1
|
Mehboob MZ, Hamid A, Senthil Kumar J, Lei X. Comprehensive characterization of pathogenic missense CTRP6 variants and their association with cancer. BMC Cancer 2025; 25:304. [PMID: 39979869 PMCID: PMC11840981 DOI: 10.1186/s12885-025-13685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Previous genome-wide association studies have linked three missense single nucleotide polymorphisms (SNPs) in C1q/TNF-related protein 6 (CTRP6) to diseases such as type 1 diabetes and autoimmune diseases. However, the potential association of newly identified missense CTRP6 variants with diseases, especially cancer, remains unclear. METHODS We used several pathogenicity prediction algorithms to identify deleterious mutations within the highly conserved C1q domain of human CTRP6, following the retrieval of all SNPs from the Ensembl database. We systematically analyzed the effects of these mutations on the protein's stability, flexibility, structural conformation, compactness, stiffness, and overall functionality using various bioinformatics tools. Additionally, we investigated the association of these mutations with different cancer types using the cBioPortal and canSAR databases. RESULTS We identified 11 detrimental missense SNPs within the C1q domain, a region critical for this protein's functionality. Using various computational methods, we predicted the functional impact of these missense variants and assessed their effects on the stability and flexibility of the CTRP6 structure. Molecular dynamics simulations revealed significant structural differences between the native and mutated structures, including changes in structural conformation, compactness, solvent accessibility, and flexibility. Additionally, our study shows a strong association between two mutations, G181S and R247W, and certain types of cancer: colon adenocarcinoma and uterine corpus endometrial carcinoma, respectively. We also found that the mutational status of CTRP6 and other cancer-related genes, such as MAP2K3, p16, TP53, and JAK1, affected each other's expression, potentially contributing to cancer development. CONCLUSIONS Our screening and predictive analysis of pathogenic missense variants in CTRP6 advance the understanding of the functional implications of these mutations, potentially facilitating more focused and efficient research in the future.
Collapse
Affiliation(s)
- Muhammad Zubair Mehboob
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Arslan Hamid
- Institute for Molecular Biomedicine, Department of Molecular Immunology and Cell Biology, University of Bonn, 53115, Bonn, Germany
| | - Jeevotham Senthil Kumar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xia Lei
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
- 142F Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
2
|
Sim SY, Baek IC, Cho WK, Jung MH, Kim TG, Suh BK. Immune Gene Expression Profiling in Individuals with Turner Syndrome, Graves' Disease, and a Healthy Female by Single-Cell RNA Sequencing: A Comparative Study. Cells 2025; 14:93. [PMID: 39851522 PMCID: PMC11764232 DOI: 10.3390/cells14020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Turner syndrome (TS) can be determined by karyotype analysis, marked by the loss of one X chromosome in females. However, the genes involved in autoimmunity in TS patients remain unclear. In this study, we aimed to analyze differences in immune gene expression between a patient with TS, a healthy female, and a female patient with Graves' disease using single-cell RNA sequencing (scRNA-seq) analysis of antigen-specific CD4(+) T cells. We identified 43 differentially expressed genes in the TS patient compared with the healthy female and the female patient with Graves' disease. Many of these genes have previously been suggested to play a role in immune system regulation. This study provides valuable insights into the differences in immune-related gene expression between TS patients, healthy individuals, and those with autoimmune diseases.
Collapse
Affiliation(s)
- Soo Yeun Sim
- Department of Pediatrics, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.Y.S.); (B.-K.S.)
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Won Kyoung Cho
- Department of Pediatrics, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea
| | - Min Ho Jung
- Department of Pediatrics, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea;
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Byung-Kyu Suh
- Department of Pediatrics, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.Y.S.); (B.-K.S.)
| |
Collapse
|
3
|
Keener RM, Shi S, Dalapati T, Wang L, Reinoso-Vizcaino NM, Luftig MA, Miller SI, Wilson TJ, Ko DC. Human genetic variation reveals FCRL3 is a lymphocyte receptor for Yersinia pestis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.626452. [PMID: 39677730 PMCID: PMC11643160 DOI: 10.1101/2024.12.05.626452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Yersinia pestis is the gram-negative bacterium responsible for plague, one of the deadliest and most feared diseases in human history. This bacterium is known to infect phagocytic cells, such as dendritic cells and macrophages, but interactions with non-phagocytic cells of the adaptive immune system are frequently overlooked despite the importance they likely hold for human infection. To discover human genetic determinants of Y. pestis infection, we utilized nearly a thousand genetically diverse lymphoblastoid cell lines in a cellular genome-wide association study method called Hi-HOST (High-throughput Human in-vitrO Susceptibility Testing). We identified a nonsynonymous SNP, rs2282284, in Fc receptor like 3 (FCRL3) associated with bacterial invasion of host cells (p=9×10-8). FCRL3 belongs to the immunoglobulin superfamily and is primarily expressed in lymphocytes. rs2282284 is within a tyrosine-based signaling motif, causing an asparagine-to-serine mutation (N721S) in the most common FCRL3 isoform. Overexpression of FCRL3 facilitated attachment and invasion of non-opsonized Y. pestis. Additionally, FCRL3 colocalized with Y. pestis at sites of cellular attachment, suggesting FCRL3 is a receptor for Y. pestis. These properties were variably conserved across the FCRL family, revealing molecular requirements of attachment and invasion, including an Ig-like C2 domain and a SYK interaction motif. Direct binding was confirmed with purified FCRL5 extracellular domain. Following attachment, invasion of Y. pestis was dependent on SYK and decreased with the N721S mutation. Unexpectedly, this same variant is associated with risk of chronic hepatitis C virus infection in BioBank Japan. Thus, Y. pestis hijacks FCRL proteins, possibly taking advantage of an immune receptor to create a lymphocyte niche during infection.
Collapse
Affiliation(s)
- Rachel M. Keener
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Sam Shi
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Trisha Dalapati
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | | | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Samuel I. Miller
- Departments of Genome Sciences, Medicine, and Microbiology, U of Washington, Seattle, WA, USA
| | | | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
- Lead Contact
| |
Collapse
|
4
|
Zhang W, Ding R, Hu Y, Wei W, Tian D, Qin N, Yu H, Wang X. Unraveling susceptibility genes: A contemporary overview of autoimmune thyroid diseases. Int Immunopharmacol 2024; 136:112313. [PMID: 38810306 DOI: 10.1016/j.intimp.2024.112313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
Autoimmune thyroid diseases (AITDs), including Graves' disease and Hashimoto's thyroiditis, are organ-specific autoimmune disorders characterized by conditions including goiter, autoimmune thyroiditis, hyperthyroidism, and hypothyroidism, which represent the most severe clinical manifestations of AITDs. The prevalence of autoimmune thyroid disorders is on the rise, influenced by increased environmental factors and changes in modern lifestyles. Understanding the pathophysiology of AITDs is crucial for identifying key factors that affect the disease's onset, progression, and recurrence, thereby laying a solid foundation for precise diagnosis and treatment. The development of AITDs involves a complex interplay of environmental influences, immune dysfunctions, and genetic predispositions. Genetic predispositions, in particular, are significant, with numerous genes identified as being linked to AITDs. This article focuses on examining the genes vulnerable to AITDs to deepen our understanding of the relevant genetic contributors, ultimately facilitating the development of effective prevention and treatment methods.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Rong Ding
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuelin Hu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wenwen Wei
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dan Tian
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nalin Qin
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
5
|
Saevarsdottir S, Bjarnadottir K, Markusson T, Berglund J, Olafsdottir TA, Halldorsson GH, Rutsdottir G, Gunnarsdottir K, Arnthorsson AO, Lund SH, Stefansdottir L, Gudmundsson J, Johannesson AJ, Sturluson A, Oddsson A, Halldorsson B, Ludviksson BR, Ferkingstad E, Ivarsdottir EV, Sveinbjornsson G, Grondal G, Masson G, Eldjarn GH, Thorisson GA, Kristjansdottir K, Knowlton KU, Moore KHS, Gudjonsson SA, Rognvaldsson S, Knight S, Nadauld LD, Holm H, Magnusson OT, Sulem P, Gudbjartsson DF, Rafnar T, Thorleifsson G, Melsted P, Norddahl GL, Jonsdottir I, Stefansson K. Start codon variant in LAG3 is associated with decreased LAG-3 expression and increased risk of autoimmune thyroid disease. Nat Commun 2024; 15:5748. [PMID: 38982041 PMCID: PMC11233504 DOI: 10.1038/s41467-024-50007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Autoimmune thyroid disease (AITD) is a common autoimmune disease. In a GWAS meta-analysis of 110,945 cases and 1,084,290 controls, 290 sequence variants at 225 loci are associated with AITD. Of these variants, 115 are previously unreported. Multiomics analysis yields 235 candidate genes outside the MHC-region and the findings highlight the importance of genes involved in T-cell regulation. A rare 5'-UTR variant (rs781745126-T, MAF = 0.13% in Iceland) in LAG3 has the largest effect (OR = 3.42, P = 2.2 × 10-16) and generates a novel start codon for an open reading frame upstream of the canonical protein translation initiation site. rs781745126-T reduces mRNA and surface expression of the inhibitory immune checkpoint LAG-3 co-receptor on activated lymphocyte subsets and halves LAG-3 levels in plasma among heterozygotes. All three homozygous carriers of rs781745126-T have AITD, of whom one also has two other T-cell mediated diseases, that is vitiligo and type 1 diabetes. rs781745126-T associates nominally with vitiligo (OR = 5.1, P = 6.5 × 10-3) but not with type 1 diabetes. Thus, the effect of rs781745126-T is akin to drugs that inhibit LAG-3, which unleash immune responses and can have thyroid dysfunction and vitiligo as adverse events. This illustrates how a multiomics approach can reveal potential drug targets and safety concerns.
Collapse
Affiliation(s)
- Saedis Saevarsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland.
| | | | - Thorsteinn Markusson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Thorunn A Olafsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gisli H Halldorsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Gudrun Rutsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Ari J Johannesson
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | - Björn R Ludviksson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Erna V Ivarsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Gerdur Grondal
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Kirk U Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | | | | | - Stacey Knight
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
| | | | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Pall Melsted
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
6
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
7
|
Abstract
Graves' disease (GD) is the commonest cause of hyperthyroidism and has a strong female preponderance. Everyday clinical practice suggests strong aggregation within families and twin studies demonstrate that genetic factors account for 60-80% of risk of developing GD. In this review, we collate numerous genetic studies and outline the discoveries over the years, starting with historic candidate gene studies and then exploring more recent genome-wide linkage and association studies, which have involved substantial cohorts of East Asian patients as well as those of European descent. Variants in genes including HLA, CTLA4, and PTPN22 have been shown to have substantial individual effects on disease susceptibility. In addition, we examine emerging evidence concerning the possibility that genetic variants may correlate with relevant clinical phenotypes including age of onset of GD, severity of thyrotoxicosis, goitre size and relapse of hyperthyroidism following antithyroid drug therapy, as well as thyroid eye disease. This review supports the inheritance of GD as a complex genetic trait, with a growing number of more than 80 susceptibility loci identified so far. Future implementation of more targeted clinical therapies requires larger studies investigating the influence of these genetic variants on the various phenotypes and different outcomes of conventional treatments.
Collapse
Affiliation(s)
- Lydia Grixti
- Translational and Clinical Research Institute, Newcastle University, BioMedicine West, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ, UK
- Endocrine Unit, Royal Victoria Infirmary, Queen Victoria Road, Newcastle-upon-Tyne, NE1 4LP, UK
| | - Laura C Lane
- Translational and Clinical Research Institute, Newcastle University, BioMedicine West, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ, UK
- Department of Paediatric Endocrinology, The Great North Children's Hospital, Queen Victoria Road, Newcastle-upon-Tyne, NE1 4LP, UK
| | - Simon H Pearce
- Translational and Clinical Research Institute, Newcastle University, BioMedicine West, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ, UK.
- Endocrine Unit, Royal Victoria Infirmary, Queen Victoria Road, Newcastle-upon-Tyne, NE1 4LP, UK.
| |
Collapse
|
8
|
Cho WK, Baek I, Kim SE, Kim M, Kim T, Suh B. Association of ITM2A rs1751094 polymorphism on X chromosome in Korean pediatric patients with autoimmune thyroid disease. Immun Inflamm Dis 2023; 11:e800. [PMID: 36988246 PMCID: PMC10013136 DOI: 10.1002/iid3.800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Autoimmune thyroid disease (AITD) manifests with a female predominance, and much attention has been directed towards the integral membrane protein 2 A (ITM2A) gene located on the X chromosome. METHODS In a study of 166 pediatric patients with autoimmune thyroid disease (AITD), the ITM2A rs1751094 single-nucleotide polymorphism (SNP) was genotyped. The sample comprised 143 females and 23 males, with 67 patients diagnosed with Hashimoto chronic thyroiditis (HD) and 99 with Graves' disease (GD). In the 99 GD patients, 49 (49.5%) exhibited thyroid-associated ophthalmopathy (TAO). Among the 85 GD patients, 70.6% (60/85) were considered intractable GD. The results were compared to those from 198 healthy Korean individuals, including 97 females and 101 males. RESULTS The frequency of the rs1751094 C allele and CC/AC genotype were higher in AITD, GD and HD patients compared to controls, while the frequency of the A allele and AA genotype were lower. The results were more pronounced in female AITD and GD patients compared to male patients. The association was also found in intractable GD and TAO patients. Target SNP fits Hardy-Weinberg equilibrium. CONCLUSIONS These findings indicate that the ITM2A gene polymorphism on the X chromosome may contribute to the immunological basis of female-predominant AITD in Korean children.
