1
|
Ma MT, Qerqez AN, Hill KR, Azouz LR, Youngblood HA, Hill SE, Ku Y, Peters DM, Maynard JA, Lieberman RL. Antibody-mediated clearance of an ER-resident aggregate that causes glaucoma. PNAS NEXUS 2025; 4:pgae556. [PMID: 39726989 PMCID: PMC11670252 DOI: 10.1093/pnasnexus/pgae556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Recombinant antibodies are a promising class of therapeutics to treat protein misfolding associated with neurodegenerative diseases, and several antibodies that inhibit aggregation are approved or in clinical trials to treat Alzheimer's disease. Here, we developed antibodies targeting the aggregation-prone β-propeller olfactomedin (OLF) domain of myocilin, variants of which comprise the strongest genetic link to glaucoma and cause early onset vision loss for several million individuals worldwide. Mutant myocilin aggregates intracellularly in the endoplasmic reticulum (ER). Subsequent ER stress causes cytotoxicity that hastens dysregulation of intraocular pressure, the primary risk factor for most forms of glaucoma. Our antibody discovery campaign yielded two recombinant antibodies: anti-OLF1 recognizes a linear epitope, while anti-OLF2 is selective for natively folded OLF and inhibits aggregation in vitro. By binding OLF, these antibodies engage autophagy/lysosomal degradation to promote degradation of two pathogenic mutant myocilins. This work demonstrates the potential for therapeutic antibodies to disrupt ER-localized protein aggregates by altering the fate of folding intermediates. This approach could be translated as a precision medicine to treat myocilin-associated glaucoma with in situ antibody expression. More generally, the study supports the approach of enhancing lysosomal degradation to treat proteostasis decline in glaucoma and other diseases.
Collapse
Affiliation(s)
- Minh Thu Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Ahlam N Qerqez
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Kamisha R Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Laura R Azouz
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Hannah A Youngblood
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Yemo Ku
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Donna M Peters
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Ophthalmology & Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Rahman A, Saikia B, Baruah A. Binding Interaction Between Two Mutant Myocilin Olfactomedin Domain Monomers in a Homodimer. J Phys Chem B 2024; 128:11893-11903. [PMID: 39571175 DOI: 10.1021/acs.jpcb.4c06782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
In myocilin-associated glaucoma, pathogenic missense mutations accumulate mainly in the olfactomedin domain (mOLF) of myocilin. This makes the protein susceptible to aggregation, where mOLF-mOLF dimerization is possibly an initial stage. Nevertheless, there are no molecular level studies that have probed the nature of interactions occurring between two mOLF domains and the key characteristics of the resulting dimer complex. In this work, we used AlphaFold2 to obtain an I477N mutant mOLF structure with high quality followed by a stable I477N mOLF-mOLF homodimer model using molecular docking combined with molecular dynamics simulations. Moreover, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods coupled with per-residue energy decomposition studies are carried out to identify the key residues involved in the binding interaction. Based on these results, we provide insights into the molecular level understanding of the intermolecular interaction between two mOLF domains in an I477N homodimer. Hydrogen bonds, salt bridges, and favorable van der Waals interactions are observed in the binding interface of the homodimer. Additionally, our results suggest that I477N mutant mOLF aggregation could be a multistep process, beginning with an initial mOLF-mOLF dimerization mainly mediated by residues such as Asp395 and Arg681. Also, the peptides P1 (residues 326-337) and P3 (residues 426-442) of the mOLF domain, previously identified as pertinent for myocilin aggregation, could potentially contribute to a subsequent stage of myocilin aggregation, the first step being mOLF-mOLF dimerization.
