1
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
2
|
Jurcau A, Jurcau CM. Mitochondria in Huntington's disease: implications in pathogenesis and mitochondrial-targeted therapeutic strategies. Neural Regen Res 2023; 18:1472-1477. [PMID: 36571344 PMCID: PMC10075114 DOI: 10.4103/1673-5374.360289] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Huntington's disease is a genetic disease caused by expanded CAG repeats on exon 1 of the huntingtin gene located on chromosome 4. Compelling evidence implicates impaired mitochondrial energetics, altered mitochondrial biogenesis and quality control, disturbed mitochondrial trafficking, oxidative stress and mitochondrial calcium dyshomeostasis in the pathogenesis of the disorder. Unfortunately, conventional mitochondrial-targeted molecules, such as cysteamine, creatine, coenzyme Q10, or triheptanoin, yielded negative or inconclusive results. However, future therapeutic strategies, aiming to restore mitochondrial biogenesis, improving the fission/fusion balance, and improving mitochondrial trafficking, could prove useful tools in improving the phenotype of Huntington's disease and, used in combination with genome-editing methods, could lead to a cure for the disease.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea; Neurology 3 Ward, Clinical Emergency Hospital, Oradea, Romania
| | | |
Collapse
|
3
|
Ibrahim WW, Abdel Rasheed NO. Diapocynin neuroprotective effects in 3-nitropropionic acid Huntington's disease model in rats: emphasis on Sirt1/Nrf2 signaling pathway. Inflammopharmacology 2022; 30:1745-1758. [PMID: 35639233 PMCID: PMC9499906 DOI: 10.1007/s10787-022-01004-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/30/2022] [Indexed: 04/12/2023]
Abstract
Background and Aim Huntington's disease (HD) is a rare inherited disease portrayed with marked cognitive and motor decline owing to extensive neurodegeneration. NADPH oxidase is considered as an important contributor to the oxidative injury in several neurodegenerative disorders including HD. Thus, the present study explored the possible neuroprotective effects of diapocynin, a specific NADPH oxidase inhibitor, against 3-nitropropionic acid (3-NP) model of HD in rats. Methods Animals received diapocynin (10 mg/kg/day, p.o), 30 min before 3-NP (10 mg/kg/day, i.p) over a period of 14 days. Results Diapocynin administration attenuated 3-NP-induced oxidative stress with significant increase in reduced glutathione, glutathione-S-transferase, nuclear factor erythroid 2-related factor 2, and brain-derived neurotrophic factor striatal contents contrary to NADPH oxidase (NOX2; gp91phox subunit) diminished expression. Moreover, diapocynin mitigated 3-NP-associated neuroinflammation
and glial activation with prominent downregulation of nuclear factor-Кβ p65 and marked decrement of inducible nitric oxide synthase content in addition to decreased immunoreactivity of ionized calcium binding adaptor molecule 1 and glial fibrillary acidic protein; markers of microglial and astroglial activation, respectively. Treatment with diapocynin hindered 3-NP-induced apoptosis with prominent decrease in tumor suppressor protein and Bcl-2-associated X protein contents whereas the anti-apoptotic marker; B-cell lymphoma-2 content was noticeably increased. Diapocynin neuroprotective effects could be attributed to silent information regulator 1 upregulation which curbed 3-NP-associated hazards resulting in improved motor functions witnessed during open field, rotarod, and grip strength tests as well as attenuated 3-NP-associated histopathological derangements. Conclusion The present findings indicated that diapocynin could serve as an auspicious nominee for HD management. Graphical abstract ![]()
Collapse
Affiliation(s)
- Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Nora O Abdel Rasheed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
4
|
Dubey T, Chinnathambi S. Photodynamic treatment modulates various GTPase and cellular signalling pathways in Tauopathy. Small GTPases 2022; 13:183-195. [PMID: 34138681 PMCID: PMC9707546 DOI: 10.1080/21541248.2021.1940722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The application of photo-excited dyes for treatment is known as photodynamic therapy (PDT). PDT is known to target GTPase proteins in cells, which are the key proteins of diverse signalling cascades which ultimately modulate cell proliferation and death. Cytoskeletal proteins play critical roles in maintaining cell integrity and cell division. Whereas, it was also observed that in neuronal cells PDT modulated actin and tubulin resulting in increased neurite growth and filopodia. Recent studies supported the role of PDT in dissolving the extracellular amyloid beta aggregates and intracellular Tau aggregates, which indicated the potential role of PDT in neurodegeneration. The advancement in the field of PDT led to its clinical approval in treatment of cancers, brain tumour, and dermatological acne. Although several question need to be answered for application of PDT in neuronal cells, but the primary studies gave a hint that it can emerge as potential therapy in neural cells.
Collapse
Affiliation(s)
- Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| |
Collapse
|
5
|
Kumar SP, Babu PP. NADPH Oxidase: a Possible Therapeutic Target for Cognitive Impairment in Experimental Cerebral Malaria. Mol Neurobiol 2021; 59:800-820. [PMID: 34782951 DOI: 10.1007/s12035-021-02598-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
Long-term cognitive impairment associated with seizure-induced hippocampal damage is the key feature of cerebral malaria (CM) pathogenesis. One-fourth of child survivors of CM suffer from long-lasting neurological deficits and behavioral anomalies. However, mechanisms on hippocampal dysfunction are unclear. In this study, we elucidated whether gp91phox isoform of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) (a potent marker of oxidative stress) mediates hippocampal neuronal abnormalities and cognitive dysfunction in experimental CM (ECM). Mice symptomatic to CM were rescue treated with artemether monotherapy (ARM) and in combination with apocynin (ARM + APO) adjunctive based on scores of Rapid Murine Come behavior Scale (RMCBS). After a 30-day survivability period, we performed Barnes maze, T-maze, and novel object recognition cognitive tests to evaluate working and reference memory in all the experimental groups except CM. Sensorimotor tests were conducted in all the cohorts to assess motor coordination. We performed Golgi-Cox staining to illustrate cornu ammonis-1 (CA1) pyramidal neuronal morphology and study overall hippocampal neuronal density changes. Further, expression of NOX2, NeuN (neuronal marker) in hippocampal CA1 and dentate gyrus was determined using double immunofluorescence experiments in all the experimental groups. Mice administered with ARM monotherapy and APO adjunctive treatment exhibited similar survivability. The latter showed better locomotor and cognitive functions, reduced ROS levels, and hippocampal NOX2 immunoreactivity in ECM. Our results show a substantial increase in hippocampal NeuN immunoreactivity and dendritic arborization in ARM + APO cohorts compared to ARM-treated brain samples. Overall, our study suggests that overexpression of NOX2 could result in loss of hippocampal neuronal density and dendritic spines of CA1 neurons affecting the spatial working and reference memory during ECM. Notably, ARM + APO adjunctive therapy reversed the altered neuronal morphology and oxidative damage in hippocampal neurons restoring long-term cognitive functions after CM.
Collapse
Affiliation(s)
- Simhadri Praveen Kumar
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Phanithi Prakash Babu
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
6
|
Fang J, Sheng R, Qin ZH. NADPH Oxidases in the Central Nervous System: Regional and Cellular Localization and the Possible Link to Brain Diseases. Antioxid Redox Signal 2021; 35:951-973. [PMID: 34293949 DOI: 10.1089/ars.2021.0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Significance: The significant role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) in signal transduction is mediated by the production of reactive oxygen species (ROS), especially in the central nervous system (CNS). The pathogenesis of some neurologic and psychiatric diseases is regulated by ROS, acting as a second messenger or pathogen. Recent Advances: In the CNS, the involvement of Nox-derived ROS has been implicated in the regulation of multiple signals, including cell survival/apoptosis, neuroinflammation, migration, differentiation, proliferation, and synaptic plasticity, as well as the integrity of the blood/brain barrier. In these processes, the intracellular signals mediated by the members of the Nox family vary among different tissues. The present review illuminates the regions and cellular, subcellular localization of Nox isoforms in the brain, the signal transduction, and the role of NOX enzymes in pathophysiology, respectively. Critical Issues: Different signal transduction cascades are coupled to ROS derived from various Nox homologues with varying degrees. Therefore, a critical issue worth noting is the varied role of the homologues of NOX enzymes in different signaling pathways and also they mediate different phenotypes in the diverse pathophysiological condition. This substantiates the effectiveness of selective Nox inhibitors in the CNS. Future Directions: Further investigation to elucidate the role of various homologues of NOX enzymes in acute and chronic brain diseases and signaling mechanisms, and the development of more specific NOX inhibitors for the treatment of CNS disease are urgently needed. Antioxid. Redox Signal. 35, 951-973.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| |
Collapse
|
7
|
Abstract
Significance: The molecular processes that determine Huntington's disease (HD) pathogenesis are not yet fully understood, and until now no effective neuroprotective therapeutic strategies have been developed. Mitochondria are one of most important organelles required for neuronal homeostasis, by providing metabolic pathways relevant for energy production, regulating calcium homeostasis, or controlling free radical generation and cell death. Because augmented reactive oxygen species (ROS) accompanied by mitochondrial dysfunction are relevant early HD mechanisms, targeting these cellular mechanisms may constitute relevant therapeutic approaches. Recent Advances: Previous findings point toward a close relationship between mitochondrial dysfunction and redox changes in HD. Mutant huntingtin (mHTT) can directly interact with mitochondrial proteins, as translocase of the inner membrane 23 (TIM23), disrupting mitochondrial proteostasis and favoring ROS production and HD progression. Furthermore, abnormal brain and muscle redox signaling contributes to altered proteostasis and motor impairment in HD, which can be improved with the mitochondria-targeted antioxidant mitoquinone or resveratrol, an SIRT1 activator that ameliorates mitochondrial biogenesis and function. Critical Issues: Various antioxidants and metabolic enhancers have been studied in HD; however, the real outcome of these molecules is still debatable. New compounds have proven to ameliorate mitochondrial and redox-based signaling pathways in early stages of HD, potentially precluding selective neurodegeneration. Future Directions: Unraveling the molecular etiology of deregulated mitochondrial function and dynamics, and oxidative stress opens new prospects for HD therapeutics. In this review, we explore the role of redox unbalance and mitochondrial dysfunction in HD progression, and further describe advances on clinical trials in HD based on mitochondrial and redox-based therapeutic strategies.
Collapse
Affiliation(s)
- Lígia Fão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Stress-Sensitive Protein Rac1 and Its Involvement in Neurodevelopmental Disorders. Neural Plast 2020; 2020:8894372. [PMID: 33299404 PMCID: PMC7707960 DOI: 10.1155/2020/8894372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/01/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) is a small GTPase that is well known for its sensitivity to the environmental stress of a cell or an organism. It senses the external signals which are transmitted from membrane-bound receptors and induces downstream signaling cascades to exert its physiological functions. Rac1 is an important regulator of a variety of cellular processes, such as cytoskeletal organization, generation of oxidative products, and gene expression. In particular, Rac1 has a significant influence on certain brain functions like neuronal migration, synaptic plasticity, and memory formation via regulation of actin dynamics in neurons. Abnormal Rac1 expression and activity have been observed in multiple neurological diseases. Here, we review recent findings to delineate the role of Rac1 signaling in neurodevelopmental disorders associated with abnormal spine morphology, synaptogenesis, and synaptic plasticity. Moreover, certain novel inhibitors of Rac1 and related pathways are discussed as potential avenues toward future treatment for these diseases.
