1
|
Mauro M, Wei S, Breborowicz A, Li X, Bognanni C, Fuller Z, Philipp T, McDonald T, Lattin MT, Williams Z. Endogenous retrotransposons cause catastrophic deoxyribonucleic acid damage in human trophoblasts. F&S SCIENCE 2023; 4:200-210. [PMID: 37225003 DOI: 10.1016/j.xfss.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE To determine the mechanistic role of mobile genetic elements in causing widespread DNA damage in primary human trophoblasts. DESIGN Experimental ex vivo study. SETTING Hospital-affiliated University. PATIENT(S) Trophoblasts from a patient with unexplained recurrent pregnancy loss and patients with spontaneous and elective abortions (n = 10). INTERVENTION(S) Biochemical and genetic analysis and modification of primary human trophoblasts. MAIN OUTCOME MEASURE(S) To phenotype and systematically evaluate the underlying pathogenic mechanism for elevated DNA damage observed in trophoblasts derived from a patient with unexplained recurrent pregnancy loss, transcervical embryoscopy, G-band karyotyping, RNA sequencing, quantitative polymerase chain reaction, immunoblotting, biochemical and siRNA assays, and whole-genome sequencing were performed. RESULT(S) Transcervical embryoscopy revealed a severely dysmorphic embryo that was euploid on G-band karyotyping. RNA sequencing was notable for markedly elevated LINE-1 expression, confirmed with quantitative polymerase chain reaction, and that resulted in elevated expression of LINE-1-encoded proteins, as shown by immunoblotting. Immunofluorescence, biochemical and genetic approaches demonstrated that overexpression of LINE-1 caused reversible widespread genomic damage and apoptosis. CONCLUSION(S) Derepression of LINE-1 elements in early trophoblasts results in reversible but widespread DNA damage.
Collapse
Affiliation(s)
- Maurizio Mauro
- Department of Obstetrics and Gynecology, Columbia University Fertility Center, Columbia University Medical Center, New York, New York; Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York
| | - Shan Wei
- Department of Obstetrics and Gynecology, Columbia University Fertility Center, Columbia University Medical Center, New York, New York
| | - Andrzej Breborowicz
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York
| | - Xin Li
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York
| | - Claudia Bognanni
- The Rockefeller University, Howard Hughes Medical Institute, and Laboratory of RNA Molecular Biology, New York, New York
| | - Zachary Fuller
- Department of Biological Sciences, Columbia University, New York, New York
| | - Thomas Philipp
- Institute of Clinical Gynecology and Obstetrics, Danube Hospital, Vienna, Austria
| | - Torrin McDonald
- Department of Obstetrics and Gynecology, Columbia University Fertility Center, Columbia University Medical Center, New York, New York
| | - Miriam Temmeh Lattin
- Department of Obstetrics and Gynecology, Columbia University Fertility Center, Columbia University Medical Center, New York, New York
| | - Zev Williams
- Department of Obstetrics and Gynecology, Columbia University Fertility Center, Columbia University Medical Center, New York, New York.
| |
Collapse
|
2
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
3
|
Alzahrani FA, Hawsawi YM, Altayeb HN, Alsiwiehri NO, Alzahrani OR, Alatwi HE, Al‐Amer OM, Alomar S, Mansour L. In silico modeling of the interaction between TEX19 and LIRE1, and analysis of TEX19 gene missense SNPs. Mol Genet Genomic Med 2021; 9:e1707. [PMID: 34036740 PMCID: PMC8372073 DOI: 10.1002/mgg3.1707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/19/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Testis expressed 19 (TEX19) is a specific human stem cell gene identified as cancer-testis antigen (CTA), which emerged as a potential therapeutic drug target. TEX19.1, a mouse paralog of human TEX19, can interact with LINE-1 retrotransposable element ORF1 protein (LIRE1) and subsequently restrict mobilization of LINE-1 elements in the genome. AIM This study aimed to predict the interaction of TEX19 with LIRE1 and analyze TEX19 missense polymorphisms. TEX19 model was generated using I-TASSER and the interaction between TEX19 and LIRE1 was studied using the HADDOCK software. METHODS The stability of the docking formed complex was studied through the molecular dynamic simulation using GROMACS. Missense SNPs (n=102) of TEX19 were screened for their potential effects on protein structure and function using different software. RESULTS Outcomes of this study revealed amino acids that potentially stabilize the predicted interaction interface between TEX19 and LIRE1. Of these SNPs, 37 were predicted to play a probably damaging role for the protein, three of them (F35S, P61R, and E55L) located at the binding site of LIRE1 and could disturb this binding affinity. CONCLUSION This information can be verified by further in vitro and in vivo experimentations and could be exploited for potential therapeutic targets.
Collapse
Affiliation(s)
- Faisal A. Alzahrani
- Department of BiochemistryFaculty of ScienceEmbryonic Stem Cell UnitKing Fahad Center for Medical ResearchKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Yousef MohammedRabaa Hawsawi
- Research Center at King Faisal Specialist Hospital and Research CenterJeddahSaudi Arabia
- College of MedicineAl‐Faisal UniversityRiyadhSaudi Arabia
| | - Hisham N. Altayeb
- Department of BiochemistryFaculty of ScienceEmbryonic Stem Cell UnitKing Fahad Center for Medical ResearchKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Naif O. Alsiwiehri
- Department of Clinical Laboratory ScienceFaculty of Applied Medical ScienceTaif UniversityTaifSaudi Arabia
| | - Othman R. Alzahrani
- Department of BiologyFaculty of SciencesUniversity of TabukTabukSaudi Arabia
- Genome and Biotechnology UnitFaculty of ScienceUniversity of TabukTabukSaudi Arabia
| | - Hanan E. Alatwi
- Department of BiologyFaculty of SciencesUniversity of TabukTabukSaudi Arabia
- Genome and Biotechnology UnitFaculty of ScienceUniversity of TabukTabukSaudi Arabia
| | - Osama M. Al‐Amer
- Genome and Biotechnology UnitFaculty of ScienceUniversity of TabukTabukSaudi Arabia
- Department of Medical Laboratory TechnologyFaculty of Applied Medical SciencesUniversity of TaboukTabukSaudi Arabia
| | - Suliman Alomar
- Doping Research ChairDepartment of ZoologyCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Lamjed Mansour
- Doping Research ChairDepartment of ZoologyCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
- Department of ZoologyCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
4
|
Legault LM, Doiron K, Lemieux A, Caron M, Chan D, Lopes FL, Bourque G, Sinnett D, McGraw S. Developmental genome-wide DNA methylation asymmetry between mouse placenta and embryo. Epigenetics 2020; 15:800-815. [PMID: 32056496 PMCID: PMC7518706 DOI: 10.1080/15592294.2020.1722922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 12/27/2022] Open
Abstract
In early embryos, DNA methylation is remodelled to initiate the developmental program but for mostly unknown reasons, methylation marks are acquired unequally between embryonic and placental cells. To better understand this, we generated high-resolution DNA methylation maps of mouse mid-gestation (E10.5) embryo and placenta. We uncovered specific subtypes of differentially methylated regions (DMRs) that contribute directly to the developmental asymmetry existing between mid-gestation embryonic and placental DNA methylation patterns. We show that the asymmetry occurs rapidly during the acquisition of marks in the post-implanted conceptus (E3.5-E6.5), and that these patterns are long-lasting across subtypes of DMRs throughout prenatal development and in somatic tissues. We reveal that at the peri-implantation stages, the de novo methyltransferase activity of DNMT3B is the main driver of methylation marks on asymmetric DMRs, and that DNMT3B can largely compensate for lack of DNMT3A in the epiblast and extraembryonic ectoderm, whereas DNMT3A can only partially compensate in the absence of DNMT3B. However, as development progresses and as DNMT3A becomes the principal de novo methyltransferase, the compensatory DNA methylation mechanism of DNMT3B on DMRs becomes less effective.