Collapse
Affiliation(s)
- Won K. Cho
- Department of Pediatrics, College of Medicine, St. Vincent's HospitalThe Catholic University of KoreaSeoulKorea
| | - In‐Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Sung E. Kim
- Department of Pediatrics, Incheon St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Mirae Kim
- Catholic Hematopoietic Stem Cell Bank, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Tai‐Gyu Kim
- Catholic Hematopoietic Stem Cell Bank, College of MedicineThe Catholic University of KoreaSeoulKorea
- Department of Microbiology, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Byung‐Kyu Suh
- Department of Pediatrics, College of Medicine, Seoul St. Mary's HospitalThe Catholic University of KoreaSeoulKorea
| |
Collapse
|
9
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Khodursky S, Jiang CS, Zheng EB, Vaughan R, Schrider DR, Zhao L. Sex differences in interindividual gene expression variability across human tissues. PNAS NEXUS 2022; 1:pgac243. [PMID: 36712323 PMCID: PMC9802459 DOI: 10.1093/pnasnexus/pgac243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Understanding phenotypic sex differences has long been a goal of biology from both a medical and evolutionary perspective. Although much attention has been paid to mean differences in phenotype between the sexes, little is known about sex differences in phenotypic variability. To gain insight into sex differences in interindividual variability at the molecular level, we analyzed RNA-seq data from 43 tissues from the Genotype-Tissue Expression project (GTEx). Within each tissue, we identified genes that show sex differences in gene expression variability. We found that these sex-differentially variable (SDV) genes are associated with various important biological functions, including sex hormone response, immune response, and other signaling pathways. By analyzing single-cell RNA sequencing data collected from breast epithelial cells, we found that genes with sex differences in gene expression variability in breast tissue tend to be expressed in a cell-type-specific manner. We looked for an association between SDV expression and Graves' disease, a well-known heavily female-biased disease, and found a significant enrichment of Graves' associated genes among genes with higher variability in females in thyroid tissue. This suggests a possible role for SDV expression in sex-biased disease. We then examined the evolutionary constraints acting on genes with sex differences in variability and found that they exhibit evidence of increased selective constraint. Through analysis of sex-biased eQTL data, we found evidence that SDV expression may have a genetic basis. Finally, we propose a simple evolutionary model for the emergence of SDV expression from sex-specific constraints.
Collapse
Affiliation(s)
- Samuel Khodursky
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Caroline S Jiang
- Department of Biostatistics, The Rockefeller University, New York, NY 10065, USA
| | - Eric B Zheng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Roger Vaughan
- Department of Biostatistics, The Rockefeller University, New York, NY 10065, USA
| | - Daniel R Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
11
|
Wolf EW, Howard ZP, Duan L, Tam H, Xu Y, Cyster JG. GPR174 signals via G αs to control a CD86-containing gene expression program in B cells. Proc Natl Acad Sci U S A 2022; 119:e2201794119. [PMID: 35639700 PMCID: PMC9191659 DOI: 10.1073/pnas.2201794119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
GPR174 is abundantly expressed in B and T lymphocytes and has a role in restraining T cell responses, but the function of GPR174 in B cells is less clear. Here we report that upon in vitro culture B cells undergo a spontaneous GPR174-dependent activation process that is associated with marked changes in gene expression, including up-regulation of Cd86, Nr4a1, Ccr7, and phosphodiesterases. B cells lacking Gαs show a block in induction of the GPR174-dependent program. Spontaneous up-regulation of CD86 in cultured B cells is dependent on protein kinase A. Both GPR174- and Gαs-deficient B cells show enhanced survival in culture. In vivo, GPR174 contributes to NUR77 expression in follicular B cells and is needed for establishing a marginal zone compartment of normal size. Treatment of mice with lysophosphatidylserine (lysoPS), a GPR174 ligand, is sufficient to promote CD86 up-regulation by follicular B cells. These findings demonstrate that GPR174 can signal via Gαs to modulate B cell gene expression and show this can occur in vivo in response to lysoPS. Additionally, the findings illuminate a pathway that might be targeted to improve systems for the in vitro study of B cell responses.
Collapse
Affiliation(s)
- Elise W. Wolf
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Zachary P. Howard
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Lihui Duan
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Hanson Tam
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Ying Xu
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Jason G. Cyster
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| |
Collapse
|
12
|
Antwi SO, Rabe KG, Bamlet WR, Meyer M, Chandra S, Fagan SE, Hu C, Couch FJ, McWilliams RR, Oberg AL, Petersen GM. Influence of Cancer Susceptibility Gene Mutations and ABO Blood Group of Pancreatic Cancer Probands on Concomitant Risk to First-Degree Relatives. Cancer Epidemiol Biomarkers Prev 2022; 31:372-381. [PMID: 34782396 PMCID: PMC8825751 DOI: 10.1158/1055-9965.epi-21-0745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/16/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND ABO blood group is associated with pancreatic cancer risk. Whether ABO blood group alone or when combined with inherited mutation status of index pancreatic cancer cases (probands) can enhance pancreatic cancer risk estimation in first-degree relatives (FDR) is unclear. We examined FDRs' risk for pancreatic cancer based on probands' ABO blood group and probands' cancer susceptibility gene mutation status. METHODS Data on 23,739 FDRs, identified through 3,268 pancreatic cancer probands, were analyzed. Probands' ABO blood groups were determined serologically or genetically, and 20 cancer susceptibility genes were used to classify probands as "mutation-positive" or "mutation-negative." SIRs and 95% confidence intervals (CI) were calculated, comparing observed pancreatic cancer cases in the FDRs with the number expected in SEER-21 (reference population). RESULTS Overall, FDRs had 2-fold risk of pancreatic cancer (SIR = 2.00; 95% CI = 1.79-2.22). Pancreatic cancer risk was higher in FDRs of mutation-positive (SIR = 3.80; 95% CI = 2.81-5.02) than mutation-negative (SIR = 1.79; 95% CI = 1.57-2.04) probands (P < 0.001). The magnitude of risk did not differ by ABO blood group alone (SIRblood-group-O = 1.57; 95% CI = 1.20-2.03, SIRnon-O = 1.83; 95% CI = 1.53-2.17; P = 0.33). Among FDRs of probands with non-O blood group, pancreatic cancer risk was higher in FDRs of mutation-positive (SIR = 3.98; 95% CI = 2.62-5.80) than mutation-negative (SIR = 1.66; 95% CI = 1.35-2.03) probands (P < 0.001), but risk magnitudes were statistically similar when probands had blood group O (SIRmutation-positive = 2.65; 95% CI = 1.09-5.47, SIRmutation-negative = 1.48; 95% CI = 1.06-5.47; P = 0.16). CONCLUSIONS There is a range of pancreatic cancer risk to FDRs according to probands' germline mutation status and ABO blood group, ranging from 1.48 for FDRs of probands with blood group O and mutation-negative to 3.98 for FDRs of probands with non-O blood group and mutation-positive. IMPACT Combined ABO blood group and germline mutation status of probands can inform pancreatic cancer risk estimation in FDRs.
Collapse
Affiliation(s)
- Samuel O. Antwi
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Kari G. Rabe
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - William R. Bamlet
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Margaret Meyer
- Department of Medical and Molecular Genetics, Indiana University, IN, USA
| | - Shruti Chandra
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Sarah E. Fagan
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD
| | - Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Ann L. Oberg
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Gloria M. Petersen
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Wang J, Hu Y, Kuang Z, Chen Y, Xing L, Wei W, Xue M, Mu S, Tong C, Yang Y, Song Z. GPR174 mRNA Acts as a Novel Prognostic Biomarker for Patients With Sepsis via Regulating the Inflammatory Response. Front Immunol 2022; 12:789141. [PMID: 35173706 PMCID: PMC8841418 DOI: 10.3389/fimmu.2021.789141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/08/2021] [Indexed: 01/26/2023] Open
Abstract
Previous studies indicated that G-protein coupled receptor 174 (GPR174) is involved in the dysregulated immune response of sepsis, however, the clinical value and effects of GPR174 in septic patients are still unknown. This study is aimed to evaluate the potential value of GPR174 as a prognostic biomarker for sepsis and explore the pathological function of GPR174 in cecal ligation and puncture (CLP)-induced septic mice. In this prospective longitudinal study, the expressions of peripheral GPR174 mRNA were measured in 101 septic patients, 104 non-septic ICU controls, and 46 healthy volunteers at Day 1, 7 after ICU (Intensive Care Unit) admission, respectively. Then, the clinical values of GPR174 for the diagnosis, severity assessment, and prognosis of sepsis were analyzed. Moreover, the expressions of GPR174 mRNA in CLP-induced septic mice were detected, and Gpr174-knockout (KO) mice were used to explore its effects on inflammation. The results showed that the levels of GPR174 mRNA were significantly decreased in septic patients compared with non-septic ICU and healthy controls. In addition, the expressions of GPR174 mRNA were correlated with the lymphocyte (Lym) counts, C-reactive protein (CRP), and APACHE II and SOFA scores. The levels of GPR174 mRNA at Day 7 had a high AUC in predicting the death of sepsis (0.83). Further, we divided the septic patients into the higher and lower GPR174 mRNA expression groups by the ROC cut-off point, and the lower group was significantly associated with poor survival rate (P = 0.00139). Similarly, the expressions of peripheral Gpr174 mRNA in CLP-induced septic mice were also significantly decreased, and recovered after 72 h. Intriguingly, Gpr174-deficient could successfully improve the outcome with less multi-organ damage, which was mainly due to an increased level of IL-10, and decreased levels of IL-1β and TNF-α. Further, RNA-seq showed that Gpr174 deficiency significantly induced a phenotypic shift toward multiple immune response pathways in septic mice. In summary, our results indicated that the expressions of GPR174 mRNA were associated with the severity of sepsis, suggesting that GPR174 could be a potential prognosis biomarker for sepsis. In addition, GPR174 plays an important role in the development of sepsis by regulating the inflammatory response.
Collapse
Affiliation(s)
- Jianli Wang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanyan Hu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhongshu Kuang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yao Chen
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingyu Xing
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Wei
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingming Xue
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sucheng Mu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chaoyang Tong
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Zhenju Song, ; Yilin Yang, ; Chaoyang Tong,
| | - Yilin Yang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Zhenju Song, ; Yilin Yang, ; Chaoyang Tong,
| | - Zhenju Song
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- *Correspondence: Zhenju Song, ; Yilin Yang, ; Chaoyang Tong,
| |
Collapse
|
14
|
Saurabh R, Fouodo CJK, König IR, Busch H, Wohlers I. A survey of genome-wide association studies, polygenic scores and UK Biobank highlights resources for autoimmune disease genetics. Front Immunol 2022; 13:972107. [PMID: 35990650 PMCID: PMC9388859 DOI: 10.3389/fimmu.2022.972107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Autoimmune diseases share a general mechanism of auto-antigens harming tissues. Still. they are phenotypically diverse, with genetic as well as environmental factors contributing to their etiology at varying degrees. Associated genomic loci and variants have been identified in numerous genome-wide association studies (GWAS), whose results are increasingly used for polygenic scores (PGS) that are used to predict disease risk. At the same time, a technological shift from genotyping arrays to next generation sequencing (NGS) is ongoing. NGS allows the identification of virtually all - including rare - genetic variants, which in combination with methodological developments promises to improve the prediction of disease risk and elucidate molecular mechanisms underlying disease. Here we review current, publicly available autoimmune disease GWAS and PGS data based on information from the GWAS and PGS catalog, respectively. We summarize autoimmune diseases investigated, respective studies conducted and their results. Further, we review genetic data and autoimmune disease patients in the UK Biobank (UKB), the largest resource for genetic and phenotypic data available for academic research. We find that only comparably prevalent autoimmune diseases are covered by the UKB and at the same time assessed by both GWAS and PGS catalogs. These are systemic (systemic lupus erythematosus) as well as organ-specific, affecting the gastrointestinal tract (inflammatory bowel disease as well as specifically Crohn's disease and ulcerative colitis), joints (juvenile ideopathic arthritis, psoriatic arthritis, rheumatoid arthritis, ankylosing spondylitis), glands (Sjögren syndrome), the nervous system (multiple sclerosis), and the skin (vitiligo).
