1
|
Sawant A, Shi F, Cararo Lopes E, Hu Z, Abdelfattah S, Baul J, Powers JR, Hinrichs CS, Rabinowitz JD, Chan CS, Lattime EC, Ganesan S, White EP. Immune Checkpoint Blockade Delays Cancer Development and Extends Survival in DNA Polymerase Mutator Syndromes. Cancer Res 2025; 85:1130-1144. [PMID: 39786467 PMCID: PMC11907192 DOI: 10.1158/0008-5472.can-24-2589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Mutations in the exonuclease domains of the replicative nuclear DNA polymerases POLD1 and POLE are associated with increased cancer incidence, elevated tumor mutation burden (TMB), and enhanced response to immune checkpoint blockade (ICB). Although ICB is approved for treatment of several cancers, not all tumors with elevated TMB respond, highlighting the need for a better understanding of how TMB affects tumor biology and subsequently immunotherapy response. To address this, we generated mice with germline and conditional mutations in the exonuclease domains of Pold1 and Pole. Engineered mice with Pold1 and Pole mutator alleles presented with spontaneous cancers, primarily lymphomas, lung cancer, and intestinal tumors, whereas Pold1 mutant mice also developed tail skin carcinomas. These cancers had highly variable tissue type-dependent increased TMB with mutational signatures associated with POLD1 and POLE mutations found in human cancers. The Pold1 mutant tail tumors displayed increased TMB; however, only a subset of established tumors responded to ICB. Similarly, introducing the mutator alleles into mice with lung cancer driven by mutant Kras and Trp53 deletion did not improve survival, whereas passaging these tumor cells in vitro without immune editing and subsequently implanting them into immunocompetent mice caused tumor rejection in vivo. These results demonstrated the efficiency by which cells with antigenic mutations are eliminated in vivo. Finally, ICB treatment of mutator mice earlier, before observable tumors had developed delayed cancer onset, improved survival and selected for tumors without aneuploidy, suggesting the potential of ICB in high-risk individuals for cancer prevention. Significance: Treating high-mutation burden mice with immunotherapy prior to cancer onset significantly improves survival, raising the possibility of utilizing immune checkpoint blockade for cancer prevention, especially in individuals with increased risk.
Collapse
Affiliation(s)
- Akshada Sawant
- Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey
| | - Fuqian Shi
- Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey
| | | | - Zhixian Hu
- Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey
| | - Somer Abdelfattah
- Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey
| | - Jennele Baul
- Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey
| | - Jesse R. Powers
- Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey
| | | | - Joshua D. Rabinowitz
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey
| | - Chang S. Chan
- Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey
- Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Edmund C. Lattime
- Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey
- Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Shridar Ganesan
- Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey
- Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Eileen P. White
- Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey
- Department of Molecular Biology and Biochemistry, Piscataway, New Jersey
| |
Collapse
|
2
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
3
|
Andrianova MA, Seplyarskiy VB, Terradas M, Sánchez-Heras AB, Mur P, Soto JL, Aiza G, Borràs E, Kondrashov FA, Kondrashov AS, Bazykin GA, Valle L. Discovery of recessive effect of human polymerase δ proofreading deficiency through mutational analysis of POLD1-mutated normal and cancer cells. Eur J Hum Genet 2024; 32:837-845. [PMID: 38658779 PMCID: PMC11219999 DOI: 10.1038/s41431-024-01598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Constitutional heterozygous pathogenic variants in the exonuclease domain of POLE and POLD1, which affect the proofreading activity of the corresponding polymerases, cause a cancer predisposition syndrome characterized by increased risk of gastrointestinal polyposis, colorectal cancer, endometrial cancer and other tumor types. The generally accepted explanation for the connection between the disruption of the proofreading activity of polymerases epsilon and delta and cancer development is through an increase in the somatic mutation rate. Here we studied an extended family with multiple members heterozygous for the pathogenic POLD1 variant c.1421T>C p.(Leu474Pro), which segregates with the polyposis and cancer phenotypes. Through the analysis of mutational patterns of patient-derived fibroblasts colonies and de novo mutations obtained by parent-offspring comparisons, we concluded that heterozygous POLD1 L474P just subtly increases the somatic and germline mutation burden. In contrast, tumors developed in individuals with a heterozygous mutation in the exonuclease domain of POLD1, including L474P, have an extremely high mutation rate (>100 mut/Mb) associated with signature SBS10d. We solved this contradiction through the observation that tumorigenesis involves somatic inactivation of the wildtype POLD1 allele. These results imply that exonuclease deficiency of polymerase delta has a recessive effect on mutation rate.
Collapse
Affiliation(s)
- Maria A Andrianova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Vladimir B Seplyarskiy
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Beatriz Sánchez-Heras
- Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Elche Health Department, Elche, Spain
- Medical Oncology Department, Cancer Genetic Counseling Unit. Elche University Hospital, Elche, Spain
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Department of Health of Catalonia, Catalan Cancer Plan, Barcelona, Spain
| | - José Luis Soto
- Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Elche Health Department, Elche, Spain
- Molecular Genetics Unit, Elche University Hospital, Elche, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Emma Borràs
- Molecular Genetics Unit, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Fyodor A Kondrashov
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Evolutionary and Synthetic Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Alexey S Kondrashov
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Georgii A Bazykin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
4
|
Zheng E, Włodarczyk M, Węgiel A, Osielczak A, Możdżan M, Biskup L, Grochowska A, Wołyniak M, Gajewski D, Porc M, Maryńczak K, Dziki Ł. Navigating through novelties concerning mCRC treatment-the role of immunotherapy, chemotherapy, and targeted therapy in mCRC. Front Surg 2024; 11:1398289. [PMID: 38948479 PMCID: PMC11211389 DOI: 10.3389/fsurg.2024.1398289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Over the course of nearly six decades since the inception of initial trials involving 5-FU in the treatment of mCRC (metastatic colorectal cancer), our progressive comprehension of the pathophysiology, genetics, and surgical techniques related to mCRC has paved the way for the introduction of novel therapeutic modalities. These advancements not only have augmented the overall survival but have also positively impacted the quality of life (QoL) for affected individuals. Despite the remarkable progress made in the last two decades in the development of chemotherapy, immunotherapy, and target therapies, mCRC remains an incurable disease, with a 5-year survival rate of 14%. In this comprehensive review, our primary goal is to present an overview of mCRC treatment methods following the latest guidelines provided by the National Comprehensive Cancer Network (NCCN), the American Society of Clinical Oncology (ASCO), and the American Society of Colon and Rectal Surgeons (ASCRS). Emphasis has been placed on outlining treatment approaches encompassing chemotherapy, immunotherapy, targeted therapy, and surgery's role in managing mCRC. Furthermore, our review delves into prospective avenues for developing new therapies, offering a glimpse into the future of alternative pathways that hold potential for advancing the field.
Collapse
Affiliation(s)
- Edward Zheng
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Włodarczyk
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Węgiel
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Osielczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Możdżan
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Laura Biskup
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Agata Grochowska
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Wołyniak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Dominik Gajewski
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Mateusz Porc
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kasper Maryńczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Sawant A, Shi F, Lopes EC, Hu Z, Abdelfattah S, Baul J, Powers J, Hinrichs CS, Rabinowitz JD, Chan CS, Lattime EC, Ganesan S, White E. Immune Checkpoint Blockade Delays Cancer and Extends Survival in Murine DNA Polymerase Mutator Syndromes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.597960. [PMID: 38915517 PMCID: PMC11195045 DOI: 10.1101/2024.06.10.597960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Mutations in polymerases Pold1 and Pole exonuclease domains in humans are associated with increased cancer incidence, elevated tumor mutation burden (TMB) and response to immune checkpoint blockade (ICB). Although ICB is approved for treatment of several cancers, not all tumors with elevated TMB respond. Here we generated Pold1 and Pole proofreading mutator mice and show that ICB treatment of mice with high TMB tumors did not improve survival as only a subset of tumors responded. Similarly, introducing the mutator alleles into mice with Kras/p53 lung cancer did not improve survival, however, passaging mutator tumor cells in vitro without immune editing caused rejection in immune-competent hosts, demonstrating the efficiency by which cells with antigenic mutations are eliminated. Finally, ICB treatment of mutator mice earlier, before observable tumors delayed cancer onset, improved survival, and selected for tumors without aneuploidy, suggesting the use of ICB in individuals at high risk for cancer prevention. Highlights Germline somatic and conditional Pold1 and Pole exonuclease domain mutations in mice produce a mutator phenotype. Spontaneous cancers arise in mutator mice that have genomic features comparable to human tumors with these mutations.ICB treatment of mutator mice with tumors did not improve survival as only a subset of tumors respond. Introduction of the mutator alleles into an autochthonous mouse lung cancer model also did not produce immunogenic tumors, whereas passaging mutator tumor cells in vitro caused immune rejection indicating efficient selection against antigenic mutations in vivo . Prophylactic ICB treatment delayed cancer onset, improved survival, and selected for tumors with no aneuploidy.
Collapse
|
6
|
Shah SM, Demidova EV, Ringenbach S, Faezov B, Andrake M, Gandhi A, Mur P, Viana-Errasti J, Xiu J, Swensen J, Valle L, Dunbrack RL, Hall MJ, Arora S. Exploring Co-occurring POLE Exonuclease and Non-exonuclease Domain Mutations and Their Impact on Tumor Mutagenicity. CANCER RESEARCH COMMUNICATIONS 2024; 4:213-225. [PMID: 38282550 PMCID: PMC10812383 DOI: 10.1158/2767-9764.crc-23-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
POLE driver mutations in the exonuclease domain (ExoD driver) are prevalent in several cancers, including colorectal cancer and endometrial cancer, leading to dramatically ultra-high tumor mutation burden (TMB). To understand whether POLE mutations that are not classified as drivers (POLE Variant) contribute to mutagenesis, we assessed TMB in 447 POLE-mutated colorectal cancers, endometrial cancers, and ovarian cancers classified as TMB-high ≥10 mutations/Mb (mut/Mb) or TMB-low <10 mut/Mb. TMB was significantly highest in tumors with "POLE ExoD driver plus POLE Variant" (colorectal cancer and endometrial cancer, P < 0.001; ovarian cancer, P < 0.05). TMB increased with additional POLE variants (P < 0.001), but plateaued at 2, suggesting an association between the presence of these variants and TMB. Integrated analysis of AlphaFold2 POLE models and quantitative stability estimates predicted the impact of multiple POLE variants on POLE functionality. The prevalence of immunogenic neoepitopes was notably higher in the "POLE ExoD driver plus POLE Variant" tumors. Overall, this study reveals a novel correlation between POLE variants in POLE ExoD-driven tumors, and ultra-high TMB. Currently, only select pathogenic ExoD mutations with a reliable association with ultra-high TMB inform clinical practice. Thus, these findings are hypothesis-generating, require functional validation, and could potentially inform tumor classification, treatment responses, and clinical outcomes. SIGNIFICANCE Somatic POLE ExoD driver mutations cause proofreading deficiency that induces high TMB. This study suggests a novel modifier role for POLE variants in POLE ExoD-driven tumors, associated with ultra-high TMB. These data, in addition to future functional studies, may inform tumor classification, therapeutic response, and patient outcomes.
Collapse
Affiliation(s)
- Shreya M. Shah
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Science Scholars Program, Temple University, Philadelphia, Pennsylvania
| | - Elena V. Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Salena Ringenbach
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Lewis Katz School of Medicine, Temple University, Bethlehem, Pennsylvania
| | - Bulat Faezov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mark Andrake
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Arjun Gandhi
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Julen Viana-Errasti
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Roland L. Dunbrack
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michael J. Hall
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Ostroverkhova D, Tyryshkin K, Beach AK, Moore EA, Masoudi-Sobhanzadeh Y, Barbari SR, Rogozin IB, Shaitan KV, Panchenko AR, Shcherbakova PV. DNA polymerase ε and δ variants drive mutagenesis in polypurine tracts in human tumors. Cell Rep 2024; 43:113655. [PMID: 38219146 PMCID: PMC10830898 DOI: 10.1016/j.celrep.2023.113655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
Alterations in the exonuclease domain of DNA polymerase ε cause ultramutated cancers. These cancers accumulate AGA>ATA transversions; however, their genomic features beyond the trinucleotide motifs are obscure. We analyze the extended DNA context of ultramutation using whole-exome sequencing data from 524 endometrial and 395 colorectal tumors. We find that G>T transversions in POLE-mutant tumors predominantly affect sequences containing at least six consecutive purines, with a striking preference for certain positions within polypurine tracts. Using this signature, we develop a machine-learning classifier to identify tumors with hitherto unknown POLE drivers and validate two drivers, POLE-E978G and POLE-S461L, by functional assays in yeast. Unlike other pathogenic variants, the E978G substitution affects the polymerase domain of Pol ε. We further show that tumors with POLD1 drivers share the extended signature of POLE ultramutation. These findings expand the understanding of ultramutation mechanisms and highlight peculiar mutagenic properties of polypurine tracts in the human genome.
Collapse
Affiliation(s)
- Daria Ostroverkhova
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Kathrin Tyryshkin
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Annette K Beach
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Elizabeth A Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yosef Masoudi-Sobhanzadeh
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Stephanie R Barbari
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada.