Collapse
Affiliation(s)
- LM Legault
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
| | - K Doiron
- Research Center of the CHU Sainte-Justine, Montreal, Canada
| | - A Lemieux
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
| | - M Caron
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - D Chan
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - FL Lopes
- School of Veterinary Medicine, São Paulo State University (Unesp), Aracatuba, Brazil
| | - G Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
- Canadian Center for Computational Genomics, Montreal, Quebec, Canada
| | - D Sinnett
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Pediatrics, Université De Montréal, Montreal, Canada
| | - S McGraw
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
- Department of Obstetrics and Gynecology, Université De Montréal, Montreal, Canada
| |
Collapse
|
5
|
Reichmann J, Dobie K, Lister LM, Crichton JH, Best D, MacLennan M, Read D, Raymond ES, Hung CC, Boyle S, Shirahige K, Cooke HJ, Herbert M, Adams IR. Tex19.1 inhibits the N-end rule pathway and maintains acetylated SMC3 cohesin and sister chromatid cohesion in oocytes. J Cell Biol 2020; 219:e201702123. [PMID: 32232464 PMCID: PMC7199850 DOI: 10.1083/jcb.201702123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 12/31/2019] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Age-dependent oocyte aneuploidy, a major cause of Down syndrome, is associated with declining sister chromatid cohesion in postnatal oocytes. Here we show that cohesion in postnatal mouse oocytes is regulated by Tex19.1. We show Tex19.1-/- oocytes have defects maintaining chiasmata, missegregate their chromosomes during meiosis, and transmit aneuploidies to the next generation. Furthermore, we show that mouse Tex19.1 inhibits N-end rule protein degradation mediated by its interacting partner UBR2, and that Ubr2 itself has a previously undescribed role in negatively regulating the acetylated SMC3 subpopulation of cohesin in mitotic somatic cells. Lastly, we show that acetylated SMC3 is associated with meiotic chromosome axes in mouse oocytes, and that this population of cohesin is specifically depleted in the absence of Tex19.1. These findings indicate that Tex19.1 regulates UBR protein activity to maintain acetylated SMC3 and sister chromatid cohesion in postnatal oocytes and prevent aneuploidy from arising in the female germline.
Collapse
Affiliation(s)
- Judith Reichmann
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Karen Dobie
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Lisa M. Lister
- Institute for Genetic Medicine, Newcastle University, Biomedicine West Wing, Centre for Life, Newcastle upon Tyne, UK
| | - James H. Crichton
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Diana Best
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Marie MacLennan
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - David Read
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Eleanor S. Raymond
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Chao-Chun Hung
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Shelagh Boyle
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Howard J. Cooke
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Mary Herbert
- Institute for Genetic Medicine, Newcastle University, Biomedicine West Wing, Centre for Life, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Biomedicine West Wing, Centre for Life, Newcastle upon Tyne, UK
| | - Ian R. Adams
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| |
Collapse
|
6
|
Lou C, Goodier JL, Qiang R. A potential new mechanism for pregnancy loss: considering the role of LINE-1 retrotransposons in early spontaneous miscarriage. Reprod Biol Endocrinol 2020; 18:6. [PMID: 31964400 PMCID: PMC6971995 DOI: 10.1186/s12958-020-0564-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
LINE1 retrotransposons are mobile DNA elements that copy and paste themselves into new sites in the genome. To ensure their evolutionary success, heritable new LINE-1 insertions accumulate in cells that can transmit genetic information to the next generation (i.e., germ cells and embryonic stem cells). It is our hypothesis that LINE1 retrotransposons, insertional mutagens that affect expression of genes, may be causal agents of early miscarriage in humans. The cell has evolved various defenses restricting retrotransposition-caused mutation, but these are occasionally relaxed in certain somatic cell types, including those of the early embryo. We predict that reduced suppression of L1s in germ cells or early-stage embryos may lead to excessive genome mutation by retrotransposon insertion, or to the induction of an inflammatory response or apoptosis due to increased expression of L1-derived nucleic acids and proteins, and so disrupt gene function important for embryogenesis. If correct, a novel threat to normal human development is revealed, and reverse transcriptase therapy could be one future strategy for controlling this cause of embryonic damage in patients with recurrent miscarriages.
Collapse
Affiliation(s)
- Chao Lou
- Department of Genetics, Northwest Women’s and Children’s Hospital, 1616 Yanxiang Road, Xi’an, Shaanxi Province People’s Republic of China
| | - John L. Goodier
- 0000 0001 2171 9311grid.21107.35McKusick-Nathans Deartment of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Rong Qiang
- Department of Genetics, Northwest Women’s and Children’s Hospital, 1616 Yanxiang Road, Xi’an, Shaanxi Province People’s Republic of China
| |
Collapse
|
7
|
Feichtinger J, McFarlane RJ. Meiotic gene activation in somatic and germ cell tumours. Andrology 2019; 7:415-427. [PMID: 31102330 PMCID: PMC6766858 DOI: 10.1111/andr.12628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022]
Abstract
Background Germ cell tumours are uniquely associated with the gametogenic tissues of males and females. A feature of these cancers is that they can express genes that are normally tightly restricted to meiotic cells. This aberrant gene expression has been used as an indicator that these cancer cells are attempting a programmed germ line event, meiotic entry. However, work in non‐germ cell cancers has also indicated that meiotic genes can become aberrantly activated in a wide range of cancer types and indeed provide functions that serve as oncogenic drivers. Here, we review the activation of meiotic factors in cancers and explore commonalities between meiotic gene activation in germ cell and non‐germ cell cancers. Objectives The objectives of this review are to highlight key questions relating to meiotic gene activation in germ cell tumours and to offer possible interpretations as to the biological relevance in this unique cancer type. Materials and Methods PubMed and the GEPIA database were searched for papers in English and for cancer gene expression data, respectively. Results We provide a brief overview of meiotic progression, with a focus on the unique mechanisms of reductional chromosome segregation in meiosis I. We then offer detailed insight into the role of meiotic chromosome regulators in non‐germ cell cancers and extend this to provide an overview of how this might relate to germ cell tumours. Conclusions We propose that meiotic gene activation in germ cell tumours might not indicate an unscheduled attempt to enter a full meiotic programme. Rather, it might simply reflect either aberrant activation of a subset of meiotic genes, with little or no biological relevance, or aberrant activation of a subset of meiotic genes as positive tumour evolutionary/oncogenic drivers. These postulates provide the provocation for further studies in this emerging field.