Collapse
Affiliation(s)
- Rochi Saurabh
- Medical Systems Biology, Lübeck Institute for Experimental Dermatology (LIED) and Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Césaire J K Fouodo
- Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, Lübeck, Germany
| | - Inke R König
- Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology, Lübeck Institute for Experimental Dermatology (LIED) and Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Inken Wohlers
- Medical Systems Biology, Lübeck Institute for Experimental Dermatology (LIED) and Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
15
|
Fang Y, Du WH, Zhang CX, Zhao SX, Song HD, Gao GQ, Dong M. The effect of radioiodine treatment on the characteristics of TRAb in Graves' disease. BMC Endocr Disord 2021; 21:238. [PMID: 34847904 PMCID: PMC8630916 DOI: 10.1186/s12902-021-00905-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Graves' disease (GD) is one of the most common autoimmune thyroid diseases (AITDs) in humans, and thyrotropin receptor antibody (TRAb) is a characterized autoantibody in GD. The use of radioactive iodine therapy (RAI) for GD treatment is increasing. OBJECTIVES We studied the biological properties of TRAb and evaluated the effect of RAI therapy on TRAb in GD patients. METHODS In total, 225 patients (22 onset GD patients without 131I therapy, 203 GD patients treated with 131I therapy) and 20 healthy individuals as normal controls were included in this study. Clinical assessments were performed, and we examined in vitro the biological properties of TRAb in the 22 onset GD patients and 20 controls as well as 84 GD patients with 131I therapy. RESULTS Serum TRAb and thyroid peroxidase antibody (TPOAb) levels increased in the initial year of RAI treatment, and both antibodies decreased gradually after one year. After 5 years from radioiodine treatment, TRAb and TPOAb levels decreased in 88% and 65% of GD patients, respectively. The proportion of patients positive for thyroid-stimulatory antibody (TSAb) was significantly higher in the 7-12-month group, and thyroid-blocking antibody (TBAb) levels were elevated after one year in half of the patients who received 131I treatment. CONCLUSIONS Treatment of GD patients with radioiodine increased TPOAb and TRAb (their main biological properties were TSAbs) within the first year after therapy, and the main biological properties of elevated TRAb were TBAbs after 1 year.
Collapse
Affiliation(s)
- Ya Fang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Wen-Hua Du
- Department of Endocrinology, Linyi People's Hospital, Linyi, China
| | - Cao-Xu Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Huai-Dong Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Guan-Qi Gao
- Department of Endocrinology, Linyi People's Hospital, Linyi, China.
| | - Mei Dong
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
16
|
A Christensen M, Bonde A, Sillesen M. An assessment of the effect of the genotype on postoperative venous thromboembolism risk in 140,831 surgical patients. Ann Med Surg (Lond) 2021; 71:102938. [PMID: 34777790 PMCID: PMC8577341 DOI: 10.1016/j.amsu.2021.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022] Open
Abstract
Background Postoperative Venous Thromboembolism Events (VTE) constitute a major source of morbidity and mortality after surgery. The aim of this study was to investigate whether commonly occurring Single Nucleotide Polymorphisms (SNPs) are associated with VTE in the surgical setting. Methods Retrospective study using data from the United Kingdom (UK) biobank, a genome biobank containing healthcare and genotyping data from more than 500.000 individuals. A cohort of 140,831patients with a registered surgical procedure was identified and used for a discovery genome wide association study (GWAS), with the remainder of the cohort (305,349 non-surgical patients) used as a replication cohort. Primary outcome was associations between SNPs and VTE within 30 days after a surgical procedure. Genome wide significance was set at p = 5 × 10−8. Results In the surgical (discovery) cohort, no SNPs reached genome wide significance. The VTE association of the top candidate SNP in the ABO gene rs505922 (p = 3.33 × 10−7), was replicated in the general (replication) cohort (p = 2.42 × 10−59). Conclusions and Relevance: This study did not identify associations between SNPs and postoperative VTE events reaching genome-wide significance, although the VTE relevance of top candidates were demonstrated. •Venous thromboembolisms are common after surgery. •Large biobanks help identify common genetic risk factors. •Common variants in ABO may increase the risk of postoperative venous thromboembolisms. •Genotyping surgical patients may benefit preoperative risk assessment.
Collapse
Affiliation(s)
- Mathias A Christensen
- Department of Surgical Gastroenterology and Transplantation C-TX, Copenhagen University Hospital, Rigshosptialet, Denmark.,Center for Surgical Translational and Artificial Intelligence Research CSTAR, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Alexander Bonde
- Department of Surgical Gastroenterology and Transplantation C-TX, Copenhagen University Hospital, Rigshosptialet, Denmark.,Center for Surgical Translational and Artificial Intelligence Research CSTAR, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Martin Sillesen
- Department of Surgical Gastroenterology and Transplantation C-TX, Copenhagen University Hospital, Rigshosptialet, Denmark.,Center for Surgical Translational and Artificial Intelligence Research CSTAR, Copenhagen University Hospital, Rigshospitalet, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
17
|
Sayama M, Uwamizu A, Ikubo M, Chen L, Yan G, Otani Y, Inoue A, Aoki J, Ohwada T. Switching Lysophosphatidylserine G Protein-Coupled Receptor Agonists to Antagonists by Acylation of the Hydrophilic Serine Amine. J Med Chem 2021; 64:10059-10101. [PMID: 34233115 DOI: 10.1021/acs.jmedchem.1c00347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Three human G protein-coupled receptors (GPCRs)-GPR34/LPS1, P2Y10/LPS2, and GPR174/LPS3-are activated specifically by lysophosphatidylserine (LysoPS), an endogenous hydrolysis product of a cell membrane component, phosphatidylserine (PS). LysoPS consists of l-serine, glycerol, and fatty acid moieties connected by phosphodiester and ester linkages. We previously generated potent and selective GPCR agonists by modification of the three modules and the ester linkage. Here, we show that a novel modification of the hydrophilic serine moiety, that is, N-acylations of the serine amine, converted a GPR174 agonist to potent GPR174 antagonists. Structural exploration of the amide functionality provided access to a range of activities from agonist to partial agonist to antagonist. The present study would provide a new strategy for the development of lysophospholipid receptor antagonists.
Collapse
Affiliation(s)
- Misa Sayama
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akiharu Uwamizu
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Masaya Ikubo
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Luying Chen
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ge Yan
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuko Otani
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Asuka Inoue
- AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan.,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,AMED-PRIME, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Tomohiko Ohwada
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Deshmukh H, Papageorgiou M, Aye M, England J, Abdalla M, Sathyapalan T. Hyperthyroidism and bone mineral density: Dissecting the causal association with Mendelian randomization analysis. Clin Endocrinol (Oxf) 2021; 94:119-127. [PMID: 32947644 DOI: 10.1111/cen.14330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Untreated hyperthyroidism is associated with accelerated bone turnover, low bone mineral density (BMD) and increased susceptibility to fragility fractures. Although treatment appears to improve or even reverse some of these adverse skeletal effects, there is limited guidance on routine BMD assessment in hyperthyroid patients following treatment. By using Mendelian randomization (MR) analysis, we aimed to assess the causal association of hyperthyroid thyroid states with BMD and fractures using the UK Biobank. METHODS This MR analysis included data from 473 818 participants (women: 54% of the total sample, the median age of 58.0 years (IQR = 50-63 years), median body mass index (BMI) of 26.70 (IQR + 24.11-29.82 kg/m2 ) as part of the UK Biobank study. The study outcomes were heel BMD assessed by quantitative ultrasound of the heel and self-reported fractures. Beta-weighted genetic risk score analysis was performed using 19 single nucleotide polymorphisms (SNPs) for Graves' disease, 9 SNPs for hyperthyroidism and 11 SNPs for autoimmune thyroiditis. Since the unadjusted risk score MR is equivalent to the inverse-variance weighted method, the genetic risk score analysis was adjusted for age, gender and BMI. Sensitivity analyses were conducted using the Mendelian randomization-Egger (MR-Egger) and the inverse-variance weighted estimate methods. Replication analysis was performed using the GEnetic Factors for Osteoporosis (GEFOS) consortium data. RESULTS MR analysis using beta-weighted genetic risk score showed no association of genetic risk for Graves' disease (Beta = -0.01, P-value = .10), autoimmune thyroiditis (Beta = -0.006 P-value = .25) and hyperthyroidism (Beta = -0.009, P-value = .18) with heel ultrasound BMD. MR-Egger and inverse-variance MR methods in UK Biobank and GEFOS consortium confirmed these findings. The genetic risk for these hyperthyroid conditions was not associated with an increased risk of fractures. CONCLUSION Our study shows that excess genetic risk for Graves' autoimmune thyroiditis and hyperthyroidism does not increase the risk for low BMD and is not associated fractures in the Caucasian population. Our findings do not support routine screening for osteoporosis following definitive treatment of hyperthyroid states.
Collapse
Affiliation(s)
- Harshal Deshmukh
- Division of Bone Diseases, Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Maria Papageorgiou
- Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Mo Aye
- Division of Bone Diseases, Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - James England
- Division of Bone Diseases, Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Mohammed Abdalla
- Division of Bone Diseases, Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Thozhukat Sathyapalan
- Division of Bone Diseases, Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| |
Collapse
|
19
|
Jiang H, Yuan FF, Wang HN, Liu W, Ye XP, Yang SY, Xie HJ, Yu SS, Ma YR, Zhang LL, Zhao SX, Song HD. Compelling Evidence Linking CD40 Gene With Graves' Disease in the Chinese Han Population. Front Endocrinol (Lausanne) 2021; 12:759597. [PMID: 34867801 PMCID: PMC8639283 DOI: 10.3389/fendo.2021.759597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Mutations in CD40 have been widely reported to be risk factors for Graves' disease (GD). The gene, along with its cognate ligand CD40L, may regulate pro-inflammatory and immune responses. Rs1883832, located at the -1 position of the Kozak sequence, is the most well-studied single nucleotide polymorphism (SNP) of CD40, and has been confirmed to predispose those with the alteration to GD, regardless of ethnicity. Our genome-wide association study (GWAS) indicated that several SNPs, including rs1883832 located within the vicinity of CD40 were associated with GD in the Han Chinese population. Aiming at identifying the most consequential SNP and its underlying pathogenic mechanism, we performed a two-stage refined study on 8,171 patients with GD and 7,906 controls, and found rs1883832 was the most significantly GD-associated SNP in the CD40 gene region (PCombined = 9.17×10-11, OR = 1.18). Through searching the cis-expression quantitative trait locus database and using quantitative RT-PCR, we further discovered that the rs1883832 genotype can influence CD40 gene transcription. Furthermore, we demonstrated that rs1883832 is a susceptibility locus for pTRAb+ GD patients. In conclusion, the current study provides robust evidence that rs1883832 can regulate CD40 gene expression and affect serum TRAb levels, which ultimately contributes to the development of GD.
Collapse
Affiliation(s)
- He Jiang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei-Fei Yuan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Ning Wang
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Ye
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shao-Ying Yang
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Jun Xie
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sha-Sha Yu
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ru Ma
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Le-Le Zhang
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Shuang-Xia Zhao, ; Huai-Dong Song,
| | - Huai-Dong Song
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Shuang-Xia Zhao, ; Huai-Dong Song,
| | | |
Collapse
|
20
|
Yang H, Holowko N, Grassmann F, Eriksson M, Hall P, Czene K. Hyperthyroidism is associated with breast cancer risk and mammographic and genetic risk predictors. BMC Med 2020; 18:225. [PMID: 32838791 PMCID: PMC7446157 DOI: 10.1186/s12916-020-01690-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Despite the biological link between thyroid hormones and breast cancer cell proliferation shown in experimental studies, little is known about the association between hyperthyroidism and breast cancer, as well as its association with the most common mammographic and genetic risk predictors for breast cancer. METHODS This study estimates the incidence rate ratios (IRRs) of breast cancer among women diagnosed with hyperthyroidism, compared to those who are not, using two cohorts: a Swedish national cohort of the general female population (n = 3,793,492, 2002-2011) and the Karolinska Mammography Project for Risk Prediction of Breast Cancer (KARMA, n = 69,598, 2002-2017). We used logistic regression to estimate the odds ratios (ORs) of hyperthyroidism according to the mammographic and genetic risk predictors for breast cancer. RESULTS An increased risk of breast cancer was observed in patients in the national cohort with hyperthyroidism (IRR = 1.23, 95% CI = 1.12-1.36), particularly for toxic nodular goiter (IRR = 1.38, 95% CI = 1.16-1.63). Hyperthyroidism was associated with higher body mass index, early age at first birth, and lower breastfeeding duration. Higher mammographic density was observed in women with toxic nodular goiter, compared to women without hyperthyroidism. Additionally, among genotyped women without breast cancer in the KARMA cohort (N = 11,991), hyperthyroidism was associated with a high polygenic risk score (PRS) for breast cancer overall (OR = 1.98, 95% CI = 1.09-3.60) and for estrogen receptor-positive specific PRS (OR = 1.90, 95% CI = 1.04-3.43). CONCLUSION Hyperthyroidism is associated with an increased risk of breast cancer, particularly for patients with toxic nodular goiter. The association could be explained by higher mammographic density among these women, as well as pleiotropic genetic variants determining shared hormonal/endocrine factors leading to the pathology of both diseases.