Collapse
|
9
|
Roussarie JP, Rodriguez-Rodriguez P. Deciphering cell-type specific signal transduction in the brain: Challenges and promises. ADVANCES IN PHARMACOLOGY 2020; 90:145-171. [PMID: 33706931 DOI: 10.1016/bs.apha.2020.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Signal transduction designates the set of molecular events that take place within a cell upon extracellular stimulation to mediate a functional outcome. Decades after the discovery that dopamine triggers opposing signaling pathways in D1- and D2-expressing medium spiny neurons, it is now clear that there are as many different flavors of signaling pathways in the brain as there are neuron types. One of the biggest challenges in molecular neuroscience is to elucidate cell-type specific signaling, in order to understand neurological diseases with regional vulnerability, but also to identify targets for precision drugs devoid of off-target effects. Here, we make a case for the importance of the study of neuron-type specific molecular characteristics. We then review the technologies that exist to study neurons in their full diversity and highlight their disease-relevant idiosyncrasies.
Collapse
Affiliation(s)
- Jean-Pierre Roussarie
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States.
| | - Patricia Rodriguez-Rodriguez
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
10
|
Jain S, Panuganti V, Jha S, Roy I. Harmine Acts as an Indirect Inhibitor of Intracellular Protein Aggregation. ACS OMEGA 2020; 5:5620-5628. [PMID: 32226837 PMCID: PMC7097889 DOI: 10.1021/acsomega.9b02375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/21/2020] [Indexed: 05/04/2023]
Abstract
Protein aggregation and oxidative stress are two pathological hallmarks of a number of protein misfolding diseases, including Huntington's disease (HD). Whether protein aggregation precedes elevation of oxidative stress or follows it remains ambiguous. We have investigated the role of harmine, a beta-carboline alkaloid, in aggregation of a mutant huntingtin fragment (103Q-htt) in a yeast model of HD. We observed that harmine was able to decrease intracellular aggregation of 103Q-htt, and this reduction was higher than that observed with trehalose, a conventional protein stabilizer. The presence of harmine also decreased prion formation. Decreased protein aggregation was accompanied by reduction in oxidative stress. However, harmine had no effect on aggregation of the mutant huntingtin fragment in vitro. Thus, based on experimental data, we conclude that the antioxidant harmine lowers aggregation-induced elevation in oxidative stress, which slows down intracellular protein aggregation.
Collapse
Affiliation(s)
| | | | | | - Ipsita Roy
- E-mail: . Phone: 0091-172-229 2061. Fax: 0091-172-221 4692
| |
Collapse
|
11
|
Tousley A, Iuliano M, Weisman E, Sapp E, Zhang N, Vodicka P, Alexander J, Aviolat H, Gatune L, Reeves P, Li X, Khvorova A, Ellerby LM, Aronin N, DiFiglia M, Kegel-Gleason KB. Rac1 Activity Is Modulated by Huntingtin and Dysregulated in Models of Huntington's Disease. J Huntingtons Dis 2020; 8:53-69. [PMID: 30594931 PMCID: PMC6398565 DOI: 10.3233/jhd-180311] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background: Previous studies suggest that Huntingtin, the protein mutated in Huntington’s disease (HD), is required for actin based changes in cell morphology, and undergoes stimulus induced targeting to plasma membranes where it interacts with phospholipids involved in cell signaling. The small GTPase Rac1 is a downstream target of growth factor stimulation and PI 3-kinase activity and is critical for actin dependent membrane remodeling. Objective: To determine if Rac1 activity is impaired in HD or regulated by normal Huntingtin. Methods: Analyses were performed in differentiated control and HD human stem cells and HD Q140/Q140 knock-in mice. Biochemical methods included SDS-PAGE, western blot, immunoprecipitation, affinity chromatography, and ELISA based Rac activity assays. Results: Basal Rac1 activity increased following depletion of Huntingtin with Huntingtin specific siRNA in human primary fibroblasts and in human control neuron cultures. Human cells (fibroblasts, neural stem cells, and neurons) with the HD mutation failed to increase Rac1 activity in response to growth factors. Rac1 activity levels were elevated in striatum of 1.5-month-old HD Q140/Q140 mice and in primary embryonic cortical neurons from HD mice. Affinity chromatography analysis of striatal lysates showed that Huntingtin is in a complex with Rac1, p85α subunit of PI 3-kinase, and the actin bundling protein α-actinin and interacts preferentially with the GTP bound form of Rac1. The HD mutation reduced Huntingtin interaction with p85α. Conclusions: These findings suggest that Huntingtin regulates Rac1 activity as part of a coordinated response to growth factor signaling and this function is impaired early in HD.
Collapse
Affiliation(s)
- Adelaide Tousley
- Department of Neurology, Laboratory of Cellular Neurobiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Maria Iuliano
- Department of Neurology, Laboratory of Cellular Neurobiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Elizabeth Weisman
- Department of Neurology, Laboratory of Cellular Neurobiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ellen Sapp
- Department of Neurology, Laboratory of Cellular Neurobiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ningzhe Zhang
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Petr Vodicka
- Department of Neurology, Laboratory of Cellular Neurobiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jonathan Alexander
- Department of Neurology, Laboratory of Cellular Neurobiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Hubert Aviolat
- Department of Neurology, Laboratory of Cellular Neurobiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Leah Gatune
- Department of Neurology, Laboratory of Cellular Neurobiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Patrick Reeves
- Department of Neurology, Laboratory of Cellular Neurobiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xueyi Li
- Department of Neurology, Laboratory of Cellular Neurobiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Medicine and Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marian DiFiglia
- Department of Neurology, Laboratory of Cellular Neurobiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kimberly B Kegel-Gleason
- Department of Neurology, Laboratory of Cellular Neurobiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
12
|
Al-Kuraishy HM, Al-Gareeb AI, Naji MT, Al-Mamorry F. Role of vinpocetine in ischemic stroke and poststroke outcomes: A critical review. Brain Circ 2020; 6:1-10. [PMID: 32166194 PMCID: PMC7045535 DOI: 10.4103/bc.bc_46_19] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Vinpocetine (VPN) is a synthetic ethyl-ester derivative of the alkaloid apovincamine from Vinca minor leaves. VPN is a selective inhibitor of phosphodiesterase type 1 (PDE1) that has potential neurological effects through inhibition of voltage-gated sodium channel and reduction of neuronal calcium influx. VPN has noteworthy antioxidant, anti-inflammatory, and anti-apoptotic effects with inhibitory effect on glial and astrocyte cells during and following ischemic stroke (IS). VPN is effective as adjuvant therapy in the management of epilepsy; it reduces seizure frequency by 50% in a dose of 2 mg/kg/day. VPN improves psychomotor performances through modulation of brain monoamine pathway mainly on dopamine and serotonin, which play an integral role in attenuation of depressive symptoms. VPN recover cognitive functions and spatial memory through inhibition of hippocampal and cortical PDE1 with augmentation of cyclic adenosin monophosphate and cyclic guanosin monophosphate ratio, enhancement of cholinergic neurotransmission, and inhibition of neuronal inflammatory mediators. Therefore, VPN is an effective agent in the management of IS and plays an integral role in the prevention and attenuation of poststroke epilepsy, depression, and cognitive deficit through direct cAMP/cGMP-dependent pathway or indirectly through anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Marwa Thaier Naji
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Farah Al-Mamorry
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| |
Collapse
|
13
|
García-Revilla J, Alonso-Bellido IM, Burguillos MA, Herrera AJ, Espinosa-Oliva AM, Ruiz R, Cruz-Hernández L, García-Domínguez I, Roca-Ceballos MA, Santiago M, Rodríguez-Gómez JA, Soto MS, de Pablos RM, Venero JL. Reformulating Pro-Oxidant Microglia in Neurodegeneration. J Clin Med 2019; 8:E1719. [PMID: 31627485 PMCID: PMC6832973 DOI: 10.3390/jcm8101719] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/13/2022] Open
Abstract
In neurodegenerative diseases, microglia-mediated neuroinflammation and oxidative stress are central events. Recent genome-wide transcriptomic analyses of microglial cells under different disease conditions have uncovered a new subpopulation named disease-associated microglia (DAM). These studies have challenged the classical view of the microglia polarization state's proinflammatory M1 (classical activation) and immunosuppressive M2 (alternative activation). Molecular signatures of DAM and proinflammatory microglia (highly pro-oxidant) have shown clear differences, yet a partial overlapping gene profile is evident between both phenotypes. The switch activation of homeostatic microglia into reactive microglia relies on the selective activation of key surface receptors involved in the maintenance of brain homeostasis (a.k.a. pattern recognition receptors, PRRs). Two relevant PRRs are toll-like receptors (TLRs) and triggering receptors expressed on myeloid cells-2 (TREM2), whose selective activation is believed to generate either a proinflammatory or a DAM phenotype, respectively. However, the recent identification of endogenous disease-related ligands, which bind to and activate both TLRs and TREM2, anticipates the existence of rather complex microglia responses. Examples of potential endogenous dual ligands include amyloid β, galectin-3, and apolipoprotein E. These pleiotropic ligands induce a microglia polarization that is more complicated than initially expected, suggesting the possibility that different microglia subtypes may coexist. This review highlights the main microglia polarization states under disease conditions and their leading role orchestrating oxidative stress.