Collapse
Affiliation(s)
- J Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria.,OMICS Center Graz, BioTechMed Graz, Graz, Austria
| | - R J McFarlane
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, UK
| |
Collapse
|
8
|
Crichton JH, Read D, Adams IR. Defects in meiotic recombination delay progression through pachytene in Tex19.1 -/- mouse spermatocytes. Chromosoma 2018; 127:437-459. [PMID: 29907896 PMCID: PMC6208735 DOI: 10.1007/s00412-018-0674-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/21/2018] [Accepted: 06/01/2018] [Indexed: 02/08/2023]
Abstract
Recombination, synapsis, chromosome segregation and gene expression are co-ordinately regulated during meiosis to ensure successful execution of this specialised cell division. Studies with multiple mutant mouse lines have shown that mouse spermatocytes possess quality control checkpoints that eliminate cells with persistent defects in chromosome synapsis. In addition, studies on Trip13mod/mod mice suggest that pachytene spermatocytes that successfully complete chromosome synapsis can undergo meiotic arrest in response to defects in recombination. Here, we present additional support for a meiotic recombination-dependent checkpoint using a different mutant mouse line, Tex19.1-/-. The appearance of early recombination foci is delayed in Tex19.1-/- spermatocytes during leptotene/zygotene, but some Tex19.1-/- spermatocytes still successfully synapse their chromosomes and we show that these spermatocytes are enriched for early recombination foci. Furthermore, we show that patterns of axis elongation, chromatin modifications and histone H1t expression are also all co-ordinately skewed towards earlier substages of pachytene in these autosomally synapsed Tex19.1-/- spermatocytes. We also show that this skew towards earlier pachytene substages occurs in the absence of elevated spermatocyte death in the population, that spermatocytes with features of early pachytene are present in late stage Tex19.1-/- testis tubules and that the delay in histone H1t expression in response to loss of Tex19.1 does not occur in a Spo11 mutant background. Taken together, these data suggest that a recombination-dependent checkpoint may be able to modulate pachytene progression in mouse spermatocytes to accommodate some types of recombination defect.
Collapse
Affiliation(s)
- James H Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - David Read
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
9
|
Decato BE, Lopez-Tello J, Sferruzzi-Perri AN, Smith AD, Dean MD. DNA Methylation Divergence and Tissue Specialization in the Developing Mouse Placenta. Mol Biol Evol 2017; 34:1702-1712. [PMID: 28379409 DOI: 10.1093/molbev/msx112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The placental epigenome plays a vital role in regulating mammalian growth and development. Aberrations in placental DNA methylation are linked to several disease states, including intrauterine growth restriction and preeclampsia. Studying the evolution and development of the placental epigenome is critical to understanding the origin and progression of such diseases. Although high-resolution studies have found substantial variation between placental methylomes of different species, the nature of methylome variation has yet to be characterized within any individual species. We conducted a study of placental DNA methylation at high resolution in multiple strains and closely related species of house mice (Mus musculus musculus, Mus m. domesticus, and M. spretus), across developmental timepoints (embryonic days 15-18), and between two distinct layers (labyrinthine transport and junctional endocrine). We observed substantial genome-wide methylation heterogeneity in mouse placenta compared with other differentiated tissues. Species-specific methylation profiles were concentrated in retrotransposon subfamilies, specifically RLTR10 and RLTR20 subfamilies. Regulatory regions such as gene promoters and CpG islands displayed cross-species conservation, but showed strong differences between layers and developmental timepoints. Partially methylated domains exist in the mouse placenta and widen during development. Taken together, our results characterize the mouse placental methylome as a highly heterogeneous and deregulated landscape globally, intermixed with actively regulated promoter and retrotransposon sequences.
Collapse
Affiliation(s)
- Benjamin E Decato
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Jorge Lopez-Tello
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D Smith
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
10
|
Intrauterine growth retardation-associated syncytin b hypermethylation in maternal rat blood revealed by DNA methylation array analysis. Pediatr Res 2017; 82:704-711. [PMID: 28604758 DOI: 10.1038/pr.2017.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 05/28/2017] [Indexed: 11/08/2022]
Abstract
BackgroundEmerging evidence suggests that DNA methylation in maternal blood is a promising target for intrauterine growth retardation (IUGR) screening, a common developmental toxicity. Here, we aimed to screen out IUGR-related DNA methylation status in maternal blood via high-throughput profiling.MethodsPregnant Wistar rats were subcutaneously administered nicotine (1 mg/kg) twice per day from gestational day (GD) 11 to GD20 to establish the IUGR model. MeDIP array assays and the following GO analysis were used to evaluate DNA methylation status in maternal blood. One placental development-associated gene was selected for further confirmation.ResultsGenes regulating the development of multiple organs and major body systems had changed DNA methylation frequencies in the maternal blood of IUGR rats. Placental development, which can affect the development of multiple fetal organs and induce IUGR, is a hypermethylated cluster consisting of four significantly changed genes, including syncytin b (Synb), Lrrc15, Met, and Tex19.1. With the most significant change, Synb hypermethylation in maternal blood was confirmed by bisulfite-sequencing PCR (BSP). Moreover, decreased Synb expression and histological changes were observed in IUGR placentae.ConclusionThe IUGR-associated DNA methylation profile in maternal blood, such as placenta-related Synb hypermethylation, provides evidence for further studies on possible IUGR biomarkers.
Collapse
|
11
|
MacLennan M, García-Cañadas M, Reichmann J, Khazina E, Wagner G, Playfoot CJ, Salvador-Palomeque C, Mann AR, Peressini P, Sanchez L, Dobie K, Read D, Hung CC, Eskeland R, Meehan RR, Weichenrieder O, García-Pérez JL, Adams IR. Mobilization of LINE-1 retrotransposons is restricted by Tex19.1 in mouse embryonic stem cells. eLife 2017; 6:e26152. [PMID: 28806172 PMCID: PMC5570191 DOI: 10.7554/elife.26152] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
Mobilization of retrotransposons to new genomic locations is a significant driver of mammalian genome evolution, but these mutagenic events can also cause genetic disorders. In humans, retrotransposon mobilization is mediated primarily by proteins encoded by LINE-1 (L1) retrotransposons, which mobilize in pluripotent cells early in development. Here we show that TEX19.1, which is induced by developmentally programmed DNA hypomethylation, can directly interact with the L1-encoded protein L1-ORF1p, stimulate its polyubiquitylation and degradation, and restrict L1 mobilization. We also show that TEX19.1 likely acts, at least in part, through promoting the activity of the E3 ubiquitin ligase UBR2 towards L1-ORF1p. Moreover, loss of Tex19.1 increases L1-ORF1p levels and L1 mobilization in pluripotent mouse embryonic stem cells, implying that Tex19.1 prevents de novo retrotransposition in the pluripotent phase of the germline cycle. These data show that post-translational regulation of L1 retrotransposons plays a key role in maintaining trans-generational genome stability in mammals.
