photoreceptors from degeneration. These findings strongly suggest that Gas6 NPs are a promising method to enable the sustained release of Gas6 protein and could therefore enhance the therapeutic effects of gene therapy for MERTK-associated RP.
Collapse
Affiliation(s)
- Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yingyan Mao
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Tongren Hospital, Beihang University, Capital Medical University, Beijing, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xuejing Yan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Tongren Hospital, Beihang University, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Tongren Hospital, Beihang University, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Wagner JE, Zobel L, Gerhardt MJ, O'Riordan CR, Frederick A, Petersen-Jones SM, Biel M, Michalakis S. In vivo potency testing of subretinal rAAV5.hCNGB1 gene therapy in the Cngb1 knockout mouse model of retinitis pigmentosa. Hum Gene Ther 2021; 32:1158-1170. [PMID: 34376057 DOI: 10.1089/hum.2021.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinitis pigmentosa type 45 (RP45) is an autosomal-recessively inherited blinding disease caused by mutations in the cyclic nucleotide gated channel subunit beta 1 (CNGB1) gene. In this study, we developed and tested a novel gene supplementation therapy suitable for clinical translation. To this end, we designed a recombinant adeno-associated virus (rAAV) vector carrying a genome that features a novel human rhodopsin promoter (hRHO194) driving rod-specific expression of full-length human CNGB1 (rAAV5.hCNGB1). rAAV5.hCNGB1 was evaluated for efficacy in the Cngb1 knockout (Cngb1-/-) mouse model of RP45. In particular, increasing doses of rAAV5.hCNGB1 were delivered via single subretinal injection in 4-week-old Cngb1-/- mice and the treatment effect was assessed over a follow-up period of 9 months at the level of (i) retinal morphology, (ii) retinal function, (iii) vision-guided behavior, and (iv) transgene expression. We found that subretinal treatment with rAAV5.hCNGB1 resulted in efficient expression of the human CNGB1 protein in mouse rods and was able to normalize the expression of the endogenous mouse CNGA1 subunit, which together with CNGB1 forms the native heterotetrameric cGMP-gated cation channel in rod photoreceptors. The treatment led to a dose-dependent recovery of rod photoreceptor-driven function and preservation of retinal morphology in Cngb1-/- mice. In summary, these results demonstrate the efficacy of hCNGB1 gene supplementation therapy in the Cngb1-/- mouse model of RP45 and support the translation of this approach towards future clinical application.
Collapse
Affiliation(s)
- Johanna E Wagner
- Ludwig-Maximilians-Universität München, 9183, Department of Pharmacy - Center for Drug Research, Munich, Bayern, Germany;
| | - Lena Zobel
- Ludwig-Maximilians-Universität München, 9183, Department of Pharmacy - Center for Drug Research, Munich, Bayern, Germany.,Ludwig-Maximilians-Universität München, 9183, University Hospital - Department of Ophthalmology, Munich, Bayern, Germany;
| | - Maximilian Joachim Gerhardt
- Ludwig-Maximilians-Universität München, 9183, University Hospital - Department of Ophthalmology, Munich, Bayern, Germany;
| | - Catherine R O'Riordan
- Sanofi Genzyme, 2194, Gene Therapy, Rare Diseases, Framingham, Massachusetts, United States; Catherine.O'
| | - Amy Frederick
- Sanofi Genzyme, 2194, Gene Therapy, Rare Diseases, Framingham, Massachusetts, United States;
| | - Simon M Petersen-Jones
- Michigan State University, Veterinary Medical Center, East Lansing, Michigan, United States;
| | - Martin Biel
- Ludwig-Maximilians-Universität München, 9183, Department of Pharmacy - Center for Drug Research, Munich, Bayern, Germany;
| | - Stylianos Michalakis
- Ludwig-Maximilians-Universität München, 9183, Department of Pharmacy - Center for Drug Research, Munich, Bayern, Germany.,Ludwig-Maximilians-Universität München, 9183, University Hospital - Department of Ophthalmology, Munich, Bayern, Germany;
| |
Collapse
|
16
|
Nassisi M, Smirnov VM, Solis Hernandez C, Mohand‐Saïd S, Condroyer C, Antonio A, Kühlewein L, Kempf M, Kohl S, Wissinger B, Nasser F, Ragi SD, Wang N, Sparrow JR, Greenstein VC, Michalakis S, Mahroo OA, Ba‐Abbad R, Michaelides M, Webster AR, Degli Esposti S, Saffren B, Capasso J, Levin A, Hauswirth WW, Dhaenens C, Defoort‐Dhellemmes S, Tsang SH, Zrenner E, Sahel J, Petersen‐Jones SM, Zeitz C, Audo I. CNGB1-related rod-cone dystrophy: A mutation review and update. Hum Mutat 2021; 42:641-666. [PMID: 33847019 PMCID: PMC8218941 DOI: 10.1002/humu.24205] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022]
Abstract
Cyclic nucleotide-gated channel β1 (CNGB1) encodes the 240-kDa β subunit of the rod photoreceptor cyclic nucleotide-gated ion channel. Disease-causing sequence variants in CNGB1 lead to autosomal recessive rod-cone dystrophy/retinitis pigmentosa (RP). We herein present a comprehensive review and analysis of all previously reported CNGB1 sequence variants, and add 22 novel variants, thereby enlarging the spectrum to 84 variants in total, including 24 missense variants (two of which may also affect splicing), 21 nonsense, 19 splicing defects (7 at noncanonical positions), 10 small deletions, 1 small insertion, 1 small insertion-deletion, 7 small duplications, and 1 gross deletion. According to the American College of Medical Genetics and Genomics classification criteria, 59 variants were considered pathogenic or likely pathogenic and 25 were variants of uncertain significance. In addition, we provide further phenotypic data from 34 CNGB1-related RP cases, which, overall, are in line with previous findings suggesting that this form of RP has long-term retention of useful central vision despite the early onset of night blindness, which is valuable for patient counseling, but also has implications for it being considered a priority target for gene therapy trials.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
- Ophthalmological Unit, Fondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Vasily M. Smirnov
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Exploration de la vision et Neuro‐Ophthalmologie, CHU de LilleLilleFrance
- Faculté de MédecineUniversité de LilleLilleFrance
| | - Cyntia Solis Hernandez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Saddek Mohand‐Saïd
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
| | - Christel Condroyer
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Aline Antonio
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Laura Kühlewein
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Melanie Kempf
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Fadi Nasser
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Sara D. Ragi
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
| | - Nan‐Kai Wang
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Ophthalmology, Chang Gung Memorial HospitalLinkou Medical CenterTaoyuanTaiwan
| | - Janet R. Sparrow
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
| | | | | | - Omar A. Mahroo
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Rola Ba‐Abbad
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Michel Michaelides
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Andrew R. Webster
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Simona Degli Esposti
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Brooke Saffren
- Philadelphia College of Osteopathic MedicinePhiladelphiaPennsylvaniaUSA
| | | | - Alex Levin
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, Pediatric Genetics, Golisano Children's HospitalUniversity of RochesterRochesterNew YorkUSA
| | | | - Claire‐Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, U1172‐LilNCog‐Lille Neuroscience & CognitionLilleFrance
| | | | - Stephen H. Tsang
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma LaboratoryNew YorkNew YorkUSA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Stem Cell Initiative (CSCI), Institute of Human Nutrition, Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Eberhart Zrenner
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Jose‐Alain Sahel
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Department of OphthalmologyThe University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Fondation Ophtalmologique Adolphe de RothschildParisFrance
| | - Simon M. Petersen‐Jones
- Department of Small Animal Clinical SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Christina Zeitz
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Isabelle Audo
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
- University College London Institute of OphthalmologyLondonUK
| |
Collapse
|
17
|
Riedmayr LM, Böhm S, Biel M, Becirovic E. Enigmatic rhodopsin mutation creates an exceptionally strong splice acceptor site. Hum Mol Genet 2020; 29:295-304. [PMID: 31816042 DOI: 10.1093/hmg/ddz291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 01/16/2023] Open
Abstract
The c.620 T > G mutation in rhodopsin found in the first mapped autosomal dominant retinitis pigmentosa (adRP) locus is associated with severe, early-onset RP. Intriguingly, another mutation affecting the same nucleotide (c.620 T > A) is related to a mild, late-onset RP. Assuming that both mutations are missense mutations (Met207Arg and Met207Lys) hampering the ligand-binding pocket, previous work addressed how they might differentially impair rhodopsin function. Here, we investigated the impact of both mutations at the mRNA and protein level in HEK293 cells and in the mouse retina. We show that, in contrast to c.620 T > A, c.620 T > G is a splicing mutation, which generates an exceptionally strong splice acceptor site (SAS) resulting in a 90 bp in-frame deletion and protein mislocalization in vitro and in vivo. Moreover, we identified the core element underlying the c.620 T > G SAS strength. Finally, we demonstrate that the c.620 T > G SAS is very flexible in branch point choice, which might explain its remarkable performance. Based on these results, we suggest that (i) point mutations should be routinely tested for mRNA splicing to avoid dispensable analysis of mutations on protein level, which do not naturally exist. (ii) Puzzling disease courses of mutations in other genes might also correlate with their effects on mRNA splicing. (iii) Flexibility in branch point choice might be another factor influencing the SAS strength. (iv) The core splice element identified in this study could be useful for biotechnological applications requiring effective SAS.