Collapse
Affiliation(s)
- Juan García-Revilla
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Isabel M Alonso-Bellido
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Miguel A Burguillos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Antonio J Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Ana M Espinosa-Oliva
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Luis Cruz-Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Irene García-Domínguez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - María A Roca-Ceballos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Marti Santiago
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - José A Rodríguez-Gómez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Departament of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain.
| | - Manuel Sarmiento Soto
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Rocío M de Pablos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - José L Venero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| |
Collapse
|
14
|
Svab G, Doczi J, Gerencser AA, Ambrus A, Gallyas F, Sümegi B, Tretter L. The Mitochondrial Targets of Neuroprotective Drug Vinpocetine on Primary Neuron Cultures, Brain Capillary Endothelial Cells, Synaptosomes, and Brain Mitochondria. Neurochem Res 2019; 44:2435-2447. [PMID: 31535355 PMCID: PMC6776483 DOI: 10.1007/s11064-019-02871-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Vinpocetine is considered as neuroprotectant drug and used for treatment of brain ischemia and cognitive deficiencies for decades. A number of enzymes, channels and receptors can bind vinpocetine, however the mechanisms of many effects' are still not clear. The present study investigated the effects of vinpocetine from the mitochondrial bioenergetic aspects. In primary brain capillary endothelial cells the purinergic receptor-stimulated mitochondrial Ca2+ uptake and efflux were studied. Vinpocetine exerted a partial inhibition on the mitochondrial calcium efflux. In rodent brain synaptosomes vinpocetine (30 μM) inhibited respiration in uncoupler stimulated synaptosomes and decreased H2O2 release from the nerve terminals in resting and in complex I inhibited conditions, respectively. In isolated rat brain mitochondria using either complex I or complex II substrates leak respiration was stimulated, but ADP-induced respiration was inhibited by vinpocetine. The stimulation of oxidation was associated with a small extent of membrane depolarization. Mitochondrial H2O2 production was inhibited by vinpocetine under all conditions investigated. The most pronounced effects were detected with the complex II substrate succinate. Vinpocetine also mitigated both Ca2+-induced mitochondrial Ca2+-release and Ca2+-induced mitochondrial swelling. It lowered the rate of mitochondrial ATP synthesis, while increasing ATPase activity. These results indicate more than a single mitochondrial target of this vinca alkaloid. The relevance of the affected mitochondrial mechanisms in the anti ischemic effect of vinpocetine is discussed.
Collapse
Affiliation(s)
- Gergely Svab
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary
| | - Judit Doczi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary
| | - Akos A Gerencser
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary.,Buck Institute for Research on Aging, Novato, CA, USA
| | - Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balazs Sümegi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Tretter
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary.
| |
Collapse
|
15
|
Barua S, Kim JY, Yenari MA, Lee JE. The role of NOX inhibitors in neurodegenerative diseases. IBRO Rep 2019; 7:59-69. [PMID: 31463415 PMCID: PMC6709343 DOI: 10.1016/j.ibror.2019.07.1721] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is a key player in both chronic and acute brain disease due to the higher metabolic demand of the brain. Among the producers of free radicals, NADPH-oxidase (NOX) is a major contributor to oxidative stress in neurological disorders. In the brain, the superoxide produced by NOX is mainly found in leukocytes. However, recent studies have reported that it can be found in several other cell types. NOX has been reported to regulate neuronal signaling, memory processing, and central cardiovascular homeostasis. However, overproduction of NOX can contribute to neurotoxicity, CNS degeneration, and cardiovascular disorders. Regarding the above functions, NOX has been shown to play a crucial role in chronic CNS diseases like Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS), and in acute CNS disorders such as stroke, spinal cord injury, traumatic brain injury (TBI), and related cerebrovascular diseases. NOX is a multi-subunit complex consisting of two membrane-associated and four cytosolic subunits. Thus, in recent years, inhibition of NOX activity has drawn a great deal of attention from researchers in the field of treating chronic and acute CNS disorders and preventing secondary complications. Mounting evidence has shown that NOX inhibition is neuroprotective and that inhibiting NOX in circulating immune cells can improve neurological disease conditions. This review summarizes recent studies on the therapeutic effects and pharmacological strategies regarding NOX inhibitors in chronic and acute brain diseases and focuses on the hurdles that should be overcome before their clinical implementation.
Collapse
Affiliation(s)
- Sumit Barua
- Department of Anatomy, College of Medicine, Yonsei University, Republic of Korea
| | - Jong Youl Kim
- Department of Anatomy, College of Medicine, Yonsei University, Republic of Korea
| | - Midori A Yenari
- Department of Neurology, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, 4150 Clement Street, MS 127, San Francisco, CA, 94121, United States
| | - Jong Eun Lee
- Department of Anatomy, College of Medicine, Yonsei University, Republic of Korea.,Brain Korea 21, PLUS Project for Medical Science, College of Medicine, Yonsei University, Republic of Korea.,Brain Research Institute, College of Medicine, Yonsei University, Republic of Korea
| |
Collapse
|
16
|
Sbodio JI, Snyder SH, Paul BD. Redox Mechanisms in Neurodegeneration: From Disease Outcomes to Therapeutic Opportunities. Antioxid Redox Signal 2019; 30:1450-1499. [PMID: 29634350 PMCID: PMC6393771 DOI: 10.1089/ars.2017.7321] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Once considered to be mere by-products of metabolism, reactive oxygen, nitrogen and sulfur species are now recognized to play important roles in diverse cellular processes such as response to pathogens and regulation of cellular differentiation. It is becoming increasingly evident that redox imbalance can impact several signaling pathways. For instance, disturbances of redox regulation in the brain mediate neurodegeneration and alter normal cytoprotective responses to stress. Very often small disturbances in redox signaling processes, which are reversible, precede damage in neurodegeneration. Recent Advances: The identification of redox-regulated processes, such as regulation of biochemical pathways involved in the maintenance of redox homeostasis in the brain has provided deeper insights into mechanisms of neuroprotection and neurodegeneration. Recent studies have also identified several post-translational modifications involving reactive cysteine residues, such as nitrosylation and sulfhydration, which fine-tune redox regulation. Thus, the study of mechanisms via which cell death occurs in several neurodegenerative disorders, reveal several similarities and dissimilarities. Here, we review redox regulated events that are disrupted in neurodegenerative disorders and whose modulation affords therapeutic opportunities. CRITICAL ISSUES Although accumulating evidence suggests that redox imbalance plays a significant role in progression of several neurodegenerative diseases, precise understanding of redox regulated events is lacking. Probes and methodologies that can precisely detect and quantify in vivo levels of reactive oxygen, nitrogen and sulfur species are not available. FUTURE DIRECTIONS Due to the importance of redox control in physiologic processes, organisms have evolved multiple pathways to counteract redox imbalance and maintain homeostasis. Cells and tissues address stress by harnessing an array of both endogenous and exogenous redox active substances. Targeting these pathways can help mitigate symptoms associated with neurodegeneration and may provide avenues for novel therapeutics. Antioxid. Redox Signal. 30, 1450-1499.
Collapse
Affiliation(s)
- Juan I. Sbodio
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Cui Y, Amarsanaa K, Lee JH, Rhim JK, Kwon JM, Kim SH, Park JM, Jung SC, Eun SY. Neuroprotective mechanisms of dieckol against glutamate toxicity through reactive oxygen species scavenging and nuclear factor-like 2/heme oxygenase-1 pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:121-130. [PMID: 30820156 PMCID: PMC6384196 DOI: 10.4196/kjpp.2019.23.2.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/23/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022]
Abstract
Glutamate toxicity-mediated mitochondrial dysfunction and neuronal cell death are involved in the pathogenesis of several neurodegenerative diseases as well as acute brain ischemia/stroke. In this study, we investigated the neuroprotective mechanism of dieckol (DEK), one of the phlorotannins isolated from the marine brown alga Ecklonia cava, against glutamate toxicity. Primary cortical neurons (100 µM, 24 h) and HT22 neurons (5 mM, 12 h) were stimulated with glutamate to induce glutamate toxic condition. The results demonstrated that DEK treatment significantly increased cell viability in a dose-dependent manner (1–50 µM) and recovered morphological deterioration in glutamate-stimulated neurons. In addition, DEK strongly attenuated intracellular reactive oxygen species (ROS) levels, mitochondrial overload of Ca2+ and ROS, mitochondrial membrane potential (ΔΨm) disruption, adenine triphosphate depletion. DEK showed free radical scavenging activity in the cell-free system. Furthermore, DEK enhanced protein expression of heme oxygenase-1 (HO-1), an important anti-oxidant enzyme, via the nuclear translocation of nuclear factor-like 2 (Nrf2). Taken together, we conclude that DEK exerts neuroprotective activities against glutamate toxicity through its direct free radical scavenging property and the Nrf-2/HO-1 pathway activation.
Collapse
Affiliation(s)
- Yanji Cui
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea.,Neurology 1, The Second Affiliated Hospital of Xinxiang Medical University, Henan 453002, China
| | - Khulan Amarsanaa
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Ji Hyung Lee
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Jong-Kook Rhim
- Department of Neurosurgery, Jeju National University School of Medicine, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| | - Jung Mi Kwon
- Division of Hematology-Oncology, Department of Internal Medicine, Jeju National University School of Medicine, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| | | | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), KAIST, Daejeon 34126, Korea.,University of Science and Technology, Daejeon 34113, Korea
| | - Sung-Cherl Jung
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| | - Su-Yong Eun
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
18
|
Kwakye GF, Jiménez JA, Thomas MG, Kingsley BA, McIIvin M, Saito MA, Korley EM. Heterozygous huntingtin promotes cadmium neurotoxicity and neurodegeneration in striatal cells via altered metal transport and protein kinase C delta dependent oxidative stress and apoptosis signaling mechanisms. Neurotoxicology 2019; 70:48-61. [DOI: 10.1016/j.neuro.2018.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
|
19
|
Dong S, Chen M, Dai F, Xuan Q, Chen P, Feng D, Gao L, Zhu C, Chang Y, Chu F, Gao Q. 5‐Hydroxytryptamine (5‐HT)‐exacerbated DSS‐induced colitis is associated with elevated NADPH oxidase expression in the colon. J Cell Biochem 2018; 120:9230-9242. [PMID: 30525222 DOI: 10.1002/jcb.28198] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shizhen Dong
- Department of Gastroenterology and Hepatology The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
- Department of Clinical Laboratory The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Menglu Chen
- Department of Clinical Laboratory The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Faliang Dai
- Department of Gastroenterology and Hepatology The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Qingxia Xuan
- Department of Gastroenterology and Hepatology The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Pan Chen
- Department of Gastroenterology and Hepatology The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Dandan Feng
- Department of Gastroenterology and Hepatology The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Lei Gao
- Department of Gastroenterology and Hepatology The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Chendi Zhu
- Department of Urology The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Yongchao Chang
- Department of Clinical Laboratory The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Fong‐Fong Chu
- Department of Cancer Genetics Epigenetics Beckman Research Institute of the City of Hope Duarte California
| | - Qiang Gao
- Department of Gastroenterology and Hepatology The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
- Department of Gastroenterology and Hepatology Beijing Rehabilitation Hospital, Capital Medical University Beijing China
| |
Collapse
|
20
|
Jędrak P, Mozolewski P, Węgrzyn G, Więckowski MR. Mitochondrial alterations accompanied by oxidative stress conditions in skin fibroblasts of Huntington's disease patients. Metab Brain Dis 2018; 33:2005-2017. [PMID: 30120672 PMCID: PMC6244791 DOI: 10.1007/s11011-018-0308-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/12/2018] [Indexed: 01/08/2023]
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder manifesting as progressive impairment of motor function and different neuropsychiatric symptoms caused by an expansion of CAG repeats in huntingtin gene (HTT). Mitochondrial dysfunction and bioenergetic defects can contribute to the course of the disease, however, the molecular mechanism underlying this process is still largely unknown. In this study, we aimed to determine several mitochondrial parameters in HD fibroblasts and assess their relevance to the disease progression as well as to value mitochondrial pathology in peripheral cells as disease potential biomarker. We showed that HD fibroblasts demonstrate significantly lower growth rate compared to control fibroblasts despite the lack of cell cycle perturbations. In order to investigate mitochondrial contribution to cell growth differences between HD and healthy cells, we provided insight into various mitochondrial parameters. Conducted experiments have revealed a significant reduction of the ATP level in HD fibroblasts accompanied by a decrease in mitochondrial metabolic activity in relation to the cells from healthy donors. Importantly, there were no differences in the mitochondrial membrane potential (mtΔΨ) and OXPHOS complexes' levels. Slightly increased level of mitochondrial superoxide (mt. O2•-), but not cytosolic reactive oxygen species (cyt. ROS), has been demonstrated. We have also observed significantly elevated levels of some antioxidant enzymes (SOD2 and GR) which may serve as an indicator of antioxidant defense system in HD patients. Thus, we suggest that mitochondrial alterations in skin fibroblasts of Huntington's disease patients might be helpful in searching for novel disease biomarkers.