Collapse
Affiliation(s)
- Marie MacLennan
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Marta García-Cañadas
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Judith Reichmann
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Elena Khazina
- Department of
Biochemistry, Max Planck Institute for Developmental
Biology, Tübingen, Germany
| | - Gabriele Wagner
- Department of
Biochemistry, Max Planck Institute for Developmental
Biology, Tübingen, Germany
| | - Christopher J Playfoot
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Carmen Salvador-Palomeque
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Abigail R Mann
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Paula Peressini
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Laura Sanchez
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Karen Dobie
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - David Read
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Chao-Chun Hung
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Ragnhild Eskeland
- Department of
Biosciences, University of Oslo,
Oslo,
Norway
- Norwegian Center for
Stem Cell Research, Department of Immunology, Oslo
University Hospital, Oslo, Norway
| | - Richard R Meehan
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Oliver Weichenrieder
- Department of
Biochemistry, Max Planck Institute for Developmental
Biology, Tübingen, Germany
| | - Jose Luis García-Pérez
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Ian R Adams
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| |
Collapse
|
12
|
Crichton JH, Playfoot CJ, MacLennan M, Read D, Cooke HJ, Adams IR. Tex19.1 promotes Spo11-dependent meiotic recombination in mouse spermatocytes. PLoS Genet 2017; 13:e1006904. [PMID: 28708824 PMCID: PMC5533463 DOI: 10.1371/journal.pgen.1006904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/28/2017] [Accepted: 07/03/2017] [Indexed: 11/18/2022] Open
Abstract
Meiosis relies on the SPO11 endonuclease to generate the recombinogenic DNA double strand breaks (DSBs) required for homologous chromosome synapsis and segregation. The number of meiotic DSBs needs to be sufficient to allow chromosomes to search for and find their homologs, but not excessive to the point of causing genome instability. Here we report that the mammal-specific gene Tex19.1 promotes Spo11-dependent recombination in mouse spermatocytes. We show that the chromosome asynapsis previously reported in Tex19.1-/- spermatocytes is preceded by reduced numbers of recombination foci in leptotene and zygotene. Tex19.1 is required for normal levels of early Spo11-dependent recombination foci during leptotene, but not for upstream events such as MEI4 foci formation or accumulation of H3K4me3 at recombination hotspots. Furthermore, we show that mice carrying mutations in Ubr2, which encodes an E3 ubiquitin ligase that interacts with TEX19.1, phenocopy the Tex19.1-/- recombination defects. These data suggest that Tex19.1 and Ubr2 are required for mouse spermatocytes to accumulate sufficient Spo11-dependent recombination to ensure that the homology search is consistently successful, and reveal a hitherto unknown genetic pathway promoting meiotic recombination in mammals.
Collapse
Affiliation(s)
- James H. Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Christopher J. Playfoot
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Marie MacLennan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - David Read
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Howard J. Cooke
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Ian R. Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Planells-Palop V, Hazazi A, Feichtinger J, Jezkova J, Thallinger G, Alsiwiehri NO, Almutairi M, Parry L, Wakeman JA, McFarlane RJ. Human germ/stem cell-specific gene TEX19 influences cancer cell proliferation and cancer prognosis. Mol Cancer 2017; 16:84. [PMID: 28446200 PMCID: PMC5406905 DOI: 10.1186/s12943-017-0653-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
Background Cancer/testis (CT) genes have expression normally restricted to the testis, but become activated during oncogenesis, so they have excellent potential as cancer-specific biomarkers. Evidence is starting to emerge to indicate that they also provide function(s) in the oncogenic programme. Human TEX19 is a recently identified CT gene, but a functional role for TEX19 in cancer has not yet been defined. Methods siRNA was used to deplete TEX19 levels in various cancer cell lines. This was extended using shRNA to deplete TEX19 in vivo. Western blotting, fluorescence activated cell sorting and immunofluorescence were used to study the effect of TEX19 depletion in cancer cells and to localize TEX19 in normal testis and cancer cells/tissues. RT-qPCR and RNA sequencing were employed to determine the changes to the transcriptome of cancer cells depleted for TEX19 and Kaplan-Meier plots were generated to explore the relationship between TEX19 expression and prognosis for a range of cancer types. Results Depletion of TEX19 levels in a range of cancer cell lines in vitro and in vivo restricts cellular proliferation/self-renewal/reduces tumour volume, indicating TEX19 is required for cancer cell proliferative/self-renewal potential. Analysis of cells depleted for TEX19 indicates they enter a quiescent-like state and have subtle defects in S-phase progression. TEX19 is present in both the nucleus and cytoplasm in both cancerous cells and normal testis. In cancer cells, localization switches in a context-dependent fashion. Transcriptome analysis of TEX19 depleted cells reveals altered transcript levels of a number of cancer-/proliferation-associated genes, suggesting that TEX19 could control oncogenic proliferation via a transcript/transcription regulation pathway. Finally, overall survival analysis of high verses low TEX19 expressing tumours indicates that TEX19 expression is linked to prognostic outcomes in different tumour types. Conclusions TEX19 is required to drive cell proliferation in a range of cancer cell types, possibly mediated via an oncogenic transcript regulation mechanism. TEX19 expression is linked to a poor prognosis for some cancers and collectively these findings indicate that not only can TEX19 expression serve as a novel cancer biomarker, but may also offer a cancer-specific therapeutic target with broad spectrum potential. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0653-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicente Planells-Palop
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Ali Hazazi
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Julia Feichtinger
- Computational Biotechnology and Bioinformatics Group, Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria.,Omics Center Graz, BioTechMed Graz, Graz, Austria
| | - Jana Jezkova
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Gerhard Thallinger
- Computational Biotechnology and Bioinformatics Group, Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria.,Omics Center Graz, BioTechMed Graz, Graz, Austria
| | - Naif O Alsiwiehri
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Mikhlid Almutairi
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK.,Present address: Department of Zoology, King Saud University, Al-Ryiadh, Saudi Arabia
| | - Lee Parry
- European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Jane A Wakeman
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Ramsay J McFarlane
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK.
| |
Collapse
|
14
|
Tarabay Y, Achour M, Teletin M, Ye T, Teissandier A, Mark M, Bourc'his D, Viville S. Tex19 paralogs are new members of the piRNA pathway controlling retrotransposon suppression. J Cell Sci 2017; 130:1463-1474. [PMID: 28254886 DOI: 10.1242/jcs.188763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 02/27/2017] [Indexed: 01/29/2023] Open
Abstract
Tex19 genes are mammalian specific and duplicated to give Tex19.1 and Tex19.2 in some species, such as the mouse and rat. It has been demonstrated that mutant Tex19.1 males display a variable degree of infertility whereas they all upregulate MMERVK10C transposons in their germ line. In order to study the function of both paralogs in the mouse, we generated and studied Tex19 double knockout (Tex19DKO) mutant mice. Adult Tex19DKO males exhibited a fully penetrant phenotype, similar to the most severe phenotype observed in the single Tex19.1KO mice, with small testes and impaired spermatogenesis, defects in meiotic chromosome synapsis, persistence of DNA double-strand breaks during meiosis, lack of post-meiotic germ cells and upregulation of MMERVK10C expression. The phenotypic similarities to mice with knockouts in the Piwi family genes prompted us to check and then demonstrate, by immunoprecipitation and GST pulldown followed by mass spectrometry analyses, that TEX19 paralogs interact with PIWI proteins and the TEX19 VPTEL domain directly binds Piwi-interacting RNAs (piRNAs) in adult testes. We therefore identified two new members of the postnatal piRNA pathway.