Collapse
Affiliation(s)
- Lisa M Riedmayr
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sybille Böhm
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
18
|
Sensing through Non-Sensing Ocular Ion Channels. Int J Mol Sci 2020; 21:ijms21186925. [PMID: 32967234 PMCID: PMC7554890 DOI: 10.3390/ijms21186925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. In the eye, ion channels are involved in various physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to an array of blindness, termed ocular channelopathies. These mutations result in either a loss- or gain-of channel functions affecting the structure, assembly, trafficking, and localization of channel proteins. A dominant-negative effect is caused in a few channels formed by the assembly of several subunits that exist as homo- or heteromeric proteins. Here, we review the role of different mutations in switching a “sensing” ion channel to “non-sensing,” leading to ocular channelopathies like Leber’s congenital amaurosis 16 (LCA16), cone dystrophy, congenital stationary night blindness (CSNB), achromatopsia, bestrophinopathies, retinitis pigmentosa, etc. We also discuss the various in vitro and in vivo disease models available to investigate the impact of mutations on channel properties, to dissect the disease mechanism, and understand the pathophysiology. Innovating the potential pharmacological and therapeutic approaches and their efficient delivery to the eye for reversing a “non-sensing” channel to “sensing” would be life-changing.
Collapse
|
19
|
Panagiotopoulos AL, Karguth N, Pavlou M, Böhm S, Gasparoni G, Walter J, Graf A, Blum H, Biel M, Riedmayr LM, Becirovic E. Antisense Oligonucleotide- and CRISPR-Cas9-Mediated Rescue of mRNA Splicing for a Deep Intronic CLRN1 Mutation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1050-1061. [PMID: 32841912 PMCID: PMC7452116 DOI: 10.1016/j.omtn.2020.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/23/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
Mutations in CLRN1 cause Usher syndrome (USH) type III (USH3A), a disease characterized by progressive hearing impairment, retinitis pigmentosa, and vestibular dysfunction. Due to the lack of appropriate disease models, no efficient therapy for retinitis pigmentosa in USH patients exists so far. In addition, given the yet undefined functional role and expression of the different CLRN1 splice isoforms in the retina, non-causative therapies such as gene supplementation are unsuitable at this stage. In this study, we focused on the recently identified deep intronic c.254-649T>G CLRN1 splicing mutation and aimed to establish two causative treatment approaches: CRISPR-Cas9-mediated excision of the mutated intronic region and antisense oligonucleotide (AON)-mediated correction of mRNA splicing. The therapeutic potential of these approaches was validated in different cell types transiently or stably expressing CLRN1 minigenes. Both approaches led to substantial correction of the splice defect. Surprisingly, however, no synergistic effect was detected when combining both methods. Finally, the injection of naked AONs into mice expressing the mutant CLRN1 minigene in the retina also led to a significant splice rescue. We propose that both AONs and CRISPR-Cas9 are suitable strategies to initiate advanced preclinical studies for treatment of USH3A patients.
Collapse
Affiliation(s)
- Anna-Lena Panagiotopoulos
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nina Karguth
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marina Pavlou
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Ophthalmology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sybille Böhm
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gilles Gasparoni
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Alexander Graf
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Blum
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lisa Maria Riedmayr
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
20
|
Böhm S, Splith V, Riedmayr LM, Rötzer RD, Gasparoni G, Nordström KJV, Wagner JE, Hinrichsmeyer KS, Walter J, Wahl-Schott C, Fenske S, Biel M, Michalakis S, Becirovic E. A gene therapy for inherited blindness using dCas9-VPR-mediated transcriptional activation. SCIENCE ADVANCES 2020; 6:eaba5614. [PMID: 32875106 PMCID: PMC7438099 DOI: 10.1126/sciadv.aba5614] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/08/2020] [Indexed: 05/08/2023]
Abstract
Catalytically inactive dCas9 fused to transcriptional activators (dCas9-VPR) enables activation of silent genes. Many disease genes have counterparts, which serve similar functions but are expressed in distinct cell types. One attractive option to compensate for the missing function of a defective gene could be to transcriptionally activate its functionally equivalent counterpart via dCas9-VPR. Key challenges of this approach include the delivery of dCas9-VPR, activation efficiency, long-term expression of the target gene, and adverse effects in vivo. Using dual adeno-associated viral vectors expressing split dCas9-VPR, we show efficient transcriptional activation and long-term expression of cone photoreceptor-specific M-opsin (Opn1mw) in a rhodopsin-deficient mouse model for retinitis pigmentosa. One year after treatment, this approach yields improved retinal function and attenuated retinal degeneration with no apparent adverse effects. Our study demonstrates that dCas9-VPR-mediated transcriptional activation of functionally equivalent genes has great potential for the treatment of genetic disorders.
Collapse
Affiliation(s)
- Sybille Böhm
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Victoria Splith
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lisa Maria Riedmayr
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - René Dominik Rötzer
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gilles Gasparoni
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | | | - Johanna Elisabeth Wagner
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Klara Sonnie Hinrichsmeyer
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jörn Walter
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | | | - Stefanie Fenske
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Ophthalmology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich CIPSM, Munich, Germany
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
21
|
Dan H, Huang X, Xing Y, Shen Y. Application of targeted panel sequencing and whole exome sequencing for 76 Chinese families with retinitis pigmentosa. Mol Genet Genomic Med 2020; 8:e1131. [PMID: 31960602 PMCID: PMC7057118 DOI: 10.1002/mgg3.1131] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 11/28/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This study aimed to identify the gene variants and molecular etiologies in 76 unrelated Chinese families with retinitis pigmentosa (RP). METHODS In total, 76 families with syndromic or nonsyndromic RP, diagnosed on the basis of clinical manifestations, were recruited for this study. Genomic DNA samples from probands were analyzed by targeted panels or whole exome sequencing. Bioinformatics analysis, Sanger sequencing, and available family member segregation were used to validate sequencing data and confirm the identities of disease-causing genes. RESULTS The participants enrolled in the study included 62 families that exhibited nonsyndromic RP, 13 that exhibited Usher syndrome, and one that exhibited Bardet-Biedl syndrome. We found that 43 families (56.6%) had disease-causing variants in 15 genes, including RHO, PRPF31, USH2A, CLRN1, BBS2, CYP4V2, EYS, RPE65, CNGA1, CNGB1, PDE6B, MERTK, RP1, RP2, and RPGR; moreover, 12 families (15.8%) had only one heterozygous variant in seven autosomal recessive RP genes, including USH2A, EYS, CLRN1, CERKL, RP1, CRB1, and SLC7A14. We did not detect any variants in the remaining 21 families (27.6%). We also identified 67 potential pathogenic gene variants, of which 24 were novel. CONCLUSION The gene variants identified in this study expand the variant frequency and spectrum of RP genes; moreover, the identification of these variants supplies foundational clues for future RP diagnosis and therapy.