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
8
|
Alphey MS, Wolford CB, MacNeill SA. Canonical binding of Chaetomium thermophilum DNA polymerase δ/ζ subunit PolD3 and flap endonuclease Fen1 to PCNA. Front Mol Biosci 2023; 10:1320648. [PMID: 38223238 PMCID: PMC10787639 DOI: 10.3389/fmolb.2023.1320648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024] Open
Abstract
The sliding clamp PCNA is a key player in eukaryotic genome replication and stability, acting as a platform onto which components of the DNA replication and repair machinery are assembled. Interactions with PCNA are frequently mediated via a short protein sequence motif known as the PCNA-interacting protein (PIP) motif. Here we describe the binding mode of a PIP motif peptide derived from C-terminus of the PolD3 protein from the thermophilic ascomycete fungus C. thermophilum, a subunit of both DNA polymerase δ (Pol δ) and the translesion DNA synthesis polymerase Pol ζ, characterised by isothermal titration calorimetry (ITC) and protein X-ray crystallography. In sharp contrast to the previously determined structure of a Chaetomium thermophilum PolD4 peptide bound to PCNA, binding of the PolD3 peptide is strictly canonical, with the peptide adopting the anticipated 310 helix structure, conserved Gln441 inserting into the so-called Q-pocket on PCNA, and Ile444 and Phe448 forming a two-fork plug that inserts into the hydrophobic surface pocket on PCNA. The binding affinity for the canonical PolD3 PIP-PCNA interaction determined by ITC is broadly similar to that previously determined for the non-canonical PolD4 PIP-PCNA interaction. In addition, we report the structure of a PIP peptide derived from the C. thermophilum Fen1 nuclease bound to PCNA. Like PolD3, Fen1 PIP peptide binding to PCNA is achieved by strictly canonical means. Taken together, these results add to an increasing body of information on how different proteins bind to PCNA, both within and across species.
Collapse
Affiliation(s)
- Magnus S Alphey
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Campbell B Wolford
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Stuart A MacNeill
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
9
|
Yamaguchi M, Cotterill S. Association of Mutations in Replicative DNA Polymerase Genes with Human Disease: Possible Application of Drosophila Models for Studies. Int J Mol Sci 2023; 24:ijms24098078. [PMID: 37175782 PMCID: PMC10178534 DOI: 10.3390/ijms24098078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Replicative DNA polymerases, such as DNA polymerase α-primase, δ and ε, are multi-subunit complexes that are responsible for the bulk of nuclear DNA replication during the S phase. Over the last decade, extensive genome-wide association studies and expression profiling studies of the replicative DNA polymerase genes in human patients have revealed a link between the replicative DNA polymerase genes and various human diseases and disorders including cancer, intellectual disability, microcephalic primordial dwarfism and immunodeficiency. These studies suggest the importance of dissecting the mechanisms involved in the functioning of replicative DNA polymerases in understanding and treating a range of human diseases. Previous studies in Drosophila have established this organism as a useful model to understand a variety of human diseases. Here, we review the studies on Drosophila that explored the link between DNA polymerases and human disease. First, we summarize the recent studies linking replicative DNA polymerases to various human diseases and disorders. We then review studies on replicative DNA polymerases in Drosophila. Finally, we suggest the possible use of Drosophila models to study human diseases and disorders associated with replicative DNA polymerases.
Collapse
Affiliation(s)
| | - Sue Cotterill
- Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK
| |
Collapse
|
10
|
Wang Y, Ju L, Wang G, Qian K, Jin W, Li M, Yu J, Shi Y, Wang Y, Zhang Y, Xiao Y, Wang X. DNA polymerase POLD1 promotes proliferation and metastasis of bladder cancer by stabilizing MYC. Nat Commun 2023; 14:2421. [PMID: 37105989 PMCID: PMC10140023 DOI: 10.1038/s41467-023-38160-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
To date, most studies on the DNA polymerase, POLD1, have focused on the effect of POLD1 inactivation mutations in tumors. However, the implications of high POLD1 expression in tumorigenesis remains elusive. Here, we determine that POLD1 has a pro-carcinogenic role in bladder cancer (BLCA) and is associated to the malignancy and prognosis of BLCA. Our studies demonstrate that POLD1 promotes the proliferation and metastasis of BLCA via MYC. Mechanistically, POLD1 stabilizes MYC in a manner independent of its' DNA polymerase activity. Instead, POLD1 attenuates FBXW7-mediated ubiquitination degradation of MYC by directly binding to the MYC homology box 1 domain competitively with FBXW7. Moreover, we find that POLD1 forms a complex with MYC to promote the transcriptional activity of MYC. In turn, MYC increases expression of POLD1, forming a POLD1-MYC positive feedback loop to enhance the pro-carcinogenic effect of POLD1-MYC on BLCA. Overall, our study identifies POLD1 as a promotor of BCLA via a MYC driven mechanism and suggest its potential as biomarker for BLCA.
Collapse
Affiliation(s)
- Yejinpeng Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Wan Jin
- Euler Technology, ZGC Life Sciences Park, Beijing, China
| | - Mingxing Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingtian Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yiliang Shi
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongzhi Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China.
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China.
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
- Medical Research Institute, Wuhan University, Wuhan, China.
- Institute of Urology, Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Lin TC, Chuang MH, Hsiung CN, Chang PK, Sun CA, Yang T, Chou YC, Hu JM, Hsu CH. Susceptibility to Colorectal Cancer Based on HSD17B4 rs721673 and rs721675 Polymorphisms and Alcohol Intake among Taiwan Biobank Participants: A Retrospective Case Control Study Using the Nationwide Claims Data. J Pers Med 2023; 13:jpm13040576. [PMID: 37108962 PMCID: PMC10146027 DOI: 10.3390/jpm13040576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Colorectal cancer (CRC) is a major public health issue, and there are limited studies on the association between 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) polymorphism and CRC. We used two national databases from Taiwan to examine whether HSD17B4 rs721673, rs721675, and alcohol intake were independently and interactively correlated with CRC development. We linked the Taiwan Biobank (TWB) participants’ health and lifestyle information and genotypic data from 2012 to 2018 to the National Health Insurance Database (NHIRD) to confirm their medical records. We performed a genome-wide association study (GWAS) using data from 145 new incident CRC cases and matched 1316 healthy, non-CRC individuals. We calculated the odds ratios (OR) and 95% confidence intervals (CI) for CRC based on multiple logistic regression analyses. HSD17B4 rs721673 and rs721675 on chromosome 5 were significantly and positively correlated with CRC (rs721673 A > G, aOR = 2.62, p = 2.90 × 10−8; rs721675 A > T, aOR = 2.61, p = 1.01 × 10−6). Within the high-risk genotypes, significantly higher ORs were observed among the alcohol intake group. Our results demonstrated that the rs721673 and rs721675 risk genotypes of HSD17B4 might increase the risk of CRC development in Taiwanese adults, especially those with alcohol consumption habits.
Collapse
Affiliation(s)
- Tzu-Chiao Lin
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Min-Hua Chuang
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Ni Hsiung
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
- Data Science Statistical Cooperation Center, Institute of Statistical Science, Academia Sinica, Taipei 114, Taiwan
| | - Pi-Kai Chang
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-An Sun
- Department of Public Health, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Tsan Yang
- Department of Health Business Administration, Meiho University, Pingtung County 912, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Je-Ming Hu
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Hsiung Hsu
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
- Health Service and Readiness Section, Armed Forces Taoyuan General Hospital, Taoyuan 325, Taiwan
| |
Collapse
|
12
|
Murdocca M, Spitalieri P, D'Apice MR, Novelli G, Sangiuolo F. From cue to meaning: The involvement of POLD1 gene in DNA replication, repair and aging. Mech Ageing Dev 2023; 211:111790. [PMID: 36764464 DOI: 10.1016/j.mad.2023.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Aging is an extremely complex biological process. Aging, cancer and inflammation represent a trinity, object of many interesting researches. The accumulation of DNA damage and its consequences progressively interfere with cellular function and increase susceptibility to developing aging condition. DNA Polymerase delta (Pol δ), encoded by POLD1 gene (MIM#174761) on 19q13.3, is well implicated in many steps of the replication program and repair. Thanks to its exonuclease and polymerase activities, the enzyme is involved in the regulation of the cell cycle, DNA synthesis, and DNA damage repair processes. Damaging variants within the exonuclease domain predispose to cancers, while those occurring in the polymerase active site cause the autosomal dominant Progeroid Syndrome called MDPL, Mandibular hypoplasia, Deafness and Progeroid features with concomitant Lipodystrophy Since DNA damage represents the main cause of ageing and age-related pathologies, an overview of critical Pol δ activities will allow to better understand the associations between DNA damage and nearly every aspect of the ageing process, helping the researchers to counteract all the ageing-pathologies at the same time.
Collapse
Affiliation(s)
- Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - Paola Spitalieri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | | | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; University of Nevada, Department of Pharmacology, Reno, USA; Neuromed Institute, IRCCS, Pozzilli, IS, Italy.
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
13
|
Bonjoch L, Soares de Lima Y, Díaz-Gay M, Dotti I, Muñoz J, Moreira L, Carballal S, Ocaña T, Cuatrecasas M, Ortiz O, Castells A, Pellisé M, Balaguer F, Salas A, Alexandrov LB, Castellví-Bel S. Unraveling the impact of a germline heterozygous POLD1 frameshift variant in serrated polyposis syndrome. Front Mol Biosci 2023; 10:1119900. [PMID: 36756361 PMCID: PMC9900627 DOI: 10.3389/fmolb.2023.1119900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Serrated polyposis syndrome (SPS) is one of the most frequent polyposis syndromes characterized by an increased risk for developing colorectal cancer (CRC). Although SPS etiology has been mainly associated with environmental factors, germline predisposition to SPS could also be relevant for cases with familial aggregation or a family history of SPS/CRC. After whole-exome sequencing of 39 SPS patients from 16 families, we identified a heterozygous germline frameshift variant in the POLD1 gene (c.1941delG, p.(Lys648fs*46)) in a patient with SPS and CRC. Tumor presented an ultra-hypermutated phenotype and microsatellite instability. The POLD1 germline variant segregated in three additional SPS-affected family members. We attempted to create yeast and cellular models for this variant but were no viable. Alternatively, we generated patient-derived organoids (PDOs) from healthy rectal tissue of the index case, as well as from a control donor. Then, we challenged PDOs with a DNA-damaging agent to induce replication stress. No significant differences were observed in the DNA damage response between control and POLD1-Lys648fs PDOs, nor specific mutational signatures were observed. Our results do not support the pathogenicity of the analyzed POLD1 frameshift variant. One possible explanation is that haplosufficiency of the wild-type allele may be compensating for the absence of expression of the frameshift allele. Overall, future work is required to elucidate if functional consequences could be derived from POLD1 alterations different from missense variants in their proofreading domain. To our knowledge, our study presents the first organoid model for germline POLD1 variants and establishes the basis for its use as a model for disease in SPS, CRC and other malignancies.
Collapse
Affiliation(s)
- Laia Bonjoch
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | - Yasmin Soares de Lima
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, UC San Diego, La Jolla, CA, United States
| | - Isabella Dotti
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | - Jenifer Muñoz
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | - Leticia Moreira
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | - Sabela Carballal
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | - Teresa Ocaña
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | - Miriam Cuatrecasas
- Pathology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) and Tumor Bank-Biobank, Hospital Clínic, Barcelona, Spain
| | - Oswaldo Ortiz
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | - Antoni Castells
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | - Maria Pellisé
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, UC San Diego, La Jolla, CA, United States
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| |
Collapse
|
14
|
Yang D, Alphey MS, MacNeill SA. Non-canonical binding of the Chaetomium thermophilum PolD4 N-terminal PIP motif to PCNA involves Q-pocket and compact 2-fork plug interactions but no 3 10 helix. FEBS J 2023; 290:162-175. [PMID: 35942639 PMCID: PMC10087552 DOI: 10.1111/febs.16590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 01/14/2023]
Abstract
DNA polymerase δ (Pol δ) is a key enzyme for the maintenance of genome integrity in eukaryotic cells, acting in concert with the sliding clamp processivity factor PCNA (proliferating cell nuclear antigen). Three of the four subunits of human Pol δ interact directly with the PCNA homotrimer via a short, conserved protein sequence known as a PCNA interacting protein (PIP) motif. Here, we describe the identification of a PIP motif located towards the N terminus of the PolD4 subunit of Pol δ (equivalent to human p12) from the thermophilic filamentous fungus Chaetomium thermophilum and present the X-ray crystal structure of the corresponding peptide bound to PCNA at 2.45 Å. Like human p12, the fungal PolD4 PIP motif displays non-canonical binding to PCNA. However, the structures of the human p12 and fungal PolD4 PIP motif peptides are quite distinct, with the fungal PolD4 PIP motif lacking the 310 helical segment that characterises most previously identified PIP motifs. Instead, the fungal PolD4 PIP motif binds PCNA via conserved glutamine that inserts into the Q-pocket on the surface of PCNA and with conserved leucine and phenylalanine sidechains forming a compact 2-fork plug that inserts into the hydrophobic pocket on PCNA. Despite the unusual binding mode of the fungal PolD4, isothermal calorimetry (ITC) measurements show that its affinity for PCNA is similar to that of its human orthologue. These observations add to a growing body of information on how diverse proteins interact with PCNA and highlight how binding modes can vary significantly between orthologous PCNA partner proteins.
