1
|
Qi H, Wu Y, Zhang W, Yu N, Lu X, Liu J. The syntaxin-binding protein STXBP5 regulates progerin expression. Sci Rep 2024; 14:23376. [PMID: 39379476 PMCID: PMC11461833 DOI: 10.1038/s41598-024-74621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Hutchinson-Gilfor progeria syndrome (HGPS) is caused by a mutation in Lamin A resulting in the production of a protein called progerin. The accumulation of progerin induces inflammation, cellular senescence and activation of the P53 pathway. In this study, through public dataset analysis, we identified Syntaxin Binding Protein 5 (STXBP5) as an influencing factor of progerin expression. STXBP5 overexpression accelerated the onset of senescence, while STXBP5 deletion suppressed progerin expression, delayed senility, and decreased the expression of senescence-related factors. STXBP5 and progerin have synergistic effects and a protein-protein interaction. Through bioinformatics analysis, we found that STXBP5 affects ageing-related signalling pathways such as the mitogen-activated protein kinase (MAPK) pathway, the hippo pathway and the interleukin 17 (IL17) signalling pathway in progerin-expressing cells. In addition, STXBP5 overexpression induced changes in transposable elements (TEs), such as the human endogenous retrovirus H internal coding sequence (HERVH-int) changes. Our protein coimmunoprecipitation (Co-IP) results indicated that STXBP5 bound directly to progerin. Therefore, decreasing STXBP5 expression is a potential new therapeutic strategy for treating ageing-related phenotypes in patients with HGPS.
Collapse
Affiliation(s)
- Hongqian Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yingying Wu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Weiyu Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853-2703, USA
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Jinchao Liu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China.
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Deng M, Li X, Shi D, Fan Q, Zhang H, Wang Z, Wang Y, Xiao Z. iTRAQ-Based Serum Proteomic Analysis Reveals Multifactorial Cellular Function Impairment and Aggravated Systematic Inflammation in Drug-free Obsessive-Compulsive Disorders. ACS Chem Neurosci 2024; 15:3053-3063. [PMID: 39120470 DOI: 10.1021/acschemneuro.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental disorder with obvious difficulties in treatment. Its pathogenesis has not been fully elucidated. Further understanding of etiology and mechanism needs to be explored further. We employed the isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to compare serum proteome profile between OCD patients and healthy controls, in order to find out the possible mechanism of OCD in the downstream biological process. Eighty-one drug-free OCD patients and 78 healthy controls were enrolled. A total of 475 proteins were identified. Totally, 80 proteins with p < 0.05 were selected for gene set enrichment analysis (GSEA), and only those with a fold change ≥1.2 and q value <0.2 between groups were accepted as differentially expressed proteins (DEPs). We observed a significant enrichment of immuno-inflammation-related pathways, along with intriguing expression trends that immuno-inflammation-related proteins were upregulated in GSEA. After that, 2 up-regulated proteins and 13 down-regulated ones were accepted as DEP. According to the available literature, most of the DEPs have not been reported in OCD. These DEPs were enriched in 121 gene ontology (GO) terms, including hepatocyte growth factor receptor activity, angiogenin-PRI complex, and so on. DEPs were enriched in pathways including adherens junction in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Alterations in DEPs including STXBP5L, GRN, and ANG were validated in OCD animal models. Our study suggested that OCD patients manifested multifactorial impairment in neuronal or non-neuronal cellular function under the inflammatory background. Further research employing larger sample sizes, longitudinal design, stratified analysis, and multiomics methodology will be needed. Experiments in laboratories were essential in illuminating the mechanism.