Collapse
Affiliation(s)
- Haomin Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Xuefu North Road 1, University Town, Fuzhou, 350122 China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Natalie Holowko
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Oncology, South General Hospital, SE-11883 Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
21
|
The Lysophosphatidylserines-An Emerging Class of Signalling Lysophospholipids. J Membr Biol 2020; 253:381-397. [PMID: 32767057 DOI: 10.1007/s00232-020-00133-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022]
Abstract
Lysophospholipids are potent hormone-like signalling biological lipids that regulate many important biological processes in mammals (including humans). Lysophosphatidic acid and sphingosine-1-phosphate represent the best studied examples for this lipid class, and their metabolic enzymes and/or cognate receptors are currently under clinical investigation for treatment of various neurological and autoimmune diseases in humans. Over the past two decades, the lysophsophatidylserines (lyso-PSs) have emerged as yet another biologically important lysophospholipid, and deregulation in its metabolism has been linked to various human pathophysiological conditions. Despite its recent emergence, an exhaustive review summarizing recent advances on lyso-PSs and the biological pathways that this bioactive lysophospholipid regulates has been lacking. To address this, here, we summarize studies that led to the discovery of lyso-PS as a potent signalling biomolecule, and discuss the structure, its detection in biological systems, and the biodistribution of this lysophospholipid in various mammalian systems. Further, we describe in detail the enzymatic pathways that are involved in the biosynthesis and degradation of this lipid and the putative lyso-PS receptors reported in the literature. Finally, we discuss the various biological pathways directly regulated by lyso-PSs in mammals and prospect new questions for this still emerging biomedically important signalling lysophospholipid.
Collapse
|
22
|
Yin L, Zeng C, Yao J, Shen J. Emerging Roles for Noncoding RNAs in Autoimmune Thyroid Disease. Endocrinology 2020; 161:5818080. [PMID: 32270194 DOI: 10.1210/endocr/bqaa053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune thyroid disease (AITD) is one of the most frequent autoimmune disorders. However, the pathogenesis of AITD has not been fully elucidated. Recently, accumulating evidence has demonstrated that abnormal expression of noncoding RNAs (ncRNAs) is closely related to the etiopathogenesis of AITD. microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) are 3 major groups of ncRNAs that are attracting increasing attention. Herein, we summarized our present knowledge on the role of miRNAs, lncRNAs, and circRNAs in AITD. This review focused on the importance of ncRNAs in development of the most prevalent AITD, such as Hashimoto disease and Graves' diseases. Altogether, the main purpose of this review is to provide new insights in the pathogenesis of AITD and the possibility of developing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Yin
- Department of Endocrinology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Chong Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jie Yao
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jie Shen
- Department of Endocrinology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| |
Collapse
|
23
|
Cho WK, Shin HR, Lee NY, Kim SK, Ahn MB, Baek IC, Kim TG, Suh BK. GPR174 and ITM2A Gene Polymorphisms rs3827440 and rs5912838 on the X chromosome in Korean Children with Autoimmune Thyroid Disease. Genes (Basel) 2020; 11:genes11080858. [PMID: 32727090 PMCID: PMC7465061 DOI: 10.3390/genes11080858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Autoimmune thyroid diseases (AITDs) are female predominant and much attention has been focused on G protein-coupled receptor 174 (GPR174) and integral membrane protein 2A (ITM2A) on the X chromosome as Grave's disease (GD) susceptible locus. (2) Methods: We genotyped four single nucleotide polymorphisms (SNPs), rs3810712, rs3810711, rs3827440, and rs5912838, of GPR174 and ITM2A in 115 Korean children with AITD (M = 25 and F = 90; GD = 74 (14.7 ± 3.6 years), HD = 41 (13.4 ± 3.2 years); GD-thyroid-associated ophthalmopathy (TAO) = 40, GD-non-TAO=34) and 204 healthy Korean individuals (M = 104 and F = 100). The data were analyzed by sex-stratified or combined. (3) Results: Three SNPs, rs3810712, rs3810711 and rs3827440, were found to be in perfect linkage disequilibrium (D' = 1, r2 = 1). In AITD, HD, GD, GD-TAO, and GD-non-TAO patients, rs3827440 TT/T and rs5912838 AA/A were susceptible and rs3827440 CC/C and rs5912838 CC/C were protective genotypes. When analyzed by sex, rs3827440 TT and rs5912838 AA were susceptible and rs3827440 CC and rs5912838 CC were protective genotypes in female AITD, GD, GD-TAO, and GD-non-TAO subjects. In male AITD patients, rs3827440 T and rs5912838 A were susceptible and rs3827440 C and rs5912838 C were protective genotypes. (4) Conclusions: Polymorphisms in GPR174 and ITM2A genes on the X chromosome might be associated with AITD in Korean children.
Collapse
Affiliation(s)
- Won Kyoung Cho
- Department of Pediatrics, College of Medicine, St. Vincent’s Hospital, The Catholic University of Korea, Seoul 065941, Korea;
| | - Hye-Ri Shin
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 065941, Korea; (H.-R.S.); (I.-C.B.)
| | - Na Yeong Lee
- Department of Pediatrics, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 065941, Korea; (N.Y.L.); (S.K.K.); (M.B.A.)
| | - Seul Ki Kim
- Department of Pediatrics, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 065941, Korea; (N.Y.L.); (S.K.K.); (M.B.A.)
| | - Moon Bae Ahn
- Department of Pediatrics, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 065941, Korea; (N.Y.L.); (S.K.K.); (M.B.A.)
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 065941, Korea; (H.-R.S.); (I.-C.B.)
| | - Tai-Gyu Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 065941, Korea; (H.-R.S.); (I.-C.B.)
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 065941, Korea
- Correspondence: (T.-G.K.); (B.-K.S.); Tel.: +82-2-2258-7341 (T.-G.K.); +82-2-2258-6185 (B.-K.S.); Fax: +82-2-594-7355 (T.-G.K.); 82-2-532-6185 (B.-K.S.)
| | - Byung-Kyu Suh
- Department of Pediatrics, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 065941, Korea; (N.Y.L.); (S.K.K.); (M.B.A.)
- Correspondence: (T.-G.K.); (B.-K.S.); Tel.: +82-2-2258-7341 (T.-G.K.); +82-2-2258-6185 (B.-K.S.); Fax: +82-2-594-7355 (T.-G.K.); 82-2-532-6185 (B.-K.S.)
| |
Collapse
|
24
|
Urinary Cell Transcriptome Profiling and Identification of ITM2A, SLAMF6, and IKZF3 as Biomarkers of Acute Rejection in Human Kidney Allografts. Transplant Direct 2020; 6:e588. [PMID: 32766436 PMCID: PMC7377920 DOI: 10.1097/txd.0000000000001035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 01/08/2023] Open
Abstract
Identification of a shared gene expression pattern between T cell–mediated rejection (TCMR) and antibody-mediated rejection (AMR) in human kidney allografts may help prioritize targets for the treatment of both types of acute rejection.
Collapse
|
25
|
Zhang QY, Liu W, Li L, Du WH, Zuo CL, Ye XP, Zhou Z, Yuan FF, Ma YR, Sun F, Yu SS, Xie HJ, Zhang CR, Ying YX, Yuan GY, Gao GQ, Liang J, Zhao SX, Song HD. Genetic Study in a Large Cohort Supported Different Pathogenesis of Graves' Disease and Hashimoto's Hypothyroidism. J Clin Endocrinol Metab 2020; 105:5815708. [PMID: 32246145 DOI: 10.1210/clinem/dgaa170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/02/2020] [Indexed: 01/03/2023]
Abstract
CONTEXT Hashimoto's thyroiditis (HT) and Graves' disease (GD) are the 2 main autoimmune thyroid diseases that have both similarities and differences. Determining the genetic basis that distinguishes HT from GD is key for a better understanding of the differences between these closely related diseases. OBJECTS To identify the susceptibility genes for HT in the Chinese cohort and compare susceptibility genes between GD and HT. DESIGN In the current study, 18 SNPs from 18 established GD risk loci were selected and then genotyped in 2682 patients with HT, 4980 patients with GD, and 3892 controls. The association analysis between HT and controls and heterogeneity analysis between HT and GD were performed on SPSS, with the logistic regression analysis adjusted for sex and age. RESULTS We identified 11 susceptibility loci for HT in the Chinese Han population, with 4 loci, including the rs1265883 in SLAMF6 locus, rs1024161 in CTLA4, rs1521 in HLA-B, and rs5912838 in GPR174/ ITM2A at X chromosome, reaching genome-wide significance of 5 × 10-8. Five loci were reported to be associated with HT for the first time. We also identified 6 susceptibility loci with heterogeneity between GD and HT. Out of them, 4 loci were associated with GD but not with HT, including HLA-DPB1, CD40, TSHR, and TG; the association of HLA-B with GD was stronger than that with HT, but the association of SLAMF6 was reversed. CONCLUSION Our findings suggested that the pathogenesis of HT and GD was different.
Collapse
Affiliation(s)
- Qian-Yue Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Hua Du
- Department of Endocrinology, Linyi People's Hospital, Linyi, China
| | - Chun-Lin Zuo
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Ping Ye
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Zhou
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei-Fei Yuan
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ru Ma
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Sun
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sha-Sha Yu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Jun Xie
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang-Run Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Xia Ying
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Yue Yuan
- Department of Endocrinology, The Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Guan-Qi Gao
- Department of Endocrinology, Linyi People's Hospital, Linyi, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, China
| | - Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
FLT3 stop mutation increases FLT3 ligand level and risk of autoimmune thyroid disease. Nature 2020; 584:619-623. [PMID: 32581359 DOI: 10.1038/s41586-020-2436-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/08/2020] [Indexed: 02/08/2023]
Abstract
Autoimmune thyroid disease is the most common autoimmune disease and is highly heritable1. Here, by using a genome-wide association study of 30,234 cases and 725,172 controls from Iceland and the UK Biobank, we find 99 sequence variants at 93 loci, of which 84 variants are previously unreported2-7. A low-frequency (1.36%) intronic variant in FLT3 (rs76428106-C) has the largest effect on risk of autoimmune thyroid disease (odds ratio (OR) = 1.46, P = 2.37 × 10-24). rs76428106-C is also associated with systemic lupus erythematosus (OR = 1.90, P = 6.46 × 10-4), rheumatoid factor and/or anti-CCP-positive rheumatoid arthritis (OR = 1.41, P = 4.31 × 10-4) and coeliac disease (OR = 1.62, P = 1.20 × 10-4). FLT3 encodes fms-related tyrosine kinase 3, a receptor that regulates haematopoietic progenitor and dendritic cells. RNA sequencing revealed that rs76428106-C generates a cryptic splice site, which introduces a stop codon in 30% of transcripts that are predicted to encode a truncated protein, which lacks its tyrosine kinase domains. Each copy of rs76428106-C doubles the plasma levels of the FTL3 ligand. Activating somatic mutations in FLT3 are associated with acute myeloid leukaemia8 with a poor prognosis and rs76428106-C also predisposes individuals to acute myeloid leukaemia (OR = 1.90, P = 5.40 × 10-3). Thus, a predicted loss-of-function germline mutation in FLT3 causes a reduction in full-length FLT3, with a compensatory increase in the levels of its ligand and an increased disease risk, similar to that of a gain-of-function mutation.
Collapse
|
27
|
Yan CY, Ma YR, Sun F, Zhang RJ, Fang Y, Zhang QY, Wu FY, Zhao SX, Song HD. Candidate gene associations reveal sex-specific Graves' disease risk alleles among Chinese Han populations. Mol Genet Genomic Med 2020; 8:e1249. [PMID: 32342657 PMCID: PMC7336758 DOI: 10.1002/mgg3.1249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND With several susceptibility single nucleotide polymorphisms identified by case-control association studies, Graves' disease is one of the most common forms of autoimmune thyroid disease. In this study, we aimed to determine whether any observed differences in genetic associations are influenced by sex in Chinese Han populations. METHODS A total of 8,835 patients with Graves' disease and 9,936 sex-matched healthy controls were enrolled in the study. Confirmed by a two-staged association analysis, sex-specific analyses among 20 Graves' disease susceptibility loci were conducted. RESULTS A significant sex-gene interaction was detected primarily at rs5912838 on Xq21.1 between the GPR174 and ITM2A genes, whereby male Graves' disease patients possessed a significantly higher frequency of risk alleles than their female counterparts. Interestingly, compared to women, male patients with Graves' disease had a higher cumulative genetic risk and higher persistent thyroid stimulating hormone receptor antibody-positive rate after receiving antithyroid drug therapy for at least 1 year. CONCLUSION The findings of this study suggest the existence of one potential sex-specific Graves' disease variant on Xq21.1. This could increase our understanding of the pivotal mechanism behind Graves' disease and ultimately aid in identifying possible therapeutic targets.