Collapse
Affiliation(s)
- Dongxiao Yang
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, UK
| | - Magnus S Alphey
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, UK
| | - Stuart A MacNeill
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, UK
| |
Collapse
|
15
|
Barbari SR, Beach AK, Markgren JG, Parkash V, Moore E, Johansson E, Shcherbakova PV. Enhanced polymerase activity permits efficient synthesis by cancer-associated DNA polymerase ϵ variants at low dNTP levels. Nucleic Acids Res 2022; 50:8023-8040. [PMID: 35822874 PMCID: PMC9371911 DOI: 10.1093/nar/gkac602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022] Open
Abstract
Amino acid substitutions in the exonuclease domain of DNA polymerase ϵ (Polϵ) cause ultramutated tumors. Studies in model organisms suggested pathogenic mechanisms distinct from a simple loss of exonuclease. These mechanisms remain unclear for most recurrent Polϵ mutations. Particularly, the highly prevalent V411L variant remained a long-standing puzzle with no detectable mutator effect in yeast despite the unequivocal association with ultramutation in cancers. Using purified four-subunit yeast Polϵ, we assessed the consequences of substitutions mimicking human V411L, S459F, F367S, L424V and D275V. While the effects on exonuclease activity vary widely, all common cancer-associated variants have increased DNA polymerase activity. Notably, the analog of Polϵ-V411L is among the strongest polymerases, and structural analysis suggests defective polymerase-to-exonuclease site switching. We further show that the V411L analog produces a robust mutator phenotype in strains that lack mismatch repair, indicating a high rate of replication errors. Lastly, unlike wild-type and exonuclease-dead Polϵ, hyperactive variants efficiently synthesize DNA at low dNTP concentrations. We propose that this characteristic could promote cancer cell survival and preferential participation of mutator polymerases in replication during metabolic stress. Our results support the notion that polymerase fitness, rather than low fidelity alone, is an important determinant of variant pathogenicity.
Collapse
Affiliation(s)
- Stephanie R Barbari
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Annette K Beach
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joel G Markgren
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Vimal Parkash
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Elizabeth A Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
16
|
Ma X, Dong L, Liu X, Ou K, Yang L. POLE/POLD1 mutation and tumor immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:216. [PMID: 35780178 PMCID: PMC9250176 DOI: 10.1186/s13046-022-02422-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 12/30/2022]
Abstract
POLE and POLD1 encode the catalytic and proofreading subunits of DNA polymerase ε and polymerase δ, and play important roles in DNA replication and proofreading. POLE/POLD1 exonuclease domain mutations lead to loss of proofreading function, which causes the accumulation of mutant genes in cells. POLE/POLD1 mutations are not only closely related to tumor formation, but are also a potential molecular marker for predicting the efficacy of immunotherapy in pan-carcinomatous species. The association of POLE/POLD1 mutation, ultra-high mutation load, and good prognosis have recently become the focus of clinical research. This article reviews the function of POLE/POLD1, its relationship with deficient mismatch repair/high microsatellite instability, and the role of POLE/POLD1 mutation in the occurrence and development of various tumors.
Collapse
Affiliation(s)
- Xiaoting Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiu Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kai Ou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
17
|
Park JS, Park JW, Shin S, Lee ST, Shin SJ, Min BS, Park SJ, Park JJ, Cheon JH, Kim WH, Kim TI. Application of Multigene Panel Testing in Patients With High Risk for Hereditary Colorectal Cancer: A Descriptive Report Focused on Genotype-Phenotype Correlation. Dis Colon Rectum 2022; 65:793-803. [PMID: 34897210 DOI: 10.1097/dcr.0000000000002039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The genetic test solely based on the clinical features of hereditary colorectal cancer has limitations in clinical practice. OBJECTIVE This study aimed to analyze the results of comprehensive multigene panel tests based on clinical findings. DESIGN This was a cross-sectional study based on a prospectively compiled database. SETTING The study was conducted at a tertiary hospital. PATIENTS A total of 381 patients with high risk for hereditary colorectal cancer syndromes were enrolled between March 2014 and December 2019. MAIN OUTCOME MEASURES The primary outcome was to describe the mutational spectrum based on genotype-phenotype concordance and discordance. RESULTS Germline mutations were identified in 89 patients for polyposis hereditary colorectal cancer genes (76 in APC; 4 in PTEN; 4 in STK11; 3 in BMPR1A; 1 in POLE; 1 in POLD1), 89 patients for nonpolyposis hereditary colorectal cancer genes (41 in MLH1; 40 in MSH2; 6 in MSH6; and 2 in PMS2), and 12 patients for other cancer predisposition genes (1 in ATM; 2 in BRCA1; 1 in BRCA2; 1 in BRIP1; 1 in MLH3; 1 in NBN; 1 in PMS1; 1 in PTCH1; 1 in TP53; and 2 in monoallelic MUTYH). If we had used direct sequencing tests of 1 or 2 major genes based on phenotype, 48 (25.3%) of 190 mutations would not have been detected due to technical differences (12.1%), less frequent genotype (4.2%), unclear phenotype (3.7%), and genotype-phenotype discordance (4.7%). The genotype-phenotype discordance is probably linked to compound heterozygote, less distinctive phenotype, and insufficient information for colorectal cancer risk. LIMITATIONS This study included a small number of patients with insufficient follow-up duration. CONCLUSIONS A comprehensive multigene panel is expected to identify more genetic mutations than phenotype-based direct sequencing, with special utility for unclear phenotype or genotype-phenotype discordance. See Video Abstract at http://links.lww.com/DCR/B844. APLICACIN DE PRUEBAS DE PANEL MULTIGNICO EN PACIENTES CON ALTO RIESGO DE CNCER COLORRECTAL HEREDITARIO INFORME DESCRIPTIVO ENFOCADO EN LA CORRELACIN GENOTIPOFENOTIPO ANTECEDENTES:La prueba genética basada únicamente en la característica clínica del cáncer colorrectal hereditario tiene limitaciones en la práctica clínica.OBJETIVO:Este estudio tuvo como objetivo analizar el resultado de pruebas integrales de panel multigénico basadas en hallazgos clínicos.DISEÑO:Este fue un estudio transversal basado en una base de datos recopilada prospectivamente.AJUSTE:El estudio se realizó en un hospital terciario.PACIENTES:Se inscribió un total de 381 pacientes con alto riesgo de síndromes de cáncer colorrectal hereditario entre marzo del 2014 y diciembre del 2019.PRINCIPALES MEDIDAS DE RESULTADO:El resultado principal fue describir el espectro mutacional basado en la concordancia y discordancia genotipo-fenotipo.RESULTADOS:Se identificaron mutaciones de la línea germinal en 89 pacientes para genes de cáncer colorrectal hereditario con poliposis (76 en APC; 4 en PTEN; 4 en STK11; 3 en BMPR1A; 1 en POLE; 1 en POLD1), 89 pacientes para genes de CCR hereditario sin poliposis (41 en MLH1; 40 en MSH2; 6 en MSH6; y 2 en PMS2) y 12 pacientes por otro gen de predisposición al cáncer (1 en ATM; 2 en BRCA1; 1 en BRCA2; 1 en BRIP1; 1 en MLH3; 1 en NBN; 1 en PMS1; 1 en PTCH1; 1 en TP53; y 2 en MUTYH monoalélico). Si hubiéramos utilizado pruebas de secuenciación directa de uno o dos genes principales basados en el fenotipo, 48 (25,3%) de 190 mutaciones no se habrían detectado debido a diferencias técnicas (12,1%), genotipo menos frecuente (4,2%), fenotipo poco claro (3,7%) y discordancia genotipo-fenotipo (4,7%). La discordancia genotipo-fenotipo probablemente esté relacionada con el heterocigoto compuesto, el fenotipo menos distintivo y la información insuficiente para el riesgo de cáncer colorrectal.LIMITACIONES:Este estudio incluyó una pequeña cantidad de pacientes con una duración de seguimiento insuficiente.CONCLUSIONES:Se espera que un panel multigénico completo identifique más mutaciones genéticas que la secuenciación directa basada en el fenotipo, con especial utilidad para la discordancia de fenotipo o genotipo-fenotipo poco clara. Consulte Video Resumen en http://links.lww.com/DCR/B844. Traducción- Dr. Francisco M. Abarca-Rendon).
Collapse
Affiliation(s)
- Ji Soo Park
- Hereditary Cancer Clinic, Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Won Park
- Division of Gastroenterology, Department of Internal Medicine, and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Saeam Shin
- Hereditary Cancer Clinic, Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Tae Lee
- Hereditary Cancer Clinic, Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Joon Shin
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung Soh Min
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Jung Park
- Division of Gastroenterology, Department of Internal Medicine, and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Jun Park
- Hereditary Cancer Clinic, Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Gastroenterology, Department of Internal Medicine, and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hee Cheon
- Division of Gastroenterology, Department of Internal Medicine, and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Ho Kim
- Division of Gastroenterology, Department of Internal Medicine, and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Il Kim
- Hereditary Cancer Clinic, Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Gastroenterology, Department of Internal Medicine, and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Murphy A, Solomons J, Risby P, Gabriel J, Bedenham T, Johnson M, Atkinson N, Bailey AA, Bird‐Lieberman E, Leedham SJ, East JE, Biswas S. Germline variant testing in serrated polyposis syndrome. J Gastroenterol Hepatol 2022; 37:861-869. [PMID: 35128723 PMCID: PMC9305167 DOI: 10.1111/jgh.15791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Serrated polyposis syndrome (SPS) is now known to be the commonest polyposis syndrome. Previous analyses for germline variants have shown no consistent positive findings. To exclude other polyposis syndromes, 2019 British Society of Gastroenterology (BSG) guidelines advise gene panel testing if the patient is under 50 years, there are multiple affected individuals within a family, or there is dysplasia within any of the polyps. METHODS A database of SPS patients was established at the Oxford University Hospitals NHS Foundation Trust. Patients were referred for genetic assessment based on personal and family history and patient preference. The majority were tested for a hereditary colorectal cancer panel including MUTYH, APC, PTEN, SMAD4, BMPR1A, STK11, NTLH1, POLD1, POLE, GREM1 (40-kb duplication), PMS2, and Lynch syndrome mismatch repair genes. RESULTS One hundred and seventy-three patients were diagnosed with SPS based on World Health Organization 2019 criteria between February 2010 and December 2020. The mean age of diagnosis was 54.2 ± 16.8 years. Seventy-three patients underwent genetic testing and 15/73 (20.5%) were found to have germline variants, of which 7/73 (9.6%) had a pathogenic variant (MUTYH n = 2, SMAD4 n = 1, CHEK2 n = 2, POLD1 n = 1, and RNF43 n = 1). Only 60% (9/15) of these patients would have been recommended for gene panel testing according to current BSG guidelines. CONCLUSIONS A total of 20.5% of SPS patients tested were affected by heterozygous germline variants, including previously unreported associations with CHEK2 and POLD1. This led to a change in management in seven patients (9.6%). Current recommendations may miss SPS associated with germline variants, which is more common than previously anticipated.
Collapse
Affiliation(s)
- Aisling Murphy
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Joyce Solomons
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Peter Risby
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Jessica Gabriel
- Oxford Regional Genetics Laboratories, Churchill HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Tina Bedenham
- Oxford Regional Genetics Laboratories, Churchill HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Michael Johnson
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Nathan Atkinson
- New Zealand Familial Gastrointestinal Cancer RegistryAuckland City HospitalAucklandNew Zealand
| | - Adam A Bailey
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Elizabeth Bird‐Lieberman
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Simon J Leedham
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK,Intestinal Stem Cell Biology Lab, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - James E East
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Sujata Biswas
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK,Gastroenterology DepartmentBuckinghamshire Healthcare NHS TrustUK
| |
Collapse
|
19
|
Hampel H, Kalady MF, Pearlman R, Stanich PP. Hereditary Colorectal Cancer. Hematol Oncol Clin North Am 2022; 36:429-447. [DOI: 10.1016/j.hoc.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Palles C, Martin L, Domingo E, Chegwidden L, McGuire J, Cuthill V, Heitzer E, Kerr R, Kerr D, Kearsey S, Clark SK, Tomlinson I, Latchford A. The clinical features of polymerase proof-reading associated polyposis (PPAP) and recommendations for patient management. Fam Cancer 2022; 21:197-209. [PMID: 33948826 PMCID: PMC8964588 DOI: 10.1007/s10689-021-00256-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/07/2021] [Indexed: 10/28/2022]
Abstract
Pathogenic germline exonuclease domain (ED) variants of POLE and POLD1 cause the Mendelian dominant condition polymerase proof-reading associated polyposis (PPAP). We aimed to describe the clinical features of all PPAP patients with probably pathogenic variants. We identified patients with a variants mapping to the EDs of POLE or POLD1 from cancer genetics clinics, a colorectal cancer (CRC) clinical trial, and systematic review of the literature. We used multiple evidence sources to separate ED variants into those with strong evidence of pathogenicity and those of uncertain importance. We performed quantitative analysis of the risk of CRC, colorectal adenomas, endometrial cancer or any cancer in the former group. 132 individuals carried a probably pathogenic ED variant (105 POLE, 27 POLD1). The earliest malignancy was colorectal cancer at 14. The most common tumour types were colorectal, followed by endometrial in POLD1 heterozygotes and duodenal in POLE heterozygotes. POLD1-mutant cases were at a significantly higher risk of endometrial cancer than POLE heterozygotes. Five individuals with a POLE pathogenic variant, but none with a POLD1 pathogenic variant, developed ovarian cancer. Nine patients with POLE pathogenic variants and one with a POLD1 pathogenic variant developed brain tumours. Our data provide important evidence for PPAP management. Colonoscopic surveillance is recommended from age 14 and upper-gastrointestinal surveillance from age 25. The management of other tumour risks remains uncertain, but surveillance should be considered. In the absence of strong genotype-phenotype associations, these recommendations should apply to all PPAP patients.