Collapse
Affiliation(s)
- Handong Dan
- Eye CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xin Huang
- Eye CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yiqiao Xing
- Eye CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yin Shen
- Eye CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
22
|
Santos‐Ferreira T, Herbig M, Otto O, Carido M, Karl MO, Michalakis S, Guck J, Ader M. Morpho-Rheological Fingerprinting of Rod Photoreceptors Using Real-Time Deformability Cytometry. Cytometry A 2019; 95:1145-1157. [PMID: 31107590 PMCID: PMC6900160 DOI: 10.1002/cyto.a.23798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
Distinct cell-types within the retina are mainly specified by morphological and molecular parameters, however, physical properties are increasingly recognized as a valuable tool to characterize and distinguish cells in diverse tissues. High-throughput analysis of morpho-rheological features has recently been introduced using real-time deformability cytometry (RT-DC) providing new insights into the properties of different cell-types. Rod photoreceptors represent the main light sensing cells in the mouse retina that during development forms apically the densely packed outer nuclear layer. Currently, enrichment and isolation of photoreceptors from retinal primary tissue or pluripotent stem cell-derived organoids for analysis, molecular profiling, or transplantation is achieved using flow cytometry or magnetic activated cell sorting approaches. However, such purification methods require genetic modification or identification of cell surface binding antibody panels. Using primary retina and embryonic stem cell-derived retinal organoids, we characterized the inherent morpho-mechanical properties of mouse rod photoreceptors during development based on RT-DC. We demonstrate that rods become smaller and more compliant throughout development and that these features are suitable to distinguish rods within heterogenous retinal tissues. Hence, physical properties should be considered as additional factors that might affect photoreceptor differentiation and retinal development besides representing potential parameters for label-free sorting of photoreceptors. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Tiago Santos‐Ferreira
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Maik Herbig
- Biotechnology Center, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Oliver Otto
- Biotechnology Center, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
- Centre for Innovation Competence: Humoral Immune Reactions in Cardiovascular Diseases (HIKE)University of GreifswaldGreifswaldGermany
| | - Madalena Carido
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Mike O. Karl
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
- German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CiPSM), Department of Pharmacy—Center for Drug ResearchLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| |
Collapse
|
23
|
Activation of Rod Input in a Model of Retinal Degeneration Reverses Retinal Remodeling and Induces Formation of Functional Synapses and Recovery of Visual Signaling in the Adult Retina. J Neurosci 2019; 39:6798-6810. [PMID: 31285302 DOI: 10.1523/jneurosci.2902-18.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022] Open
Abstract
A major cause of human blindness is the death of rod photoreceptors. As rods degenerate, synaptic structures between rod and rod bipolar cells disappear and the rod bipolar cells extend their dendrites and occasionally make aberrant contacts. Such changes are broadly observed in blinding disorders caused by photoreceptor cell death and are thought to occur in response to deafferentation. How the remodeled retinal circuit affects visual processing following rod rescue is not known. To address this question, we generated male and female transgenic mice wherein a disrupted cGMP-gated channel (CNG) gene can be repaired at the endogenous locus and at different stages of degeneration by tamoxifen-inducible cre-mediated recombination. In normal rods, light-induced closure of CNG channels leads to hyperpolarization of the cell, reducing neurotransmitter release at the synapse. Similarly, rods lacking CNG channels exhibit a resting membrane potential that was ~10 mV hyperpolarized compared to WT rods, indicating diminished glutamate release. Retinas from these mice undergo stereotypic retinal remodeling as a consequence of rod malfunction and degeneration. Upon tamoxifen-induced expression of CNG channels, rods recovered their structure and exhibited normal light responses. Moreover, we show that the adult mouse retina displays a surprising degree of plasticity upon activation of rod input. Wayward bipolar cell dendrites establish contact with rods to support normal synaptic transmission, which is propagated to the retinal ganglion cells. These findings demonstrate remarkable plasticity extending beyond the developmental period and support efforts to repair or replace defective rods in patients blinded by rod degeneration.SIGNIFICANCE STATEMENT Current strategies for treatment of neurodegenerative disorders are focused on the repair of the primary affected cell type. However, the defective neurons function within a complex neural circuitry, which also becomes degraded during disease. It is not known whether rescued neurons and the remodeled circuit will establish communication to regain normal function. We show that the adult mammalian neural retina exhibits a surprising degree of plasticity following rescue of rod photoreceptors. The wayward dendrites of rod bipolar cells re-establish contact with rods to support normal synaptic transmission, which is propagated to the retinal ganglion cells. These findings support efforts to repair or replace defective rods in patients blinded by rod cell loss.
Collapse
|
24
|
Masi A, Narducci R, Mannaioni G. Harnessing ionic mechanisms to achieve disease modification in neurodegenerative disorders. Pharmacol Res 2019; 147:104343. [PMID: 31279830 DOI: 10.1016/j.phrs.2019.104343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Abstract
Progressive neuronal death is the key pathogenic event leading to clinical symptoms in neurodegenerative disorders (NDDs). Neuroprotective treatments are virtually unavailable, partly because of the marked internal heterogeneity of the mechanisms underlying pathology. Targeted neuroprotection would require deep mechanistic knowledge across the entire aetiological spectrum of each NDD and the development of tailored treatments. Although ideal, this strategy appears challenging, as it would require a degree of characterization of both the disease and the patient that is currently unavailable. The alternate strategy is to search for commonalities across molecularly distinct NDD forms and exploit these for the development of drugs with broad-spectrum efficacy. In this view, mounting evidence points to ionic mechanisms (IMs) as targets with potential therapeutic efficacy across distinct NDD subtypes. The scope of this review is to present clinical and preclinical evidence supporting the link between disruption of IMs and neuronal death in specific NDDs and to critically revise past and ongoing attempts of harnessing IMs for the development of neuroprotective treatments.
Collapse
Affiliation(s)
- A Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy; School of Pharmacy, University of Camerino, Camerino, Italy.
| | - R Narducci
- Italian Institute of Technology (IIT), Department of Neuroscience and Brain Technologies, Genova, Italy
| | - G Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy; Toxicology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
25
|
Laird JG, Gardner SH, Kopel AJ, Kerov V, Lee A, Baker SA. Rescue of Rod Synapses by Induction of Cav Alpha 1F in the Mature Cav1.4 Knock-Out Mouse Retina. Invest Ophthalmol Vis Sci 2019; 60:3150-3161. [PMID: 31335952 PMCID: PMC6656410 DOI: 10.1167/iovs.19-27226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2019] [Indexed: 01/10/2023] Open
Abstract
Purpose Cav1.4 is a voltage-gated calcium channel clustered at the presynaptic active zones of photoreceptors. Cav1.4 functions in communication by mediating the Ca2+ influx that triggers neurotransmitter release. It also aids in development since rod ribbon synapses do not form in Cav1.4 knock-out mice. Here we used a rescue strategy to investigate the ability of Cav1.4 to trigger synaptogenesis in both immature and mature mouse rods. Methods In vivo electroporation was used to transiently express Cav α1F or tamoxifen-inducible Cav α1F in a subset of Cav1.4 knock-out mouse rods. Synaptogenesis was assayed using morphologic markers and a vision-guided water maze. Results We found that introduction of Cav α1F to knock-out terminals rescued synaptic development as indicated by PSD-95 expression and elongated ribbons. When expression of Cav α1F was induced in mature animals, we again found restoration of PSD-95 and elongated ribbons. However, the induced expression of Cav α1F led to diffuse distribution of Cav α1F in the terminal instead of being clustered beneath the ribbon. Approximately a quarter of treated animals passed the water maze test, suggesting the rescue of retinal signaling in these mice. Conclusions These data confirm that Cav α1F expression is necessary for rod synaptic terminal development and demonstrate that rescue is robust even in adult animals with late stages of synaptic disease. The degree of rod synaptic plasticity seen here should be sufficient to support future vision-restoring treatments such as gene or cell replacement that will require photoreceptor synaptic rewiring.
Collapse
Affiliation(s)
- Joseph G. Laird
- Department of Biochemistry, University of Iowa, Iowa City, United States
| | - Sarah H. Gardner
- Department of Biochemistry, University of Iowa, Iowa City, United States
| | - Ariel J. Kopel
- Department of Biochemistry, University of Iowa, Iowa City, United States
| | - Vasily Kerov
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Amy Lee
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
- Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, United States
- Department of Neurology, University of Iowa, Iowa City, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, United States
| | - Sheila A. Baker
- Department of Biochemistry, University of Iowa, Iowa City, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, United States
- Ophthalmology and Visual Sciences and the Institute for Vision Research, University of Iowa, Iowa City, United States
| |
Collapse
|
26
|
Abstract
Retinal gene therapy has yet to achieve sustained rescue after disease onset - perhaps because transduction efficiency is insufficient ("too little") and/or the disease is too advanced ("too late") in humans. To test the latter hypothesis, we used a mouse model for retinitis pigmentosa (RP) that allowed us to restore the mutant gene in all diseased rod photoreceptor cells, thereby generating optimally treated retinas. We then treated mice at an advanced disease stage and analyzed the rescue. We showed stable, sustained rescue of photoreceptor structure and function for at least 1 year, demonstrating gene therapy efficacy after onset of degeneration. The results suggest that RP patients are treatable, even when the therapy is administered at late disease stages.