Collapse
Affiliation(s)
- Paulina Jędrak
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Paweł Mozolewski
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Mariusz R Więckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland.
| |
Collapse
|
21
|
Zheng J, Winderickx J, Franssens V, Liu B. A Mitochondria-Associated Oxidative Stress Perspective on Huntington's Disease. Front Mol Neurosci 2018; 11:329. [PMID: 30283298 DOI: 10.3389/fnmol.2018.00329/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/24/2018] [Indexed: 05/25/2023] Open
Abstract
Huntington's disease (HD) is genetically caused by mutation of the Huntingtin (HTT) gene. At present, the mechanisms underlying the defect of HTT and the development of HD remain largely unclear. However, increasing evidence shows the presence of enhanced oxidative stress in HD patients. In this review article, we focus on the role of oxidative stress in the pathogenesis of HD and discuss mediators and potential mechanisms involved in mutant HTT-mediated oxidative stress generation and progression. Furthermore, we emphasize the role of the unicellular organism Saccharomyces cerevisiae in investigating mutant HTT-induced oxidative stress. Overall, this review article provides an overview of the latest findings regarding oxidative stress in HD and potential therapeutic targets for HD.
Collapse
Affiliation(s)
- Ju Zheng
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Vanessa Franssens
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Center for Large-scale Cell-based Screening, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Zheng J, Winderickx J, Franssens V, Liu B. A Mitochondria-Associated Oxidative Stress Perspective on Huntington's Disease. Front Mol Neurosci 2018; 11:329. [PMID: 30283298 PMCID: PMC6156126 DOI: 10.3389/fnmol.2018.00329] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is genetically caused by mutation of the Huntingtin (HTT) gene. At present, the mechanisms underlying the defect of HTT and the development of HD remain largely unclear. However, increasing evidence shows the presence of enhanced oxidative stress in HD patients. In this review article, we focus on the role of oxidative stress in the pathogenesis of HD and discuss mediators and potential mechanisms involved in mutant HTT-mediated oxidative stress generation and progression. Furthermore, we emphasize the role of the unicellular organism Saccharomyces cerevisiae in investigating mutant HTT-induced oxidative stress. Overall, this review article provides an overview of the latest findings regarding oxidative stress in HD and potential therapeutic targets for HD.
Collapse
Affiliation(s)
- Ju Zheng
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Vanessa Franssens
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.,Center for Large-scale Cell-based Screening, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Abstract
Long noncoding RNAs (LncRNAs) were important genes involved in a variety of biological functions. They are aberrantly expressed in many types of diseases. In this study, we described LncRNAs profiles in 4 pairs of human brain arteriovenous malformation(AVM) and the corresponding fragment of superior temporal arteries(STA) or small scalp arteries (controlled arteries, CA) and try to find LncRNAs that correlated with the human brain AVM and with clinical symptoms.4 pairs of AVM tissues and corresponding STA or scalp artery fragments (depended on the operative approach) of 4 AVM patients who were admitted in Beijing TianTan hospital were collected. Then LncRNA and mRNA expression profiling analysis was performed by Arraystar-LncRNA array. From the data, we found 1931 LncRNAs upregulated (>2 folds) and 1852 downregulated (<2 folds) in total 28,012 LncRNAs that could be detected. We also found 1577 upregulated mRNAs (>2 folds) and 1699 downregulated (<2 folds) in 21,780 mRNAs that could be detected. LncRNAs (ENST00000423394, ENST00000444114, TCONS_00013855, and ENST00000452148) were evaluated by qPCR in 14 pairs of AVM nidus and the control. This 4 LncRNAs were aberrantly expressed in AVM nidus compared with the control. LncRNA (ENST00000423394) correlated with epilepsy (R = 0.34, P = .02, 95% confidence interval 0.08-0.85)We found that development of AVM may correspond with downregulation of NADPH reductase, lipoprotein lipase and Optic atrophy related proteins. It also may correspond with upregulation of Fcγreceptor. The downregulation of NADPH reductase may correlate with seizures of AVM patients.
Collapse
Affiliation(s)
- Xiong Li
- Department of Neurosurgery, Beijing ChaoYang Hospital
| | - FuXin Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| |
Collapse
|
24
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 690] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
25
|
Berggren K, Agrawal S, Fox JA, Hildenbrand J, Nelson R, Bush AI, Fox JH. Amyloid Precursor Protein Haploinsufficiency Preferentially Mediates Brain Iron Accumulation in Mice Transgenic for The Huntington's Disease Mutation. J Huntingtons Dis 2018; 6:115-125. [PMID: 28550267 DOI: 10.3233/jhd-170242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant disorder caused by a CAG expansion in the huntingtin gene that results in expression of mutant huntingtin protein. Iron accumulates in HD brain neurons. Amyloid precursor protein (APP) promotes neuronal iron export. However, the role of APP in brain iron accumulation in HD is unclear. OBJECTIVE To determine the effects of APP insufficiency on HD in YAC128 mice. METHODS We crossed APP hemizygous mice (APP+/-) with YAC128 mice that are transgenic (Tg) for human mutant huntingtin (hmHTT) to generate APP+/+ hmHTT-/-, APP+/- hmHTT-/-, APP+/+ hmHTT+/- and APP+/- hmHTT+/- progeny. Mice were evaluated for behavioral, biochemical and neuropathology HD outcomes at 2-12 months of age. RESULTS APP heterozygosity decreased cortical APP 25% and 60% in non-Tg and Tg mice, respectively. Cerebral and striatal iron levels were increased by APP knockdown in Tg mice only. Nest-building behavior was decreased in Tg mice; APP knockdown decreased nest building in non-Tg but not Tg mice. Rota-rod endurance was decreased in Tg mice. APP+/- hHTT+/- mice demonstrated additional decreases in rota-rod endurance from 4-10 months of age. Tg mice had smaller striatal volumes and fewer striatal neurons but were not affected by APP knockdown. CONCLUSIONS APP heterozygosity results in greater decreases of cortical APP in Tg versus non-Tg mice. Mutant huntingtin transgenic mice develop brain iron accumulation as a result of greater suppression of APP levels. Elevated brain iron in Tg mice was associated with a decline in motor endurance consistent with a disease promoting effect of iron in the YAC128 model of human HD.
Collapse
Affiliation(s)
- Kiersten Berggren
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Sonal Agrawal
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Julia A Fox
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Justin Hildenbrand
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Ryan Nelson
- Department of Zoology-Physiology, University of Wyoming, Laramie, WY, USA
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Jonathan H Fox
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
26
|
Ehrnhoefer DE, Southwell AL, Sivasubramanian M, Qiu X, Villanueva EB, Xie Y, Waltl S, Anderson L, Fazeli A, Casal L, Felczak B, Tsang M, Hayden MR. HACE1 is essential for astrocyte mitochondrial function and influences Huntington disease phenotypes in vivo. Hum Mol Genet 2018; 27:239-253. [PMID: 29121340 PMCID: PMC5886116 DOI: 10.1093/hmg/ddx394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 01/25/2023] Open
Abstract
Oxidative stress is a prominent feature of Huntington disease (HD), and we have shown previously that reduced levels of hace1 (HECT domain and Ankyrin repeat containing E3 ubiquitin protein ligase 1) in patient striatum may contribute to the pathogenesis of HD. Hace1 promotes the stability of Nrf2 and thus plays an important role in antioxidant response mechanisms, which are dysfunctional in HD. Moreover, hace1 overexpression mitigates mutant huntingtin (mHTT)-induced oxidative stress in vitro through promotion of the Nrf2 antioxidant response. Here, we show that the genetic ablation of hace1 in the YAC128 mouse model of HD accelerates motor deficits and exacerbates cognitive and psychiatric phenotypes in vivo. We find that both the expression of mHTT and the ablation of hace1 alone are sufficient to cause deficits in astrocytic mitochondrial respiration. We confirm the crucial role of hace1 in astrocytes in vivo, since its ablation is sufficient to cause dramatic astrogliosis in wild-type FVB/N mice. Astrogliosis is not observed in the presence of mHTT but a strong dysregulation in the expression of astrocytic markers in HACE1-/- x YAC128 striatum suggests an additive effect of mHTT expression and hace1 loss on this cell type. HACE1-/- x YAC128 mice and primary cells derived from these animals therefore provide model systems that will allow for the further dissection of Nrf2 pathways and astrocyte dysfunction in the context of HD.
Collapse
Affiliation(s)
- Dagmar E Ehrnhoefer
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Amber L Southwell
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Meenalochani Sivasubramanian
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Xiaofan Qiu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Erika B Villanueva
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Yuanyun Xie
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Sabine Waltl
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Lisa Anderson
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Anita Fazeli
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Lorenzo Casal
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Boguslaw Felczak
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michelle Tsang
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael R Hayden
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
27
|
Yu M, Fu Y, Liang Y, Song H, Yao Y, Wu P, Yao Y, Pan Y, Wen X, Ma L, Hexige S, Ding Y, Luo S, Lu B. Suppression of MAPK11 or HIPK3 reduces mutant Huntingtin levels in Huntington's disease models. Cell Res 2017; 27:1441-1465. [PMID: 29151587 PMCID: PMC5717400 DOI: 10.1038/cr.2017.113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/14/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022] Open
Abstract
Most neurodegenerative disorders are associated with accumulation of disease-relevant proteins. Among them, Huntington disease (HD) is of particular interest because of its monogenetic nature. HD is mainly caused by cytotoxicity of the defective protein encoded by the mutant Huntingtin gene (HTT). Thus, lowering mutant HTT protein (mHTT) levels would be a promising treatment strategy for HD. Here we report two kinases HIPK3 and MAPK11 as positive modulators of mHTT levels both in cells and in vivo. Both kinases regulate mHTT via their kinase activities, suggesting that inhibiting these kinases may have therapeutic values. Interestingly, their effects on HTT levels are mHTT-dependent, providing a feedback mechanism in which mHTT enhances its own level thus contributing to mHTT accumulation and disease progression. Importantly, knockout of MAPK11 significantly rescues disease-relevant behavioral phenotypes in a knockin HD mouse model. Collectively, our data reveal new therapeutic entry points for HD and target-discovery approaches for similar diseases.