Collapse
Affiliation(s)
- Claire Palles
- Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Lynn Martin
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Enric Domingo
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Laura Chegwidden
- Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Josh McGuire
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Vicky Cuthill
- Polyposis Registry, St Mark's Hospital, Harrow, London, HA1 3UJ, UK
| | - Ellen Heitzer
- Diagnostic and Research Institute of Human Genetics, University of Gratz, Graz, Austria
| | - Rachel Kerr
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Roosevelt Drive, Oxford, UK
| | - David Kerr
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Stephen Kearsey
- ZRAB, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Susan K Clark
- Polyposis Registry, St Mark's Hospital, Harrow, London, HA1 3UJ, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Andrew Latchford
- Polyposis Registry, St Mark's Hospital, Harrow, London, HA1 3UJ, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
21
|
Durando ML, Menghani SV, Baumann JL, Robles DG, Day TA, Vaziri C, Scott AJ. Four-Year Disease-Free Remission in a Patient With POLE Mutation-Associated Colorectal Cancer Treated Using Anti-PD-1 Therapy. J Natl Compr Canc Netw 2022; 20:218-223. [PMID: 35276675 DOI: 10.6004/jnccn.2021.7115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
The stability of the human genome depends upon a delicate balance between replication by high- and low-fidelity DNA polymerases. Aberrant replication by error-prone polymerases or loss of function of high-fidelity polymerases predisposes to genetic instability and, in turn, cancer. DNA polymerase epsilon (Pol ε) is a high-fidelity, processive polymerase that is responsible for the majority of leading strand synthesis, and mutations in Pol ε have been increasingly associated with various human malignancies. The clinical significance of Pol ε mutations, including how and whether they should influence management decisions, remains poorly understood. In this report, we describe a 24-year-old man with an aggressive stage IV high-grade, poorly differentiated colon carcinoma who experienced a dramatic response to single-agent checkpoint inhibitor immunotherapy after rapidly progressing on standard chemotherapy. His response was complete and durable and has been maintained for more than 48 months. Genetic testing revealed a P286R mutation in the endonuclease domain of POLE and an elevated tumor mutational burden of 126 mutations per megabase, both of which have been previously associated with response to immunotherapy. Interestingly, tumor staining for PD-L1 was negative. This case study highlights the importance of genetic profiling of both early and late-stage cancers, the clinical significance of POLE mutations, and how the interplay between genetic instability and immune-checkpoint blockade can impact clinical decision-making.
Collapse
Affiliation(s)
- Michael L Durando
- 1Banner-University Medical Center Tucson, Tucson, Arizona.,2Division of Hematology and Oncology, Department of Medicine.,3University of Arizona Cancer Center
| | | | - Jessica L Baumann
- 5Department of Pathology, University of Arizona College of Medicine-Tucson, Tucson, Arizona.,6Now with Roche Tissue Diagnostics, Tucson, Arizona
| | - Danny G Robles
- 1Banner-University Medical Center Tucson, Tucson, Arizona.,7Department of Surgery, University of Arizona College of Medicine-Tucson, Tucson, Arizona
| | - Tovah A Day
- 8Department of Biology, Northeastern University, Boston, Massachusetts; and
| | - Cyrus Vaziri
- 9Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Aaron J Scott
- 1Banner-University Medical Center Tucson, Tucson, Arizona.,2Division of Hematology and Oncology, Department of Medicine.,3University of Arizona Cancer Center
| |
Collapse
|
22
|
A novel POLD1 pathogenic variant identified in two families with a cancer spectrum mimicking Lynch syndrome. Eur J Med Genet 2022; 65:104409. [DOI: 10.1016/j.ejmg.2021.104409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/22/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
|
23
|
Probing altered enzyme activity in the biochemical characterization of cancer. Biosci Rep 2022; 42:230680. [PMID: 35048115 PMCID: PMC8819661 DOI: 10.1042/bsr20212002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Enzymes have evolved to catalyze their precise reactions at the necessary rates, locations, and time to facilitate our development, to respond to a variety of insults and challenges, and to maintain a healthy, balanced state. Enzymes achieve this extraordinary feat through their unique kinetic parameters, myriad regulatory strategies, and their sensitivity to their surroundings, including substrate concentration and pH. The Cancer Genome Atlas (TCGA) highlights the extraordinary number of ways in which the finely tuned activities of enzymes can be disrupted, contributing to cancer development and progression often due to somatic and/or inherited genetic alterations. Rather than being limited to the domain of enzymologists, kinetic constants such as kcat, Km, and kcat/Km are highly informative parameters that can impact a cancer patient in tangible ways—these parameters can be used to sort tumor driver mutations from passenger mutations, to establish the pathways that cancer cells rely on to drive patients’ tumors, to evaluate the selectivity and efficacy of anti-cancer drugs, to identify mechanisms of resistance to treatment, and more. In this review, we will discuss how changes in enzyme activity, primarily through somatic mutation, can lead to altered kinetic parameters, new activities, or changes in conformation and oligomerization. We will also address how changes in the tumor microenvironment can affect enzymatic activity, and briefly describe how enzymology, when combined with additional powerful tools, and can provide us with tremendous insight into the chemical and molecular mechanisms of cancer.
Collapse
|
24
|
Holter S, Hall MJ, Hampel H, Jasperson K, Kupfer SS, Larsen Haidle J, Mork ME, Palaniapppan S, Senter L, Stoffel EM, Weissman SM, Yurgelun MB. Risk assessment and genetic counseling for Lynch syndrome - Practice resource of the National Society of Genetic Counselors and the Collaborative Group of the Americas on Inherited Gastrointestinal Cancer. J Genet Couns 2022; 31:568-583. [PMID: 35001450 DOI: 10.1002/jgc4.1546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022]
Abstract
Identifying individuals who have Lynch syndrome involves a complex diagnostic workup that includes taking a detailed family history and a combination of various tests such as immunohistochemistry and/or molecular which may be germline and/or somatic. The National Society of Genetic Counselors and the Collaborative Group of the Americas on Inherited Gastrointestinal Cancer have come together to publish this practice resource for the evaluation of Lynch syndrome. The purpose of this practice resource was to provide guidance and a testing algorithm for Lynch syndrome as well as recommendations on when to offer testing. This practice resource does not replace a consultation with a genetics professional. This practice resource includes explanations in support of this and a summary of background data. While this practice resource is not intended to serve as a review of Lynch syndrome, it includes a discussion of background information and cites a number of key publications which should be reviewed for a more in-depth understanding. This practice resource is intended for genetic counselors, geneticists, gastroenterologists, surgeons, medical oncologists, obstetricians and gynecologists, nurses, and other healthcare providers who evaluate patients for Lynch syndrome.
Collapse
Affiliation(s)
- Spring Holter
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael J Hall
- Department of Clinical Genetics, Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | | | - Sonia S Kupfer
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Maureen E Mork
- Department of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Leigha Senter
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Elena M Stoffel
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott M Weissman
- Chicago Genetic Consultants, LLC, Northbrook, Illinois, USA
- Genome Medical, South San Francisco, California, USA
| | - Matthew B Yurgelun
- Dana-Farber Cancer Institute, Harvard Medical School, and Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Gupta N, Drogan C, Kupfer SS. How many is too many? Polyposis syndromes and what to do next. Curr Opin Gastroenterol 2022; 38:39-47. [PMID: 34839308 PMCID: PMC8648991 DOI: 10.1097/mog.0000000000000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to help providers recognize, diagnose and manage gastrointestinal (GI) polyposis syndromes. RECENT FINDINGS Intestinal polyps include a number of histological sub-types such as adenomas, serrated, hamartomas among others. Over a quarter of individuals undergoing screening colonoscopy are expected to have colonic adenomas. Although it is not uncommon for adults to have a few GI polyps in their lifetime, some individuals are found to have multiple polyps of varying histology throughout the GI tract. In these individuals, depending on polyp histology, number, location and size as well as extra-intestinal features and/or family history, a polyposis syndrome should be considered with appropriate testing and management. SUMMARY Diagnosis and management of polyposis syndromes has evolved with advent of multigene panel testing and new data on optimal surveillance strategies. Evidence-based recommendations and current practice guidelines for polyposis syndromes are reviewed here. Areas of uncertainty and future research are also highlighted.
Collapse
Affiliation(s)
- Nina Gupta
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
26
|
Vaziri C, Rogozin IB, Gu Q, Wu D, Day TA. Unravelling roles of error-prone DNA polymerases in shaping cancer genomes. Oncogene 2021; 40:6549-6565. [PMID: 34663880 PMCID: PMC8639439 DOI: 10.1038/s41388-021-02032-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Mutagenesis is a key hallmark and enabling characteristic of cancer cells, yet the diverse underlying mutagenic mechanisms that shape cancer genomes are not understood. This review will consider the emerging challenge of determining how DNA damage response pathways-both tolerance and repair-act upon specific forms of DNA damage to generate mutations characteristic of tumors. DNA polymerases are typically the ultimate mutagenic effectors of DNA repair pathways. Therefore, understanding the contributions of DNA polymerases is critical to develop a more comprehensive picture of mutagenic mechanisms in tumors. Selection of an appropriate DNA polymerase-whether error-free or error-prone-for a particular DNA template is critical to the maintenance of genome stability. We review different modes of DNA polymerase dysregulation including mutation, polymorphism, and over-expression of the polymerases themselves or their associated activators. Based upon recent findings connecting DNA polymerases with specific mechanisms of mutagenesis, we propose that compensation for DNA repair defects by error-prone polymerases may be a general paradigm molding the mutational landscape of cancer cells. Notably, we demonstrate that correlation of error-prone polymerase expression with mutation burden in a subset of patient tumors from The Cancer Genome Atlas can identify mechanistic hypotheses for further testing. We contrast experimental approaches from broad, genome-wide strategies to approaches with a narrower focus on a few hundred base pairs of DNA. In addition, we consider recent developments in computational annotation of patient tumor data to identify patterns of mutagenesis. Finally, we discuss the innovations and future experiments that will develop a more comprehensive portrait of mutagenic mechanisms in human tumors.
Collapse
Affiliation(s)
- Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC, 27599, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Qisheng Gu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| | - Tovah A Day
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Billaud A, Chevalier LM, Augereau P, Frenel JS, Passot C, Campone M, Morel A. Functional pre-therapeutic evaluation by genome editing of variants of uncertain significance of essential tumor suppressor genes. Genome Med 2021; 13:174. [PMID: 34749799 PMCID: PMC8576946 DOI: 10.1186/s13073-021-00976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Targeted therapies in oncology are promising but variants of uncertain significance (VUS) limit their use for clinical management and necessitate functional testing in vitro. Using BRCA1 and BRCA2 variants, which have consequences on PARP inhibitor sensitivity, and POLE variants, potential biomarkers of immunotherapy response, we developed a rapid functional assay based on CRISPR-Cas9 genome editing to determine the functional consequences of these variants having potentially direct implications on patients' access to targeted therapies. METHODS We first evaluated the functional impact of 26 BRCA1 and 7 BRCA2 variants by editing and comparing NGS results between the variant of interest and a silent control variant. Ten of these variants had already been classified as benign or pathogenic and were used as controls. Finally, we extended this method to the characterization of POLE VUS. RESULTS For the 23 variants that were unclassified or for which conflicting interpretations had been reported, 15 were classified as functionally normal and 6 as functionally abnormal. Another two variants were found to have intermediate consequences, both with potential impacts on splicing. We then compared these scores to the patients' responses to PARP inhibitors when possible. Finally, to prove the application of our method to the classification of variants from other tumor suppressor genes, we exemplified with three POLE VUS. Among them, two were classified with an intermediate functional impact and one was functionally abnormal. Eventually, four POLE variants previously classified in databases were also evaluated. However, we found evidence of a discordance with the classification, variant p.Leu424Val being found here functionally normal. CONCLUSIONS Our new rapid functional assay can be used to characterize the functional implication of BRCA1 and BRCA2 variants, giving patients whose variants were evaluated as functionally abnormal access to PARP inhibitor treatment. Retrospective analysis of patients' responses to PARP inhibitors, where accessible, was consistent with our functional score evaluation and confirmed the accuracy of our protocol. This method could potentially be extended to the classification of VUS from all essential tumor suppressor genes and can be performed within a timeframe compatible with clinical applications, thereby having a direct theranostic impact.