Collapse
|
27
|
Hammelmann V, Stieglitz MS, Hülle H, Le Meur K, Kass J, Brümmer M, Gruner C, Rötzer RD, Fenske S, Hartmann J, Zott B, Lüthi A, Spahn S, Moser M, Isbrandt D, Ludwig A, Konnerth A, Wahl-Schott C, Biel M. Abolishing cAMP sensitivity in HCN2 pacemaker channels induces generalized seizures. JCI Insight 2019; 4:126418. [PMID: 31045576 DOI: 10.1172/jci.insight.126418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually gated channels that are operated by voltage and by neurotransmitters via the cAMP system. cAMP-dependent HCN regulation has been proposed to play a key role in regulating circuit behavior in the thalamus. By analyzing a knockin mouse model (HCN2EA), in which binding of cAMP to HCN2 was abolished by 2 amino acid exchanges (R591E, T592A), we found that cAMP gating of HCN2 is essential for regulating the transition between the burst and tonic modes of firing in thalamic dorsal-lateral geniculate (dLGN) and ventrobasal (VB) nuclei. HCN2EA mice display impaired visual learning, generalized seizures of thalamic origin, and altered NREM sleep properties. VB-specific deletion of HCN2, but not of HCN4, also induced these generalized seizures of the absence type, corroborating a key role of HCN2 in this particular nucleus for controlling consciousness. Together, our data define distinct pathological phenotypes resulting from the loss of cAMP-mediated gating of a neuronal HCN channel.
Collapse
Affiliation(s)
- Verena Hammelmann
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marc Sebastian Stieglitz
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Henrik Hülle
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karim Le Meur
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jennifer Kass
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Manuela Brümmer
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Gruner
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - René Dominik Rötzer
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie Fenske
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jana Hartmann
- Institute of Neuroscience, Technical University of Munich, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM), Munich, Germany
| | - Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM), Munich, Germany
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Saskia Spahn
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Moser
- Department for Molecular Medicine, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | - Dirk Isbrandt
- DZNE Research Group, Experimental Neurophysiology, Institute for Molecular and Behavioral Neuroscience, University of Cologne, Germany
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM), Munich, Germany
| | - Christian Wahl-Schott
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Institut für Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
28
|
Dysli C, Schuerch K, Escher P, Wolf S, Zinkernagel MS. Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 59:1769-1778. [PMID: 29610860 DOI: 10.1167/iovs.17-23336] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigated whether fundus autofluorescence (FAF) lifetimes in patients with retinitis pigmentosa display a disease-specific lifetime pattern. Methods Fundus autofluorescence lifetime imaging ophthalmoscopy (FLIO) was performed in two spectral channels (498-560 and 560-720 nm) after excitation with a 473 nm pulsed laser in patients with retinitis pigmentosa and compared to healthy controls of a similar age range. Corresponding FAF intensity and spectral domain optical coherence tomography (OCT) data, as well as best corrected visual acuity (BCVA) were acquired and compared to fluorescence lifetime data. Results We investigated 43 eyes from 43 patients with retinitis pigmentosa (mean age 45 ± 15 years) and compared them to eyes of 13 age-matched healthy participants. Mean FAF lifetimes were prolonged in areas of photoreceptor atrophy with preserved retinal pigment epithelium (RPE) (P = 0.0036) and even longer in areas with total atrophy of photoreceptors and RPE (P = 0.0002). The prevalence of perifoveal ring structures characterized by prolonged fluorescence lifetimes in FLIO was higher (63% vs. 49%) and the rings were wider compared to the hyperautofluorescent rings in qualitative fundus autofluorescence intensity images. In the central fovea with intact retinal layer structure identified by OCT, fluorescence lifetimes were slightly prolonged compared to those of age-matched healthy controls (short spectral channel [SSC], P = 0.0044; long spectral channel [LSC], P = 0.0128). Short lifetimes within the macular center were negatively correlated with BCVA (R2 = 0.33, P < 0.0001) as well as the greatest diameter of the ellipsoid band in OCT. Conclusions FLIO in retinitis pigmentosa reveals characteristic patterns that allow identification of areas of photoreceptor atrophy, RPE atrophy, and remaining photoreceptor segments in areas of RPE atrophy. Fluorescence lifetimes can be used to identify ellipsoid zone loss that correlates with functional parameters.
Collapse
Affiliation(s)
- Chantal Dysli
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Kaspar Schuerch
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Pascal Escher
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Mühlfriedel R, Michalakis S, Garrido MG, Sothilingam V, Schön C, Biel M, Seeliger MW. Optimized Subretinal Injection Technique for Gene Therapy Approaches. Methods Mol Biol 2019; 1834:405-412. [PMID: 30324458 DOI: 10.1007/978-1-4939-8669-9_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gene therapy for inherited eye diseases requires local viral vector delivery by intraocular injection. Since large animal models are lacking for most of these diseases, genetically modified mouse models are commonly used in preclinical proof-of-concept studies. However, because of the relatively small mouse eye, adverse effects of the subretinal delivery procedure itself may interfere with the therapeutic outcome. The method described here aims to provide the details relevant to perform a transscleral pars plana virus-mediated gene transfer to achieve an optimized therapeutic effect in the small mouse eye.
Collapse
Affiliation(s)
- Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - Stylianos Michalakis
- Department of Pharmacy-Center for Drug Research, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christian Schön
- Department of Pharmacy-Center for Drug Research, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Biel
- Department of Pharmacy-Center for Drug Research, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Zaneveld SA, Eblimit A, Liang Q, Bertrand R, Wu N, Liu H, Nguyen Q, Zaneveld J, Wang K, Li Y, Chen R. Gene Therapy Rescues Retinal Degeneration in Receptor Expression-Enhancing Protein 6 Mutant Mice. Hum Gene Ther 2018; 30:302-315. [PMID: 30101608 PMCID: PMC6437630 DOI: 10.1089/hum.2018.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hereditary retinal dystrophy is clinically defined as a broad group of chronic and progressive disorders that affect visual function by causing photoreceptor degeneration. Previously, we identified mutations in the gene encoding receptor expression-enhancing protein 6 (REEP6), in individuals with autosomal recessive retinitis pigmentosa (RP), the most common form of inherited retinal dystrophy. One individual was molecularly diagnosed with biallelic REEP6 mutations, a missense mutation over a frameshift mutation. In this study, we generated Reep6 compound heterozygous mice, Reep6L135P/-, which mimic the patient genotype and recapitulate the early-onset retinal degeneration phenotypes observed in the individual with RP. To determine the feasibility of rescuing the Reep6 mutant phenotype via gene replacement therapy, we delivered Reep6.1, the mouse retina-specific isoform of REEP6, to photoreceptors of Reep6 mutant mice on postnatal day 20. Evaluation of the therapeutic effects 2 months posttreatment showed improvements in the photoresponse as well as preservation of photoreceptor cells. Importantly, guanylyl cyclase 1 (GC1) expression was also restored to the outer segment after treatment. Furthermore, rAAV8-Reep6.1 single treatment in Reep6 mutant mice 1 year postinjection showed significant improvements in retinal function and morphology, suggesting that the treatment is effective even after a prolonged period. Findings from this study show that gene replacement therapy in the retina with rAAV overexpressing Reep6 is effective, preserving photoreceptor function in Reep6 mutant mice. These findings provide evidence that rAAV8-based gene therapy can prolong survival of photoreceptors in vivo and can be potentially used as a therapeutic modality for treatment of patients with RP.