Collapse
Affiliation(s)
- Miaohan Deng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xia Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Dongdong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Haiyin Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yuan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zeping Xiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
3
|
Bekele BM, Gazzerro E, Schoenrath F, Falk V, Rost S, Hoerning S, Jelting Y, Zaum AK, Spuler S, Knierim J. Undetected Neuromuscular Disease in Patients after Heart Transplantation. Int J Mol Sci 2024; 25:7819. [PMID: 39063061 PMCID: PMC11277526 DOI: 10.3390/ijms25147819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Heart transplantation (HTX) improves the overall survival and functional status of end-stage heart failure patients with cardiomyopathies (CMPs). The majority of CMPs have genetic causes, and the overlap between CMPs and inherited myopathies is well documented. However, the long-term outcome in skeletal muscle function and possibility of an undiagnosed underlying genetic cause of both a cardiac and skeletal pathology remain unknown. (2) Thirty-nine patients were assessed using open and standardized interviews on muscle function, a quality-of-life (EuroQol EQ-5D-3L) questionnaire, and a physical examination (Medical Research Council Muscle scale). Whole-exome sequencing was completed in three stages for those with skeletal muscle weakness. (3) Seven patients (17.9%) reported new-onset muscle weakness and motor limitations. Objective muscle weakness in the upper and lower extremities was seen in four patients. In three of them, exome sequencing revealed pathogenic/likely pathogenic variants in the genes encoding nexilin, myosin heavy chain, titin, and SPG7. (4) Our findings support a positive long-term outcome of skeletal muscle function in HTX patients. However, 10% of patients showed clinical signs of myopathy due to a possible genetic cause. The integration of genetic testing and standardized neurological assessment of motor function during the peri-HTX period should be considered.
Collapse
Affiliation(s)
- Biniam Melese Bekele
- Muscle Research Unit, ECRC Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (B.M.B.); (E.G.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Deutsches Herzzentrum der Charité—Medical Heart Center of Charité and German Heart Institute Berlin, Department of Cardiothoracic and Vascular Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elisabetta Gazzerro
- Muscle Research Unit, ECRC Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (B.M.B.); (E.G.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Felix Schoenrath
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Deutsches Herzzentrum der Charité—Medical Heart Center of Charité and German Heart Institute Berlin, Department of Cardiothoracic and Vascular Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, 13125 Berlin, Germany
| | - Volkmar Falk
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Deutsches Herzzentrum der Charité—Medical Heart Center of Charité and German Heart Institute Berlin, Department of Cardiothoracic and Vascular Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, 13125 Berlin, Germany
- Translational Cardiovascular Technologies, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Simone Rost
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Selina Hoerning
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Yvonne Jelting
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Ann-Kathrin Zaum
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Simone Spuler
- Muscle Research Unit, ECRC Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (B.M.B.); (E.G.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jan Knierim
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Sana Paulinenkrankenhaus, Department of Internal Medicine and Cardiology, Dickensweg 25-39, 14055 Berlin, Germany
| |
Collapse
|
4
|
Meijer M, Öttl M, Yang J, Subkhangulova A, Kumar A, Feng Z, van Voorst TW, Groffen AJ, van Weering JRT, Zhang Y, Verhage M. Tomosyns attenuate SNARE assembly and synaptic depression by binding to VAMP2-containing template complexes. Nat Commun 2024; 15:2652. [PMID: 38531902 PMCID: PMC10965968 DOI: 10.1038/s41467-024-46828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Tomosyns are widely thought to attenuate membrane fusion by competing with synaptobrevin-2/VAMP2 for SNARE-complex assembly. Here, we present evidence against this scenario. In a novel mouse model, tomosyn-1/2 deficiency lowered the fusion barrier and enhanced the probability that synaptic vesicles fuse, resulting in stronger synapses with faster depression and slower recovery. While wild-type tomosyn-1m rescued these phenotypes, substitution of its SNARE motif with that of synaptobrevin-2/VAMP2 did not. Single-molecule force measurements indeed revealed that tomosyn's SNARE motif cannot substitute synaptobrevin-2/VAMP2 to form template complexes with Munc18-1 and syntaxin-1, an essential intermediate for SNARE assembly. Instead, tomosyns extensively bind synaptobrevin-2/VAMP2-containing template complexes and prevent SNAP-25 association. Structure-function analyses indicate that the C-terminal polybasic region contributes to tomosyn's inhibitory function. These results reveal that tomosyns regulate synaptic transmission by cooperating with synaptobrevin-2/VAMP2 to prevent SNAP-25 binding during SNARE assembly, thereby limiting initial synaptic strength and equalizing it during repetitive stimulation.