Collapse
Affiliation(s)
- Yara Tarabay
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France
| | - Mayada Achour
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France
| | - Marius Teletin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France.,Service de Biologie de la Reproduction, Centre Hospitalier Universitaire, Strasbourg 67000, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France
| | - Aurélie Teissandier
- Institut Curie, department of Genetics and Developmental Biology, CNRS UMR3215, INSERM U934, 75005 Paris, France
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France.,Service de Biologie de la Reproduction, Centre Hospitalier Universitaire, Strasbourg 67000, France
| | - Déborah Bourc'his
- Institut Curie, department of Genetics and Developmental Biology, CNRS UMR3215, INSERM U934, 75005 Paris, France
| | - Stéphane Viville
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France .,Centre Hospitalier Universitaire, Strasbourg 67000, France
| |
Collapse
|
15
|
Muñoz-Lopez M, Vilar-Astasio R, Tristan-Ramos P, Lopez-Ruiz C, Garcia-Pérez JL. Study of Transposable Elements and Their Genomic Impact. Methods Mol Biol 2016; 1400:1-19. [PMID: 26895043 DOI: 10.1007/978-1-4939-3372-3_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transposable elements (TEs) have been considered traditionally as junk DNA, i.e., DNA sequences that despite representing a high proportion of genomes had no evident cellular functions. However, over the last decades, it has become undeniable that not only TE-derived DNA sequences have (and had) a fundamental role during genome evolution, but also TEs have important implications in the origin and evolution of many genomic disorders. This concise review provides a brief overview of the different types of TEs that can be found in genomes, as well as a list of techniques and methods used to study their impact and mobilization. Some of these techniques will be covered in detail in this Method Book.
Collapse
Affiliation(s)
- Martin Muñoz-Lopez
- Department of Human DNA Variability, Pfizer/University of Granada and Andalusian Regional Government Center for Genomics and Oncology (GENYO), Avda Ilustracion 114, PTS Granada, 18016, Granada, Spain.
| | - Raquel Vilar-Astasio
- Department of Human DNA Variability, Pfizer/University of Granada and Andalusian Regional Government Center for Genomics and Oncology (GENYO), Avda Ilustracion 114, PTS Granada, 18016, Granada, Spain
| | - Pablo Tristan-Ramos
- Department of Human DNA Variability, Pfizer/University of Granada and Andalusian Regional Government Center for Genomics and Oncology (GENYO), Avda Ilustracion 114, PTS Granada, 18016, Granada, Spain
| | - Cesar Lopez-Ruiz
- Department of Human DNA Variability, Pfizer/University of Granada and Andalusian Regional Government Center for Genomics and Oncology (GENYO), Avda Ilustracion 114, PTS Granada, 18016, Granada, Spain
| | - Jose L Garcia-Pérez
- -Genyo (Center for Genomics and Oncological Research), Pfizer/Universidad de Granada/Junta de Andalucia. PTS Granada, Spain-Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh,, Edinburgh, UK
| |
Collapse
|
16
|
Abstract
Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that have a significant impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and discuss how the somatic activity of TEs can influence gene regulatory networks.
Collapse
Affiliation(s)
- Jose L Garcia-Perez
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Department of Genomic Medicine, GENYO, Centre for Genomics & Oncology (Pfizer - University of Granada & Andalusian Regional Government), PTS Granada, Avda. de la Ilustración 114, Granada 18016, Spain
| | - Thomas J Widmann
- Department of Genomic Medicine, GENYO, Centre for Genomics & Oncology (Pfizer - University of Granada & Andalusian Regional Government), PTS Granada, Avda. de la Ilustración 114, Granada 18016, Spain
| | - Ian R Adams
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| |
Collapse
|
17
|
Abstract
Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 212051
| |
Collapse
|
18
|
Placental Hypomethylation Is More Pronounced in Genomic Loci Devoid of Retroelements. G3-GENES GENOMES GENETICS 2016; 6:1911-21. [PMID: 27172225 PMCID: PMC4938645 DOI: 10.1534/g3.116.030379] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human placenta is hypomethylated compared to somatic tissues. However, the degree and specificity of placental hypomethylation across the genome is unclear. We assessed genome-wide methylation of the human placenta and compared it to that of the neutrophil, a representative homogeneous somatic cell. We observed global hypomethylation in placenta (relative reduction of 22%) compared to neutrophils. Placental hypomethylation was pronounced in intergenic regions and gene bodies, while the unmethylated state of the promoter remained conserved in both tissues. For every class of repeat elements, the placenta showed lower methylation but the degree of hypomethylation differed substantially between these classes. However, some retroelements, especially the evolutionarily younger Alu elements, retained high levels of placental methylation. Surprisingly, nonretrotransposon-containing sequences showed a greater degree of placental hypomethylation than retrotransposons in every genomic element (intergenic, introns, and exons) except promoters. The differentially methylated fragments (DMFs) in placenta and neutrophils were enriched in gene-poor and CpG-poor regions. The placentally hypomethylated DMFs were enriched in genomic regions that are usually inactive, whereas hypermethylated DMFs were enriched in active regions. Hypomethylation of the human placenta is not specific to retroelements, indicating that the evolutionary advantages of placental hypomethylation go beyond those provided by expression of retrotransposons and retrogenes.
Collapse
|
19
|
Gerdes P, Richardson SR, Mager DL, Faulkner GJ. Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biol 2016; 17:100. [PMID: 27161170 PMCID: PMC4862087 DOI: 10.1186/s13059-016-0965-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Transposable elements (TEs) are notable drivers of genetic innovation. Over evolutionary time, TE insertions can supply new promoter, enhancer, and insulator elements to protein-coding genes and establish novel, species-specific gene regulatory networks. Conversely, ongoing TE-driven insertional mutagenesis, nonhomologous recombination, and other potentially deleterious processes can cause sporadic disease by disrupting genome integrity or inducing abrupt gene expression changes. Here, we discuss recent evidence suggesting that TEs may contribute regulatory innovation to mammalian embryonic and pluripotent states as a means to ward off complete repression by their host genome.
Collapse
Affiliation(s)
- Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Dixie L Mager
- Department of Medical Genetics, Terry Fox Laboratory, British Columbia Cancer Agency, University of British Columbia, Vancouver, BC, V5Z 1L3, Canada.