Collapse
Affiliation(s)
- Smriti Agrawal Zaneveld
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Aiden Eblimit
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Qingnan Liang
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,3 Department of Biochemistry, Baylor College of Medicine, Houston, TX
| | - Renae Bertrand
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,3 Department of Biochemistry, Baylor College of Medicine, Houston, TX
| | - Nathaniel Wu
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Hehe Liu
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Quynh Nguyen
- 3 Department of Biochemistry, Baylor College of Medicine, Houston, TX
| | - Jacques Zaneveld
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Keqing Wang
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yumei Li
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Rui Chen
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
31
|
Wang T, Reingruber J, Woodruff ML, Majumder A, Camarena A, Artemyev NO, Fain GL, Chen J. The PDE6 mutation in the rd10 retinal degeneration mouse model causes protein mislocalization and instability and promotes cell death through increased ion influx. J Biol Chem 2018; 293:15332-15346. [PMID: 30126843 DOI: 10.1074/jbc.ra118.004459] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
The retinal degeneration model rd10 contains a missense mutation of the catalytic PDE6 β subunit, which hydrolyzes cGMP in response to light. This model produces cell death more slowly than others caused by PDE6 loss of function, making it of particular interest for studying potential therapeutics. We used morphology, biochemistry, and single-cell physiology to examine the mechanism of rd10 degeneration. Our results show that the mutation produces no alteration of Pde6b RNA but does dramatically decrease maximal and basal PDE6 activity, apparently caused by a decrease in protein stability and transport. The enzymatic properties of the remaining mutant PDE6 appear to be nearly normal. We demonstrate that an increase in free cGMP, which would result from decreased PDE6 activity and serve to increase opening of the cGMP-gated channels and calcium influx, is an underlying cause of cell death: degeneration of rd10/Cngb1 -/- double mutants is slower than the parent rd10 line. Paradoxically, degeneration in rd10/Cngb1 -/- is also slower than in Cngb1 -/- This rescue is correlated with a lowering of cGMP content in Cngb1 -/- retinas and suggests that it may be caused by mislocalization of active PDE6. Single-cell recordings from rd10 rods show that the rates of rise and decay of the response are significantly slower; simulations indicate that these changes are primarily the result of the decrease in PDE6 concentration and rod collecting area. Together, these results provide insights into the complex mechanisms that underlie rd10-mediated retinal degeneration and a cautionary note for analysis of therapeutic interventions.
Collapse
Affiliation(s)
- Tian Wang
- From the Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-2821
| | - Jürgen Reingruber
- the Institut de Biologie, Group of Computational Biology and Applied Mathematics, École Normale Supérieure, 75005 Paris, France
| | - Michael L Woodruff
- the Department of Integrative Biology and Physiology, UCLA, Los Angeles, California 90095-1606
| | - Anurima Majumder
- the Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, and
| | - Andres Camarena
- From the Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-2821
| | - Nikolai O Artemyev
- the Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, and
| | - Gordon L Fain
- the Department of Integrative Biology and Physiology, UCLA, Los Angeles, California 90095-1606.,the Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-7000
| | - Jeannie Chen
- From the Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-2821,
| |
Collapse
|
32
|
Falk N, Kessler K, Schramm SF, Boldt K, Becirovic E, Michalakis S, Regus-Leidig H, Noegel AA, Ueffing M, Thiel CT, Roepman R, Brandstätter JH, Gießl A. Functional analyses of Pericentrin and Syne-2 interaction in ciliogenesis. J Cell Sci 2018; 131:jcs.218487. [PMID: 30054381 DOI: 10.1242/jcs.218487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/12/2018] [Indexed: 01/31/2023] Open
Abstract
Pericentrin (Pcnt) is a multifunctional scaffold protein and mutations in the human PCNT gene are associated with several diseases, including ciliopathies. Pcnt plays a crucial role in ciliary development in olfactory receptor neurons, but its function in the photoreceptor-connecting cilium is unknown. We downregulated Pcnt in the retina ex vivo and in vivo via a virus-based RNA interference approach to study Pcnt function in photoreceptors. ShRNA-mediated knockdown of Pcnt impaired the development of the connecting cilium and the outer segment of photoreceptors, and caused a nuclear migration defect. In protein interaction screens, we found that the outer nuclear membrane protein Syne-2 (also known as Nesprin-2) is an interaction partner of Pcnt in photoreceptors. Syne-2 is important for positioning murine photoreceptor cell nuclei and for centrosomal migration during early ciliogenesis. CRISPR/Cas9-mediated knockout of Syne-2 in cell culture led to an overexpression and mislocalization of Pcnt and to ciliogenesis defects. Our findings suggest that the Pcnt-Syne-2 complex is important for ciliogenesis and outer segment formation during retinal development and plays a role in nuclear migration.
Collapse
Affiliation(s)
- Nathalie Falk
- Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Kristin Kessler
- Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sinja-Fee Schramm
- Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Karsten Boldt
- Division of Experimental Ophthalmology and Medical Proteome Center, Center of Ophthalmology, University of Tübingen, 72074 Tübingen, Germany
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Hanna Regus-Leidig
- Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, University Hospital, University of Cologne, 50931 Cologne, Germany
| | - Marius Ueffing
- Division of Experimental Ophthalmology and Medical Proteome Center, Center of Ophthalmology, University of Tübingen, 72074 Tübingen, Germany
| | - Christian T Thiel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | | | - Andreas Gießl
- Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
33
|
Takahashi VKL, Takiuti JT, Jauregui R, Tsang SH. Gene therapy in inherited retinal degenerative diseases, a review. Ophthalmic Genet 2018; 39:560-568. [PMID: 30040511 DOI: 10.1080/13816810.2018.1495745] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hereditary diseases of the retina represent a group of diseases with several heterogeneous mutations that have the common end result of progressive photoreceptor death leading to blindness. Retinal degenerations encompass multifactorial diseases such as age-related macular degeneration, Leber congenital amaurosis, Stargardt disease, and retinitis pigmentosa. Although there is currently no cure for degenerative retinal diseases, ophthalmology has been at the forefront of the development of gene therapy, which offers hope for the treatment of these conditions. This article will explore an overview of the clinical trials of gene supplementation therapy for retinal diseases that are underway or planned for the near future.
Collapse
Affiliation(s)
- Vitor K L Takahashi
- a Department of Ophthalmology , Columbia University , New York , NY , USA.,b Departments of Ophthalmology, Pathology & Cell Biology,Columbia Stem Cell Initiative, Institute of Human Nutrition , Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University , New York , NY , USA.,c Department of Ophthalmology , Federal University of São Paulo , São Paulo , Brazil
| | - Júlia T Takiuti
- a Department of Ophthalmology , Columbia University , New York , NY , USA.,b Departments of Ophthalmology, Pathology & Cell Biology,Columbia Stem Cell Initiative, Institute of Human Nutrition , Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University , New York , NY , USA.,d Division of Ophthalmology , University of São Paulo Medical School , São Paulo , Brazil
| | - Ruben Jauregui
- a Department of Ophthalmology , Columbia University , New York , NY , USA.,b Departments of Ophthalmology, Pathology & Cell Biology,Columbia Stem Cell Initiative, Institute of Human Nutrition , Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University , New York , NY , USA.,e Weill Cornell Medical College , New York , NY , USA
| | - Stephen H Tsang
- a Department of Ophthalmology , Columbia University , New York , NY , USA.,b Departments of Ophthalmology, Pathology & Cell Biology,Columbia Stem Cell Initiative, Institute of Human Nutrition , Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University , New York , NY , USA.,f Department of Pathology & Cell Biology, Stem Cell Initiative (CSCI), Institute of Human Nutrition, College of Physicians and Surgeons , Columbia University , New York , NY , USA
| |
Collapse
|
34
|
Duncan JL, Pierce EA, Laster AM, Daiger SP, Birch DG, Ash JD, Iannaccone A, Flannery JG, Sahel JA, Zack DJ, Zarbin MA. Inherited Retinal Degenerations: Current Landscape and Knowledge Gaps. Transl Vis Sci Technol 2018; 7:6. [PMID: 30034950 PMCID: PMC6052953 DOI: 10.1167/tvst.7.4.6] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Amy M Laster
- Foundation Fighting Blindness, Columbia, MD, USA
| | - Stephen P Daiger
- Human Genetics Center, School of Public Health, and Ruiz Department of Ophthalmology and Visual Science, The University of Texas Health Science Center, Houston, TX, USA
| | - David G Birch
- Rose-Silverthorne Retinal Degenerations Laboratory, Retina Foundation of the Southwest, Dallas, TX, USA
| | - John D Ash
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Alessandro Iannaccone
- Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - John G Flannery
- Vision Science, the Helen Wills Neuroscience Institute, the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - José A Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Institut de la Vision-Sorbonne Université, Inserm, CNRS-Paris, France
| | - Donald J Zack
- Departments of Ophthalmology, Neuroscience, Molecular Biology and Genetics, and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marco A Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | | |
Collapse
|
35
|
Abstract
Full-field electroretinography (ERG) belongs to the gold-standard of electrophysiological test systems in ophthalmology and reflects the sum response of the entire retina to light stimulation. The assessment of the retinal function is a fundamental diagnostic technique not only in the clinical ophthalmology it is also indispensable in the ophthalmic research, in particular, in therapeutic approaches where the in vivo follow up of the benefit after treatment is absolutely necessary. Several current therapeutic approaches have demonstrated long-lasting amelioration in respective disease models and show promise for a successful translation to human patients. In this chapter we provide electroretinography protocols of experimental data which may serve as informative features for upcoming gene therapeutic approaches and clinical trials.