Collapse
Affiliation(s)
- Chen-Yan Yan
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ru Ma
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Sun
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Jia Zhang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Fang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian-Yue Zhang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Yao Wu
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huai-Dong Song
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Elevated phosphatidylserine-specific phospholipase A1 level in hyperthyroidism. Clin Chim Acta 2020; 503:99-106. [DOI: 10.1016/j.cca.2020.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022]
|
29
|
Sadeghi A, Fadaei R, Moradi N, Fouani FZ, Roozbehkia M, Zandieh Z, Ansaripour S, Vatannejad A, Doustimotlagh AH. Circulating levels of C1q/TNF-α-related protein 6 (CTRP6) in polycystic ovary syndrome. IUBMB Life 2020; 72:1449-1459. [PMID: 32170998 DOI: 10.1002/iub.2272] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders affecting females of reproductive age. It has been associated with cardiometabolic disorders including diabetes mellitus and cardiovascular disorders, and increases the risk of developing fecundity pathologies including recurrent pregnancy loss (RPL) and infertility. C1q/tumor necrosis factor-α-related protein-6 (CTRP6) is a novel adipokine involved in glucose and lipid metabolism, host inflammation, and organogenesis. In the present study, we aimed to determine the association of serum CTRP6 levels with some components of metabolic syndrome in PCOS patients (infertile PCOS [inf-PCOS] and PCOS-RPL). This case-control study included 120 PCOS patients (60 inf-PCOS and 60 PCOS-RPL) and 60 healthy controls. Serum high-sensitivity C-reactive protein (hs-CRP) and homocysteine were measured using commercial kits, while adiponectin and CTRP6 levels were assessed using ELISA technique. Inf-PCOS and PCOS-RPL individuals had higher levels of serum CTRP6 than controls (546.15 ± 125.02 ng/ml and 534.04 ± 144.19 ng/ml vs. 440.16 ± 159.24 ng/ml; both p < .001). Moreover, serum adiponectin levels were significantly reduced, while fasting insulin, homeostasis model assessment of insulin resistance, free testosterone, and hs-CRP levels were significantly elevated in PCOS group, when compared with controls. Furthermore, serum CTRP6 positively associated with body mass index in all subjects. It showed an inverse correlation with adiponectin in PCOS group and subgroups. However, it had a direct association with hs-CRP in PCOS group and inf-PCOS subgroup, but not PCOS-RPL subgroup. These findings unravel a probable role of CTRP6 in PCOS pathogenesis, which poses a possibility to be a good diagnostic target. However, further investigation is needed.
Collapse
Affiliation(s)
- Asie Sadeghi
- Student Research Committee, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Fatima Z Fouani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Roozbehkia
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Shahid Akbar Abadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Ansaripour
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir H Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
30
|
Yanagida K, Valentine WJ. Druggable Lysophospholipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:137-176. [DOI: 10.1007/978-3-030-50621-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Antwi SO, Bamlet WR, Pedersen KS, Chaffee KG, Risch HA, Shivappa N, Steck SE, Anderson KE, Bracci PM, Polesel J, Serraino D, La Vecchia C, Bosetti C, Li D, Oberg AL, Arslan AA, Albanes D, Duell EJ, Huybrechts I, Amundadottir LT, Hoover R, Mannisto S, Chanock SJ, Zheng W, Shu XO, Stepien M, Canzian F, Bueno-de-Mesquita B, Quirós JR, Zeleniuch-Jacquotte A, Bruinsma F, Milne RL, Giles GG, Hébert JR, Stolzenberg-Solomon RZ, Petersen GM. Pancreatic cancer risk is modulated by inflammatory potential of diet and ABO genotype: a consortia-based evaluation and replication study. Carcinogenesis 2019; 39:1056-1067. [PMID: 29800239 DOI: 10.1093/carcin/bgy072] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Diets with high inflammatory potential are suspected to increase risk for pancreatic cancer (PC). Using pooled analyses, we examined whether this association applies to populations from different geographic regions and population subgroups with varying risks for PC, including variation in ABO blood type. Data from six case-control studies (cases, n = 2414; controls, n = 4528) in the Pancreatic Cancer Case-Control Consortium (PanC4) were analyzed, followed by replication in five nested case-control studies (cases, n = 1268; controls, n = 4215) from the Pancreatic Cancer Cohort Consortium (PanScan). Two polymorphisms in the ABO locus (rs505922 and rs8176746) were used to infer participants' blood types. Dietary questionnaire-derived nutrient/food intake was used to compute energy-adjusted dietary inflammatory index (E-DII®) scores to assess inflammatory potential of diet. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using multivariable-adjusted logistic regression. Higher E-DII scores, reflecting greater inflammatory potential of diet, were associated with increased PC risk in PanC4 [ORQ5 versus Q1=2.20, 95% confidence interval (CI) = 1.85-2.61, Ptrend < 0.0001; ORcontinuous = 1.20, 95% CI = 1.17-1.24], and PanScan (ORQ5 versus Q1 = 1.23, 95% CI = 0.92-1.66, Ptrend = 0.008; ORcontinuous = 1.09, 95% CI = 1.02-1.15). As expected, genotype-derived non-O blood type was associated with increased PC risk in both the PanC4 and PanScan studies. Stratified analyses of associations between E-DII quintiles and PC by genotype-derived ABO blood type did not show interaction by blood type (Pinteraction = 0.10 in PanC4 and Pinteraction=0.13 in PanScan). The results show that consuming a pro-inflammatory diet and carrying non-O blood type are each individually, but not interactively, associated with increased PC risk.
Collapse
Affiliation(s)
- Samuel O Antwi
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - William R Bamlet
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Kari G Chaffee
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Nitin Shivappa
- Cancer Prevention and Control Program, USA.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Susan E Steck
- Cancer Prevention and Control Program, USA.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Kristin E Anderson
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Jerry Polesel
- Unit of Epidemiology and Biostatistics, Centro di Riferimento Oncologico, Aviano (PN), Italy
| | - Diego Serraino
- Unit of Epidemiology and Biostatistics, Centro di Riferimento Oncologico, Aviano (PN), Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Cristina Bosetti
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Alan A Arslan
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.,Department of Population Health, New York University School of Medicine, New York, NY, USA.,Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Eric J Duell
- Unit of Nutrition and Cancer, Bellvitge Biomedical Research Institute-IDIBELL, Catalan Institute of Oncology-ICO. L'Hospitalet de Llobregat, Barcelona, Spain
| | - Inge Huybrechts
- International Agency for Research on Cancer, World Health Organization, France
| | - Laufey T Amundadottir
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Satu Mannisto
- Department of Public Health Solutions, National Institute for Health and Welfare Helsinki, Finland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Magdalena Stepien
- International Agency for Research on Cancer, World Health Organization, France
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bas Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, UK.,Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Pantai Valley, Kuala Lumpur, Malaysia
| | | | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, NY, USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Fiona Bruinsma
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, and Centre for Epidemiology and Biostatistics, Melbourne School of Global and Population Health, The University of Melbourne, Melbourne, Australia
| | - Roger L Milne
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, and Centre for Epidemiology and Biostatistics, Melbourne School of Global and Population Health, The University of Melbourne, Melbourne, Australia
| | - Graham G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, and Centre for Epidemiology and Biostatistics, Melbourne School of Global and Population Health, The University of Melbourne, Melbourne, Australia
| | - James R Hébert
- Cancer Prevention and Control Program, USA.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Rachael Z Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Gloria M Petersen
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
32
|
Xuan M, Zhao SX, Yan CY, Yang J, Li Y, Song LG, Song HD, Zhang XZ. Fine mapping of thyroglobulin gene identifies two independent risk loci for Graves' disease in Chinese Han population. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:434. [PMID: 31700870 DOI: 10.21037/atm.2019.08.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background This study aimed to determine independent risk loci of Graves' disease (GD) in the thyroglobulin (TG) region. Methods In this two-staged association study, a total of 9,757 patients with GD and 10,626 sex-matched controls were recruited from Chinese Han population. Illumina Human660-Quad BeadChips in the discovery stage and TaqMan SNP Genotyping Assays in the replication stage were used for genotyping. Trend test and logistic regression analysis were performed in this association study. Results In the discovery stage, rs2294025 and rs7005834 were the most highly associated susceptibility loci with GD in TG. In the replication phase, 7 SNPs, including rs2294025 and rs7005834, were selected for fine-mapping. Finally, we confirmed that rs2294025 and rs7005834 were the independent risk loci of GD in the combined populations. At the same time, there was no significant difference between the risk allele frequencies of rs2294025 and rs7005834 in different clinical phenotypes of GD. Conclusions The fine mapping study of thyroglobulin identified two independent SNPs (rs2294025 and rs7005834) for GD susceptibility. However, no significant differences for rs2294025 and rs7005834 were observed, between the different clinical phenotypes of GD, including gender, Graves' ophthalmopathy (GO), and serum levels of thyrotropin receptor antibody, thyroid peroxidase antibody, and thyroglobulin antibody. These results provide a deeper understanding of the association mechanism of thyroglobulin and GD risk.
Collapse
Affiliation(s)
- Miao Xuan
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Chen-Yan Yan
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Jun Yang
- Department of Clinical Skill Practice and Training Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ying Li
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Li-Ge Song
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Xiu-Zhen Zhang
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
33
|
Genetic Variants of ABO and SOX6 are Associated With Adolescent Idiopathic Scoliosis in Chinese Han Population. Spine (Phila Pa 1976) 2019; 44:E1063-E1067. [PMID: 30994600 DOI: 10.1097/brs.0000000000003062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association study. OBJECTIVE The aim of this study was to determine whether variants of ABO, SOX6, and CDH13 are associated with the susceptibility of AIS in Chinese Han population. SUMMARY OF BACKGROUND DATA A recent large-scale genome-wide association study reported three novel loci in CDH13, ABO, and SOX6 genes associated with adolescent idiopathic scoliosis (AIS) in Japanese population. However, the association of these three genes with AIS in other populations remains obscure. METHODS The SNPs rs4513093, rs687621, and rs1455114 were genotyped in 1208 female patients and 2498 healthy controls. Samples for the expression analysis in paraspinal muscles were collected from 49 AIS and 33 congenital scoliosis (CS) patients during surgical interventions. Chi-square analysis was used to assess the difference regarding genotype and allele frequency between cases and controls. Tissue expressions of ABO, CDH13, and SOX6 were compared between AIS and CS patients by the Student t test. RESULTS SNPs rs4513093 of CDH13 and rs687621 of ABO were found to be significantly associated with AIS with an odds ratio of 0.8691 and 1.203, respectively. There was no significant association of rs1455114 with AIS. Moreover, AIS patients were found to have significantly increased expression of ABO. As for expression of CDH13 and SOX6, no remarkable difference was found between the two groups. CONCLUSION The association of CDH13 and ABO variants with AIS was successfully replicated in the Chinese Han population. More studies are warranted to explore the functional role of ABO in the development of AIS. LEVEL OF EVIDENCE N/A.