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia. .,School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
20
|
Sousa Martins JP, Liu X, Oke A, Arora R, Franciosi F, Viville S, Laird DJ, Fung JC, Conti M. DAZL and CPEB1 regulate mRNA translation synergistically during oocyte maturation. J Cell Sci 2016; 129:1271-82. [PMID: 26826184 DOI: 10.1242/jcs.179218] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/27/2016] [Indexed: 01/23/2023] Open
Abstract
Meiotic progression requires exquisitely coordinated translation of maternal messenger (m)RNA that has accumulated during oocyte growth. A major regulator of this program is the cytoplasmic polyadenylation element binding protein 1 (CPEB1). However, the temporal pattern of translation at different meiotic stages indicates the function of additional RNA binding proteins (RBPs). Here, we report that deleted in azoospermia-like (DAZL) cooperates with CPEB1 to regulate maternal mRNA translation. Using a strategy that monitors ribosome loading onto endogenous mRNAs and a prototypic translation target, we show that ribosome loading is induced in a DAZL- and CPEB1-dependent manner, as the oocyte reenters meiosis. Depletion of the two RBPs from oocytes and mutagenesis of the 3' untranslated regions (UTRs) demonstrate that both RBPs interact with the Tex19.1 3' UTR and cooperate in translation activation of this mRNA. We observed a synergism between DAZL and cytoplasmic polyadenylation elements (CPEs) in the translation pattern of maternal mRNAs when using a genome-wide analysis. Mechanistically, the number of DAZL proteins loaded onto the mRNA and the characteristics of the CPE might define the degree of cooperation between the two RBPs in activating translation and meiotic progression.
Collapse
Affiliation(s)
- Joao P Sousa Martins
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Xueqing Liu
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Ashwini Oke
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Ripla Arora
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Federica Franciosi
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, 20133, Milano, Italy
| | - Stephan Viville
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale INSERM U964, Centre National de Recherche Scientifique CNRS UMR 1704, Université de Strasbourg, Illkirch 67404, France Centre Hospitalier Universitaire, Strasbourg F-67000, France
| | - Diana J Laird
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Jennifer C Fung
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Sharma N, Kubaczka C, Kaiser S, Nettersheim D, Mughal SS, Riesenberg S, Hölzel M, Winterhager E, Schorle H. Tpbpa mediated deletion of Tfap2c leads to deregulation of MAPK, P21, AKT and subsequent placental growth arrest. Development 2016; 143:787-98. [DOI: 10.1242/dev.128553] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/14/2016] [Indexed: 12/26/2022]
Abstract
Loss of Tfap2c leads to developmental defects in the extra-embryonic compartment with embryonic lethality at E7.5. To investigate requirement of Tfap2c in later placental development, deletion of Tfap2c was induced throughout extra-embryonic ectoderm at E6.5 leading to severe placental abnormalities caused by reduced trophoblast population resulting in embryonic retardation by E8.5. Deletion of Tfap2c in Tpbpa+ progenitors at E8.5 results in growth arrest of junctional zone. TFAP2C regulates its target genes p21/Cdkn1a and Dusp6, involved in repression of MAPK signaling. Loss of TFAP2C reduces activation of ERK1/2 in the placenta. Downregulation of Akt and reduced activation of pAKT in the mutant placenta are accompanied by impaired glycogen synthesis. Loss of Tfap2c led to upregulation of imprinted gene H19 and downregulation of Tex19.1 and Ascl2. The placental insufficiency post E16.5 causes fetal growth restriction with 19% lighter mutant pups. TFAP2C knockdown in human trophoblast choriocarcinoma JAr cells inhibited MAPK and AKT signaling. Thus, we present a model where Tfap2c in trophoblasts controls proliferation by repressing P21 and activating MAPK pathway and further supporting differentiation of glycogen cells via activating Akt pathway.
Collapse
Affiliation(s)
- Neha Sharma
- Institute of Pathology, Department of Developmental Pathology, University of Bonn, Germany
| | - Caroline Kubaczka
- Institute of Pathology, Department of Developmental Pathology, University of Bonn, Germany
| | - Stephanie Kaiser
- Institute of Molecular Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Daniel Nettersheim
- Institute of Pathology, Department of Developmental Pathology, University of Bonn, Germany
| | - Sadaf S. Mughal
- Div. Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefanie Riesenberg
- Unit of RNA Biology, Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Germany
| | - Michael Hölzel
- Unit of RNA Biology, Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Germany
| | - Elke Winterhager
- Institute of Molecular Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Hubert Schorle
- Institute of Pathology, Department of Developmental Pathology, University of Bonn, Germany
| |
Collapse
|
22
|
Bianchetti L, Tarabay Y, Lecompte O, Stote R, Poch O, Dejaegere A, Viville S. Tex19 and Sectm1 concordant molecular phylogenies support co-evolution of both eutherian-specific genes. BMC Evol Biol 2015; 15:222. [PMID: 26459560 PMCID: PMC4603632 DOI: 10.1186/s12862-015-0506-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/01/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Transposable elements (TE) have attracted much attention since they shape the genome and contribute to species evolution. Organisms have evolved mechanisms to control TE activity. Testis expressed 19 (Tex19) represses TE expression in mouse testis and placenta. In the human and mouse genomes, Tex19 and Secreted and transmembrane 1 (Sectm1) are neighbors but are not homologs. Sectm1 is involved in immunity and its molecular phylogeny is unknown. METHODS Using multiple alignments of complete protein sequences (MACS), we inferred Tex19 and Sectm1 molecular phylogenies. Protein conserved regions were identified and folds were predicted. Finally, expression patterns were studied across tissues and species using RNA-seq public data and RT-PCR. RESULTS We present 2 high quality alignments of 58 Tex19 and 58 Sectm1 protein sequences from 48 organisms. First, both genes are eutherian-specific, i.e., exclusively present in mammals except monotremes (platypus) and marsupials. Second, Tex19 and Sectm1 have both duplicated in Sciurognathi and Bovidae while they have remained as single copy genes in all further placental mammals. Phylogenetic concordance between both genes was significant (p-value < 0.05) and supported co-evolution and functional relationship. At the protein level, Tex19 exhibits 3 conserved regions and 4 invariant cysteines. In particular, a CXXC motif is present in the N-terminal conserved region. Sectm1 exhibits 2 invariant cysteines and an Ig-like domain. Strikingly, Tex19 C-terminal conserved region was lost in Haplorrhini primates while a Sectm1 C-terminal extra domain was acquired. Finally, we have determined that Tex19 and Sectm1 expression levels anti-correlate across the testis of several primates (ρ = -0.72) which supports anti-regulation. CONCLUSIONS Tex19 and Sectm1 co-evolution and anti-regulated expressions support a strong functional relationship between both genes. Since Tex19 operates a control on TE and Sectm1 plays a role in immunity, Tex19 might suppress an immune response directed against cells that show TE activity in eutherian reproductive tissues.