Collapse
|
36
|
Keplinger S, Beiderbeck B, Michalakis S, Biel M, Grothe B, Kunz L. Optogenetic Control of Neural Circuits in the Mongolian Gerbil. Front Cell Neurosci 2018; 12:111. [PMID: 29740286 PMCID: PMC5928259 DOI: 10.3389/fncel.2018.00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
The Mongolian gerbil (Meriones unguiculatus) is widely used as a model organism for the human auditory system. Its hearing range is very similar to ours and it uses the same mechanisms for sound localization. The auditory circuits underlying these functions have been characterized. However, important mechanistic details are still under debate. To elucidate these issues, precise and reversible optogenetic manipulation of neuronal activity in this complex circuitry is required. However, genetic and genomic resources for the Mongolian gerbil are poorly developed. Here, we demonstrate a reliable gene delivery system using an AAV8(Y337F)-pseudotyped recombinant adeno-associated virus (AAV) 2-based vector in which the pan-neural human synapsin (hSyn) promoter drives neuron-specific expression of CatCH (Ca2+-permeable channelrhodopsin) or NpHR3.0 (Natronomonas pharaonis halorhodopsin). After stereotactic injection into the gerbil’s auditory brainstem (medial nucleus of the trapezoid body, dorsal nucleus of the lateral lemniscus) and midbrain [inferior colliculus (IC)], we characterized CatCH- and/or NpHR3.0-transduced neurons in acute brain slices by means of whole-cell patch-clamp recordings. As the response properties of optogenetic tools strongly depend on neuronal biophysics, this parameterization is crucial for their in vivo application. In a proof-of-principle experiment in anesthetized gerbils, we observed strong suppression of sound-evoked neural responses in the dorsal nucleus of the lateral lemniscus (DNLL) and IC upon light activation of NpHR3.0. The successful validation of gene delivery and optogenetic tools in the Mongolian gerbil paves the way for future studies of the auditory circuits in this model system.
Collapse
Affiliation(s)
- Stefan Keplinger
- Division of Neurobiology, Department Biology II, Biocenter, Ludwig Maximilian University of Munich, Munich, Germany
| | - Barbara Beiderbeck
- Division of Neurobiology, Department Biology II, Biocenter, Ludwig Maximilian University of Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, GSN-LMU, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CiPSM), Department of Pharmacy, Center for Drug Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CiPSM), Department of Pharmacy, Center for Drug Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Biocenter, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lars Kunz
- Division of Neurobiology, Department Biology II, Biocenter, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
37
|
Petit L, Ma S, Cheng SY, Gao G, Punzo C. Rod Outer Segment Development Influences AAV-Mediated Photoreceptor Transduction After Subretinal Injection. Hum Gene Ther 2018; 28:464-481. [PMID: 28510482 PMCID: PMC5488363 DOI: 10.1089/hum.2017.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vectors based on the adeno-associated virus (AAV) are currently the preferred tools for delivering genes to photoreceptors (PR) in small and large animals. AAVs have been applied successfully in various models of PR dystrophies. However, unknown barriers still limit AAV's efficient application in several forms of severe PR degenerations due to insufficient transgene expression and/or treated cells at the time of injection. Optimizations of PR gene therapy strategies will likely benefit from the identification of the cellular factors that influence PR transduction. Interestingly, recent studies have shown that the AAV transduction profile of PRs differs significantly between neonatal and adult mouse retinas after subretinal injection. This phenomenon may provide clues to identify host factors that influence the efficiency of AAV-mediated PR transduction. This study demonstrates that rod outer segments are critical modulators of efficient AAV-mediated rod transduction. During retinal development, rod transduction correlated temporally and spatially with the differentiation order of PRs when vectors were introduced subretinally but not when introduced intravitreally. All subretinally injected vectors had an initial preference to transduce cones in the absence of formed rod outer segments and then displayed a preference for rods as the cells matured, independently of the expression cassette or AAV serotype. Consistent with this observation, altered development of rod outer segments was associated with a strong reduction of rod transduction and an increase in the percentage of transduced cones by 2- to 2.8-fold. A similar increase of cone transduction was observed in the adult retinal degeneration 1 (rd1) retina compared to wild-type mice. These results suggest that the loss of rod outer segments in diseased retinas could markedly affect gene transfer efficiency of AAV vectors by limiting the ability of AAVs to infect dying rods efficiently. This information could be exploited for the development of more efficient AAV-based PR gene delivery procedures.
Collapse
Affiliation(s)
- Lolita Petit
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Shan Ma
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Shun-Yun Cheng
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Guangping Gao
- 3 Department of Microbiology and Physiological Systems and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Claudio Punzo
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Neurobiology, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
38
|
Abstract
The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.
Collapse
Affiliation(s)
- Stylianos Michalakis
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377 Munich, Germany.
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377 Munich, Germany.
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377 Munich, Germany.
| |
Collapse
|
39
|
Mühlfriedel R, Garrido MG, Wallrapp C, Seeliger MW. Advanced Ocular Injection Techniques for Therapy Approaches. Methods Mol Biol 2018; 1715:215-223. [PMID: 29188516 DOI: 10.1007/978-1-4939-7522-8_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Treatment approaches for inherited eye diseases require local therapeutic molecule delivery by intraocular injection. One important factor that can influence the study outcome is the quality of intraocular administration. The intracompartmental structure (e.g., vitreous) of the eye allows a sustainable release of therapeutic biologicals using an intravitreal delivery. The protocol described here aims at providing the details relevant to perform a transscleral pars plana intravitreal transfer in small eyes using a genetically modified stem cell system. The fact that cells and therewith visually distinct particles are implanted, allows for the assessment of the implantation site and the distribution, and possibilities for temporal follow up studies-hence, valuable information becomes available which can be used to fine-tune the intravitreal delivery technique.
Collapse
Affiliation(s)
- Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str.7, 72076, Tübingen, Germany.
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str.7, 72076, Tübingen, Germany
| | | | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str.7, 72076, Tübingen, Germany
| |
Collapse
|
40
|
Schön C, Becirovic E, Biel M, Michalakis S. Design and Development of AAV-based Gene Supplementation Therapies for Achromatopsia and Retinitis Pigmentosa. Methods Mol Biol 2018; 1715:33-46. [PMID: 29188504 DOI: 10.1007/978-1-4939-7522-8_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Achromatopsia (ACHM) and retinitis pigmentosa (RP) are inherited disorders caused by mutations in cone and rod photoreceptor-specific genes, respectively. ACHM strongly impairs daylight vision, whereas RP initially affects night vision and daylight vision at later stages. Currently, gene supplementation therapies utilizing recombinant adeno-associated virus (rAAV) vectors are being developed for various forms of ACHM and RP. In this chapter, we describe the procedure of designing and developing specific and efficient rAAV vectors for cone- and rod-specific gene supplementation.