Collapse
|
34
|
Yi R, Yang L, Zeng S, Su Y. Different expression profile of mRNA and long noncoding RNA in autoimmune thyroid diseases patients. J Cell Biochem 2019; 120:19442-19456. [PMID: 31452253 DOI: 10.1002/jcb.29233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/23/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Ruhai Yi
- Endocrinology Department The First Affiliated Hospital of Fujian Medical University, Diabetes Research Insititute of Fujian Province Fuzhou Fujian Province People's Republic of China
| | - Liyong Yang
- Endocrinology Department The First Affiliated Hospital of Fujian Medical University, Diabetes Research Insititute of Fujian Province Fuzhou Fujian Province People's Republic of China
| | - Saifan Zeng
- Pathology Department The First Affiliated Hospital of Fujian Medical University China
| | - Yueqing Su
- Center of Neonatal Screening, Fujian Provincal Maternity and Children's Hospital Affiliated Hospital of Fujian Medical University Fuzhou Fujian Province China
| |
Collapse
|
35
|
Ma YR, Zhao SX, Li L, Sun F, Ye XP, Yuan FF, Jiang D, Zhou Z, Zhang QY, Wan YY, Zhang GY, Wu J, Zhang RJ, Fang Y, Song HD. A Weighted Genetic Risk Score Using Known Susceptibility Variants to Predict Graves Disease Risk. J Clin Endocrinol Metab 2019; 104:2121-2130. [PMID: 30649410 DOI: 10.1210/jc.2018-01551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/09/2019] [Indexed: 01/07/2023]
Abstract
CONTEXT Graves disease (GD) is a common thyroid-specific autoimmune disease and one of the most heritable diseases in the population. We present a risk-prediction model, including confirmed, known genetic variants associated with GD. DESIGN To construct a stable-prediction model, we used known GD susceptibility single nucleotide polymorphisms (SNPs) as markers and trained and tested our model in a cohort of 4897 patients with GD and 5098 healthy controls. We weighted the contribution of each SNP to the disease to calculate the weighted genetic risk score (wGRS) for each individual. The efficiency of this model can be estimated by the area under the curve (AUC) receiver operator characteristic curve and the specificity and sensitivity of each wGRS. RESULTS With the 20 confirmed GD risk-related SNPs, our wGRS-prediction model could predict patients with GD from the general population (AUC 0.70 [95% CI: 0.69 to 0.71]) and did especially well in predicting patients with GD with persisting thyroid-stimulating hormone receptor antibody positive [pTRAb+; AUC 0.74 (95% CI: 0.72 to 0.76)]. We also evaluated how the four pTRAb+ specific risk SNPs predicted patients with GD with pTRAb+ among all patients with GD [AUC 0.62 (95% CI: 0.61 to 0.63)]. For clinical use, we partitioned subjects in each set into different risk categories to generate the wGRS cutoff of high risk for reference. CONCLUSIONS Our study provides an approach to predict GD risk in the general population by the calculation of the wGRS of 20 known GD susceptibility variants. The wGRS-prediction model was more stable and convenient, whereas the prediction performance was still modest.
Collapse
Affiliation(s)
- Yu-Ru Ma
- Core Laboratory, Medical Center of Clinical Research, Department of Endocrinology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Xia Zhao
- Core Laboratory, Medical Center of Clinical Research, Department of Endocrinology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Li
- Core Laboratory, Medical Center of Clinical Research, Department of Endocrinology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Sun
- Core Laboratory, Medical Center of Clinical Research, Department of Endocrinology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Ye
- Core Laboratory, Medical Center of Clinical Research, Department of Endocrinology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei-Fei Yuan
- Core Laboratory, Medical Center of Clinical Research, Department of Endocrinology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Jiang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zheng Zhou
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qian-Yue Zhang
- Core Laboratory, Medical Center of Clinical Research, Department of Endocrinology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Yue Wan
- Core Laboratory, Medical Center of Clinical Research, Department of Endocrinology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Ya Zhang
- Core Laboratory, Medical Center of Clinical Research, Department of Endocrinology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wu
- Core Laboratory, Medical Center of Clinical Research, Department of Endocrinology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Jia Zhang
- Core Laboratory, Medical Center of Clinical Research, Department of Endocrinology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Fang
- Core Laboratory, Medical Center of Clinical Research, Department of Endocrinology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huai-Dong Song
- Core Laboratory, Medical Center of Clinical Research, Department of Endocrinology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Khanshour AM, Kou I, Fan Y, Einarsdottir E, Makki N, Kidane YH, Kere J, Grauers A, Johnson TA, Paria N, Patel C, Singhania R, Kamiya N, Takeda K, Otomo N, Watanabe K, Luk KDK, Cheung KMC, Herring JA, Rios JJ, Ahituv N, Gerdhem P, Gurnett CA, Song YQ, Ikegawa S, Wise CA. Genome-wide meta-analysis and replication studies in multiple ethnicities identify novel adolescent idiopathic scoliosis susceptibility loci. Hum Mol Genet 2019; 27:3986-3998. [PMID: 30395268 DOI: 10.1093/hmg/ddy306] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common musculoskeletal disorder of childhood development. The genetic architecture of AIS is complex, and the great majority of risk factors are undiscovered. To identify new AIS susceptibility loci, we conducted the first genome-wide meta-analysis of AIS genome-wide association studies, including 7956 cases and 88 459 controls from 3 ancestral groups. Three novel loci that surpassed genome-wide significance were uncovered in intragenic regions of the CDH13 (P-value_rs4513093 = 1.7E-15), ABO (P-value_ rs687621 = 7.3E-10) and SOX6 (P-value_rs1455114 = 2.98E-08) genes. Restricting the analysis to females improved the associations at multiple loci, most notably with variants within CDH13 despite the reduction in sample size. Genome-wide gene-functional enrichment analysis identified significant perturbation of pathways involving cartilage and connective tissue development. Expression of both SOX6 and CDH13 was detected in cartilage chondrocytes and chromatin immunoprecipitation sequencing experiments in that tissue revealed multiple HeK27ac-positive peaks overlapping associated loci. Our results further define the genetic architecture of AIS and highlight the importance of vertebral cartilage development in its pathogenesis.
Collapse
Affiliation(s)
- Anas M Khanshour
- Sarah M. & Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Ikuyo Kou
- Laboratory of Bone & Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics, University of Helsinki, 00014 University of Helsinki, Finland.,Molecular Neurology Research Program, University of Helsinki, 00014 University of Helsinki, Finland.,Department of Biosciences & Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Nadja Makki
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yared H Kidane
- Sarah M. & Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Juha Kere
- Folkhälsan Institute of Genetics, University of Helsinki, 00014 University of Helsinki, Finland.,Molecular Neurology Research Program, University of Helsinki, 00014 University of Helsinki, Finland.,Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK.,Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, K54 Huddinge, Stockholm, Sweden
| | - Anna Grauers
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, K54 Huddinge, Stockholm, Sweden.,Department of Orthopedics, Sundsvall and Härnösand County Hospital, Sundsvall, Sweden
| | - Todd A Johnson
- Laboratory of Bone & Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Nandina Paria
- Sarah M. & Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Chandreshkumar Patel
- McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Richa Singhania
- Sarah M. & Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | | | - Kazuki Takeda
- Laboratory of Bone & Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Nao Otomo
- Laboratory of Bone & Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Keith D K Luk
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
| | - Kenneth M C Cheung
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
| | - John A Herring
- Sarah M. & Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA.,Department of Orthopaedic Surgery, Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan J Rios
- Sarah M. & Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA.,McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadav Ahituv
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Paul Gerdhem
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, K54 Huddinge, Stockholm, Sweden.,Department of Orthopedics, Karolinska University Hospital, K54 Huddinge, Stockholm, Sweden
| | - Christina A Gurnett
- Department of Neurology, School of Medicine, Washington University, St. Louis, MO, USA
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Shiro Ikegawa
- Laboratory of Bone & Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Carol A Wise
- Sarah M. & Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA.,McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
37
|
Zhao SX, Liu W, Liang J, Gao GQ, Zhang XM, Yao Y, Wang HN, Yuan FF, Xue LQ, Ma YR, Zhang LL, Ye XP, Zhang QY, Sun F, Zhang RJ, Yang SY, Zhan M, Du WH, Liu BL, Chen X, Song ZY, Li XS, Li P, Ru Y, Zuo CL, Li SX, Han B, Zhu H, Qiao J, Xuan M, Su B, Sun F, Ma JH, Chen JL, Tian HM, Chen SJ, Song HD. Assessment of Molecular Subtypes in Thyrotoxic Periodic Paralysis and Graves Disease Among Chinese Han Adults: A Population-Based Genome-Wide Association Study. JAMA Netw Open 2019; 2:e193348. [PMID: 31050781 PMCID: PMC6503496 DOI: 10.1001/jamanetworkopen.2019.3348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IMPORTANCE Thyrotoxic periodic paralysis (TPP) is a potentially lethal complication of hyperthyroidism. However, only 1 specific susceptibility locus for TPP has been identified. Additional genetic determinants should be detected so that a prediction model can be constructed. OBJECTIVE To investigate the genetic architecture of TPP and distinguish TPP from Graves disease cohorts. DESIGN, SETTING, AND PARTICIPANTS This population-based case-control study used a 2-stage genome-wide association study to investigate the risk loci of TPP and weighted genetic risk score to construct a TPP prediction model with data from a Chinese Han population recruited in hospitals in China from March 2003 to December 2015. The analysis was conducted from November 2014 to August 2016. MAIN OUTCOMES AND MEASURES Loci specifically associated with TPP risk and those shared with Graves disease and prediction model of joint effects of TPP-specific loci. RESULTS A total of 537 patients with TPP (mean [SD] age, 35 [11] years; 458 male) 1519 patients with Graves disease and no history of TPP (mean [SD] age, 38 [13] years; 366 male), and 3249 healthy participants (mean [SD] age, 46 [10] years; 1648 male) were recruited from the Han population by hospitals throughout China. Two new TPP-specific susceptibility loci were identified: DCHS2 on 4q31.3 (rs1352714: odds ratio [OR], 1.58; 95% CI, 1.35-1.85; P = 1.24 × 10-8) and C11orf67 on 11q14.1 (rs2186564: OR, 1.50; 95% CI, 1.29-1.74; P = 2.80 × 10-7). One previously reported specific locus was confirmed on 17q24.3 near KCNJ2 (rs312729: OR, 2.08; 95% CI, 1.83-2.38; P = 8.02 × 10-29). Meanwhile, 2 risk loci (MHC and Xq21.1) were shared by Graves disease and TPP. After 2 years of treatment, the ratio of persistent thyrotropin receptor antibody positivity was higher in patients with TPP than in patients with Graves disease and no history of TPP (OR, 3.82; 95% CI, 2.04-7.16; P = 7.05 × 10-6). The prediction model using a weighted genetic risk score and 11 candidate TPP-specific single-nucleotide polymorphisms had an area under the curve of 0.80. CONCLUSIONS AND RELEVANCE These findings provide evidence that TPP is a novel molecular subtype of Graves disease. The newly identified loci, along with other previously reported loci, demonstrate the growing complexity of the heritable contribution to TPP pathogenesis. A complete genetic architecture will be helpful to understand the pathophysiology of TPP, and a useful prediction model could prevent the onset of TPP.
Collapse
Affiliation(s)
- Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Liu
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Guan-Qi Gao
- Department of Endocrinology, People’s Hospital of Linyi, Linyi, Shandong, China
| | - Xiao-Mei Zhang
- Department of Endocrinology, The First Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, China
| | - Yu Yao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Ning Wang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fei-Fei Yuan
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li-Qiong Xue
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Ru Ma
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Le-Le Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Ping Ye
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian-Yue Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Sun
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui-Jia Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shao-Ying Yang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen-Hua Du
- Department of Endocrinology, People’s Hospital of Linyi, Linyi, Shandong, China
| | - Bing-Li Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xia Chen
- Department of Endocrinology, Shanghai Fourth People’s Hospital, Tongji University, Shanghai, China
| | - Zhi-Yi Song
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Song Li
- Department of Endocrinology and Metabolism, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Li
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ying Ru
- Department of Endocrinology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Chun-Lin Zuo
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sheng-Xian Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrinology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bing Han
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Zhu
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Qiao
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Miao Xuan
- Department of Endocrinology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Su
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Sun
- Department of Endocrinology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Jun-Hua Ma
- Department of Endocrinology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Jia-Lun Chen
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao-Ming Tian
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sai-Juan Chen
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Sun W, Zhang X, Wu J, Zhao W, Zhao S, Li M. Correlation of TSHR and CTLA-4 Single Nucleotide Polymorphisms with Graves Disease. Int J Genomics 2019; 2019:6982623. [PMID: 31565653 PMCID: PMC6745126 DOI: 10.1155/2019/6982623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/16/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
This study was designed to explore the association between Graves disease (GD) and thyroid-stimulating hormone receptor (TSHR) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) single nucleotide polymorphisms (SNPs). We studied a total of 1217 subjects from a Han population in northern Anhui province in China. Six SNPs within TSHR (rs179247, rs12101261, rs2284722, rs4903964, rs2300525, and rs17111394) and four SNPs within CTLA-4 (rs10197319, rs231726, rs231804, and rs1024161) were genotyped via a Taqman probe technique using a Fluidigm EP1 platform. The TSHR alleles rs179247-G, rs12101261-C, and rs4903964-G were negatively correlated with GD, whereas the rs2284722-A and rs17111394-C alleles were positively correlated with GD. Analyzing TSHR SNPs at rs179247, rs2284722, rs12101261, and rs4903964 yielded 8 different haplotypes. There were positive correlations between GD risk and the haplotypes AGTA and AATA (OR = 1.27, 95%CI = 1.07-1.50, P = 0.005; OR = 1.45, 95%CI = 1.21-1.75, P < 0.001, respectively). There were negative correlations between GD risk and the haplotype GGCG (OR = 0.56, 95%CI = 0.46-0.67, P < 0.001). With respect to haplotypes based on SNPs at the TSHR rs2300525 and rs17111394 loci, the CC haplotype was positively correlated with GD risk (OR = 1.32, 95%CI = 1.08-1.60, P = 0.006). Analyzing CTLA-4 SNPs at rs231804, rs1024161, and rs231726 yielded four haplotypes, of which AAA was positively correlated with GD risk (OR = 1.21, 95%CI = 1.02-1.43, P = 0.029). Polymorphisms at rs179247, rs12101261, rs2284722, rs4903964, and rs17111394 were associated with GD susceptibility. Haplotypes of both TSHR and CTLA-4 were additionally related to GD risk.