Collapse
Affiliation(s)
- Amandine Billaud
- Université d'Angers, Inserm, CRCINA, SFR ICAT, F-49000, Angers, France
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Louise-Marie Chevalier
- Université d'Angers, Inserm, CRCINA, SFR ICAT, F-49000, Angers, France
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Paule Augereau
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Jean-Sebastien Frenel
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | - Christophe Passot
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Mario Campone
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | - Alain Morel
- Université d'Angers, Inserm, CRCINA, SFR ICAT, F-49000, Angers, France.
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France.
| |
Collapse
|
28
|
Jelsig AM, Karstensen JG, Jespersen N, Ketabi Z, Lautrup C, Rønlund K, Sunde L, Wadt K, Thorlacius-Ussing O, Qvist N. Danish guidelines for management of non-APC-associated hereditary polyposis syndromes. Hered Cancer Clin Pract 2021; 19:41. [PMID: 34620187 PMCID: PMC8499431 DOI: 10.1186/s13053-021-00197-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Hereditary Polyposis Syndromes are a group of rare, inherited syndromes characterized by the presence of histopathologically specific or numerous intestinal polyps and an increased risk of cancer. Some polyposis syndromes have been known for decades, but the development in genetic technologies has allowed the identification of new syndromes.. The diagnosis entails surveillance from an early age, but universal guideline on how to manage and surveille these new syndromes are lacking. This paper represents a condensed version of the recent guideline (2020) from a working group appointed by the Danish Society of Medical Genetics and the Danish Society of Surgery on recommendations for the surveillance of patients with hereditary polyposis syndromes, including rare polyposis syndromes.
Collapse
Affiliation(s)
- Anne Marie Jelsig
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| | - John Gásdal Karstensen
- Danish Polyposis Registry, Gastrounit, Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Jespersen
- Danish Polyposis Registry, Gastrounit, Hvidovre Hospital, Hvidovre, Denmark
| | - Zohreh Ketabi
- Department of Gynecology and Obstetrics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Lautrup
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Karina Rønlund
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle Hospital, Vejle, Denmark
| | - Lone Sunde
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Niels Qvist
- Research Unit for Surgery, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| |
Collapse
|
29
|
POLE, POLD1, and NTHL1: the last but not the least hereditary cancer-predisposing genes. Oncogene 2021; 40:5893-5901. [PMID: 34363023 DOI: 10.1038/s41388-021-01984-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
POLE, POLD1, and NTHL1 are involved in DNA replication and have recently been recognized as hereditary cancer-predisposing genes, because their alterations are associated with colorectal cancer and other tumors. POLE/POLD1-associated syndrome shows an autosomal dominant inheritance, whereas NTHL1-associated syndrome follows an autosomal recessive pattern. Although the prevalence of germline monoallelic POLE/POLD1 and biallelic NTHL1 pathogenic variants is low, they determine different phenotypes with a broad tumor spectrum overlapping that of other hereditary conditions like Lynch Syndrome or Familial Adenomatous Polyposis. Endometrial and breast cancers, and probably ovarian and brain tumors are also associated with POLE/POLD1 alterations, while breast cancer and other unusual tumors are correlated with NTHL1 pathogenic variants. POLE-mutated colorectal and endometrial cancers are associated with better prognosis and may show favorable responses to immunotherapy. Since POLE/POLD1-mutated tumors show a high tumor mutational burden producing an increase in neoantigens, the identification of POLE/POLD1 alterations could help select patients suitable for immunotherapy treatment. In this review, we will investigate the role of POLE, POLD1, and NTHL1 genetic variants in cancer predisposition, discussing the potential future therapeutic applications and assessing the utility of performing a routine genetic testing for these genes, in order to implement prevention and surveillance strategies in mutation carriers.
Collapse
|
30
|
Lam KK, Thean LF, Cheah PY. Advances in colorectal cancer genomics and transcriptomics drive early detection and prevention. Int J Biochem Cell Biol 2021; 137:106032. [PMID: 34182137 DOI: 10.1016/j.biocel.2021.106032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022]
Abstract
Colorectal carcinoma (CRC) is a high incidence cancer and leading cause of cancer mortality worldwide. The advances in genomics and transcriptomics in the past decades have improved the detection and prevention of CRC in familial CRC syndromes. Nevertheless, the ultimate goal of personalized medicine for sporadic CRC is still not within reach due no less to the difficulty in integrating population disparity and clinical data to combat what essentially is a very heterogenous disease. This minireview highlights the achievement of the past decades and present possible direction in the hope of early detection and metastasis prevention for reducing CRC-associated morbidity and mortality.
Collapse
Affiliation(s)
- Kuen Kuen Lam
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Lai Fun Thean
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore.
| |
Collapse
|
31
|
Morak M, Steinke-Lange V, Massdorf T, Benet-Pages A, Locher M, Laner A, Kayser K, Aretz S, Holinski-Feder E. Prevalence of CNV-neutral structural genomic rearrangements in MLH1, MSH2, and PMS2 not detectable in routine NGS diagnostics. Fam Cancer 2021; 19:161-167. [PMID: 32002723 DOI: 10.1007/s10689-020-00159-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Routine diagnostics for colorectal cancer patients suspected of having Lynch-Syndrome (LS) currently uses Next-Generation-Sequencing (NGS) of targeted regions within the DNA mismatch repair (MMR) genes. This analysis can reliably detect nucleotide alterations and copy-number variations (CNVs); however, CNV-neutral rearrangements comprising gene inversions or large intronic insertions remain undetected because their breakpoints are usually not covered. As several founder mutations exist for LS, we established PCR-based screening methods for five known rearrangements in MLH1, MSH2, or PMS2, and investigated their prevalence in 98 German patients with suspicion of LS without a causative germline variant or CNV detectable in the four MMR genes. We found no recurrence of CNV-neutral structural rearrangements previously described: Neither for two inversions in MLH1 (exon 1 and exon 16-19) within 33 MLH1-deficient patients, nor for two inversions in MSH2 (exon 1-7 and exon 2-6) within 48 MSH2-deficient patients. The PMS2 insertion in intron 7 was detected in one of 17 PMS2-deficient patients. None of the four genomic inversions constitutes a founder event within the German population, but we advise to test the rare cases with unsolved PMS2-deficiency upon the known insertion. As a next diagnostic step, tumour tissue of the unsolved patients should be sequenced for somatic variants, and germline analysis of additional genes with an overlapping clinical phenotype should be considered. Alternatively, full-length cDNA analyses may detect concealed MMR-defects in cases with family history.
Collapse
Affiliation(s)
- Monika Morak
- Medizinische Klinik Und Poliklinik IV, Campus Innenstadt, Klinikum Der Universität München, Ziemssenstr. 1, 80336, Munich, Germany. .,MGZ - Medizinisch Genetisches Zentrum, Bayerstr. 3-5, 80335, Munich, Germany.
| | - Verena Steinke-Lange
- Medizinische Klinik Und Poliklinik IV, Campus Innenstadt, Klinikum Der Universität München, Ziemssenstr. 1, 80336, Munich, Germany.,MGZ - Medizinisch Genetisches Zentrum, Bayerstr. 3-5, 80335, Munich, Germany
| | - Trisari Massdorf
- Medizinische Klinik Und Poliklinik IV, Campus Innenstadt, Klinikum Der Universität München, Ziemssenstr. 1, 80336, Munich, Germany.,MGZ - Medizinisch Genetisches Zentrum, Bayerstr. 3-5, 80335, Munich, Germany
| | - Anna Benet-Pages
- Medizinische Klinik Und Poliklinik IV, Campus Innenstadt, Klinikum Der Universität München, Ziemssenstr. 1, 80336, Munich, Germany
| | - Melanie Locher
- Medizinische Klinik Und Poliklinik IV, Campus Innenstadt, Klinikum Der Universität München, Ziemssenstr. 1, 80336, Munich, Germany
| | - Andreas Laner
- Medizinische Klinik Und Poliklinik IV, Campus Innenstadt, Klinikum Der Universität München, Ziemssenstr. 1, 80336, Munich, Germany
| | - Katrin Kayser
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Stefan Aretz
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Center for Hereditary Tumour Syndromes, University Hospital Bonn, Bonn, Germany
| | - Elke Holinski-Feder
- Medizinische Klinik Und Poliklinik IV, Campus Innenstadt, Klinikum Der Universität München, Ziemssenstr. 1, 80336, Munich, Germany. .,MGZ - Medizinisch Genetisches Zentrum, Bayerstr. 3-5, 80335, Munich, Germany.
| |
Collapse
|
32
|
Yu H, Hemminki K. Genetic epidemiology of colorectal cancer and associated cancers. Mutagenesis 2021; 35:207-219. [PMID: 31424514 DOI: 10.1093/mutage/gez022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
We review here data on familial risk in colorectal cancer (CRC) generated from the Swedish Family-Cancer Database, the largest resource of its kind in the world. Although the concordant familial risk for CRC (i.e. CRC risk in families of CRC patients) has been reasonably well established, the studies on discordant familial risks (i.e. CRC risk in families with any other cancers) are rare. Because different cancers could be caused by shared genetic susceptibility or shared environment, data of associations of discordant cancers may provide useful information for identifying common risk factors. In analyses between any of 33 discordant cancers relative risks (RRs) for discordant cancers were estimated in families with increasing numbers of probands with CRC; in the reverse analyses, RRs for CRC were estimated in families with increasing numbers of probands with discordant cancers. In separate analyses, hereditary non-polyposis colorectal cancer (HNPCC) families were excluded from the study, based on HNPCC related double primary cancers, to assess the residual familial RRs. We further reviewed familial risks of colon and rectal cancers separately in search for distinct discordant associations. The reviewed data suggested that colon cancer was associated with a higher familial risk for CRC compared to rectal cancer. The previous data had reported associations of CRC with melanoma, thyroid and eye cancers. Nervous system cancer was only associated with colon cancer, and lung cancer only associated with rectal cancer. The reviewed data on discordant association may provide guidance to gene identification and may help genetic counseling.
Collapse
Affiliation(s)
- Hongyao Yu
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany.,Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
33
|
Kontizas E, Tastsoglou S, Karamitros T, Karayiannis Y, Kollia P, Hatzigeorgiou AG, Sgouras DN. Impact of Helicobacter pylori Infection and Its Major Virulence Factor CagA on DNA Damage Repair. Microorganisms 2020; 8:microorganisms8122007. [PMID: 33339161 PMCID: PMC7765595 DOI: 10.3390/microorganisms8122007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/10/2023] Open
Abstract
Helicobacter pylori infection induces a plethora of DNA damages. Gastric epithelial cells, in order to maintain genomic integrity, require an integrous DNA damage repair (DDR) machinery, which, however, is reported to be modulated by the infection. CagA is a major H. pylori virulence factor, associated with increased risk for gastric carcinogenesis. Its pathogenic activity is partly regulated by phosphorylation on EPIYA motifs. Our aim was to identify effects of H. pylori infection and CagA on DDR, investigating the transcriptome of AGS cells, infected with wild-type, ΔCagA and EPIYA-phosphorylation-defective strains. Upon RNA-Seq-based transcriptomic analysis, we observed that a notable number of DDR genes were found deregulated during the infection, potentially resulting to base excision repair and mismatch repair compromise and an intricate deregulation of nucleotide excision repair, homologous recombination and non-homologous end-joining. Transcriptome observations were further investigated on the protein expression level, utilizing infections of AGS and GES-1 cells. We observed that CagA contributed to the downregulation of Nth Like DNA Glycosylase 1 (NTHL1), MutY DNA Glycosylase (MUTYH), Flap Structure-Specific Endonuclease 1 (FEN1), RAD51 Recombinase, DNA Polymerase Delta Catalytic Subunit (POLD1), and DNA Ligase 1 (LIG1) and, contrary to transcriptome results, Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) upregulation. Our study accentuates the role of CagA as a significant contributor of H. pylori infection-mediated DDR modulation, potentially disrupting the balance between DNA damage and repair, thus favoring genomic instability and carcinogenesis.
Collapse
Affiliation(s)
- Eleftherios Kontizas
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Correspondence: (E.K.); (D.N.S.); Tel.: +30-210-647-8812 (E.K.); +30-210-647-8824 (D.N.S.)
| | - Spyros Tastsoglou
- Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece;
- DIANA-Lab, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Yiannis Karayiannis
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Panagoula Kollia
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Artemis G. Hatzigeorgiou
- DIANA-Lab, Hellenic Pasteur Institute, 11521 Athens, Greece;
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Dionyssios N. Sgouras
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Correspondence: (E.K.); (D.N.S.); Tel.: +30-210-647-8812 (E.K.); +30-210-647-8824 (D.N.S.)
| |
Collapse
|
34
|
Job A, Tatura M, Schäfer C, Lutz V, Schneider H, Lankat-Buttgereit B, Zielinski A, Borgmann K, Bauer C, Gress TM, Buchholz M, Gallmeier E. The POLD1 R689W variant increases the sensitivity of colorectal cancer cells to ATR and CHK1 inhibitors. Sci Rep 2020; 10:18924. [PMID: 33144657 PMCID: PMC7641191 DOI: 10.1038/s41598-020-76033-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Inhibition of the kinase ATR, a central regulator of the DNA damage response, eliminates subsets of cancer cells in certain tumors. As previously shown, this is at least partly attributable to synthetic lethal interactions between ATR and POLD1, the catalytic subunit of the polymerase δ. Various POLD1 variants have been found in colorectal cancer, but their significance as therapeutic targets for ATR pathway inhibition remains unknown. Using CRISPR/Cas9 in the colorectal cancer cell line DLD-1, which harbors four POLD1 variants, we established heterozygous POLD1-knockout clones with exclusive expression of distinct variants to determine the functional relevance of these variants individually by assessing their impact on ATR pathway activation, DNA replication, and cellular sensitivity to inhibition of ATR or its effector kinase CHK1. Of the four variants analyzed, only POLD1R689W affected POLD1 function, as demonstrated by compensatory ATR pathway activation and impaired DNA replication. Upon treatment with ATR or CHK1 inhibitors, POLD1R689W strongly decreased cell survival in vitro, which was attributable at least partly to S phase impairment and apoptosis. Similarly, treatment with the ATR inhibitor AZD6738 inhibited growth of murine xenograft tumors, harboring the POLD1R689W variant, in vivo. Our POLD1-knockout model thus complements algorithm-based models to predict the pathogenicity of tumor-specific variants of unknown significance and illustrates a novel and potentially clinically relevant therapeutic approach using ATR/CHK1 inhibitors in POLD1-deficient tumors.