Collapse
Affiliation(s)
- Christian Schön
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich CiPSM, Ludwig-Maximilian-University, Munich, Germany
| | - Elvir Becirovic
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich CiPSM, Ludwig-Maximilian-University, Munich, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich CiPSM, Ludwig-Maximilian-University, Munich, Germany
| | - Stylianos Michalakis
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich CiPSM, Ludwig-Maximilian-University, Munich, Germany.
| |
Collapse
|
41
|
Schön C, Sothilingam V, Mühlfriedel R, Garcia Garrido M, Beck SC, Tanimoto N, Wissinger B, Paquet-Durand F, Biel M, Michalakis S, Seeliger MW. Gene Therapy Successfully Delays Degeneration in a Mouse Model of PDE6A-Linked Retinitis Pigmentosa (RP43). Hum Gene Ther 2017; 28:1180-1188. [PMID: 29212391 DOI: 10.1089/hum.2017.156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Retinitis pigmentosa type 43 (RP43) is a blinding disease caused by mutations in the gene for rod phosphodiesterase 6 alpha (PDE6A). The disease process begins with a dysfunction of rod photoreceptors, subsequently followed by a currently untreatable progressive degeneration of the entire outer retina. Aiming at a curative approach via PDE6A gene supplementation, a novel adeno-associated viral (AAV) vector was developed for expression of the human PDE6A cDNA under control of the human rhodopsin promotor (rAAV8.PDE6A). This study assessed the therapeutic efficacy of rAAV8.PDE6A in the Pde6anmf363/nmf363-mutant mouse model of RP43. All mice included in this study were treated with sub-retinal injections of the vector at 2 weeks after birth. The therapeutic effect was monitored at 1 month and 6 months post injection. Biological function of the transgene was assessed in vivo by means of electroretinography. The degree of morphological rescue was investigated both in vivo using optical coherence tomography and ex vivo by immunohistological staining. It was found that the novel rAAV8.PDE6A vector resulted in a stable and efficient expression of PDE6A protein in rod photoreceptors of Pde6anmf363/nmf363 mice following treatment at both the short- and long-term time points. The treatment led to a substantial morphological preservation of outer nuclear layer thickness, rod outer segment structure, and prolonged survival of cone photoreceptors for at least 6 months. Additionally, the ERG analysis confirmed a restoration of retinal function in a group of treated mice. Taken together, this study provides successful proof-of-concept for the cross-species efficacy of the rAAV8.PDE6A vector developed for use in human patients. Importantly, the data show stable expression and rescue effects for a prolonged period of time, raising hope for future translational studies based on this approach.
Collapse
Affiliation(s)
- Christian Schön
- Center for Integrated Protein Science Munich CiPSM at the Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Regine Mühlfriedel
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| | - Marina Garcia Garrido
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| | - Susanne C Beck
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| | - Naoyuki Tanimoto
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Eberhard Karls University, Tuebingen, Germany
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University, Tuebingen, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich CiPSM at the Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich CiPSM at the Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mathias W Seeliger
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
42
|
Petersen-Jones SM, Occelli LM, Winkler PA, Lee W, Sparrow JR, Tsukikawa M, Boye SL, Chiodo V, Capasso JE, Becirovic E, Schön C, Seeliger MW, Levin AV, Michalakis S, Hauswirth WW, Tsang SH. Patients and animal models of CNGβ1-deficient retinitis pigmentosa support gene augmentation approach. J Clin Invest 2017; 128:190-206. [PMID: 29202463 PMCID: PMC5749539 DOI: 10.1172/jci95161] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/10/2017] [Indexed: 01/07/2023] Open
Abstract
Retinitis pigmentosa (RP) is a major cause of blindness that affects 1.5 million people worldwide. Mutations in cyclic nucleotide-gated channel β 1 (CNGB1) cause approximately 4% of autosomal recessive RP. Gene augmentation therapy shows promise for treating inherited retinal degenerations; however, relevant animal models and biomarkers of progression in patients with RP are needed to assess therapeutic outcomes. Here, we evaluated RP patients with CNGB1 mutations for potential biomarkers of progression and compared human phenotypes with those of mouse and dog models of the disease. Additionally, we used gene augmentation therapy in a CNGβ1-deficient dog model to evaluate potential translation to patients. CNGB1-deficient RP patients and mouse and dog models had a similar phenotype characterized by early loss of rod function and slow rod photoreceptor loss with a secondary decline in cone function. Advanced imaging showed promise for evaluating RP progression in human patients, and gene augmentation using adeno-associated virus vectors robustly sustained the rescue of rod function and preserved retinal structure in the dog model. Together, our results reveal an early loss of rod function in CNGB1-deficient patients and a wide window for therapeutic intervention. Moreover, the identification of potential biomarkers of outcome measures, availability of relevant animal models, and robust functional rescue from gene augmentation therapy support future work to move CNGB1-RP therapies toward clinical trials.
Collapse
Affiliation(s)
- Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Laurence M Occelli
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Paige A Winkler
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Winston Lee
- Department of Ophthalmology Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Janet R Sparrow
- Department of Ophthalmology Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Mai Tsukikawa
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Vince Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Jenina E Capasso
- Ocular Genetics, Wills Eye Hospital (WEH), Philadelphia, Pennsylvania, USA
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Schön
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Alex V Levin
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Ocular Genetics, Wills Eye Hospital (WEH), Philadelphia, Pennsylvania, USA
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Stephen H Tsang
- Department of Ophthalmology Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA.,Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center (CUMC), Edward S. Harkness Eye Institute, New York, New York, USA
| |
Collapse
|
43
|
Dias MF, Joo K, Kemp JA, Fialho SL, da Silva Cunha A, Woo SJ, Kwon YJ. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog Retin Eye Res 2017; 63:107-131. [PMID: 29097191 DOI: 10.1016/j.preteyeres.2017.10.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Retinitis Pigmentosa (RP) is a hereditary retinopathy that affects about 2.5 million people worldwide. It is characterized with progressive loss of rods and cones and causes severe visual dysfunction and eventual blindness in bilateral eyes. In addition to more than 3000 genetic mutations from about 70 genes, a wide genetic overlap with other types of retinal dystrophies has been reported with RP. This diversity of genetic pathophysiology makes treatment extremely challenging. Although therapeutic attempts have been made using various pharmacologic agents (neurotrophic factors, antioxidants, and anti-apoptotic agents), most are not targeted to the fundamental cause of RP, and their clinical efficacy has not been clearly proven. Current therapies for RP in ongoing or completed clinical trials include gene therapy, cell therapy, and retinal prostheses. Gene therapy, a strategy to correct the genetic defects using viral or non-viral vectors, has the potential to achieve definitive treatment by replacing or silencing a causative gene. Among many clinical trials of gene therapy for hereditary retinal diseases, a phase 3 clinical trial of voretigene neparvovec (AAV2-hRPE65v2, Luxturna) recently showed significant efficacy for RPE65-mediated inherited retinal dystrophy including Leber congenital amaurosis and RP. It is about to be approved as the first ocular gene therapy biologic product. Despite current limitations such as limited target genes and indicated patients, modest efficacy, and the invasive administration method, development in gene editing technology and novel gene delivery carriers make gene therapy a promising therapeutic modality for RP and other hereditary retinal dystrophies in the future.
Collapse
Affiliation(s)
- Marina França Dias
- School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jessica A Kemp
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Silvia Ligório Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | | | - Se Joon Woo
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Chemical Engineering and Materials Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
44
|
Wang T, Tsang SH, Chen J. Two pathways of rod photoreceptor cell death induced by elevated cGMP. Hum Mol Genet 2017; 26:2299-2306. [PMID: 28379353 DOI: 10.1093/hmg/ddx121] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/22/2017] [Indexed: 11/14/2022] Open
Abstract
Cyclic-GMP is a second messenger in phototransduction, a G-protein signaling cascade that conveys photon absorption by rhodopsin to a change in current at the rod photoreceptor outer segment plasma membrane. Basal cGMP level is strictly controlled by the opposing actions of phosphodiesterase (PDE6) and retinal guanylyl cyclases (GCs), and mutations in genes that disrupt cGMP homeostasis leads to retinal degeneration in humans through mechanisms that are incompletely understood. The purpose of this study is to examine two distinct cellular targets of cGMP: the cGMP-gated (CNG) channels and protein kinase G (PRKG), and how each may contribute to rod cell death. Using a mouse genetic approach, we found that abolishing expression of CNG channels prolongs rod survival caused by elevated cGMP in a PDE6 mutant mouse model. This observation supports the use of channel blockers to delay rod death, which is expected to prolong useful vision through enhanced cone survival. However, the absence of CNG channel alone also caused abnormal cGMP accumulation. In a mouse model of CNG channel loss-of-function, abolishing PRKG1 expression had a long-lasting effect in promoting rod cell survival. Our data strongly implicate two distinct cGMP-mediated cell death pathways, and suggest that therapeutic designs targeting both pathways will be more effective at slowing photoreceptor cell death caused by elevated cGMP.