Collapse
Affiliation(s)
- Laurent Bianchetti
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Genetics institute of Molecular and Cellular Biology (IGBMC), INSERM U964/CNRS UMR 1704/Strasbourg University, 1 rue Laurent Fries, 67404, Illkirch, France.
| | - Yara Tarabay
- Primordial Germ Cells' Ontogeny and Pluripotency Laboratory, Functional Genomics and Cancer Department, Genetics Institute of Molecular and Cellular Biology (IGBMC), INSERM U964/CNRS UMR 1704/Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France. .,Present address: Institut de génétique humaine (IGH), 141 rue de la Cardonille, 34396, Montpellier, France.
| | - Odile Lecompte
- Bioinformatics and Integrated Genomics Laboratory (LBGI), ICube, CNRS UMR 7357/Université de Strasbourg, 11 rue Humann, 67085, Strasbourg, France.
| | - Roland Stote
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Genetics institute of Molecular and Cellular Biology (IGBMC), INSERM U964/CNRS UMR 1704/Strasbourg University, 1 rue Laurent Fries, 67404, Illkirch, France.
| | - Olivier Poch
- Bioinformatics and Integrated Genomics Laboratory (LBGI), ICube, CNRS UMR 7357/Université de Strasbourg, 11 rue Humann, 67085, Strasbourg, France.
| | - Annick Dejaegere
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Genetics institute of Molecular and Cellular Biology (IGBMC), INSERM U964/CNRS UMR 1704/Strasbourg University, 1 rue Laurent Fries, 67404, Illkirch, France.
| | - Stéphane Viville
- Primordial Germ Cells' Ontogeny and Pluripotency Laboratory, Functional Genomics and Cancer Department, Genetics Institute of Molecular and Cellular Biology (IGBMC), INSERM U964/CNRS UMR 1704/Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France. .,Centre Hospitalier Universitaire, 67000, Strasbourg, France.
| |
Collapse
|
23
|
Kulinski TM, Casari MRT, Guenzl PM, Wenzel D, Andergassen D, Hladik A, Datlinger P, Farlik M, Theussl HC, Penninger JM, Knapp S, Bock C, Barlow DP, Hudson QJ. Imprinted expression in cystic embryoid bodies shows an embryonic and not an extra-embryonic pattern. Dev Biol 2015; 402:291-305. [PMID: 25912690 PMCID: PMC4454777 DOI: 10.1016/j.ydbio.2015.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 04/08/2015] [Accepted: 04/16/2015] [Indexed: 12/24/2022]
Abstract
A large subset of mammalian imprinted genes show extra-embryonic lineage (EXEL) specific imprinted expression that is restricted to placental trophectoderm lineages and to visceral yolk sac endoderm (ysE). Isolated ysE provides a homogenous in vivo model of a mid-gestation extra-embryonic tissue to examine the mechanism of EXEL-specific imprinted gene silencing, but an in vitro model of ysE to facilitate more rapid and cost-effective experiments is not available. Reports indicate that ES cells differentiated into cystic embryoid bodies (EBs) contain ysE, so here we investigate if cystic EBs model ysE imprinted expression. The imprinted expression pattern of cystic EBs is shown to resemble fetal liver and not ysE. To investigate the reason for this we characterized the methylome and transcriptome of cystic EBs in comparison to fetal liver and ysE, by whole genome bisulphite sequencing and RNA-seq. Cystic EBs show a fetal liver pattern of global hypermethylation and low expression of repeats, while ysE shows global hypomethylation and high expression of IAPEz retroviral repeats, as reported for placenta. Transcriptome analysis confirmed that cystic EBs are more similar to fetal liver than ysE and express markers of early embryonic endoderm. Genome-wide analysis shows that ysE shares epigenetic and repeat expression features with placenta. Contrary to previous reports, we show that cystic EBs do not contain ysE, but are more similar to the embryonic endoderm of fetal liver. This explains why cystic EBs reproduce the imprinted expression seen in the embryo but not that seen in the ysE.
Collapse
Affiliation(s)
- Tomasz M Kulinski
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - M Rita T Casari
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Philipp M Guenzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Daniel Wenzel
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| | - Daniel Andergassen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Anastasiya Hladik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria; Department of Medicine 1, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - H-Christian Theussl
- IMP/IMBA Transgenic Service, Institute of Molecular Pathology (IMP), Dr. Bohr Gasse 7, 1030 Vienna, Austria.
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| | - Sylvia Knapp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria; Department of Medicine 1, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Denise P Barlow
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Quanah J Hudson
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| |
Collapse
|
24
|
Lowe R, Gemma C, Rakyan VK, Holland ML. Sexually dimorphic gene expression emerges with embryonic genome activation and is dynamic throughout development. BMC Genomics 2015; 16:295. [PMID: 25888192 PMCID: PMC4410000 DOI: 10.1186/s12864-015-1506-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/30/2015] [Indexed: 11/23/2022] Open
Abstract
Background As sex determines mammalian development, understanding the nature and developmental dynamics of the sexually dimorphic transcriptome is important. To explore this, we generated 76 genome-wide RNA-seq profiles from mouse eight-cell embryos, late gestation and adult livers, together with 4 ground-state pluripotent embryonic (ES) cell lines from which we generated both RNA-seq and multiple ChIP-seq profiles. We complemented this with previously published data to yield 5 snap-shots of pre-implantation development, late-gestation placenta and somatic tissue and multiple adult tissues for integrative analysis. Results We define a high-confidence sex-dimorphic signature of 69 genes in eight-cell embryos. Sex-chromosome-linked components of this signature are largely conserved throughout pre-implantation development and in ES cells, whilst the autosomal component is more dynamic. Sex-biased gene expression is reflected by enrichment for activating and repressive histone modifications. The eight-cell signature is largely non-overlapping with that defined from fetal liver, neither was it correlated with adult liver or other tissues analysed. The number of sex-dimorphic genes increases throughout development. We identified many more dimorphic genes in adult compared to fetal liver. However, approximately two thirds of the dimorphic genes identified in fetal liver were also dimorphic in adult liver. Sex-biased expression differences unique to adult liver were enriched for growth hormone-responsiveness. Sexually dimorphic gene expression in pre-implantation development is driven by sex-chromosome based transcription, whilst later development is characterised by sex dimorphic autosomal transcription. Conclusion This systematic study identifies three distinct phases of sex dimorphism throughout mouse development, and has significant implications for understanding the developmental origins of sex-specific phenotypes and disease in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1506-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Lowe
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK.
| | - Carolina Gemma
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK.
| | - Vardhman K Rakyan
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK.
| | - Michelle L Holland
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
25
|
Crichton JH, Dunican DS, MacLennan M, Meehan RR, Adams IR. Defending the genome from the enemy within: mechanisms of retrotransposon suppression in the mouse germline. Cell Mol Life Sci 2014; 71:1581-605. [PMID: 24045705 PMCID: PMC3983883 DOI: 10.1007/s00018-013-1468-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022]
Abstract
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline.