Collapse
Affiliation(s)
- Albert Job
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Marina Tatura
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Cora Schäfer
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Veronika Lutz
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Hanna Schneider
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Brigitte Lankat-Buttgereit
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Alexandra Zielinski
- Lab of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Borgmann
- Lab of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bauer
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Eike Gallmeier
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany.
| |
Collapse
|
35
|
Boardman LA, Vilar E, You YN, Samadder J. AGA Clinical Practice Update on Young Adult-Onset Colorectal Cancer Diagnosis and Management: Expert Review. Clin Gastroenterol Hepatol 2020; 18:2415-2424. [PMID: 32525015 DOI: 10.1016/j.cgh.2020.05.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
DESCRIPTION The objectives of this expert review are: (1) to prepare clinicians to recognize the presentation and evidence-based risk factors for young adult-onset colorectal cancer (CRC), defined as CRC diagnosed in individuals 18 - <50 years of age; (2) to improve management for patients with young onset CRC. This review will focus on the following topics relevant to young adult-onset CRC: epidemiology and risk factors; clinical presentation; diagnostic and therapeutic management including options for colorectal and extra-colonic surgical intervention, chemotherapy and immune-oncology therapies; genetic testing and its potential impact on preimplantation genetics; fertility preservation; and cancer surveillance recommendations for these individuals and their family members. METHODS The evidence reviewed in this manuscript is a summation of relevant scientific publications, expert opinion statements, and current practice guidelines. BEST PRACTICE ADVICE 1: With the rising incidence of people developing CRC before 50 years of age, diagnostic evaluation of the colon and rectum is encouraged for all patients, irrespective of age, who present with symptoms that may be consistent with CRC, including but not limited to: rectal bleeding, weight loss, change in bowel habit, abdominal pain, iron deficiency anemia. BEST PRACTICE ADVICE 2: Clinicians should obtain family history of colorectal and other cancers in first and second degree relatives of patients with young adult-onset CRC and discuss genetic evaluation with germline genetic testing either in targeted genes based on phenotypic presentation or in multiplex gene panels regardless of family history. BEST PRACTICE ADVICE 3: Clinicians should present the role of fertility preservation prior to cancer-directed therapy including surgery, pelvic radiation, or chemotherapy BEST PRACTICE ADVICE 4: Clinicians should counsel patients on the benefit of germline genetic testing and familial cancer panel testing in the pre-surgical period to inform which surgical options may be available to the patient with young adult-onset CRC BEST PRACTICE ADVICE 5: Clinicians should consider utilizing germline and somatic genetic testing results to inform chemotherapeutic strategies BEST PRACTICE ADVICE 6: Clinicians should offer hereditary CRC syndrome specific screening for CRC and extra-colonic cancers only to young adult-onset CRC patients who have a genetically or clinically diagnosed hereditary CRC syndrome. For patients with sporadic young adult-onset CRC, extra-colonic screening and CRC surveillance intervals are the same as for patients with older adult-onset CRC.
Collapse
Affiliation(s)
- Lisa A Boardman
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | - Eduardo Vilar
- Division of Cancer Prevention and Population Sciences, Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Y Nancy You
- Division of Surgery, Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jewel Samadder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, Arizona
| |
Collapse
|
36
|
Ito T, Nomizu T, Eguchi H, Kamae N, Dechamethakun S, Akama Y, Endo G, Sugano K, Yoshida T, Okazaki Y, Ishida H. The first case report of polymerase proofreading-associated polyposis in POLD1 variant, c.1433G>A p.S478N, in Japan. Jpn J Clin Oncol 2020; 50:1080-1083. [PMID: 32548621 DOI: 10.1093/jjco/hyaa090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/22/2020] [Indexed: 01/15/2023] Open
Abstract
Polymerase proofreading-associated polyposis, caused by germline variants in the exonuclease domains of POLD1 and POLE, is a dominantly inherited rare condition characterized by oligo-adenomatous polyposis and increased risk of colorectal cancer, endometrial cancer and brain tumours. We report the first Japanese case of polymerase proofreading-associated polyposis carrying a POLD1 variant. The proband was a Japanese woman who had undergone resections of early colorectal carcinomas repeatedly and a hysterectomy with bilateral oophorectomy for endometrial cancer, all of which were diagnosed within 2 years after the first colectomy at 49 year old. Colonoscopic examinations demonstrated at least 14 non-cancerous polypoid lesions, some of which were histologically confirmed to be adenoma. Multigene panel sequencing identified a missense variant in POLD1 (c.1433G>A). Although her relatives did not undergo genetic testing, her father and paternal grandfather died of brain tumours at 53 and ~30 years of age, respectively.
Collapse
Affiliation(s)
- Tetsuya Ito
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe
| | | | - Hidetaka Eguchi
- Diagnosis and Therapeutics of Intractable Disease, Juntendo University Graduate School of Medicine, Tokyo
| | - Nao Kamae
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Kawagoe
| | - Sariya Dechamethakun
- Diagnosis and Therapeutics of Intractable Disease, Juntendo University Graduate School of Medicine, Tokyo
| | - Yoshinori Akama
- Department of Genetic Counseling, Hoshi General Hospital, Koriyama
| | - Goichi Endo
- Department of Surgery, Fukushima Red Cross Hospital, Fukushima
| | - Kokichi Sugano
- Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Utsunomiya
| | - Teruhiko Yoshida
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnosis and Therapeutics of Intractable Disease, Juntendo University Graduate School of Medicine, Tokyo
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe
| |
Collapse
|
37
|
Mo S, Ma X, Li Y, Zhang L, Hou T, Han-Zhang H, Qian J, Cai S, Huang D, Peng J. Somatic POLE exonuclease domain mutations elicit enhanced intratumoral immune responses in stage II colorectal cancer. J Immunother Cancer 2020; 8:jitc-2020-000881. [PMID: 32859741 PMCID: PMC7454238 DOI: 10.1136/jitc-2020-000881] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Previous studies found patients with POLE exonuclease domain mutations (EDMs) in targeted exons were related to significant better outcomes in stage II-III colorectal cancer (CRC). The detailed mutational profile of the entire POLE exonuclease domain, tumor mutation burden (TMB) and immune cell infiltration in POLE EDMs tumors, and the prognostic value of such mutations in stage II CRCs were largely unknown to us. This study was to clarify the characteristics, immune response and prognostic value of somatic POLE EDMs in stage II CRC. A total of 295 patients with stage II CRC were sequenced by next-generation sequencing with a targeted genetic panel. Simultaneous detection of the immune cells was conducted using a five-color immunohistochemical multiplex technique. The detailed molecular characteristics, tumor-infiltrating lymphocyte (TIL) and prognostic effect of POLE EDMs in stage II CRC were analyzed. For stage II CRCs, the POLE EDMs were detected in 3.1% of patients. Patients with POLE EDMs were more prone to be microsatellite instability-high (MSI-H) (33.3% vs 11.2%, p=0.043), younger at diagnosis (median 46 years vs 62 years, p<0.001) and more common at right-sided location (66.7% vs 23.1%; p=0.003). All patients with POLE EMDs were assessed as extremely high TMB, with a mean TMB of 200.8. Compared with other stage II CRCs, POLE EDMs displayed an enhanced intratumoral cytotoxic T cell response, evidenced by increased numbers of CD8+TILs and CD8A expression. Patients with stage II CRCs could be classified into three risk subsets, with significant different 5 years disease-free survival rates of 100% for POLE EDMs, 82.0% for MSI-H and 63.0% for MSS, p=0.013. In conclusion, characterized by a robust intratumoral T cell response, ultramutated POLE EDMs could be detected in a small subset of stage II CRCs with extremely high TMB. Patients with POLE EDMs had excellent outcomes in stage II CRCs, regardless of MSI status. Sequencing of all the exonuclease domain of POLE gene is recommended in clinical practice.
Collapse
Affiliation(s)
- Shaobo Mo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Shanghai, China
| | - Xiaoji Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Shanghai, China
| | - Yaqi Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Shanghai, China
| | - Long Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Shanghai, China.,Department of Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
| | - Ting Hou
- Burning Rock Biotech, Guangdong, China
| | | | - Juanjuan Qian
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Shanghai, China.,Department of Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
| | - Dan Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Shanghai, China .,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
| | - Junjie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Shanghai, China
| |
Collapse
|
38
|
Role of POLE and POLD1 in familial cancer. Genet Med 2020; 22:2089-2100. [PMID: 32792570 PMCID: PMC7708298 DOI: 10.1038/s41436-020-0922-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Germline pathogenic variants in the exonuclease domain (ED) of polymerases POLE and POLD1 predispose to adenomatous polyps, colorectal cancer (CRC), endometrial tumors, and other malignancies, and exhibit increased mutation rate and highly specific associated mutational signatures. The tumor spectrum and prevalence of POLE and POLD1 variants in hereditary cancer are evaluated in this study. Methods POLE and POLD1 were sequenced in 2813 unrelated probands referred for genetic counseling (2309 hereditary cancer patients subjected to a multigene panel, and 504 patients selected based on phenotypic characteristics). Cosegregation and case–control studies, yeast-based functional assays, and tumor mutational analyses were performed for variant interpretation. Results Twelve ED missense variants, 6 loss-of-function, and 23 outside-ED predicted-deleterious missense variants, all with population allele frequencies <1%, were identified. One ED variant (POLE p.Met294Arg) was classified as likely pathogenic, four as likely benign, and seven as variants of unknown significance. The most commonly associated tumor types were colorectal, endometrial and ovarian cancers. Loss-of-function and outside-ED variants are likely not pathogenic for this syndrome. Conclusions Polymerase proofreading–associated syndrome constitutes 0.1–0.4% of familial cancer cases, reaching 0.3–0.7% when only CRC and polyposis are considered. ED variant interpretation is challenging and should include multiple pieces of evidence.
Collapse
|
39
|
Olkinuora A, Gylling A, Almusa H, Eldfors S, Lepistö A, Mecklin JP, Nieminen TT, Peltomäki P. Molecular Basis of Mismatch Repair Protein Deficiency in Tumors from Lynch Suspected Cases with Negative Germline Test Results. Cancers (Basel) 2020; 12:cancers12071853. [PMID: 32660107 PMCID: PMC7408769 DOI: 10.3390/cancers12071853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 11/25/2022] Open
Abstract
Some 10–50% of Lynch-suspected cases with abnormal immunohistochemical (IHC) staining remain without any identifiable germline mutation of DNA mismatch repair (MMR) genes. MMR proteins form heterodimeric complexes, giving rise to distinct IHC patterns when mutant. Potential reasons for not finding a germline mutation include involvement of an MMR gene not predicted by the IHC pattern, epigenetic mechanism of predisposition, primary mutation in another DNA repair or replication-associated gene, and double somatic MMR gene mutations. We addressed these possibilities by germline and tumor studies in 60 Lynch-suspected cases ascertained through diagnostics (n = 55) or research (n = 5). All cases had abnormal MMR protein staining in tumors but no point mutation or large rearrangement of the suspected MMR genes in the germline. In diagnostic practice, MSH2/MSH6 (MutS Homolog 2/MutS Homolog 6) deficiency prompts MSH2 mutation screening; in our study, 3/11 index individuals (27%) with this IHC pattern revealed pathogenic germline mutations in MSH6. Individuals with isolated absence of MSH6 are routinely screened for MSH6 mutations alone; we found a predisposing mutation in MSH2 in 1/7 such cases (14%). Somatic deletion of the MSH2-MSH6 region, joint loss of MSH6 and MSH3 (MutS Homolog 3) proteins, and hindered MSH2/MSH6 dimerization offered explanations to misleading IHC patterns. Constitutional epimutation hypothesis was pursued in the MSH2 and/or MSH6-deficient cases plus 38 cases with MLH1 (MutL Homolog 1)-deficient tumors; a primary MLH1 epimutation was identified in one case with an MLH1-deficient tumor. We conclude that both MSH2 and MSH6 should be screened in MSH2/6- and MSH6-deficient cases. In MLH1-deficient cases, constitutional epimutations of MLH1 warrant consideration.