Collapse
Affiliation(s)
- Meng Yu
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Yuhua Fu
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Yijiang Liang
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Haikun Song
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Yao Yao
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Peng Wu
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Yuwei Yao
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Yuyin Pan
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Xue Wen
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Lixiang Ma
- Department of Anatomy and Histology & Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Saiyin Hexige
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Yu Ding
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Shouqing Luo
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth, PL68BU, UK
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| |
Collapse
|
28
|
Marei H, Malliri A. Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases 2017; 8:139-163. [PMID: 27442895 PMCID: PMC5584733 DOI: 10.1080/21541248.2016.1211398] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
Abnormal Rac1 signaling is linked to a number of debilitating human diseases, including cancer, cardiovascular diseases and neurodegenerative disorders. As such, Rac1 represents an attractive therapeutic target, yet the search for effective Rac1 inhibitors is still underway. Given the adverse effects associated with Rac1 signaling perturbation, cells have evolved several mechanisms to ensure the tight regulation of Rac1 signaling. Thus, characterizing these mechanisms can provide invaluable information regarding major cellular events that lead to aberrant Rac1 signaling. Importantly, this information can be utilized to further facilitate the development of effective pharmacological modulators that can restore normal Rac1 signaling. In this review, we focus on the pathological role of Rac1 signaling, highlighting the benefits and potential drawbacks of targeting Rac1 in a clinical setting. Additionally, we provide an overview of available compounds that target key Rac1 regulatory mechanisms and discuss future therapeutic avenues arising from our understanding of these mechanisms.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Song H, Vijayasarathy C, Zeng Y, Marangoni D, Bush RA, Wu Z, Sieving PA. NADPH Oxidase Contributes to Photoreceptor Degeneration in Constitutively Active RAC1 Mice. Invest Ophthalmol Vis Sci 2017; 57:2864-75. [PMID: 27233035 PMCID: PMC5113981 DOI: 10.1167/iovs.15-18974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose The active form of small GTPase RAC1 is required for activation of NADPH oxidase (NOX), which in turn generates reactive oxygen species (ROS) in nonphagocytic cells. We explored whether NOX-induced oxidative stress contributes to rod degeneration in retinas expressing constitutively active (CA) RAC1. Methods Transgenic (Tg)–CA-RAC1 mice were given apocynin (10 mg/kg, intraperitoneal), a NOX inhibitor, or vehicle daily for up to 13 weeks. Superoxide production and oxidative damage were assessed by dihydroethidium staining and by protein carbonyls and malondialdehyde levels, respectively. Outer nuclear layer (ONL) cells were counted and electroretinogram (ERG) amplitudes measured in Tg-CA-RAC1 mice. Outer nuclear layer cells were counted in wild-type (WT) mice after transfer of CA-Rac1 gene by subretinal injection of AAV8-pOpsin-CA Rac1-GFP. Results Transgenic-CA-RAC1 retinas had significantly fewer photoreceptor cells and more apoptotic ONL cells than WT controls from postnatal week (Pw) 3 to Pw13. Superoxide accumulation and protein and lipid oxidation were increased in Tg-CA-RAC1 retinas and were reduced in mice treated with apocynin. Apocynin reduced the loss of photoreceptors and increased the rod ERG a- and b-wave amplitudes when compared with vehicle-injected transgenic controls. Photoreceptor loss was also observed in regions of adult WT retina transduced with AAV8-pOpsin-CA Rac1-GFP but not in neighboring regions that were not transduced or in AAV8-pOpsin-GFP–transduced retinas. Conclusions Constitutively active RAC1 promotes photoreceptor cell death by oxidative damage that occurs, at least partially, through NOX-induced ROS. Reactive oxygen species are likely involved in multiple forms of retinal degenerations, and our results support investigating RAC1 inhibition as a therapeutic approach that targets this disease pathway.
Collapse
Affiliation(s)
- Hongman Song
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Camasamudram Vijayasarathy
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Yong Zeng
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Dario Marangoni
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Ronald A Bush
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Zhijian Wu
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Paul A Sieving
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States 3National Eye Institute, National Institutes of Heal
| |
Collapse
|
30
|
Almaguer-Gotay D, Almaguer-Mederos LE, Aguilera-Rodríguez R, Rodríguez-Labrada R, Cuello-Almarales D, Estupiñán-Domínguez A, Velázquez-Pérez LC, González-Zaldívar Y, Vázquez-Mojena Y. Spinocerebellar Ataxia Type 2 Is Associated with the Extracellular Loss of Superoxide Dismutase but Not Catalase Activity. Front Neurol 2017; 8:276. [PMID: 28659860 PMCID: PMC5468381 DOI: 10.3389/fneur.2017.00276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/29/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) is an inherited and still incurable neurodegenerative disorder. Evidence suggests that pro-oxidant agents as well as factors involved in antioxidant cellular defenses are part of SCA2 physiopathology. AIM To assess the influence of superoxide dismutase (SOD3) and catalase (CAT) enzymatic activities on the SCA2 syndrome. METHOD Clinical, molecular, and electrophysiological variables, as well as SOD3 and CAT enzymatic activities were evaluated in 97 SCA2 patients and in 64 age- and sex-matched control individuals. RESULTS Spinocerebellar ataxia type 2 patients had significantly lower SOD3 enzymatic activity than the control group. However, there were no differences between patients and controls for CAT enzymatic activity. The effect size for the loss of patients' SOD3 enzymatic activity was 0.342, corresponding to a moderate effect. SOD3 and CAT enzymatic activities were not associated with the CAG repeat number at the ATXN2 gene. SOD3 and CAT enzymatic activities did not show significant associations with the age at onset, severity score, or the studied electrophysiological markers. CONCLUSION There is a reduced SOD3 enzymatic activity in SCA2 patients with no repercussion on the clinical phenotype.
Collapse
Affiliation(s)
- Dennis Almaguer-Gotay
- Center for the Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | | | | | | | - Dany Cuello-Almarales
- Center for the Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | | | | | | | - Yaimé Vázquez-Mojena
- Center for the Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| |
Collapse
|
31
|
Dominah GA, McMinimy RA, Kallon S, Kwakye GF. Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington's disease. Neurotoxicology 2017; 60:54-69. [PMID: 28300621 DOI: 10.1016/j.neuro.2017.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/07/2017] [Accepted: 03/09/2017] [Indexed: 11/17/2022]
Abstract
We hypothesized that expression of mutant Huntingtin (HTT) would modulate the neurotoxicity of the commonly used organophosphate insecticide, chlorpyrifos (CPF), revealing cellular mechanisms underlying neurodegeneration. Using a mouse striatal cell model of HD, we report that mutant HD cells are more susceptible to CPF-induced cytotoxicity as compared to wild-type. This CPF-induced cytotoxicity caused increased production of reactive oxygen species, reduced glutathione levels, decreased superoxide dismutase activity, and increased malondialdehyde levels in mutant HD cells relative to wild-type. Furthermore, we show that co-treatment with antioxidant agents attenuated the CPF-induced ROS levels and cytotoxicity. Co-treatment with a NADPH oxidase (NOX) inhibitor, apocynin, also attenuated the CPF-induced ROS production and neurotoxicity. CPF caused increased NOX activity in mutant HD lines that was ameliorated following co-treatment with apocynin. Finally, CPF-induced neurotoxicity significantly increased the protein expression of nuclear factor erythroid 2-related factor (Nrf2) in mutant HD cells as compared to wild-type. This study is the first report of CPF-induced toxicity in HD pathophysiology and suggests that mutant HTT and CPF exhibit a disease-toxicant interaction wherein expression of mutant HTT enhances CPF-induced neurotoxicity via a NOX-mediated oxidative stress mechanism to cause neuronal loss in the full length HTT expressing striatal cells.
Collapse
Affiliation(s)
| | | | - Sallay Kallon
- Neuroscience Department, Oberlin College, Oberlin, OH, USA
| | | |
Collapse
|
32
|
Apocynin suppressed the nuclear factor-κB pathway and attenuated lung injury in a rat hemorrhagic shock model. J Trauma Acute Care Surg 2017; 82:566-574. [DOI: 10.1097/ta.0000000000001337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12:7. [PMID: 28095923 PMCID: PMC5240251 DOI: 10.1186/s13024-017-0150-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a common denominator in the pathology of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, as well as in ischemic and traumatic brain injury. The brain is highly vulnerable to oxidative damage due to its high metabolic demand. However, therapies attempting to scavenge free radicals have shown little success. By shifting the focus to inhibit the generation of damaging free radicals, recent studies have identified NADPH oxidase as a major contributor to disease pathology. NADPH oxidase has the primary function to generate free radicals. In particular, there is growing evidence that the isoforms NOX1, NOX2, and NOX4 can be upregulated by a variety of neurodegenerative factors. The majority of recent studies have shown that genetic and pharmacological inhibition of NADPH oxidase enzymes are neuroprotective and able to reduce detrimental aspects of pathology following ischemic and traumatic brain injury, as well as in chronic neurodegenerative disorders. This review aims to summarize evidence supporting the role of NADPH oxidase in the pathology of these neurological disorders, explores pharmacological strategies of targeting this major oxidative stress pathway, and outlines obstacles that need to be overcome for successful translation of these therapies to the clinic.