Collapse
Affiliation(s)
- Weihua Sun
- 1Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250000 Shandong Province, China
- 2Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Xiaomei Zhang
- 2Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Jing Wu
- 2Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Wendi Zhao
- 2Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Shuangxia Zhao
- 3The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Minglong Li
- 1Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250000 Shandong Province, China
| |
Collapse
|
39
|
Liu W, Zhang QY, Yuan FF, Wang HN, Zhang LL, Ma YR, Ye XP, Zhang MM, Song ZY, Li SX, Du WH, Liang J, Zhang XM, Gao GQ, Zhao SX, Chen FL, Song HD. A dense mapping study of six European AITD susceptibility regions in a large Chinese Han Cohort of Graves' disease. Clin Endocrinol (Oxf) 2018; 89:840-848. [PMID: 30176063 DOI: 10.1111/cen.13847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/05/2018] [Accepted: 08/30/2018] [Indexed: 01/15/2023]
Abstract
OBJECTIVE We aimed to investigate the six susceptibility loci of GD identified from European population in Chinese Han population and further to estimate the genetic heterogeneity of them in stratification of our GD patients. DESIGN Dense mapping studies based on GWAS. PATIENTS A total of 1536 GD patients and 1516 controls in GWAS stage and 1994 GD patients and 2085 controls and 5033 GD patients and 5389 controls in two replication stages. MEASUREMENTS Based on our previous GWAS data, independently GD-associated SNPs in each region were identified by TagSNP analysis and logistic regression analysis. The association of these SNPs was investigated in 1994 GD patients and 2085 controls, and then, the significantly associated SNPs (P < 0.05) were further genotyped in a second cohort including 5033 GD patients and 5389 controls. RESULTS After the first replication stage, four SNPs from three regions with Pfirst < 0.05 were further selected and genotyped in another independent cohort. The association of two SNPs with GD was confirmed in combined Chinese cohorts: rs12575636 at 11q21 (Pcombined = 7.55 × 10-11 , OR = 1.27) and rs1881145 in TRIB2 at 2p25.1 (Pcombined = 5.59 × 10-8 , OR = 1.14). Further study disclosed no significant difference for these SNPs between GD subsets. However, eQTL data revealed that SESN3 could be a potential susceptibility gene of GD in 11q21 region. CONCLUSIONS Out of the six susceptibility loci of GD identified from European population, two risk loci were confirmed in a large Chinese Han population. There is variability in GD genetic susceptibility in different ethnic groups. SESN3 is a potential susceptible gene of GD in 11q21.
Collapse
Affiliation(s)
- Wei Liu
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University (SJTU) School of Medicine, Shanghai, China
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian-Yue Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University (SJTU) School of Medicine, Shanghai, China
| | - Fei-Fei Yuan
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University (SJTU) School of Medicine, Shanghai, China
| | - Hai-Ning Wang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University (SJTU) School of Medicine, Shanghai, China
| | - Le-Le Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University (SJTU) School of Medicine, Shanghai, China
| | - Yu-Ru Ma
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University (SJTU) School of Medicine, Shanghai, China
| | - Xiao-Ping Ye
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University (SJTU) School of Medicine, Shanghai, China
| | - Man-Man Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University (SJTU) School of Medicine, Shanghai, China
| | - Zhi-Yi Song
- Department of Endocrinology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Xian Li
- Department of Endocrinology, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Hua Du
- Department of Endocrinology, People's Hospital of Linyi, Linyi, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, China
| | - Xiao-Mei Zhang
- Department of Endocrinology, The First Hospital Affiliated to Bengbu Medical College, Bengbu, China
| | - Guan-Qi Gao
- Department of Endocrinology, People's Hospital of Linyi, Linyi, China
| | - Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University (SJTU) School of Medicine, Shanghai, China
| | - Feng-Ling Chen
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University (SJTU) School of Medicine, Shanghai, China
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Chen X, Hu Z, Liu M, Li H, Liang C, Li W, Bao L, Chen M, Wu G. Correlation between CTLA-4 and CD40 gene polymorphisms and their interaction in graves' disease in a Chinese Han population. BMC MEDICAL GENETICS 2018; 19:171. [PMID: 30223781 PMCID: PMC6142355 DOI: 10.1186/s12881-018-0665-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/14/2018] [Indexed: 11/28/2022]
Abstract
Background Single-nucleotide polymorphism (SNP) haplotype and SNP-SNP interactions of CTLA-4 and CD40 genes, with susceptibility to Graves’ disease (GD), were explored in a Chinese Han population. Methods SNP were genotyped by high resolution melting (HRM). Use the method of Pearson χ2 test and Logistic regression for the association between single SNP and Graves’ disease. Using the method of χ2 test and Multifactor Dimensionality Reduction (MDR) to analysis the haplotype frequency distribution, the interaction of SNPs respectively. Results Genotypic and allelic frequencies of SNP rs231775, rs3087243 and rs1883832 were statistically different between controls and GD (p < 0.05). Mutant allelic frequency of G rs231775 was higher, and A and T allelic frequencies of rs3087243 and rs1883832 were lower in GD than in controls (P < 0.05). In CTLA-4 rs1024161, rs5742909, rs231775, rs231777, rs231779, rs3087243 and rs11571319 showed D’ < 50% and r2 < 0.3 among each SNP. We identified six commonly found haplotypes; TCGCTGC was associated with the highest GD risk (OR = 2.565) and TCACTAC the lowest (OR = 0.096). MDR analysis indicated interactions among the rs231775 GG, rs231779 TT and rs3087243 GG genotypes in CTLA-4 might increase GD risk by 2.53-fold (OR = 2.53). Conclusion CTLA-4 and CD40 were associated with GD incidence in a Chinese Han population. The TCGCTGC and TCACTAC haplotypes in the CTLA-4 gene, were risk and protective factors for Graves’disease respectively. Interactions among the SNPs of rs231775, rs231779 and rs3087243 significantly increase the susceptibility to GD.
Collapse
Affiliation(s)
- Xiaoming Chen
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhuoqing Hu
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Meilian Liu
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huaqian Li
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Chanbo Liang
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Wei Li
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Liwen Bao
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Manyang Chen
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Ge Wu
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
41
|
Sjögren’s Syndrome and Autoimmune Thyroid Disease: Two Sides of the Same Coin. Clin Rev Allergy Immunol 2018; 56:362-374. [DOI: 10.1007/s12016-018-8709-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Hwangbo Y, Park YJ. Genome-Wide Association Studies of Autoimmune Thyroid Diseases, Thyroid Function, and Thyroid Cancer. Endocrinol Metab (Seoul) 2018; 33:175-184. [PMID: 29947174 PMCID: PMC6021314 DOI: 10.3803/enm.2018.33.2.175] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Thyroid diseases, including autoimmune thyroid diseases and thyroid cancer, are known to have high heritability. Family and twin studies have indicated that genetics plays a major role in the development of thyroid diseases. Thyroid function, represented by thyroid stimulating hormone (TSH) and free thyroxine (T4), is also known to be partly genetically determined. Before the era of genome-wide association studies (GWAS), the ability to identify genes responsible for susceptibility to thyroid disease was limited. Over the past decade, GWAS have been used to identify genes involved in many complex diseases, including various phenotypes of the thyroid gland. In GWAS of autoimmune thyroid diseases, many susceptibility loci associated with autoimmunity (human leukocyte antigen [HLA], protein tyrosine phosphatase, non-receptor type 22 [PTPN22], cytotoxic T-lymphocyte associated protein 4 [CTLA4], and interleukin 2 receptor subunit alpha [IL2RA]) or thyroid-specific genes (thyroid stimulating hormone receptor [TSHR] and forkhead box E1 [FOXE1]) have been identified. Regarding thyroid function, many susceptibility loci for levels of TSH and free T4 have been identified through genome-wide analyses. In GWAS of differentiated thyroid cancer, associations at FOXE1, MAP3K12 binding inhibitory protein 1 (MBIP)-NK2 homeobox 1 (NKX2-1), disrupted in renal carcinoma 3 (DIRC3), neuregulin 1 (NRG1), and pecanex-like 2 (PCNXL2) have been commonly identified in people of European and Korean ancestry, and many other susceptibility loci have been found in specific populations. Through GWAS of various thyroid-related phenotypes, many susceptibility loci have been found, providing insights into the pathogenesis of thyroid diseases and disease co-clustering within families and individuals.
Collapse
Affiliation(s)
- Yul Hwangbo
- Center for Thyroid Cancer, National Cancer Center, Goyang, Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
43
|
Zhang H, Zhang Y, Wang YF, Morris D, Hirankarn N, Sheng Y, Shen J, Pan HF, Yang J, Yang S, Cui Y, Ye DQ, Vyse TJ, Zhang X, Lau YL, Yang W. Meta-analysis of GWAS on both Chinese and European populations identifies GPR173 as a novel X chromosome susceptibility gene for SLE. Arthritis Res Ther 2018; 20:92. [PMID: 29724251 PMCID: PMC5934841 DOI: 10.1186/s13075-018-1590-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Systemic lupus erythematous (SLE) is a complex autoimmune disease with female predominance, particularly affecting those of childbearing age. We performed analysis of three genome-wide genotyping datasets of populations of both Chinese and European origin. METHODS This study involved 5695 cases and 10,357 controls in the discovery stage. The lead signal on chromosome X was followed by replication in three additional Asian cohorts, with 2300 cases and 4244 controls in total. Conditional analysis of the known associated loci on chromosome X was also performed to further explore independent signals. RESULTS Single-nucleotide polymorphism rs13440883 in GPR173 was found to be significantly associated with SLE (Pmeta = 7.53 × 10- 9, ORmeta= 1.16), whereas conditional analysis provided evidence of a potential independent signal in the L1CAM-IRAK1-MECP2 region in Asian populations (rs5987175 [LCA10]). CONCLUSIONS We identified a novel SLE susceptibility locus on the X chromosome. This finding emphasizes the importance of the X chromosome in disease pathogenesis and highlights the role of sex chromosomes in the female bias of SLE.
Collapse
Affiliation(s)
- Huoru Zhang
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Sandy Bay, Hong Kong
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China.
| | - Yong-Fei Wang
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Sandy Bay, Hong Kong
| | - David Morris
- Division of Genetics and Molecular Medicine, King's College London, London, SE1 9RT, UK
| | - Nattiya Hirankarn
- Lupus Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yujun Sheng
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Jiangshan Shen
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Sandy Bay, Hong Kong
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jing Yang
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Sandy Bay, Hong Kong
| | - Sen Yang
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Timothy J Vyse
- Division of Genetics and Molecular Medicine, King's College London, London, SE1 9RT, UK
| | - Xuejun Zhang
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Sandy Bay, Hong Kong.
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Sandy Bay, Hong Kong. .,Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sandy Bay, Hong Kong.
| |
Collapse
|
44
|
Lysophosphatidylserine suppresses IL-2 production in CD4 T cells through LPS3/GPR174. Biochem Biophys Res Commun 2017; 494:332-338. [DOI: 10.1016/j.bbrc.2017.10.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
|
45
|
Yuan FF, Ye XP, Liu W, Xue LQ, Ma YR, Zhang LL, Zhang MM, Sun F, Wan YY, Zhang QY, Zhao SX, Song HD. Genetic study of early-onset Graves' disease in the Chinese Han population. Clin Genet 2017; 93:103-110. [PMID: 28598035 DOI: 10.1111/cge.13072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/31/2017] [Indexed: 01/19/2023]
Abstract
Graves' disease (GD) is a complex autoimmune disorder in which genetic and environmental factors are both involved in the pathogenesis. Early-onset patients have a shorter exposure time to environmental factors and are, therefore, good models to help understand the genetic architecture of GD. Based on previous studies of early-onset GD, 11 single nucleotide polymorphisms (SNPs) and their related SNPs (R2 > .6), SNPs located within a ±1-Mb region of the FOXP3 gene, and 20 validated GD-risk SNPs were selected and screened for genotyping in 3735 GD and 4893 control patients to investigate whether early-onset GD is a subtype of GD with distinct susceptibility genes. Ultimately, we did not confirm the reported genetic markers of early-onset GD in our Chinese Han population but found that a GD-risk SNP located in the human leukocyte antigen class I region-rs4947296-was more strongly correlated with early-onset GD than non-early-onset GD. In addition, heterogeneity analysis of GD patients suggests that it may be more reasonable to define early-onset GD as an onset age ≤20 years.