Collapse
Affiliation(s)
- Alisa Olkinuora
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (A.G.); (T.T.N.); (P.P.)
- Correspondence:
| | - Annette Gylling
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (A.G.); (T.T.N.); (P.P.)
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (H.A.); (S.E.)
| | - Samuli Eldfors
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (H.A.); (S.E.)
| | - Anna Lepistö
- Department of Gastrointestinal Surgery, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Jukka-Pekka Mecklin
- Department of Surgery, Jyväskylä Central Hospital, 40620 Jyväskylä, Finland;
- Faculty of Sports and Health Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Taina Tuulikki Nieminen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (A.G.); (T.T.N.); (P.P.)
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (A.G.); (T.T.N.); (P.P.)
| |
Collapse
|
40
|
Silvestri R, Landi S. DNA polymerases in the risk and prognosis of colorectal and pancreatic cancers. Mutagenesis 2020; 34:363-374. [PMID: 31647559 DOI: 10.1093/mutage/gez031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
Human cancers arise from the alteration of genes involved in important pathways that mainly affect cell growth and proliferation. DNA replication and DNA damages recognition and repair are among these pathways and DNA polymerases that take part in these processes are frequently involved in cancer onset and progression. For example, damaging alterations within the proofreading domain of replicative polymerases, often reported in patients affected by colorectal cancer (CRC), are considered risk factors and drivers of carcinogenesis as they can lead to the accumulation of several mutations throughout the genome. Thus, replicative polymerases can be involved in cancer when losses of their physiological functions occur. On the contrary, reparative polymerases are often involved in cancer precisely because of their physiological role. In fact, their ability to repair and bypass DNA damages, which confers genome stability, can also counteract the effect of most anticancer drugs. In addition, the altered expression can characterise some type of cancers, which exacerbates this aspect. For example, all of the DNA polymerases involved a damage bypass mechanism, known as translesion synthesis, with the only exception of polymerase theta, are downregulated in CRC. Conversely, in pancreatic ductal adenocarcinoma (PDAC), most of these polymerase result upregulated. This suggests that different types of cancer can rely on different reparative polymerases to acquire drug resistance. Here we will examine all of the aspects that link DNA polymerases with CRC and PDAC.
Collapse
Affiliation(s)
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Siraj AK, Bu R, Iqbal K, Parvathareddy SK, Masoodi T, Siraj N, Al-Rasheed M, Kong Y, Ahmed SO, Al-Obaisi KAS, Victoria IG, Arshad M, Al-Dayel F, Abduljabbar A, Ashari LH, Al-Kuraya KS. POLE and POLD1 germline exonuclease domain pathogenic variants, a rare event in colorectal cancer from the Middle East. Mol Genet Genomic Med 2020; 8:e1368. [PMID: 32567205 PMCID: PMC7434734 DOI: 10.1002/mgg3.1368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer (CRC) is a major contributor to morbidity and mortality related to cancer. Only ~5% of all CRCs occur as a result of pathogenic variants in well‐defined CRC predisposing genes. The frequency and effect of exonuclease domain pathogenic variants of POLE and POLD1 genes in Middle Eastern CRCs is still unknown. Methods Targeted capture sequencing and Sanger sequencing technologies were employed to investigate the germline exonuclease domain pathogenic variants of POLE and POLD1 in Middle Eastern CRCs. Immunohistochemical analysis of POLE and POLD1 was performed to look for associations between protein expression and clinico‐pathological characteristics. Results Five damaging or possibly damaging variants (0.44%) were detected in 1,135 CRC cases, four in POLE gene (0.35%, 4/1,135) and one (0.1%, 1/1,135) in POLD1 gene. Furthermore, low POLE protein expression was identified in 38.9% (417/1071) cases and a significant association with lymph node involvement (p = .0184) and grade 3 tumors (p = .0139) was observed. Whereas, low POLD1 expression was observed in 51.9% (555/1069) of cases and was significantly associated with adenocarcinoma histology (p = .0164), larger tumor size (T3 and T4 tumors; p = .0012), and stage III tumors (p = .0341). Conclusion POLE and POLD1 exonuclease domain pathogenic variants frequency in CRC cases was very low and these exonuclease domain pathogenic variants might be rare causative events of CRC in the Middle East. POLE and POLD1 can be included in multi‐gene panels to screen CRC patients.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Rong Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Kaleem Iqbal
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Sandeep K Parvathareddy
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Tariq Masoodi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Nabil Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Yan Kong
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Saeeda O Ahmed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Khadija A S Al-Obaisi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Ingrid G Victoria
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Maham Arshad
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alaa Abduljabbar
- Colorectal Section, Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Luai H Ashari
- Colorectal Section, Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, iyadh, Saudi Arabia
| |
Collapse
|
42
|
Porkka NK, Olkinuora A, Kuopio T, Ahtiainen M, Eldfors S, Almusa H, Mecklin JP, Peltomäki P. Does breast carcinoma belong to the Lynch syndrome tumor spectrum? - Somatic mutational profiles vs. ovarian and colorectal carcinomas. Oncotarget 2020; 11:1244-1256. [PMID: 32292574 PMCID: PMC7147090 DOI: 10.18632/oncotarget.27538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/14/2020] [Indexed: 12/30/2022] Open
Abstract
Inherited DNA mismatch repair (MMR) defects cause predisposition to colorectal, endometrial, ovarian, and other cancers occurring in Lynch syndrome (LS). It is unsettled whether breast carcinoma belongs to the LS tumor spectrum. We approached this question through somatic mutational analysis of breast carcinomas from LS families, using established LS-spectrum tumors for comparison. Somatic mutational profiles of 578 cancer-relevant genes were determined for LS-breast cancer (LS-BC, n = 20), non-carrier breast cancer (NC-BC, n = 10), LS-ovarian cancer (LS-OC, n = 16), and LS-colorectal cancer (LS-CRC, n = 18) from the National LS Registry of Finland. Microsatellite and MMR protein analysis stratified LS-BCs into MMR-deficient (dMMR, n = 11) and MMR-proficient (pMMR, n = 9) subgroups. All NC-BCs were pMMR and all LS-OCs and LS-CRCs dMMR. All but one dMMR LS-BCs were hypermutated (> 10 non-synonymous mutations/Mb; average 174/Mb per tumor) and the frequency of MMR-deficiency-associated signatures 6, 20, and 26 was comparable to that in LS-OC and LS-CRC. LS-BCs that were pMMR resembled NC-BCs with respect to somatic mutational loads (4/9, 44%, hypermutated with average mutation count 33/Mb vs. 3/10, 30%, hypermutated with average 88 mutations/Mb), whereas mutational signatures shared features of dMMR LS-BC, LS-OC, and LS-CRC. Epigenetic regulatory genes were significantly enriched as mutational targets in LS-BC, LS-OC, and LS-CRC. Many top mutant genes of our LS-BCs have previously been identified as drivers of unselected breast carcinomas. In conclusion, somatic mutational signatures suggest that conventional MMR status of tumor tissues is likely to underestimate the significance of the predisposing MMR defects as contributors to breast tumorigenesis in LS.
Collapse
Affiliation(s)
- Noora K. Porkka
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Alisa Olkinuora
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Teijo Kuopio
- Department of Pathology, Jyväskylä Central Hospital, Jyväskylä, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Maarit Ahtiainen
- Department of Education and Research, Jyväskylä Central Hospital and University of Eastern Finland, Jyväskylä, Finland
| | - Samuli Eldfors
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Surgery, Jyväskylä Central Hospital, Jyväskylä, Finland
- Department of Education & Science, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
43
|
León‐Castillo A, Britton H, McConechy MK, McAlpine JN, Nout R, Kommoss S, Brucker SY, Carlson JW, Epstein E, Rau TT, Bosse T, Church DN, Gilks CB. Interpretation of somatic POLE mutations in endometrial carcinoma. J Pathol 2020; 250:323-335. [PMID: 31829442 PMCID: PMC7065171 DOI: 10.1002/path.5372] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/25/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022]
Abstract
Pathogenic somatic missense mutations within the DNA polymerase epsilon (POLE) exonuclease domain define the important subtype of ultramutated tumours ('POLE-ultramutated') within the novel molecular classification of endometrial carcinoma (EC). However, clinical implementation of this classifier requires systematic evaluation of the pathogenicity of POLE mutations. To address this, we examined base changes, tumour mutational burden (TMB), DNA microsatellite instability (MSI) status, POLE variant frequency, and the results from six in silico tools on 82 ECs with whole-exome sequencing from The Cancer Genome Atlas (TCGA). Of these, 41 had one of five known pathogenic POLE exonuclease domain mutations (EDM) and showed characteristic genomic alterations: C>A substitution > 20%, T>G substitutions > 4%, C>G substitutions < 0.6%, indels < 5%, TMB > 100 mut/Mb. A scoring system to assess these alterations (POLE-score) was developed; based on their scores, 7/18 (39%) additional tumours with EDM were classified as POLE-ultramutated ECs, and the six POLE mutations present in these tumours were considered pathogenic. Only 1/23 (4%) tumours with non-EDM showed these genomic alterations, indicating that a large majority of mutations outside the exonuclease domain are not pathogenic. The infrequent combination of MSI-H with POLE EDM led us to investigate the clinical significance of this association. Tumours with pathogenic POLE EDM co-existent with MSI-H showed genomic alterations characteristic of POLE-ultramutated ECs. In a pooled analysis of 3361 ECs, 13 ECs with DNA mismatch repair deficiency (MMRd)/MSI-H and a pathogenic POLE EDM had a 5-year recurrence-free survival (RFS) of 92.3%, comparable to previously reported POLE-ultramutated ECs. Additionally, 14 cases with non-pathogenic POLE EDM and MMRd/MSI-H had a 5-year RFS of 76.2%, similar to MMRd/MSI-H, POLE wild-type ECs, suggesting that these should be categorised as MMRd, rather than POLE-ultramutated ECs for prognostication. This work provides guidance on classification of ECs with POLE mutations, facilitating implementation of POLE testing in routine clinical care. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Heidi Britton
- Faculty of MedicineUniversity of British ColumbiaVancouverCanada
| | | | - Jessica N McAlpine
- Department of Gynaecology, Division of Gynaecologic OncologyUniversity of British Columbia and BC Cancer AgencyVancouverCanada
| | - Remi Nout
- Department of Medical and Radiation OncologyLeiden University Medical CenterLeidenThe Netherlands
| | - Stefan Kommoss
- Department of Women's HealthTübingen University HospitalTübingenGermany
| | - Sara Y Brucker
- Department of Women's HealthTübingen University HospitalTübingenGermany
| | - Joseph W Carlson
- Department of Oncology–Pathology, Karolinska Institutet, and Department of Pathology and CytologyKarolinska University HospitalStockholmSweden
| | - Elisabeth Epstein
- Department of Clinical Science and Education, Karolinska Institutet, and Department of Obstetrics and Gynaecology, SödersjukhusetStockholmSweden
| | - Tilman T Rau
- Institute of PathologyUniversity of BernBernSwitzerland
| | - Tjalling Bosse
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
| | - David N Church
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- National Institute for Health Research (NIHR) Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation Trust, John Radcliffe HospitalOxfordUK
| | - C Blake Gilks
- Department of Pathology and Laboratory MedicineUniversity of British Columbia and Vancouver General HospitalVancouverCanada
| |
Collapse
|
44
|
Oh DY, Matsumoto Y, Kitajiri SI, Kim NKD, Kim MY, Kim AR, Lee M, Lee C, Tomkinson AE, Katsuno T, Kim SY, Shin HW, Han JH, Lee S, Park WY, Choi BY. POLD1 variants leading to reduced polymerase activity can cause hearing loss without syndromic features. Hum Mutat 2020; 41:913-920. [PMID: 31944473 DOI: 10.1002/humu.23984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 11/08/2022]
Abstract
DNA polymerase δ, whose catalytic subunit is encoded by POLD1, is responsible for synthesizing the lagging strand of DNA. Single heterozygous POLD1 mutations in domains with polymerase and exonuclease activities have been reported to cause syndromic deafness as a part of multisystem metabolic disorder or predisposition to cancer. However, the phenotypes of diverse combinations of POLD1 genotypes have not been elucidated in humans. We found that five members of a multiplex family segregating autosomal recessive nonsyndromic sensorineural hearing loss (NS-SNHL) have revealed novel compound heterozygous POLD1 variants (p.Gly1100Arg and a presumptive null function variant, p.Ser197Hisfs*54). The recombinant p.Gly1100Arg polymerase δ showed a reduced polymerase activity by 30-40%, but exhibited normal exonuclease activity. The polymerase activity in cell extracts from the affected subject carrying the two POLD1 mutant alleles was about 33% of normal controls. We suggest that significantly decreased polymerase δ activity, but not a complete absence, with normal exonuclease activity could lead to NS-SNHL.