Collapse
Affiliation(s)
- Merry W Ma
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Jing Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ruimin Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Krishnan M Dhandapani
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, 7703 Medical Drive, San Antonio, TX, 78229, USA
| | - Darrell W Brann
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA.
| |
Collapse
|
34
|
Atherton JF, McIver EL, Mullen MR, Wokosin DL, Surmeier DJ, Bevan MD. Early dysfunction and progressive degeneration of the subthalamic nucleus in mouse models of Huntington's disease. eLife 2016; 5. [PMID: 27995895 PMCID: PMC5199195 DOI: 10.7554/elife.21616] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
The subthalamic nucleus (STN) is an element of cortico-basal ganglia-thalamo-cortical circuitry critical for action suppression. In Huntington's disease (HD) action suppression is impaired, resembling the effects of STN lesioning or inactivation. To explore this potential linkage, the STN was studied in BAC transgenic and Q175 knock-in mouse models of HD. At <2 and 6 months of age autonomous STN activity was impaired due to activation of KATP channels. STN neurons exhibited prolonged NMDA receptor-mediated synaptic currents, caused by a deficit in glutamate uptake, and elevated mitochondrial oxidant stress, which was ameliorated by NMDA receptor antagonism. STN activity was rescued by NMDA receptor antagonism or the break down of hydrogen peroxide. At 12 months of age approximately 30% of STN neurons had been lost, as in HD. Together, these data argue that dysfunction within the STN is an early feature of HD that may contribute to its expression and course. DOI:http://dx.doi.org/10.7554/eLife.21616.001
Collapse
Affiliation(s)
- Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Eileen L McIver
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Matthew Rm Mullen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - David L Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
35
|
Vidoni C, Castiglioni A, Seca C, Secomandi E, Melone MAB, Isidoro C. Dopamine exacerbates mutant Huntingtin toxicity via oxidative-mediated inhibition of autophagy in SH-SY5Y neuroblastoma cells: Beneficial effects of anti-oxidant therapeutics. Neurochem Int 2016; 101:132-143. [PMID: 27840125 DOI: 10.1016/j.neuint.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
Neuronal cell death in Huntington's Disease (HD) is associated with the abnormal expansions of a polyglutamine (polyQ) tract in the huntingtin protein (Htt) at the N-terminus that causes the misfolding and aggregation of the mutated protein (mHtt). Autophagy-lysosomal degradation of Htt aggregates may protect the neurons in HD. HD patients eventually manifest parkinsonian-like symptoms, which underlie defects in the dopaminergic system. We hypothesized that dopamine (DA) exacerbates the toxicity in affected neurons by over-inducing an oxidative stress that negatively impinges on the autophagy clearance of mHtt and thus precipitating neuronal cell death. Here we show that the hyper-expression of mutant (>113/150) polyQ Htt is per se toxic to dopaminergic human neuroblastoma SH-SY5Y cells, and that DA exacerbates this toxicity leading to apoptosis and secondary necrosis. DA toxicity is mediated by ROS production (mainly anion superoxide) that elicits a block in the formation of autophagosomes. We found that the pre-incubation with N-Acetyl-l-Cysteine (a quinone reductase inducer) or Deferoxamine (an iron chelator) prevents the generation of ROS, restores the autophagy degradation of mHtt and preserves the cell viability in SH-SY5Y cells expressing the polyQ Htt and exposed to DA. The present findings suggest that DA-induced impairment of autophagy underlies the parkinsonism in HD patients. Our data provide a mechanistic explanation of the DA toxicity in dopaminergic neurons expressing the mHtt and support the use of anti-oxidative stress therapeutics to restore protective autophagy in order to slow down the neurodegeneration in HD patients.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Castiglioni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Christian Seca
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Mariarosa A B Melone
- 2° Division of Neurology, Department of Medical Surgical, Neurological, Metabolic Sciences, and Aging, Second University of Naples, Naples, Italy; InterUniversity Center for Research in Neurosciences, Second University of Naples, Naples, Italy.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; InterUniversity Center for Research in Neurosciences, Second University of Naples, Naples, Italy.
| |
Collapse
|
36
|
Zha J, Liu XM, Zhu J, Liu SY, Lu S, Xu PX, Yu XL, Liu RT. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep 2016; 6:36631. [PMID: 27824125 PMCID: PMC5100551 DOI: 10.1038/srep36631] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023] Open
Abstract
Overproduction or poor clearance of amyloids lead to amyloid aggregation and even amyloidosis development. Different amyloids may interact synergistically to promote their aggregation and accelerate pathology in amyloidoses. Amyloid oligomers assembled from different amyloids share common structures and epitopes, and are considered the most toxic species in the pathologic processes of amyloidoses, which suggests that an agent targeting the common epitope of toxic oligomers could provide benefit to several amyloidoses. In this study, we firstly showed that an oligomer-specific single-chain variable fragment antibody, W20 simultaneously improved motor and cognitive function in Parkinson's disease and Huntington's disease mouse models, and attenuated a number of neuropathological features by reducing α-synuclein and mutant huntingtin protein aggregate load and preventing synaptic degeneration. Neuroinflammation and oxidative stress in vivo were also markedly inhibited. The proposed strategy targeting the common epitopes of amyloid oligomers presents promising potential for treating Parkinson's disease, Huntington's disease, Alzheimer's disease, and other amyloidoses.
Collapse
Affiliation(s)
- Jun Zha
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiang-Meng Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Jie Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shu-Ying Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Life Science, Ningxia University, Yinchuan, China
| | - Shuai Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Peng-Xin Xu
- School of Life Science, Ningxia University, Yinchuan, China
| | - Xiao-Lin Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington Disease. Sci Rep 2016; 6:34755. [PMID: 27713486 PMCID: PMC5054433 DOI: 10.1038/srep34755] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/15/2016] [Indexed: 01/21/2023] Open
Abstract
Huntington disease (HD) is an autosomal neurodegenerative disorder caused by the expansion of Polyglutamine (polyQ) in exon 1 of the Huntingtin protein. Glutamine repeats below 36 are considered normal while repeats above 40 lead to HD. Impairment in energy metabolism is a common trend in Huntington pathogenesis; however, this effect is not fully understood. Here, we used the phasor approach and Fluorescence Lifetime Imaging Microscopy (FLIM) to measure changes between free and bound fractions of NADH as a indirect measure of metabolic alteration in living cells. Using Phasor-FLIM, pixel maps of metabolic alteration in HEK293 cell lines and in transgenic Drosophila expressing expanded and unexpanded polyQ HTT exon1 in the eye disc were developed. We found a significant shift towards increased free NADH, indicating an increased glycolytic state for cells and tissues expressing the expanded polyQ compared to unexpanded control. In the nucleus, a further lifetime shift occurs towards higher free NADH suggesting a possible synergism between metabolic dysfunction and transcriptional regulation. Our results indicate that metabolic dysfunction in HD shifts to increased glycolysis leading to oxidative stress and cell death. This powerful label free method can be used to screen native HD tissue samples and for potential drug screening.
Collapse
|
38
|
Vodicka P, Mo S, Tousley A, Green KM, Sapp E, Iuliano M, Sadri-Vakili G, Shaffer SA, Aronin N, DiFiglia M, Kegel-Gleason KB. Mass Spectrometry Analysis of Wild-Type and Knock-in Q140/Q140 Huntington's Disease Mouse Brains Reveals Changes in Glycerophospholipids Including Alterations in Phosphatidic Acid and Lyso-Phosphatidic Acid. J Huntingtons Dis 2016; 4:187-201. [PMID: 26397899 DOI: 10.3233/jhd-150149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disease caused by a CAG expansion in the HD gene, which encodes the protein Huntingtin. Huntingtin associates with membranes and can interact directly with glycerophospholipids in membranes. OBJECTIVE We analyzed glycerophospholipid profiles from brains of 11 month old wild-type (WT) and Q140/Q140 HD knock-in mice to assess potential changes in glycerophospholipid metabolism. METHODS Polar lipids from cerebellum, cortex, and striatum were extracted and analyzed by liquid chromatography and negative ion electrospray tandem mass spectrometry analysis (LC-MS/MS). Gene products involved in polar lipid metabolism were studied using western blotting, immuno-electron microscopy and qPCR. RESULTS Significant changes in numerous species of glycerophosphate (phosphatidic acid, PA) were found in striatum, cerebellum and cortex from Q140/Q140 HD mice compared to WT mice at 11 months. Changes in specific species could also be detected for other glycerophospholipids. Increases in species of lyso-PA (LPA) were measured in striatum of Q140/Q140 HD mice compared to WT. Protein levels for c-terminal binding protein 1 (CtBP1), a regulator of PA biosynthesis, were reduced in striatal synaptosomes from HD mice compared to wild-type at 6 and 12 months. Immunoreactivity for CtBP1 was detected on membranes of synaptic vesicles in striatal axon terminals in the globus pallidus. CONCLUSIONS These novel results identify a potential site of molecular pathology caused by mutant Huntingtin that may impart early changes in HD.
Collapse
Affiliation(s)
- Petr Vodicka
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Shunyan Mo
- Proteomics and Mass Spectrometry Facility and Department of Biochemistry and Molecular Pharmacology, UMASS Medical School, Worcester, MA, USA
| | - Adelaide Tousley
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Karin M Green
- Proteomics and Mass Spectrometry Facility and Department of Biochemistry and Molecular Pharmacology, UMASS Medical School, Worcester, MA, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Maria Iuliano
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Scott A Shaffer
- Proteomics and Mass Spectrometry Facility and Department of Biochemistry and Molecular Pharmacology, UMASS Medical School, Worcester, MA, USA
| | - Neil Aronin
- Departments of Medicine and Cell and Developmental Biology, UMASS Medical School, Worcester, MA, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | |
Collapse
|
39
|
Hamilton J, Pellman JJ, Brustovetsky T, Harris RA, Brustovetsky N. Oxidative metabolism and Ca2+ handling in isolated brain mitochondria and striatal neurons from R6/2 mice, a model of Huntington's disease. Hum Mol Genet 2016; 25:2762-2775. [PMID: 27131346 DOI: 10.1093/hmg/ddw133] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/07/2016] [Accepted: 04/25/2016] [Indexed: 01/25/2023] Open
Abstract
Alterations in oxidative metabolism and defects in mitochondrial Ca2+ handling have been implicated in the pathology of Huntington's disease (HD), but existing data are contradictory. We investigated the effect of human mHtt fragments on oxidative metabolism and Ca2+ handling in isolated brain mitochondria and cultured striatal neurons from the R6/2 mouse model of HD. Non-synaptic and synaptic mitochondria isolated from the brains of R6/2 mice had similar respiratory rates and Ca2+ uptake capacity compared with mitochondria from wild-type (WT) mice. Respiratory activity of cultured striatal neurons measured with Seahorse XF24 flux analyzer revealed unaltered cellular respiration in neurons derived from R6/2 mice compared with neurons from WT animals. Consistent with the lack of respiratory dysfunction, ATP content of cultured striatal neurons from R6/2 and WT mice was similar. Mitochondrial Ca2+ accumulation was also evaluated in cultured striatal neurons from R6/2 and WT animals. Our data obtained with striatal neurons derived from R6/2 and WT mice show that both glutamate-induced increases in cytosolic Ca2+ and subsequent carbonilcyanide p-triflouromethoxyphenylhydrazone-induced increases in cytosolic Ca2+ were similar between WT and R6/2, suggesting that mitochondria in neurons derived from both types of animals accumulated comparable amounts of Ca2+ Overall, our data argue against respiratory deficiency and impaired Ca2+ handling induced by human mHtt fragments in both isolated brain mitochondria and cultured striatal neurons from transgenic R6/2 mice.