Collapse
Affiliation(s)
- Marieke Meijer
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands.
| | - Miriam Öttl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Jie Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA.
| | - Aygul Subkhangulova
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Avinash Kumar
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Zicheng Feng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Torben W van Voorst
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Alexander J Groffen
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
| | - Matthijs Verhage
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands.
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Subkhangulova A, Gonzalez-Lozano MA, Groffen AJA, van Weering JRT, Smit AB, Toonen RF, Verhage M. Tomosyn affects dense core vesicle composition but not exocytosis in mammalian neurons. eLife 2023; 12:e85561. [PMID: 37695731 PMCID: PMC10495110 DOI: 10.7554/elife.85561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Tomosyn is a large, non-canonical SNARE protein proposed to act as an inhibitor of SNARE complex formation in the exocytosis of secretory vesicles. In the brain, tomosyn inhibits the fusion of synaptic vesicles (SVs), whereas its role in the fusion of neuropeptide-containing dense core vesicles (DCVs) is unknown. Here, we addressed this question using a new mouse model with a conditional deletion of tomosyn (Stxbp5) and its paralogue tomosyn-2 (Stxbp5l). We monitored DCV exocytosis at single vesicle resolution in tomosyn-deficient primary neurons using a validated pHluorin-based assay. Surprisingly, loss of tomosyns did not affect the number of DCV fusion events but resulted in a strong reduction of intracellular levels of DCV cargos, such as neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF). BDNF levels were largely restored by re-expression of tomosyn but not by inhibition of lysosomal proteolysis. Tomosyn's SNARE domain was dispensable for the rescue. The size of the trans-Golgi network and DCVs was decreased, and the speed of DCV cargo flux through Golgi was increased in tomosyn-deficient neurons, suggesting a role for tomosyns in DCV biogenesis. Additionally, tomosyn-deficient neurons showed impaired mRNA expression of some DCV cargos, which was not restored by re-expression of tomosyn and was also observed in Cre-expressing wild-type neurons not carrying loxP sites, suggesting a direct effect of Cre recombinase on neuronal transcription. Taken together, our findings argue against an inhibitory role of tomosyns in neuronal DCV exocytosis and suggests an evolutionary conserved function of tomosyns in the packaging of secretory cargo at the Golgi.
Collapse
Affiliation(s)
- Aygul Subkhangulova
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
| | - Miguel A Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
| | - Alexander JA Groffen
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center (UMC)AmsterdamNetherlands
| | - Jan RT van Weering
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center (UMC)AmsterdamNetherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center (UMC)AmsterdamNetherlands
| |
Collapse
|
6
|
Kan H, Liu H, Mu Y, Li Y, Zhang M, Cao Y, Dong Y, Li Y, Wang K, Li Q, Hu A, Zheng Y. Novel genetic variants linked to prelabor rupture of membranes among Chinese pregnant women. Placenta 2023; 137:14-22. [PMID: 37054626 DOI: 10.1016/j.placenta.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/04/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
INTRODUCTION The etiology of prelabor rupture of membranes (PROM), either preterm or term PROM (PPROM or TPROM), remains largely unknown. This study aimed to investigate the association between maternal genetic variants (GVs) and PROM and further establish a GV-based prediction model for PROM. METHODS In this case-cohort study (n = 1166), Chinese pregnant women with PPROM (n = 51), TPROM (n = 283) and controls (n = 832) were enrolled. A weighted Cox model was applied to identify the GVs (single nucleotide polymorphisms [SNPs], insertions/deletions, and copy number variants) associated with either PPROM or TPROM. Gene set enrichment analysis (GSEA) was to explore the mechanisms. The suggestively significant GVs were applied to establish a random forest (RF) model. RESULTS PTPRT variants (rs117950601, P = 4.37 × 10-9; rs147178603, P = 8.98 × 10-9) and SNRNP40 variant (rs117573344, P = 2.13 × 10-8) were associated with PPROM. STXBP5L variant (rs10511405, P = 4.66 × 10-8) was associated with TPROM. GSEA results showed that genes associated with PPROM were enriched in cell adhesion, and TPROM in ascorbate and glucuronidation metabolism. The area under the receiver operating characteristic curve of SNP-based RF model for PPROM was 0.961, with a sensitivity of 100.0% and specificity of 83.3%. DISCUSSION Maternal GVs in PTPRT and SNRNP40 were associated with PPROM, and GV in STXBP5L was associated with TPROM. Cell adhesion participated in PPROM, while ascorbate and glucuronidation metabolism contributed in TPROM. The PPROM might be well predicted using the SNP-based RF model.