Collapse
Affiliation(s)
- Doo-Yi Oh
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yoshihiro Matsumoto
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico.,Department of Environmental Biology, Chubu University College of Bioscience and Biotechnology, Kasugai, Aichi, Japan
| | - Shin-Ichiro Kitajiri
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nayoung K D Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Min Young Kim
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ah Reum Kim
- Department of Otorhinolaryngology, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, Korea
| | - Mingyu Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, Korea
| | - Alan E Tomkinson
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Tatsuya Katsuno
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - So Young Kim
- Department of Otorhinolaryngology, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, Korea
| | - Hyun-Woo Shin
- Department of Otorhinolaryngology, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seungmin Lee
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Seoul, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
45
|
Xu Q, Hu C, Zhu Y, Wang K, Lal B, Li L, Tang J, Wei S, Huang G, Xia S, Lv S, Laterra J, Jiang Y, Li Y. ShRNA-based POLD2 expression knockdown sensitizes glioblastoma to DNA-Damaging therapeutics. Cancer Lett 2020; 482:126-135. [PMID: 31954770 DOI: 10.1016/j.canlet.2020.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
Glioblastoma (GBM) has limited therapeutic options. DNA repair mechanisms contribute GBM cells to escape therapies and re-establish tumor growth. Multiple studies have shown that POLD2 plays a critical role in DNA replication, DNA repair and genomic stability. We demonstrate for the first time that POLD2 is highly expressed in human glioma specimens and that expression correlates with poor patient survival. siRNA or shRNA POLD2 inhibited GBM cell proliferation, cell cycle progression, invasiveness, sensitized GBM cells to chemo/radiation-induced cell death and reversed the cytoprotective effects of EGFR signaling. Conversely, forced POLD2 expression was found to induce GBM cell proliferation, colony formation, invasiveness and chemo/radiation resistance. POLD2 expression associated with stem-like cell subsets (CD133+ and SSEA-1+ cells) and positively correlated with Sox2 expression in clinical specimens. Its expression was induced by Sox2 and inhibited by the forced differentiation of GBM neurospheres. shRNA-POLD2 modestly inhibited GBM neurosphere-derived orthotopic xenografts growth, when combined with radiation, dramatically inhibited xenograft growth in a cooperative fashion. These novel findings identify POLD2 as a new potential therapeutic target for enhancing GBM response to current standard of care therapeutics.
Collapse
Affiliation(s)
- Qingfu Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, PR China; Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China; Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Chengchen Hu
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Yan Zhu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, PR China; Department of Obstetrics and Gynecology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Kimberly Wang
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA
| | - Bachuchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA
| | - Lichao Li
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Junhai Tang
- Department of Neurosurgery, Third Military Medical University, Chongqing, 400037, PR China
| | - Shuang Wei
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA
| | - Guohao Huang
- Department of Neurosurgery, Third Military Medical University, Chongqing, 400037, PR China
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Shengqing Lv
- Department of Neurosurgery, Third Military Medical University, Chongqing, 400037, PR China
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA; Department of Oncology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA; Department of Neuroscience, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
46
|
Al-Shaheri FN, Al-Shami KM, Gamal EH, Mahasneh AA, Ayoub NM. Association of DNA repair gene polymorphisms with colorectal cancer risk and treatment outcomes. Exp Mol Pathol 2019; 113:104364. [PMID: 31881200 DOI: 10.1016/j.yexmp.2019.104364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most common carcinoma worldwide. Despite the progress in screening and treatment, CRC remains a leading cause of cancer-related mortality. Alterations to normal nucleic acid processing may drive neoplastic transformation of colorectal epithelium. DNA repair machinery performs an essential function in the protection of genome by reducing the number of genetic polymorphisms/variations that may drive carcinogenicity. Four essential DNA repair systems are known which include nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). Polymorphisms of DNA repair genes have been shown to influence the risk of cancer development as well as outcomes of treatment. Several studies demonstrated the association between genetic polymorphism of DNA repair genes and increased risk of CRC in different populations. In this review, we have summarized the impact of DNA repair gene polymorphisms on risk of CRC development and treatment outcomes. Advancements of the current understanding for the impact of DNA repair gene polymorphisms on the risk and treatment of CRC may support diagnostic and predictive roles in patients with CRC.
Collapse
Affiliation(s)
- Fawaz N Al-Shaheri
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), ImNeuenheimer Feld 580, 69120 Heidelberg, Germany; Medical Faculty Heidelberg, University of Heidelberg, ImNeuenheimer Feld 672, 69120 Heidelberg, Germany; Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Kamal M Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 South Donahue Drive, Auburn, Alabama 36849, United States of America; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Eshrak H Gamal
- Department of Oncology, Collage of Medicine, Bonn University, Germany; Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Amjad A Mahasneh
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
47
|
Catalano C, da Silva Filho MI, Frank C, Lu S, Jiraskova K, Vymetalkova V, Levy M, Liska V, Vycital O, Naccarati A, Vodickova L, Hemminki K, Vodicka P, Weber ANR, Försti A. Epistatic effect of TLR3 and cGAS-STING-IKKε-TBK1-IFN signaling variants on colorectal cancer risk. Cancer Med 2019; 9:1473-1484. [PMID: 31869529 PMCID: PMC7013077 DOI: 10.1002/cam4.2804] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022] Open
Abstract
Objective The TLR3/cGAS‐STING‐IFN signaling has recently been reported to be disturbed in colorectal cancer due to deregulated expression of the genes involved. Our study aimed to investigate the influence of potential regulatory variants in these genes on the risk of sporadic colorectal cancer (CRC) in a Czech cohort of 1424 CRC patients and 1114 healthy controls. Methods The variants in the TLR3, CGAS, TMEM173, IKBKE, and TBK1 genes were selected using various online bioinformatic tools, such as UCSC browser, HaploReg, Regulome DB, Gtex Portal, SIFT, PolyPhen2, and miRNA prediction tools. Results Logistic regression analysis adjusted for age and sex detected a nominal association between CRC risk and three variants, CGAS rs72960018 (OR: 1.68, 95% CI: 1.11‐2.53, P‐value = .01), CGAS rs9352000 (OR: 2.02, 95% CI: 1.07‐3.84, P‐value = .03) and TMEM173 rs13153461 (OR: 1.53, 95% CI: 1.03‐2.27, P‐value = .03). Their cumulative effect revealed a threefold increased CRC risk in carriers of 5‐6 risk alleles compared to those with 0‐2 risk alleles. Epistatic interactions between these genes and the previously genotyped IFNAR1, IFNAR2, IFNA, IFNB, IFNK, IFNW, IRF3, and IRF7 genes, were computed to test their effect on CRC risk. Overall, we obtained nine pair‐wise interactions within and between the CGAS, TMEM173, IKBKE, and TBK1 genes. Two of them remained statistically significant after Bonferroni correction. Additional 52 interactions were observed when IFN variants were added to the analysis. Conclusions Our data suggest that epistatic interactions and a high number of risk alleles may play an important role in CRC carcinogenesis, offering novel biological understanding for the CRC management.
Collapse
Affiliation(s)
- Calogerina Catalano
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | - Christoph Frank
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shun Lu
- Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Katerina Jiraskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,1st Medical Faculty, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,1st Medical Faculty, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic
| | - Miroslav Levy
- First Medical Faculty, Department of Surgery, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Vaclav Liska
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic.,Department of Surgery, Teaching Hospital and Medical School of Charles University, Pilsen, Czech Republic
| | - Ondrej Vycital
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic.,Department of Surgery, Teaching Hospital and Medical School of Charles University, Pilsen, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,1st Medical Faculty, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.,1st Medical Faculty, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University Prague, Pilsen, Czech Republic
| | - Alexander N R Weber
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Baden-Württemberg, Tübingen, Germany
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
48
|
Siraj AK, Parvathareddy SK, Bu R, Iqbal K, Siraj S, Masoodi T, Concepcion RM, Ghazwani LO, AlBadawi I, Al-Dayel F, Al-Kuraya KS. Germline POLE and POLD1 proofreading domain mutations in endometrial carcinoma from Middle Eastern region. Cancer Cell Int 2019; 19:334. [PMID: 31866764 PMCID: PMC6907229 DOI: 10.1186/s12935-019-1058-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Background Endometrial carcinoma (EC) accounts for 5.8% of all cancers in Saudi females. Although most ECs are sporadic, 2–5% tend to be familial, being associated with Lynch syndrome and Cowden syndrome. In this study, we attempted to uncover the frequency, spectrum and phenotype of germline mutations in the proofreading domain of POLE and POLD1 genes in a large cohort of ECs from Middle Eastern region. Methods We performed Capture sequencing and Sanger sequencing to screen for proofreading domains of POLE and POLD1 genes in 432 EC cases, followed by evaluation of protein expression using immunohistochemistry. Variant interpretation was performed using PolyPhen-2, MutationAssessor, SIFT, CADD and Mutation Taster. Results In our cohort, four mutations (0.93%) were identified in 432 EC cases, two each in POLE and POLD1 proofreading domains. Furthermore, low expression of POLE and POLD1 was noted in 41.1% (170/1414) and 59.9% (251/419) of cases, respectively. Both the cases harboring POLE mutation showed high nuclear expression of POLE protein, whereas, of the two POLD1 mutant cases, one case showed high expression and another case showed low expression of POLD1 protein. Conclusions Our study shows that germline mutations in POLE and POLD1 proofreading region are a rare cause of EC in Middle Eastern population. However, it is still feasible to screen multiple cancer related genes in EC patients from Middle Eastern region using multigene panels including POLE and POLD1.
Collapse
Affiliation(s)
- Abdul K Siraj
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Sandeep Kumar Parvathareddy
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Rong Bu
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Kaleem Iqbal
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Sarah Siraj
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Tariq Masoodi
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Rica Micaela Concepcion
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Laila Omar Ghazwani
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Ismail AlBadawi
- 2Department of Obstetrics-Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- 3Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Khawla S Al-Kuraya
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| |
Collapse
|
49
|
Chen W, Pearlman R, Hampel H, Pritchard CC, Markow M, Arnold C, Knight D, Frankel WL. MSH6 immunohistochemical heterogeneity in colorectal cancer: comparative sequencing from different tumor areas. Hum Pathol 2019; 96:104-111. [PMID: 31783044 DOI: 10.1016/j.humpath.2019.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023]
Abstract
Mismatch repair protein (MMR) immunohistochemistry is an important tool in screening for Lynch syndrome in colorectal cancer patients. Unusual staining patterns such as heterogeneous MSH6 staining have been reported in colorectal and endometrial cancers. We aim to better understand MSH6 staining heterogeneity in colorectal cancer by comparative sequencing of different tumor areas for MMR and DNA polymerase mutations. Whole-section slides of 1754 colorectal cancers were reviewed for heterogeneous MSH6 staining, defined as discrete tumor areas with abrupt loss of staining juxtaposed to tumor areas with retained staining. Nine cases (0.05%) demonstrated heterogeneous MSH6 staining; none received neoadjuvant therapy prior to the specimen collection. The area of tumor with loss of MSH6 expression ranged from 5% to 60% (average 22%). Four cases had enough tissue remaining in both retained and lost MSH6 areas to perform tumor sequencing on both areas. All 9 cases were negative for MSH6 germline mutation; MSH6 heterogeneous staining was seen in tumors with MLH1 or PMS2 abnormalities (6 cases of MLH1 methylation, 2 PMS2 germline mutation, 1 MLH1 germline mutation). In addition, case 1 also had a somatic POLD1 exonuclease domain mutation (p.Y405C) in the MSH6 loss area but not in the intact area. We recommend reporting MSH6 heterogeneous pattern as MSH6 staining is present with a comment stating that the heterogeneous pattern typically does not indicate germline mutation in MSH6 but is commonly associated with abnormality in another MMR gene such as MLH1 or PMS2, or even other DNA repair genes such as DNA polymerase.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Rachel Pearlman
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Heather Hampel
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, Washington WA 98195
| | - Michael Markow
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Christina Arnold
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Deborah Knight
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Wendy L Frankel
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210.
| |
Collapse
|
50
|
Vogelsang HE. Prophylactic Surgery and Extended Oncologic Radicality in Gastric and Colorectal Hereditary Cancer Syndromes. Visc Med 2019; 35:231-239. [PMID: 31602384 DOI: 10.1159/000501919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
Prophylactic surgery for high-penetrance hereditary gastric and colorectal cancer can be a primary prophylaxis of cancer and a secondary oncologic prevention. As early cancer is often detected in the resected organ, there has been no prophylaxis of cancer but cancer treatment. Extended oncological radicality with removal of the complete organ is a tertiary prevention as metachronous cancer is avoided. The indication for prophylactic surgery or extended oncological radicality is presented regarding hereditary and familial gastric and colorectal cancer. Hereditary diffuse type gastric cancer (E-cadherin mutation) and familial adenomatous polyposis coli (APC or MYH mutation) are well-accepted indications for prophylactic surgery with a variety of considerations regarding phenotype, genotype, associated diseases, age, timing, extent, and technique of surgery. Not so much prophylactic surgery as extended oncologic radicality can be considered in familial gastric and colorectal cancer as well as Lynch or hereditary nonpolyposis colorectal cancer syndrome (HNPCC). Clinical, molecular, and technical progress leads to less invasive and risk-adapted surgical and nonsurgical interventions, expanding the variety of individualized treatment options.
Collapse
Affiliation(s)
- Holger Eduard Vogelsang
- Department of General, Visceral, Thoracic and Endocrine Surgery, Klinikum Garmisch-Partenkirchen, Teaching Hospital, Ludwig Maximilian University Munich, Garmisch-Partenkirchen, Germany
| |
Collapse
|