Collapse
Affiliation(s)
- Tian Wang
- Zilkha Neurogenetic Institute, Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology and Pathology & Cell Biology, Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University, NY 10032, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, NY 10032, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
45
|
CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING. Retina 2017; 37:417-423. [PMID: 27753762 DOI: 10.1097/iae.0000000000001341] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. METHODS A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. RESULTS Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. CONCLUSION Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.
Collapse
|
46
|
Seitter H, Koschak A. Relevance of tissue specific subunit expression in channelopathies. Neuropharmacology 2017; 132:58-70. [PMID: 28669898 DOI: 10.1016/j.neuropharm.2017.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022]
Abstract
Channelopathies are a diverse group of human disorders that are caused by mutations in genes coding for ion channels or channel-regulating proteins. Several dozen channelopathies have been identified that involve both non-excitable cells as well as electrically active tissues like brain, skeletal and smooth muscle or the heart. In this review, we start out from the general question which ion channel genes are expressed tissue-selectively. We mined the human gene expression database Human Protein Atlas (HPA) for tissue-enriched ion channel genes and found 85 genes belonging to the ion channel families. Most of these genes were enriched in brain, testis and muscle and a complete list of the enriched ion channel genes is provided. We further focused on the tissue distribution of voltage-gated calcium channel (VGCC) genes including different brain areas and the retina based on the human gene expression from the FANTOM5 dataset. The expression data is complemented by an overview of the tissue-dependent aspects of L-type calcium channel (LTCC) function, dysfunction and pharmacology, as well as of their splice variants. Finally, we focus on the pathology of tissue-restricted LTCC channelopathies and their treatment options. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Hartwig Seitter
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, Innrain 80-82/III, 6020 Innsbruck, Austria
| | - Alexandra Koschak
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, Innrain 80-82/III, 6020 Innsbruck, Austria.
| |
Collapse
|
47
|
Peripherin-2 and Rom-1 have opposing effects on rod outer segment targeting of retinitis pigmentosa-linked peripherin-2 mutants. Sci Rep 2017; 7:2321. [PMID: 28539581 PMCID: PMC5443838 DOI: 10.1038/s41598-017-02514-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/12/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in the photoreceptor outer segment (OS) specific peripherin-2 lead to autosomal dominant retinitis pigmentosa (adRP). By contrast, mutations in the peripherin-2 homolog Rom-1 cause digenic RP in combination with certain heterozygous mutations in peripherin-2. The mechanisms underlying the differential role of peripherin-2 and Rom-1 in RP pathophysiology remained elusive so far. Here, focusing on two adRP-linked peripherin-2 mutants, P210L and C214S, we analyzed the binding characteristics, protein assembly, and rod OS targeting of wild type (perWT), mutant peripherin-2 (perMT), or Rom-1 complexes, which can be formed in patients heterozygous for peripherin-2 mutations. Both mutants are misfolded and lead to decreased binding to perWT and Rom-1. Furthermore, both mutants are preferentially forming non-covalent perMT-perMT, perWT-perMT, and Rom-1-perMT dimers. However, only perWT-perMT, but not perMT-perMT or Rom-1-perMT complexes could be targeted to murine rod OS. Our study provides first evidence that non-covalent perWT-perMT dimers can be targeted to rod OS. Finally, our study unravels unexpected opposing roles of perWT and Rom-1 in rod OS targeting of adRP-linked peripherin-2 mutants and suggests a new treatment strategy for the affected individuals.
Collapse
|
48
|
Mühlfriedel R, Tanimoto N, Schön C, Sothilingam V, Garcia Garrido M, Beck SC, Huber G, Biel M, Seeliger MW, Michalakis S. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 2017; 11:292. [PMID: 28596720 PMCID: PMC5442229 DOI: 10.3389/fnins.2017.00292] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
Abstract
Achromatopsia type 2 (ACHM2) is a severe, inherited eye disease caused by mutations in the CNGA3 gene encoding the α subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel. Patients suffer from strongly impaired daylight vision, photophobia, nystagmus, and lack of color discrimination. We have previously shown in the Cnga3 knockout (KO) mouse model of ACHM2 that gene supplementation therapy is effective in rescuing cone function and morphology and delaying cone degeneration. In our preclinical approach, we use recombinant adeno-associated virus (AAV) vector-mediated gene transfer to express the murine Cnga3 gene under control of the mouse blue opsin promoter. Here, we provide novel data on the efficiency and permanence of such gene supplementation therapy in Cnga3 KO mice. Specifically, we compare the influence of two different AAV vector capsids, AAV2/5 (Y719F) and AAV2/8 (Y733F), on restoration of cone function, and assess the effect of age at time of treatment on the long-term outcome. The evaluation included in vivo analysis of retinal function using electroretinography (ERG) and immunohistochemical analysis of vector-driven Cnga3 transgene expression. We found that both vector capsid serotypes led to a comparable rescue of cone function over the observation period between 4 weeks and 3 months post treatment. In addition, a clear therapeutic effect was present in mice treated at 2 weeks of age as well as in mice treated at 3 months of age at the first assessment at 4 weeks after treatment. Importantly, the effect extended in both cases over the entire observation period of 12 months post treatment. However, the average ERG amplitude levels differed between the two groups, suggesting a role of the absolute age, or possibly, the associated state of the degeneration, on the achievable outcome. In summary, we found that the therapeutic time window of opportunity for AAV-mediated Cnga3 gene supplementation therapy in the Cnga3 KO mouse model extends at least to an age of 3 months, but is presumably limited by the condition, number and topographical distribution of remaining cones at the time of treatment. No impact of the choice of capsid on the therapeutic success was detected.
Collapse
Affiliation(s)
- Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Christian Schön
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität MünchenMunich, Germany
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Susanne C Beck
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Gesine Huber
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität MünchenMunich, Germany
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Stylianos Michalakis
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität MünchenMunich, Germany
| |
Collapse
|
49
|
Wyse-Jackson AC, Roche SL, Ruiz-Lopez AM, Moloney JN, Byrne AM, Cotter TG. Progesterone analogue protects stressed photoreceptors via bFGF-mediated calcium influx. Eur J Neurosci 2016; 44:3067-3079. [PMID: 27763693 DOI: 10.1111/ejn.13445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 01/16/2023]
Abstract
Retinitis pigmentosa (RP) is a degenerative retinal disease leading to photoreceptor cell loss. In 2011, our group identified the synthetic progesterone 'Norgestrel' as a potential treatment for RP. Subsequent research showed Norgestrel to work through progesterone receptor membrane component 1 (PGRMC1) activation and upregulation of neuroprotective basic fibroblast growth factor (bFGF). Using trophic factor deprivation of 661W photoreceptor-like cells, we aimed to further elucidate the mechanism leading to Norgestrel-induced neuroprotection. In the present manuscript, we show by flow cytometry and live-cell immunofluorescence that Norgestrel induces an increase in cytosolic calcium in both healthy and stressed 661Ws over 24 h. Specific PGRMC1 inhibition by AG205 (1 μm) showed this rise to be PGRMC1-dependent, primarily utilizing calcium from extracellular sources, for blockade of L-type calcium channels by verapamil (50 μm) prevented a Norgestrel-induced calcium influx in stressed cells. Calcium influx was also shown to be bFGF-dependent, for siRNA knock down of bFGF prevented Norgestrel-PGRMC1 induced changes in cytosolic calcium. Notably, we demonstrate PGRMC1-activation is necessary for Norgestrel-induced bFGF upregulation. We propose that Norgestrel protects through the following pathway: binding to and activating PGRMC1 expressed on the surface of photoreceptor cells, PGRMC1 activation drives bFGF upregulation and subsequent calcium influx. Importantly, raised intracellular calcium is critical to Norgestrel's protective efficacy, for extracellular calcium chelation by EGTA abrogates the protective effects of Norgestrel on stressed 661W cells in vitro.
Collapse
Affiliation(s)
- Alice C Wyse-Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Ana M Ruiz-Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Jennifer N Moloney
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
50
|
Gopinath C, Nathar TJ, Ghosh A, Hickstein DD, Nelson EJR. Contemporary Animal Models For Human Gene Therapy Applications. Curr Gene Ther 2016; 15:531-40. [PMID: 26415576 DOI: 10.2174/1566523215666150929110424] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 01/18/2023]
Abstract
Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.
Collapse
|