Collapse
Affiliation(s)
- Hui Kan
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
| | - Haiyan Liu
- Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, 246003, China; Department of Blood Transfusion, Anqing Municipal Hospital, Anqing, 246003, China
| | - Yutong Mu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
| | - Yijie Li
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
| | - Miao Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
| | - Yanmin Cao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
| | - Yao Dong
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
| | - Yaxin Li
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
| | - Kailin Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
| | - Qing Li
- Department of Obstetrics and Gynecology, Anqing Municipal Hospital, Anqing, 246003, China.
| | - Anqun Hu
- Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, 246003, China.
| | - Yingjie Zheng
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China; Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Chow CH, Huang M, Sugita S. The Role of Tomosyn in the Regulation of Neurotransmitter Release. ADVANCES IN NEUROBIOLOGY 2023; 33:233-254. [PMID: 37615869 DOI: 10.1007/978-3-031-34229-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Soluble NSF attachment protein receptor (SNARE) proteins play a central role in synaptic vesicle (SV) exocytosis. These proteins include the vesicle-associated SNARE protein (v-SNARE) synaptobrevin and the target membrane-associated SNARE proteins (t-SNAREs) syntaxin and SNAP-25. Together, these proteins drive membrane fusion between synaptic vesicles (SV) and the presynaptic plasma membrane to generate SV exocytosis. In the presynaptic active zone, various proteins may either enhance or inhibit SV exocytosis by acting on the SNAREs. Among the inhibitory proteins, tomosyn, a syntaxin-binding protein, is of particular importance because it plays a critical and evolutionarily conserved role in controlling synaptic transmission. In this chapter, we describe how tomosyn was discovered, how it interacts with SNAREs and other presynaptic regulatory proteins to regulate SV exocytosis and synaptic plasticity, and how its various domains contribute to its synaptic functions.
Collapse
Affiliation(s)
- Chun Hin Chow
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Mengjia Huang
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Shuzo Sugita
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Cai Z, Zhao K, Zeng L, Liu M, Sun T, Li Z, Liu R. The Relationship between the Aberrant Long Non-Coding RNA-Mediated Competitive Endogenous RNA Network and Alzheimer's Disease Pathogenesis. Int J Mol Sci 2022; 23:8497. [PMID: 35955632 PMCID: PMC9369371 DOI: 10.3390/ijms23158497] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by cognitive dysfunction. The role of long non-coding RNAs (lncRNAs) with the action of competitive endogenous RNA (ceRNA) in AD remains unclear. The present study aimed to identify significantly differentially expressed lncRNAs (SDELs) and establish lncRNA-associated ceRNA networks via RNA sequencing analysis and a quantitative real-time Polymerase Chain Reaction (qPCR) assay using transgenic mice with five familial AD mutations. A total of 53 SDELs in the cortex and 51 SDELs in the hippocampus were identified, including seven core SDELs common to both regions. The functions and pathways were then investigated through the potential target genes of SDELs via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, which indicate biological effects, action distributions, and pathological transductions associated with AD. Based on the ceRNA hypothesis, integrated ceRNA networks in the cortex and hippocampus of lncRNA-miRNA-mRNA were constructed. The core SDEL-mediated ceRNA relationship was established and the expression of these RNAs was verified by qPCR. The results identified lncRNA ENSMUST00000127786 and highlighted miRNAs and mRNAs as potential key mediators in AD. These findings provide AD-derived lncRNA-mediated ceRNA profiles, and further experimental evidence is needed to confirm these identified ceRNA regulatory relationships.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.C.); (K.Z.); (L.Z.); (M.L.); (T.S.)