Collapse
Affiliation(s)
- F-F Yuan
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - X-P Ye
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - W Liu
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Endocrinology, The Ninth People's Hospital (the north branch) Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - L-Q Xue
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Y-R Ma
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - L-L Zhang
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - M-M Zhang
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - F Sun
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Y-Y Wan
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Q-Y Zhang
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - S-X Zhao
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - H-D Song
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | |
Collapse
|
46
|
Zhang XH, Shen M, Liu L, Li FM, Hu PC, Hua Q, Zhang J, Pang LN, Lu HW, Wang ZM, Chu X, Huang W. Association Analysis of Single Nucleotide Polymorphisms in C1QTNF6, RAC2, and an Intergenic Region at 14q32.2 with Graves' Disease in Chinese Han Population. Genet Test Mol Biomarkers 2017; 21:479-484. [PMID: 28665696 DOI: 10.1089/gtmb.2017.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Variation within the C1QTNF6 gene at 22q12.3, the RAC2 gene at 22q13.1, and an intergenic region at 14q32.2 were found to be associated with risk to Graves' disease (GD) in a recent study. We aimed to validate these associations with GD in an independent sample set of Han Chinese population. METHODS We investigated these associations by genotyping the most significantly associated single nucleotide polymorphisms (SNPs) located in these three regions. Rs1456988 within the intergenic region at 14q32.2, rs229527 within C1QTNF6 at 22q12.3, and rs2284038 within RAC2 at 22q13.1 were selected for genotyping. These three SNPs were genotyped using a case-control study that included 2382 GD patients and 3092 unrelated healthy controls from Northern Han Chinese ancestry. The genotyping was performed using TaqMan assays on the ABI7900 platform. RESULTS We found both the rs229527 allele within C1QTNF6 (odds ratio [OR] = 1.23, confidence interval [95% CI]: 1.12-1.33, pAllelic = 4.60 × 10-6) and the rs2284038 allele within RAC2 (OR = 1.10, 95% CI: 1.01-0.19, pAllelic = 3.00 × 10-2) showed significant associations with GD susceptibility. However, rs1456988 located in 14q32.2 (OR = 1.08, 95% CI: 0.99-1.16, pAllelic = 7.01 × 10-2) showed no association. Analysis of models of inheritance suggested that both the dominant and recessive models showed significant associations for rs229527 (OR = 1.24, 95% CI: 1.13-1.38, pDominant = 9.90 × 10-5; OR = 1.49, 95% CI: 1.19-1.86, pRecessive = 3.90 × 10-4), with the dominant model being preferred. For rs2284038, the recessive model was preferred (OR = 1.18, 95% CI: 1.00-1.40, pRecessive = 4.76 × 10-2), whereas analysis of dominant model showed no association (OR = 1.10, 95% CI: 0.98-1.22, pDominant = 0.10). CONCLUSIONS Our findings confirmed that chromosome 22q12.3 and 22q13.1 variants are associated with GD in an independent Han Chinese population; however, 14q32.2 showed no association with GD.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
| | - Min Shen
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
| | - Lin Liu
- 3 Department of Endocrinology, Weifang People's Hospital , Weifang, China
| | - Fa-Mei Li
- 3 Department of Endocrinology, Weifang People's Hospital , Weifang, China
| | - Peng-Chen Hu
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
| | - Qi Hua
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
| | - Jing Zhang
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
| | - Li-Nan Pang
- 3 Department of Endocrinology, Weifang People's Hospital , Weifang, China
| | - Hong-Wen Lu
- 3 Department of Endocrinology, Weifang People's Hospital , Weifang, China
| | - Zhi-Min Wang
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
| | - Xun Chu
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
- 4 Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 5 Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition , Shanghai, China
| | - Wei Huang
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
| |
Collapse
|
47
|
Zhang Q, Liu S, Guan Y, Chen Q, Zhang Q, Min X. RNASET2, GPR174, and PTPN22 gene polymorphisms are related to the risk of liver damage associated with the hyperthyroidism in patients with Graves' disease. J Clin Lab Anal 2017; 32. [PMID: 28568286 DOI: 10.1002/jcla.22258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/18/2017] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES This study was designed to unveil the association of GPR174 rs3827440, PTPN22 rs3789604, and RNASET2 rs9355610 with the onset of liver damage (LD) among the Graves' disease (GD) patients. METHODS A total of 120 GD patients were divided into the none-LD and LD groups. Several indicators were detected for assessing liver functions, and genotypes of single nucleotide polymorphisms (SNPs) were identified. Logistic regression was introduced for investigating the relationship between risk SNPs and LD-associated hyperthyroidism in GD patients. RESULTS Significant differences were identified between LD and none-LD groups regarding genotype distributions of rs3827440, rs3789604, and rs9355610. Results from logistic regression indicted that among the GD patients, C carriers of PTPN22 rs3789604 were associated with a higher risk of LD-associated hyperthyroidism, while C carriers of rs3827440 (GPR174) and G carriers of rs9355610 (RNASET2) were associated with a reduced risk of LD-associated hyperthyroidism. CONCLUSIONS The C allele of rs3789604 (PTPN22) was a significant risk factor for LD-associated hyperthyroidism in GD patients, whereas C allele of GPR174 rs3827440 and G allele of RNASET2 rs9355610 appeared to be a protective factor for this disease.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shaozheng Liu
- Department of Nuclear Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanxing Guan
- Department of Nuclear Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingjie Chen
- Department of Nuclear Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiang Min
- Department of Otolaryngology & Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
48
|
Wang B, Shao X, Song R, Xu D, Zhang JA. The Emerging Role of Epigenetics in Autoimmune Thyroid Diseases. Front Immunol 2017; 8:396. [PMID: 28439272 PMCID: PMC5383710 DOI: 10.3389/fimmu.2017.00396] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Autoimmune thyroid diseases (AITD) are a group of both B cell- and T cell-mediated organ-specific autoimmune diseases. Graves’ disease and Hashimoto thyroiditis are the two main clinical presentations of AITD. Both genetic and environmental factors have important roles in the development of AITD. Epigenetics have been considered to exert key roles in integrating those genetic and environmental factors, and epigenetic modifications caused by environmental factors may drive genetically susceptibility individuals to develop AITD. Recent studies on the epigenetics of AITD have provided some novel insights into the pathogenesis of AITD. The aim of this review is to provide an overview of recent advances in the epigenetic mechanisms of AITD, such as DNA methylation, histone modifications, and non-coding RNAs. This review highlights the key roles of epigenetics in the pathogenesis of AITD and potential clinical utility. However, the epigenetic roles in AITD are still not fully elucidated, and more researches are needed to provide further deeper insights into the roles of epigenetics in AITD and to uncover new therapeutic targets. Although there are many studies assessing the epigenetic modifications in AITD patients, the clinical utility of epigenetics in AITD remains poorly defined. More studies are needed to identify the underlying epigenetic modifications that can contribute to accurate diagnosis of AITD, adequate choice of treatment approach, and precise prediction of treatment outcomes.
Collapse
Affiliation(s)
- Bin Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Rheumatology and Immunology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xiaoqing Shao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Rheumatology and Immunology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Ronghua Song
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Rheumatology and Immunology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Donghua Xu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jin-An Zhang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Rheumatology and Immunology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
49
|
Saelee P, Kearly A, Nutt SL, Garrett-Sinha LA. Genome-Wide Identification of Target Genes for the Key B Cell Transcription Factor Ets1. Front Immunol 2017; 8:383. [PMID: 28439269 PMCID: PMC5383717 DOI: 10.3389/fimmu.2017.00383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Background The transcription factor Ets1 is highly expressed in B lymphocytes. Loss of Ets1 leads to premature B cell differentiation into antibody-secreting cells (ASCs), secretion of autoantibodies, and development of autoimmune disease. Despite the importance of Ets1 in B cell biology, few Ets1 target genes are known in these cells. Results To obtain a more complete picture of the function of Ets1 in regulating B cell differentiation, we performed Ets1 ChIP-seq in primary mouse B cells to identify >10,000-binding sites, many of which were localized near genes that play important roles in B cell activation and differentiation. Although Ets1 bound to many sites in the genome, it was required for regulation of less than 5% of them as evidenced by gene expression changes in B cells lacking Ets1. The cohort of genes whose expression was altered included numerous genes that have been associated with autoimmune disease susceptibility. We focused our attention on four such Ets1 target genes Ptpn22, Stat4, Egr1, and Prdm1 to assess how they might contribute to Ets1 function in limiting ASC formation. We found that dysregulation of these particular targets cannot explain altered ASC differentiation in the absence of Ets1. Conclusion We have identified genome-wide binding targets for Ets1 in B cells and determined that a relatively small number of these putative target genes require Ets1 for their normal expression. Interestingly, a cohort of genes associated with autoimmune disease susceptibility is among those that are regulated by Ets1. Identification of the target genes of Ets1 in B cells will help provide a clearer picture of how Ets1 regulates B cell responses and how its loss promotes autoantibody secretion.
Collapse
Affiliation(s)
- Prontip Saelee
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Alyssa Kearly
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
50
|
Ye XP, Yuan FF, Zhang LL, Ma YR, Zhang MM, Liu W, Sun F, Wu J, Lu M, Xue LQ, Shi JY, Zhao SX, Song HD, Liang J, Zheng CX. ITM2A Expands Evidence for Genetic and Environmental Interaction in Graves Disease Pathogenesis. J Clin Endocrinol Metab 2017; 102:652-660. [PMID: 27809695 DOI: 10.1210/jc.2016-2625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/24/2016] [Indexed: 11/19/2022]
Abstract
CONTEXT Graves disease (GD) is a common autoimmune disease triggered by genetic predisposition and environmental factors. However, the mechanisms of interaction between genetic and environmental factors contributing to the development of GD remain unknown. OBJECTIVE We aimed to identify GD susceptibility variants and genes on Xq21.1 locus and interpret the contribution of interaction between genetic predisposition on Xq21.1 and environmental factors to GD. DESIGN We performed refining study on Xq21.1 in a 2-stage study and carried out expression quantitative trait locus analysis of the best association signal with GD. SETTING AND PARTICIPANTS A total of 4316 GD patients and 4374 sex-matched controls were collected from the Chinese Han population by cooperation with multiple hospitals. RESULTS We identified that rs3827440 or its linkage single nucleotide polymorphisms (SNPs) were probably the causal variant in the Xq21.1 locus, with the most substantial association with GD in our combined cohorts (P = 2.45 × 10-15). The genotypes of rs3827440 were correlated with the expression of ITM2A in monocytes and peripheral blood mononuclear cells (PBMCs) from healthy volunteers. Notably, the expression of ITM2A in monocytes after lipopolysaccharide (LPS) and interferon-γ (INF-γ) stimulation showed substantial difference among the volunteers that carried different genotypes of rs3827440 (P = 9.40 × 10-7 and P = 1.26 × 10-5 for 24 hours' LPS and INF-γ stimulation, respectively). Moreover, ITM2A expression was significantly decreased in PBMCs from untreated GD patients than that from controls. CONCLUSION The results suggest that ITM2A might be a susceptibility gene for GD in the Xq21.1 locus, and environmental factors, such as viral and bacterial infections, probably contribute to GD pathogenesis by interacting with the risk SNP rs3827440 mediating the regulation of ITM2A expression.
Collapse
Affiliation(s)
- Xiao-Ping Ye
- State Key Laboratory of Medical Genomics, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Research Center for Clinical Medicine, Department of Respiration and Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Fei-Fei Yuan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Research Center for Clinical Medicine, Department of Respiration and Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Le-Le Zhang
- Research Center for Clinical Medicine, Department of Respiration and Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yu-Ru Ma
- Research Center for Clinical Medicine, Department of Respiration and Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Man-Man Zhang
- Research Center for Clinical Medicine, Department of Respiration and Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Wei Liu
- Research Center for Clinical Medicine, Department of Respiration and Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Feng Sun
- Research Center for Clinical Medicine, Department of Respiration and Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Jing Wu
- Research Center for Clinical Medicine, Department of Respiration and Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Meng Lu
- Research Center for Clinical Medicine, Department of Respiration and Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Li-Qiong Xue
- Research Center for Clinical Medicine, Department of Respiration and Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Jing-Yi Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Shuang-Xia Zhao
- Research Center for Clinical Medicine, Department of Respiration and Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Huai-Dong Song
- State Key Laboratory of Medical Genomics, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Research Center for Clinical Medicine, Department of Respiration and Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province 221109, China; and
- Xuzhou Clinical School of Xuzhou Medical College, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu Province 221009, China
| | - Cui-Xia Zheng
- Research Center for Clinical Medicine, Department of Respiration and Endocrinology, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | | |
Collapse
|