Collapse
Affiliation(s)
| | | | | | - Robert A Harris
- Department of Biochemistry and Molecular Biology.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology .,Stark Neuroscience Research InstituteIndiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
40
|
Pearson BL, Simon JM, McCoy ES, Salazar G, Fragola G, Zylka MJ. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration. Nat Commun 2016; 7:11173. [PMID: 27029645 PMCID: PMC4821887 DOI: 10.1038/ncomms11173] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/29/2016] [Indexed: 12/13/2022] Open
Abstract
Environmental factors, including pesticides, have been linked to autism and neurodegeneration risk using retrospective epidemiological studies. Here we sought to prospectively identify chemicals that share transcriptomic signatures with neurological disorders, by exposing mouse cortical neuron-enriched cultures to hundreds of chemicals commonly found in the environment and on food. We find that rotenone, a pesticide associated with Parkinson's disease risk, and certain fungicides, including pyraclostrobin, trifloxystrobin, famoxadone and fenamidone, produce transcriptional changes in vitro that are similar to those seen in brain samples from humans with autism, advanced age and neurodegeneration (Alzheimer's disease and Huntington's disease). These chemicals stimulate free radical production and disrupt microtubules in neurons, effects that can be reduced by pretreating with a microtubule stabilizer, an antioxidant, or with sulforaphane. Our study provides an approach to prospectively identify environmental chemicals that transcriptionally mimic autism and other brain disorders. This study presents gene expression responses of cultured brain cells to hundreds of chemicals found in the environment and in food. The authors identified chemicals that induce transcriptomic profiles that overlap those seen in human brains affected with autism, aging, and neurodegeneration.
Collapse
Affiliation(s)
- Brandon L Pearson
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599-7255, USA
| | - Jeremy M Simon
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599-7255, USA
| | - Eric S McCoy
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA
| | - Gabriela Salazar
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA
| | - Giulia Fragola
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA
| | - Mark J Zylka
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599-7255, USA
| |
Collapse
|
41
|
Wakatsuki S, Araki T. NADPH oxidases promote apoptosis by activating ZNRF1 ubiquitin ligase in neurons treated with an exogenously applied oxidant. Commun Integr Biol 2016; 9:e1143575. [PMID: 27195063 PMCID: PMC4857788 DOI: 10.1080/19420889.2016.1143575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS) play an important role in causing neuronal death in a number of neurological disorders. We recently reported that ROS serve as a signal to activate neuronal apoptosis and axonal degeneration by activating ZNRF1 (zinc- and RING-finger 1), a ubiquitin ligase that targets AKT for proteasomal degradation in neurons. In the present study, we showed that the NADPH oxidase family of molecules is required for ZNRF1 activation by epidermal growth factor receptor (EGFR)-dependent phosphorylation in response to axonal injury. We herein demonstrate that NADPH oxidases promote apoptosis by activating ZNRF1, even in neurons treated with an exogenously applied oxidant. These results suggest an important role for NADPH oxidase in the initiation/promotion of neuronal degeneration by increasing ROS in close proximity to protein machineries, including those for ZNRF1 and EGFR, thereby promoting neuronal degeneration.
Collapse
Affiliation(s)
- Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira, Tokyo, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira, Tokyo, Japan
| |
Collapse
|
42
|
Pal R, Bajaj L, Sharma J, Palmieri M, Di Ronza A, Lotfi P, Chaudhury A, Neilson J, Sardiello M, Rodney GG. NADPH oxidase promotes Parkinsonian phenotypes by impairing autophagic flux in an mTORC1-independent fashion in a cellular model of Parkinson's disease. Sci Rep 2016; 6:22866. [PMID: 26960433 PMCID: PMC4785399 DOI: 10.1038/srep22866] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/22/2016] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and aberrant accumulation of misfolded proteins in the cytosol are key pathological features associated with Parkinson's disease (PD). NADPH oxidase (Nox2) is upregulated in the pathogenesis of PD; however, the underlying mechanism(s) of Nox2-mediated oxidative stress in PD pathogenesis are still unknown. Using a rotenone-inducible cellular model of PD, we observed that a short exposure to rotenone (0.5 μM) resulted in impaired autophagic flux through activation of a Nox2 dependent Src/PI3K/Akt axis, with a consequent disruption of a Beclin1-VPS34 interaction that was independent of mTORC1 activity. Sustained exposure to rotenone at a higher dose (10 μM) decreased mTORC1 activity; however, autophagic flux was still impaired due to dysregulation of lysosomal activity with subsequent induction of the apoptotic machinery. Cumulatively, our results highlight a complex pathogenic mechanism for PD where short- and long-term oxidative stress alters different signaling pathways, ultimately resulting in anomalous autophagic activity and disease phenotype. Inhibition of Nox2-dependent oxidative stress attenuated the impaired autophagy and cell death, highlighting the importance and therapeutic potential of these pathways for treating patients with PD.
Collapse
Affiliation(s)
- Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Alberto Di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Parisa Lotfi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Arindam Chaudhury
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Joel Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| |
Collapse
|
43
|
Garofalo T, Manganelli V, Grasso M, Mattei V, Ferri A, Misasi R, Sorice M. Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis. Apoptosis 2015; 20:621-34. [PMID: 25652700 DOI: 10.1007/s10495-015-1100-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies.
Collapse
Affiliation(s)
- Tina Garofalo
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Fox J, Lu Z, Barrows L. Thiol-disulfide Oxidoreductases TRX1 and TMX3 Decrease Neuronal Atrophy in a Lentiviral Mouse Model of Huntington's Disease. PLOS CURRENTS 2015; 7. [PMID: 26664998 PMCID: PMC4650837 DOI: 10.1371/currents.hd.b966ec2eca8e2d89d2bb4d020be4351e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Huntington’s disease (HD) is caused by a trinucleotide CAG repeat in the
huntingtin gene (HTT) that results in expression of a polyglutamine-expanded
mutant huntingtin protein (mHTT). N-terminal fragments of mHTT accumulate in
brain neurons and glia as soluble monomeric and oligomeric species as well as
insoluble protein aggregates and drive the disease process. Decreasing mHTT
levels in brain provides protection and reversal of disease signs in HD mice
making mHTT a prime target for disease modification. There is evidence for
aberrant thiol oxidation within mHTT and other proteins in HD models. Based on
this, we hypothesized that a specific thiol-disulfide oxidoreductase exists that
decreases mHTT levels in cells and provides protection in HD mice. We undertook
an in-vitro genetic screen of key thiol-disulfide oxidoreductases then completed
secondary screens to identify those with mHTT decreasing properties. Our
in-vitro experiments identified thioredoxin 1 and thioredoxin-related
transmembrane protein 3 as proteins that decrease soluble mHTT levels in
cultured cells. Using a lentiviral mouse model of HD we tested the effect of
these proteins in striatum. Both proteins decreased mHTT-induced striatal
neuronal atrophy. Findings provide evidence for a role of dysregulated
protein-thiol homeostasis in the pathogenesis of HD.
Collapse
Affiliation(s)
- Jonathan Fox
- Neuroscience Graduate Program, Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Zhen Lu
- Neuroscience Graduate Program, Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, USA
| | | |
Collapse
|
45
|
Huang YF, Lo PC, Yen CL, Nigrovic PA, Chao WC, Wang WZ, Hsu GC, Tsai YS, Shieh CC. Redox Regulation of Pro-IL-1β Processing May Contribute to the Increased Severity of Serum-Induced Arthritis in NOX2-Deficient Mice. Antioxid Redox Signal 2015; 23:973-84. [PMID: 25867281 PMCID: PMC4624247 DOI: 10.1089/ars.2014.6136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIMS To elucidate the role of reactive oxygen species (ROS) in arthritis and to identify targets of arthritis treatment in conditions with different levels of oxidant stress. RESULTS Through establishing an arthritis model by injecting arthritogenic serum into wild-type and NADPH oxidase 2 (NOX2)-deficient mice, we found that arthritis had a neutrophilic infiltrate and was more severe in Ncf1(-/-) mice, a mouse strain lacking the expression of the NCF1/p47(phox) component of NOX2. The levels of interleukin-1β (IL-1β) and IL-6 in inflamed joints were higher in Ncf1(-/-) than in controls. Antagonists of tumor necrosis factor-α (TNFα) and IL-1β were equally effective in suppressing arthritis in wild-type mice, while IL-1β blockade was more effective than TNFα blockade in Ncf1(-/-) mice. A treatment of caspase inhibitor and the combination treatment of a caspase inhibitor and a cathepsin inhibitor, but not a cathepsin inhibitor alone, suppressed arthritic severity in the wild-type mice, while a treatment of cathepsin inhibitor and the combination treatment of a caspase inhibitor and a cathepsin inhibitor, but not a caspase inhibitor alone, were effective in treating Ncf1(-/-) mice. Consistently, cathepsin B was found to proteolytically process pro-IL-1β to its active form and this activity was suppressed by ROS. INNOVATION This novel mechanism of a redox-mediated immune regulation of arthritis through leukocyte-produced ROS is important for devising an optimal treatment for patients with different levels of tissue ROS. CONCLUSION Our results suggest that ROS act as a negative feedback to constrain IL-1β-mediated inflammation, accounting for the more severe arthritis in the absence of NOX2.
Collapse
Affiliation(s)
- Ya-Fang Huang
- 1 Institute of Clinical Medicine, National Cheng Kung University College of Medicine , Tainan, Taiwan
| | - Pei-Chi Lo
- 1 Institute of Clinical Medicine, National Cheng Kung University College of Medicine , Tainan, Taiwan
| | - Chia-Liang Yen
- 2 Institute of Basic Medical Science, National Cheng Kung University College of Medicine , Tainan, Taiwan
| | - Peter Andrija Nigrovic
- 3 Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital , Boston, Massachusetts.,4 Division of Immunology, Boston Children's Hospital , Boston, Massachusetts
| | - Wen-Chen Chao
- 1 Institute of Clinical Medicine, National Cheng Kung University College of Medicine , Tainan, Taiwan .,5 Department of Internal Medicine, Taichung Veteran General Hospital , Chiayi Branch, Chiayi, Taiwan
| | - Wei-Zhi Wang
- 1 Institute of Clinical Medicine, National Cheng Kung University College of Medicine , Tainan, Taiwan
| | - George Chengkang Hsu
- 1 Institute of Clinical Medicine, National Cheng Kung University College of Medicine , Tainan, Taiwan
| | - Yau-Sheng Tsai
- 1 Institute of Clinical Medicine, National Cheng Kung University College of Medicine , Tainan, Taiwan
| | - Chi-Chang Shieh
- 1 Institute of Clinical Medicine, National Cheng Kung University College of Medicine , Tainan, Taiwan .,6 Department of Pediatrics, National Cheng Kung University Hospital , Tainan, Taiwan
| |
Collapse
|
46
|
Tapia-Paniagua ST, Vidal S, Lobo C, García de la Banda I, Esteban MA, Balebona MC, Moriñigo MA. Dietary administration of the probiotic SpPdp11: Effects on the intestinal microbiota and immune-related gene expression of farmed Solea senegalensis treated with oxytetracycline. FISH & SHELLFISH IMMUNOLOGY 2015; 46:449-458. [PMID: 26190256 DOI: 10.1016/j.fsi.2015.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/08/2015] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
Few antimicrobials are currently authorised in the aquaculture industry to treat infectious diseases. Among them, oxytetracycline (OTC) is one of the first-choice drugs for nearly all bacterial diseases. The objective of this study was to evaluate the effect of the dietary administration of OTC both alone and jointly with the probiotic Shewanella putrefaciens Pdp11 (SpPdp11) on the intestinal microbiota and hepatic expression of genes related to immunity in Senegalese sole (Solea senegalensis) juveniles. The results demonstrated that the richness and diversity of the intestinal microbiota of fish treated with OTC decreased compared with those of the control group but that these effects were lessened by the simultaneous administration of SpPdp11. In addition, specimens that received OTC and SpPdp11 jointly showed a decreased intensity of the Denaturing Gradient Gel Electrophoresis (DGGE) bands related to Vibrio genus and the presence of DGGE bands related to Lactobacillus and Shewanella genera. The relationship among the intestinal microbiota of fish fed with control and OTC diets and the expression of the NADPH oxidase and CASPASE-6 genes was demonstrated by a Principal Components Analysis (PCA) carried out in this study. In contrast, a close relationship between the transcription of genes, such as NKEF, IGF-β, HSP70 and GP96, and the DGGE bands of fish treated jointly with OTC and SpPdp11 was observed in the PCA study. In summary, the results obtained in this study demonstrate that the administration of OTC results in the up-regulation of genes related to apoptosis but that the joint administration of OTC and S. putrefaciens Pdp11 increases the transcription of genes related to antiapoptotic effects and oxidative stress regulation. Further, a clear relationship between these changes and those detected in the intestinal microbiota is established.