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.C.); (K.Z.); (L.Z.); (M.L.); (T.S.)
| |
Collapse
|
9
|
Cali E, Rocca C, Salpietro V, Houlden H. Epileptic Phenotypes Associated With SNAREs and Related Synaptic Vesicle Exocytosis Machinery. Front Neurol 2022; 12:806506. [PMID: 35095745 PMCID: PMC8792400 DOI: 10.3389/fneur.2021.806506] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 01/29/2023] Open
Abstract
SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptor) are an heterogeneous family of proteins that, together with their key regulators, are implicated in synaptic vesicle exocytosis and synaptic transmission. SNAREs represent the core component of this protein complex. Although the specific mechanisms of the SNARE machinery is still not completely uncovered, studies in recent years have provided a clearer understanding of the interactions regulating the essential fusion machinery for neurotransmitter release. Mutations in genes encoding SNARE proteins or SNARE complex associated proteins have been associated with a variable spectrum of neurological conditions that have been recently defined as “SNAREopathies.” These include neurodevelopmental disorder, autism spectrum disorder (ASD), movement disorders, seizures and epileptiform abnormalities. The SNARE phenotypic spectrum associated with seizures ranges from simple febrile seizures and infantile spasms, to severe early-onset epileptic encephalopathies. Our study aims to review and delineate the epileptic phenotypes associated with dysregulation of synaptic vesicle exocytosis and transmission, focusing on the main proteins of the SNARE core complex (STX1B, VAMP2, SNAP25), tethering complex (STXBP1), and related downstream regulators.
Collapse
Affiliation(s)
- Elisa Cali
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Clarissa Rocca
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Vincenzo Salpietro
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
10
|
Oligonucleotide correction of an intronic TIMMDC1 variant in cells of patients with severe neurodegenerative disorder. NPJ Genom Med 2022; 7:9. [PMID: 35091571 PMCID: PMC8799713 DOI: 10.1038/s41525-021-00277-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/09/2021] [Indexed: 11/08/2022] Open
Abstract
TIMMDC1 encodes the Translocase of Inner Mitochondrial Membrane Domain-Containing protein 1 (TIMMDC1) subunit of complex I of the electron transport chain responsible for ATP production. We studied a consanguineous family with two affected children, now deceased, who presented with failure to thrive in the early postnatal period, poor feeding, hypotonia, peripheral neuropathy and drug-resistant epilepsy. Genome sequencing data revealed a known, deep intronic pathogenic variant TIMMDC1 c.597-1340A>G, also present in gnomAD (~1/5000 frequency), that enhances aberrant splicing. Using RNA and protein analysis we show almost complete loss of TIMMDC1 protein and compromised mitochondrial complex I function. We have designed and applied two different splice-switching antisense oligonucleotides (SSO) to restore normal TIMMDC1 mRNA processing and protein levels in patients' cells. Quantitative proteomics and real-time metabolic analysis of mitochondrial function on patient fibroblasts treated with SSOs showed restoration of complex I subunit abundance and function. SSO-mediated therapy of this inevitably fatal TIMMDC1 neurologic disorder is an attractive possibility.
Collapse
|
11
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
12
|
Szpiech ZA, Novak TE, Bailey NP, Stevison LS. Application of a novel haplotype-based scan for local adaptation to study high-altitude adaptation in rhesus macaques. Evol Lett 2021; 5:408-421. [PMID: 34367665 PMCID: PMC8327953 DOI: 10.1002/evl3.232] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
When natural populations split and migrate to different environments, they may experience different selection pressures that can lead to local adaptation. To capture the genomic patterns of a local selective sweep, we develop XP-nSL, a genomic scan for local adaptation that compares haplotype patterns between two populations. We show that XP-nSL has power to detect ongoing and recently completed hard and soft sweeps, and we then apply this statistic to search for evidence of adaptation to high altitude in rhesus macaques. We analyze the whole genomes of 23 wild rhesus macaques captured at high altitude (mean altitude > 4000 m above sea level) to 22 wild rhesus macaques captured at low altitude (mean altitude < 500 m above sea level) and find evidence of local adaptation in the high-altitude population at or near 303 known genes and several unannotated regions. We find the strongest signal for adaptation at EGLN1, a classic target for convergent evolution in several species living in low oxygen environments. Furthermore, many of the 303 genes are involved in processes related to hypoxia, regulation of ROS, DNA damage repair, synaptic signaling, and metabolism. These results suggest that, beyond adapting via a beneficial mutation in one single gene, adaptation to high altitude in rhesus macaques is polygenic and spread across numerous important biological systems.