Collapse
Affiliation(s)
- James H. Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Donncha S. Dunican
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Marie MacLennan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Richard R. Meehan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Ian R. Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| |
Collapse
|
26
|
Crichton JH, Playfoot CJ, Adams IR. The role of chromatin modifications in progression through mouse meiotic prophase. J Genet Genomics 2014; 41:97-106. [PMID: 24656230 DOI: 10.1016/j.jgg.2014.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/10/2013] [Accepted: 01/06/2014] [Indexed: 12/15/2022]
Abstract
Meiosis is a key event in gametogenesis that generates new combinations of genetic information and is required to reduce the chromosome content of the gametes. Meiotic chromosomes undergo a number of specialised events during prophase to allow meiotic recombination, homologous chromosome synapsis and reductional chromosome segregation to occur. In mammalian cells, DNA physically associates with histones to form chromatin, which can be modified by methylation, phosphorylation, ubiquitination and acetylation to help regulate higher order chromatin structure, gene expression, and chromosome organisation. Recent studies have identified some of the enzymes responsible for generating chromatin modifications in meiotic mammalian cells, and shown that these chromatin modifying enzymes are required for key meiosis-specific events that occur during meiotic prophase. This review will discuss the role of chromatin modifications in meiotic recombination, homologous chromosome synapsis and regulation of meiotic gene expression in mammals.
Collapse
Affiliation(s)
- James H Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Christopher J Playfoot
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
27
|
Dunican DS, Cruickshanks HA, Suzuki M, Semple CA, Davey T, Arceci RJ, Greally J, Adams IR, Meehan RR. Lsh regulates LTR retrotransposon repression independently of Dnmt3b function. Genome Biol 2013; 14:R146. [PMID: 24367978 PMCID: PMC4054100 DOI: 10.1186/gb-2013-14-12-r146] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/24/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND DNA methylation contributes to genomic integrity by suppressing repeat-associated transposition. In addition to the canonical DNA methyltransferases, several auxiliary chromatin factors are required to maintain DNA methylation at intergenic and satellite repeats. The interaction between Lsh, a chromatin helicase, and the de novo methyltransferase Dnmt3b facilitates deposition of DNA methylation at stem cell genes, which are hypomethylated in Lsh-/- embryos. We wished to determine if a similar targeting mechanism operates to maintain DNA methylation at repetitive sequences. RESULTS We mapped genome-wide DNA methylation patterns in Lsh-/- and Dnmt3b-/- somatic cells. DNA methylation is predominantly lost from specific genomic repeats in Lsh-/- cells: LTR -retrotransposons, LINE-1 repeats and mouse satellites. RNA-seq experiments demonstrate that specific IAP LTRs and satellites, but not LINE-1 elements, are aberrantly transcribed in Lsh-/- cells. LTR hypomethylation in Dnmt3b-/- cells is moderate, whereas IAP, LINE-1 and satellite elements are hypomethylated but silent. Repressed LINE-1 elements in Lsh-/- cells gain H3K4me3, but H3K9me3 levels are unaltered, indicating that DNA hypomethylation alone is not permissive for their transcriptional activation. Mis-expressed IAPs and satellites lose H3K9me3 and gain H3K4me3 in Lsh-/- cells. CONCLUSIONS Our study emphasizes that regulation of repetitive elements by Lsh and DNA methylation is selective and context dependent. Silencing of repeats in somatic cells appears not to be critically dependent on Dnmt3b function. We propose a model where Lsh is specifically required at a precise developmental window to target de novo methylation to repeat sequences, which is subsequently maintained by Dnmt1 to enforce selective repeat silencing.
Collapse
Affiliation(s)
- Donncha S Dunican
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland
| | - Hazel A Cruickshanks
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland
| | - Masako Suzuki
- Departments of Genetics (Computational Genetics) and Center for Epigenomics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, USA
| | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland
| | - Tracey Davey
- Newcastle Medical School, Framlington Place, Newcastle University, Newcastle Upon Tyne NE2 4HH, England
| | - Robert J Arceci
- Room 2 M51 Cancer Research Building, Pediatrics and Oncology, Cellular and Molecular Medicine, Johns Hopkins, Baltimore, MD, USA
| | - John Greally
- Departments of Genetics (Computational Genetics) and Center for Epigenomics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, USA
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland
| | - Richard R Meehan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland
| |
Collapse
|
28
|
Tarabay Y, Kieffer E, Teletin M, Celebi C, Van Montfoort A, Zamudio N, Achour M, El Ramy R, Gazdag E, Tropel P, Mark M, Bourc'his D, Viville S. The mammalian-specific Tex19.1 gene plays an essential role in spermatogenesis and placenta-supported development. Hum Reprod 2013; 28:2201-14. [PMID: 23674551 DOI: 10.1093/humrep/det129] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION What is the consequence of Tex19.1 gene deletion in mice? SUMMARY ANSWER The Tex19.1 gene is important in spermatogenesis and placenta-supported development. WHAT IS KNOWN ALREADY Tex19.1 is expressed in embryonic stem (ES) cells, primordial germ cells (PGCs), placenta and adult gonads. Its invalidation in mice leads to a variable impairment in spermatogenesis and reduction of perinatal survival. STUDY DESIGN, SIZE, DURATION We generated knock-out mice and ES cells and compared them with wild-type counterparts. The phenotype of the Tex19.1 knock-out mouse line was investigated during embryogenesis, fetal development and placentation as well as during adulthood. PARTICIPANTS/MATERIALS, SETTING, METHODS We used a mouse model system to generate a mutant mouse line in which the Tex19.1 gene was deleted in the germline. We performed an extensive analysis of Tex19.1-deficient ES cells and assessed their in vivo differentiation potential by generating chimeric mice after injection of the ES cells into wild-type blastocysts. For mutant animals, a morphological characterization was performed for testes and ovaries and placenta. Finally, we characterized semen parameters of mutant animals and performed real-time RT-PCR for expression levels of retrotransposons in mutant testes and ES cells. MAIN RESULTS AND THE ROLE OF CHANCE While Tex19.1 is not essential in ES cells, our study points out that it is important for spermatogenesis and for placenta-supported development. Furthermore, we observed an overexpression of the class II LTR-retrotransposon MMERVK10C in Tex19.1-deficient ES cells and testes. LIMITATIONS, REASONS FOR CAUTION The Tex19.1 knock-out phenotype is variable with testis morphology ranging from severely altered (in sterile males) to almost indistinguishable compared with the control counterparts (in fertile males). This variability in the testis phenotype subsequently hampered the molecular analysis of mutant testes. Furthermore, these results were obtained in the mouse, which has a second isoform (i.e. Tex19.2), while other mammals possess only one Tex19 (e.g. in humans). WIDER IMPLICATIONS OF THE FINDINGS The fact that one gene has a role in both placentation and spermatogenesis might open new ways of studying human pathologies that might link male fertility impairment and placenta-related pregnancy disorders. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Centre National de la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM) (Grant Avenir), the Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche, the Université de Strasbourg, the Association Française contre les Myopathies (AFM) and the Fondation pour la Recherche Médicale (FRM) and Hôpitaux Universitaires de Strasbourg.The authors have nothing to disclose.
Collapse
Affiliation(s)
- Yara Tarabay
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, 67404 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|