Collapse
Affiliation(s)
- S T Tapia-Paniagua
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - S Vidal
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - C Lobo
- Spanish Institute of Oceanography, Oceanographic Center of Santander, 39080 Santander, Spain
| | - I García de la Banda
- Spanish Institute of Oceanography, Oceanographic Center of Santander, 39080 Santander, Spain
| | - M A Esteban
- Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - M C Balebona
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - M A Moriñigo
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
47
|
Brown GC, Vilalta A. How microglia kill neurons. Brain Res 2015; 1628:288-297. [PMID: 26341532 DOI: 10.1016/j.brainres.2015.08.031] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022]
Abstract
Microglia are resident brain macrophages that become inflammatory activated in most brain pathologies. Microglia normally protect neurons, but may accidentally kill neurons when attempting to limit infections or damage, and this may be more common with degenerative disease as there was no significant selection pressure on the aged brain in the past. A number of mechanisms by which activated microglia kill neurons have been identified, including: (i) stimulation of the phagocyte NADPH oxidase (PHOX) to produce superoxide and derivative oxidants, (ii) expression of inducible nitric oxide synthase (iNOS) producing NO and derivative oxidants, (iii) release of glutamate and glutaminase, (iv) release of TNFα, (v) release of cathepsin B, (vi) phagocytosis of stressed neurons, and (vii) decreased release of nutritive BDNF and IGF-1. PHOX stimulation contributes to microglial activation, but is not directly neurotoxic unless NO is present. NO is normally neuroprotective, but can react with superoxide to produce neurotoxic peroxynitrite, or in the presence of hypoxia inhibit mitochondrial respiration. Glutamate can be released by glia or neurons, but is neurotoxic only if the neurons are depolarised, for example as a result of mitochondrial inhibition. TNFα is normally neuroprotective, but can become toxic if caspase-8 or NF-κB activation are inhibited. If the above mechanisms do not kill neurons, they may still stress the neurons sufficiently to make them susceptible to phagocytosis by activated microglia. We review here whether microglial killing of neurons is an artefact, makes evolutionary sense or contributes in common neuropathologies and by what mechanisms. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
48
|
Lu XH, Mattis VB, Wang N, Al-Ramahi I, van den Berg N, Fratantoni SA, Waldvogel H, Greiner E, Osmand A, Elzein K, Xiao J, Dijkstra S, de Pril R, Vinters HV, Faull R, Signer E, Kwak S, Marugan JJ, Botas J, Fischer DF, Svendsen CN, Munoz-Sanjuan I, Yang XW. Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of Huntington's disease. Sci Transl Med 2015; 6:268ra178. [PMID: 25540325 DOI: 10.1126/scitranslmed.3010523] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Age-related neurodegenerative disorders including Alzheimer's disease and Huntington's disease (HD) consistently show elevated DNA damage, but the relevant molecular pathways in disease pathogenesis remain unclear. One attractive gene is that encoding the ataxia-telangiectasia mutated (ATM) protein, a kinase involved in the DNA damage response, apoptosis, and cellular homeostasis. Loss-of-function mutations in both alleles of ATM cause ataxia-telangiectasia in children, but heterozygous mutation carriers are disease-free. Persistently elevated ATM signaling has been demonstrated in Alzheimer's disease and in mouse models of other neurodegenerative diseases. We show that ATM signaling was consistently elevated in cells derived from HD mice and in brain tissue from HD mice and patients. ATM knockdown protected from toxicities induced by mutant Huntingtin (mHTT) fragments in mammalian cells and in transgenic Drosophila models. By crossing the murine Atm heterozygous null allele onto BACHD mice expressing full-length human mHTT, we show that genetic reduction of Atm gene dosage by one copy ameliorated multiple behavioral deficits and partially improved neuropathology. Small-molecule ATM inhibitors reduced mHTT-induced death of rat striatal neurons and induced pluripotent stem cells derived from HD patients. Our study provides converging genetic and pharmacological evidence that reduction of ATM signaling could ameliorate mHTT toxicity in cellular and animal models of HD, suggesting that ATM may be a useful therapeutic target for HD.
Collapse
Affiliation(s)
- Xiao-Hong Lu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA. UCLA Brain Research Institute, Los Angeles, CA 90095, USA
| | - Virginia B Mattis
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nan Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA. UCLA Brain Research Institute, Los Angeles, CA 90095, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | | | - Henry Waldvogel
- Department of Anatomy with Radiology, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Erin Greiner
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA. UCLA Brain Research Institute, Los Angeles, CA 90095, USA
| | - Alex Osmand
- Department of Biochemistry and Cellular and Molecular Biology, Knoxville, TN 37996, USA
| | - Karla Elzein
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jingbo Xiao
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, Rockville, MD 20892, USA
| | - Sipke Dijkstra
- BioFocus, a Charles River company, Leiden 233CR, the Netherlands
| | | | - Harry V Vinters
- Department of Pathology and Laboratory Medicine (Neurology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Richard Faull
- Department of Anatomy with Radiology, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Ethan Signer
- CHDI Foundation/CHDI Management Inc., Los Angeles, CA 90045, USA
| | - Seung Kwak
- CHDI Foundation/CHDI Management Inc., Los Angeles, CA 90045, USA
| | - Juan J Marugan
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, Rockville, MD 20892, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - David F Fischer
- BioFocus, a Charles River company, Leiden 233CR, the Netherlands
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA. UCLA Brain Research Institute, Los Angeles, CA 90095, USA.
| |
Collapse
|
49
|
Szlachcic WJ, Switonski PM, Krzyzosiak WJ, Figlerowicz M, Figiel M. Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway. Dis Model Mech 2015; 8:1047-57. [PMID: 26092128 PMCID: PMC4582098 DOI: 10.1242/dmm.019406] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/11/2015] [Indexed: 12/27/2022] Open
Abstract
Huntington disease (HD) is a brain disorder characterized by the late onset of motor and cognitive symptoms, even though the neurons in the brain begin to suffer dysfunction and degeneration long before symptoms appear. There is currently no cure. Several molecular and developmental effects of HD have been identified using neural stem cells (NSCs) and differentiated cells, such as neurons and astrocytes. Still, little is known regarding the molecular pathogenesis of HD in pluripotent cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Therefore, we examined putative signaling pathways and processes involved in HD pathogenesis in pluripotent cells. We tested naïve mouse HD YAC128 iPSCs and two types of human HD iPSC that were generated from HD and juvenile-HD patients. Surprisingly, we found that a number of changes affecting cellular processes in HD were also present in undifferentiated pluripotent HD iPSCs, including the dysregulation of the MAPK and Wnt signaling pathways and the dysregulation of the expression of genes related to oxidative stress, such as Sod1. Interestingly, a common protein interactor of the huntingtin protein and the proteins in the above pathways is p53, and the expression of p53 was dysregulated in HD YAC128 iPSCs and human HD iPSCs. In summary, our findings demonstrate that multiple molecular pathways that are characteristically dysregulated in HD are already altered in undifferentiated pluripotent cells and that the pathogenesis of HD might begin during the early stages of life.
Collapse
Affiliation(s)
- Wojciech J Szlachcic
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Pawel M Switonski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Wlodzimierz J Krzyzosiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| |
Collapse
|
50
|
Hamilton J, Pellman JJ, Brustovetsky T, Harris RA, Brustovetsky N. Oxidative metabolism in YAC128 mouse model of Huntington's disease. Hum Mol Genet 2015; 24:4862-78. [PMID: 26041817 DOI: 10.1093/hmg/ddv209] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/01/2015] [Indexed: 12/15/2022] Open
Abstract
Alterations in oxidative metabolism are considered to be one of the major contributors to Huntington's disease (HD) pathogenesis. However, existing data about oxidative metabolism in HD are contradictory. Here, we investigated the effect of mutant huntingtin (mHtt) on oxidative metabolism in YAC128 mice. Both mHtt and wild-type huntingtin (Htt) were associated with mitochondria and the amount of bound Htt was four-times higher than the amount of bound mHtt. Percoll gradient-purified brain synaptic and non-synaptic mitochondria as well as unpurified brain, liver and heart mitochondria, isolated from 2- and 10-month-old YAC128 mice and age-matched WT littermates had similar respiratory rates. There was no difference in mitochondrial membrane potential or ADP and ATP levels. Expression of selected nuclear-encoded mitochondrial proteins in 2- and 10-month-old YAC128 and WT mice was similar. Cultured striatal and cortical neurons from YAC128 and WT mice had similar respiratory and glycolytic activities as measured with Seahorse XF24 analyzer in medium containing 10 mm glucose and 15 mm pyruvate. In the medium with 2.5 mm glucose, YAC128 striatal neurons had similar respiration, but slightly lower glycolytic activity. Striatal neurons had lower maximal respiration compared with cortical neurons. In vivo experiments with YAC128 and WT mice showed similar O2 consumption, CO2 release, physical activity, food consumption and fasted blood glucose. However, YAC128 mice were heavier and had more body fat compared with WT mice. Overall, our data argue against respiratory deficiency in YAC128 mice and, consequently, suggest that mitochondrial respiratory dysfunction is not essential for HD pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Robert A Harris
- Department of Biochemistry and Molecular Biology and Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Department of Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA and
| |
Collapse
|