Collapse
Affiliation(s)
- Zachary A Szpiech
- Department of Biology Pennsylvania State University University Park Pennsylvania 16801.,Institute for Computational and Data Sciences Pennsylvania State University University Park Pennsylvania 16801.,Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Taylor E Novak
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Nick P Bailey
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Laurie S Stevison
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| |
Collapse
|
13
|
Nain Z, Rana HK, Liò P, Islam SMS, Summers MA, Moni MA. Pathogenetic profiling of COVID-19 and SARS-like viruses. Brief Bioinform 2021; 22:1175-1196. [PMID: 32778874 PMCID: PMC7454314 DOI: 10.1093/bib/bbaa173] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
The novel coronavirus (2019-nCoV) has recently emerged, causing COVID-19 outbreaks and significant societal/global disruption. Importantly, COVID-19 infection resembles SARS-like complications. However, the lack of knowledge about the underlying genetic mechanisms of COVID-19 warrants the development of prospective control measures. In this study, we employed whole-genome alignment and digital DNA-DNA hybridization analyses to assess genomic linkage between 2019-nCoV and other coronaviruses. To understand the pathogenetic behavior of 2019-nCoV, we compared gene expression datasets of viral infections closest to 2019-nCoV with four COVID-19 clinical presentations followed by functional enrichment of shared dysregulated genes. Potential chemical antagonists were also identified using protein-chemical interaction analysis. Based on phylogram analysis, the 2019-nCoV was found genetically closest to SARS-CoVs. In addition, we identified 562 upregulated and 738 downregulated genes (adj. P ≤ 0.05) with SARS-CoV infection. Among the dysregulated genes, SARS-CoV shared ≤19 upregulated and ≤22 downregulated genes with each of different COVID-19 complications. Notably, upregulation of BCL6 and PFKFB3 genes was common to SARS-CoV, pneumonia and severe acute respiratory syndrome, while they shared CRIP2, NSG1 and TNFRSF21 genes in downregulation. Besides, 14 genes were common to different SARS-CoV comorbidities that might influence COVID-19 disease. We also observed similarities in pathways that can lead to COVID-19 and SARS-CoV diseases. Finally, protein-chemical interactions suggest cyclosporine, resveratrol and quercetin as promising drug candidates against COVID-19 as well as other SARS-like viral infections. The pathogenetic analyses, along with identified biomarkers, signaling pathways and chemical antagonists, could prove useful for novel drug development in the fight against the current global 2019-nCoV pandemic.
Collapse
Affiliation(s)
- Zulkar Nain
- Department of Genetic Engineering and Biotechnology, East West University, Bangladesh
| | - Humayan Kabir Rana
- Department of Computer Science and Engineering, Green University of Bangladesh
| | - Pietro Liò
- Artificial Intelligence Group at the University of Cambridge
| | | | | | | |
Collapse
|
14
|
Abstract
The release from cells of signaling molecules through the controlled process of exocytosis involves multiple coordinated steps and is essential for the proper control of a multitude of biological pathways across the endocrine and nervous systems. However, these events are minute both temporally and in terms of the minute amounts of neurotransmitters, hormones, growth factors, and peptides released from single vesicles during exocytosis. It is therefore difficult to measure the kinetics of single exocytosis events in real time. One noninvasive method of measuring the release of molecules from cells is carbon-fiber amperometry. In this chapter, we will describe how we undertake such measurements from both single cells and in live tissue, how the subsequent data are analyzed, and how we interpret these results in terms of their relevant physiology.
Collapse
|
15
|
Tien CW, Yu B, Huang M, Stepien KP, Sugita K, Xie X, Han L, Monnier PP, Zhen M, Rizo J, Gao S, Sugita S. Open syntaxin overcomes exocytosis defects of diverse mutants in C. elegans. Nat Commun 2020; 11:5516. [PMID: 33139696 PMCID: PMC7606450 DOI: 10.1038/s41467-020-19178-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
Assembly of SNARE complexes that mediate neurotransmitter release requires opening of a ‘closed’ conformation of UNC-64/syntaxin. Rescue of unc-13/Munc13 mutant phenotypes by overexpressed open UNC-64/syntaxin suggested a specific function of UNC-13/Munc13 in opening UNC-64/ syntaxin. Here, we revisit the effects of open unc-64/syntaxin by generating knockin (KI) worms. The KI animals exhibit enhanced spontaneous and evoked exocytosis compared to WT animals. Unexpectedly, the open syntaxin KI partially suppresses exocytosis defects of various mutants, including snt-1/synaptotagmin, unc-2/P/Q/N-type Ca2+ channel alpha-subunit and unc-31/CAPS, in addition to unc-13/Munc13 and unc-10/RIM, and enhanced exocytosis in tom-1/Tomosyn mutants. However, open syntaxin aggravates the defects of unc-18/Munc18 mutants. Correspondingly, open syntaxin partially bypasses the requirement of Munc13 but not Munc18 for liposome fusion. Our results show that facilitating opening of syntaxin enhances exocytosis in a wide range of genetic backgrounds, and may provide a general means to enhance synaptic transmission in normal and disease states. Opening of the UNC-64/syntaxin closed conformation by UNC-13/Munc13 to form the neuronal SNARE complex is critical for neurotransmitter release. Here the authors show that facilitating the opening of syntaxin enhances exocytosis not only in unc-13 nulls as well as in diverse C. elegans mutants.
Collapse
Affiliation(s)
- Chi-Wei Tien
- Division of Fundamental Neurobiology, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Bin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengjia Huang
- Division of Fundamental Neurobiology, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Karolina P Stepien
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kyoko Sugita
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8
| | - Xiaoyu Xie
- Division of Fundamental Neurobiology, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8.,Department of Anesthesiology, Dalian Medical University, Dalian, Liaoning, China
| | - Liping Han
- Department of Anesthesiology, Dalian Medical University, Dalian, Liaoning, China.,Department of Anesthesiology, Dalian Municipal Friendship Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Philippe P Monnier
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.,Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Mei Zhen
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5.,Faculty of Medicine, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA. .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Shuzo Sugita
- Division of Fundamental Neurobiology, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8. .,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.
| |
Collapse
|
16
|
Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem 2020; 157:130-164. [PMID: 32916768 DOI: 10.1111/jnc.15181] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The revolution in genetic technology has ushered in a new age for our understanding of the underlying causes of neurodevelopmental, neuromuscular and neurodegenerative disorders, revealing that the presynaptic machinery governing synaptic vesicle fusion is compromised in many of these neurological disorders. This builds upon decades of research showing that disturbance to neurotransmitter release via toxins can cause acute neurological dysfunction. In this review, we focus on disorders of synaptic vesicle fusion caused either by toxic insult to the presynapse or alterations to genes encoding the key proteins that control and regulate fusion: the SNARE proteins (synaptobrevin, syntaxin-1 and SNAP-25), Munc18, Munc13, synaptotagmin, complexin, CSPα, α-synuclein, PRRT2 and tomosyn. We discuss the roles of these proteins and the cellular and molecular mechanisms underpinning neurological deficits in these disorders.
Collapse
Affiliation(s)
- Holly Melland
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Elysa M Carr
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
17
|
Multiple roles of the actin and microtubule-regulating formins in the developing brain. Neurosci Res 2019; 138:59-69. [DOI: 10.1016/j.neures.2018.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
|
18
|
Identifying the genetic risk factors for treatment response to lurasidone by genome-wide association study: A meta-analysis of samples from three independent clinical trials. Schizophr Res 2018; 199:203-213. [PMID: 29730043 DOI: 10.1016/j.schres.2018.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 01/05/2023]
Abstract
A genome-wide association study (GWAS) of response of schizophrenia patients to the atypical antipsychotic drug, lurasidone, based on two double-blind registration trials, identified SNPs from four classes of genes as predictors of efficacy, but none were genome wide significant (GWS). After inclusion of data from a third lurasidone trial, meta-analysis identified a GWS marker and other findings consistent with our first study. The primary end-point was change in Total Positive and Negative Syndrome Scale (PANSS) between baseline and last observation carried forward. rs4736253, a genetic locus near KCNK9, encoding the K2P9.1 potassium channel, with a role in cognition and neurodevelopment, was the top marker in patients of European ancestry (EUR) (n = 264), reaching GWS (p = 4.78 × 10-8). rs10180106 (p = 4.92 × 10-7), located at an intron region of CTNNA2, a SCZ risk gene important for dendritic spine stabilization, was one of other best response markers for EUR patients. SNPs at STXBP5L (rs511841, p = 2.63 × 10-7) were the top markers for patients of African ancestry (n = 158). The association between PTPRD, NRG1, and MAGI1 previously reported to be related to response to lurasidone in the first two trials, showed a trend of significant association in the third trial. None of these genetic loci showed significant associations with clinical response in the corresponding placebo groups (n = 107 for EUR; n = 58 for AFR). This meta-analysis yielded the first GWAS-based GWS biomarker for lurasidone response and additional support for the conclusion that genes related to synaptic biology and/or risk for SCZ are the strongest predictors of response to lurasidone in schizophrenia patients.
Collapse
|
19
|
Peiris H, Keating DJ. The neuronal and endocrine roles of RCAN1 in health and disease. Clin Exp Pharmacol Physiol 2017; 45:377-383. [PMID: 29094385 DOI: 10.1111/1440-1681.12884] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 01/15/2023]
Abstract
The regulator of calcineurin 1 (RCAN1) was first discovered as a gene located on human chromosome 21, expressed in neurons and overexpressed in the brains of Down syndrome individuals. Increased expression of RCAN1 has been linked with not only Down syndrome-associated pathology but also an associated neurological disorder, Alzheimer's Disease, in which neuronal RCAN1 expression is also increased. RCAN1 has additionally been demonstrated to affect other cell types including endocrine cells, with links to the pathogenesis of β-cell dysfunction in type 2 diabetes. The primary functions of RCAN1 relate to the inhibition of the phosphatase calcineurin, and to the regulation of mitochondrial function. Various forms of cellular stress such as reactive oxygen species and hyperglycaemia cause transient increases in RCAN1 expression. The short term (hours to days) induction of RCAN1 expression is generally thought to have a protective effect by regulating the expression of pro-survival genes in multiple cell types, many of which are mediated via the calcineurin/NFAT transcriptional pathway. However, strong evidence also supports the notion that chronic (weeks-years) overexpression of RCAN1 has a detrimental effect on cells and that this may drive pathophysiological changes in neurons and endocrine cells linked to Down syndrome, Alzheimer's Disease and type 2 diabetes. Here we review the evidence related to these roles of RCAN1 in neurons and endocrine cells and their relationship to these human health disorders.
Collapse
Affiliation(s)
- Heshan Peiris
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
20
|
Abstract
STAR (signal transduction and activation of RNA) proteins regulate splicing of target genes that have roles in neural connectivity, survival and myelination in the vertebrate nervous system. These regulated splicing targets include mRNAs such as the Neurexins (Nrxn), SMN2 (survival of motor neuron) and MAG (myelin-associated glycoprotein). Recent work has made it possible to identify and validate STAR protein splicing targets in vivo by using genetically modified mouse models. In this review, we will discuss the importance of STAR protein splicing targets in the CNS (central nervous system).
Collapse
|