Collapse
Affiliation(s)
- Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| |
Collapse
|
3
|
Greatbatch CJ, Lu Q, Hung S, Barnett AJ, Wing K, Liang H, Han X, Zhou T, Siggs OM, Mackey DA, Cook AL, Senabouth A, Liu GS, Craig JE, MacGregor S, Powell JE, Hewitt AW. High throughput functional profiling of genes at intraocular pressure loci reveals distinct networks for glaucoma. Hum Mol Genet 2024; 33:739-751. [PMID: 38272457 PMCID: PMC11031357 DOI: 10.1093/hmg/ddae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/18/2023] [Accepted: 04/06/2024] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Primary open angle glaucoma (POAG) is a leading cause of blindness globally. Characterized by progressive retinal ganglion cell degeneration, the precise pathogenesis remains unknown. Genome-wide association studies (GWAS) have uncovered many genetic variants associated with elevated intraocular pressure (IOP), one of the key risk factors for POAG. We aimed to identify genetic and morphological variation that can be attributed to trabecular meshwork cell (TMC) dysfunction and raised IOP in POAG. METHODS 62 genes across 55 loci were knocked-out in a primary human TMC line. Each knockout group, including five non-targeting control groups, underwent single-cell RNA-sequencing (scRNA-seq) for differentially-expressed gene (DEG) analysis. Multiplexed fluorescence coupled with CellProfiler image analysis allowed for single-cell morphological profiling. RESULTS Many gene knockouts invoked DEGs relating to matrix metalloproteinases and interferon-induced proteins. We have prioritized genes at four loci of interest to identify gene knockouts that may contribute to the pathogenesis of POAG, including ANGPTL2, LMX1B, CAV1, and KREMEN1. Three genetic networks of gene knockouts with similar transcriptomic profiles were identified, suggesting a synergistic function in trabecular meshwork cell physiology. TEK knockout caused significant upregulation of nuclear granularity on morphological analysis, while knockout of TRIOBP, TMCO1 and PLEKHA7 increased granularity and intensity of actin and the cell-membrane. CONCLUSION High-throughput analysis of cellular structure and function through multiplex fluorescent single-cell analysis and scRNA-seq assays enabled the direct study of genetic perturbations at the single-cell resolution. This work provides a framework for investigating the role of genes in the pathogenesis of glaucoma and heterogenous diseases with a strong genetic basis.
Collapse
Affiliation(s)
- Connor J Greatbatch
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Qinyi Lu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Sandy Hung
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| | - Alexander J Barnett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Kristof Wing
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Helena Liang
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane 4006, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, 1 Flinders Dr, Bedford Park, South Australia 5042, Australia
| | - Owen M Siggs
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, Short Street, St George Hospital KOGARAH UNSW, Sydney 2217, Australia
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, 2 Verdun Street Nedlands WA 6009, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Anne Senabouth
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, 1 Flinders Dr, Bedford Park, South Australia 5042, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane 4006, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| |
Collapse
|
4
|
Sazhnyev Y, Venkat A, Zheng JJ. Somatic Mutations within Myocilin due to Aging May Be a Potential Risk Factor for Glaucoma. Genes (Basel) 2024; 15:203. [PMID: 38397193 PMCID: PMC10887703 DOI: 10.3390/genes15020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma is a chronic optic neuropathy that leads to irreversible vision loss. Aging and family history are the two most important risk factors of glaucoma. One of the most studied genes involved in the onset of open-angle glaucoma is myocilin (MYOC). About 105 germline mutations within MYOC are known to be associated with glaucoma and result in endoplasmic reticulum (ER) stress, which leads to trabecular meshwork (TM) cell death and subsequent intraocular pressure (IOP) elevation. However, only about 4% of the population carry these mutations. An analysis of MYOC somatic cancer-associated mutations revealed a notable overlap with pathogenic glaucoma variants. Because TM cells have the potential to accumulate somatic mutations at a rapid rate due to ultraviolet (UV) light exposure, we propose that an accumulation of somatic mutations within MYOC is an important contributor to the onset of glaucoma.
Collapse
Affiliation(s)
- Yevgeniy Sazhnyev
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.S.); (A.V.)
- Department of Ophthalmology, California Northstate University College of Medicine, 9700 West Taron Dr., Elk Grove, CA 95757, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Akaash Venkat
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.S.); (A.V.)
- Department of Computer Science, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Jie J. Zheng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.S.); (A.V.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Saccuzzo EG, Mebrat MD, Scelsi HF, Kim M, Ma MT, Su X, Hill SE, Rheaume E, Li R, Torres MP, Gumbart JC, Van Horn WD, Lieberman RL. Competition between inside-out unfolding and pathogenic aggregation in an amyloid-forming β-propeller. Nat Commun 2024; 15:155. [PMID: 38168102 PMCID: PMC10762032 DOI: 10.1038/s41467-023-44479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Studies of folded-to-misfolded transitions using model protein systems reveal a range of unfolding needed for exposure of amyloid-prone regions for subsequent fibrillization. Here, we probe the relationship between unfolding and aggregation for glaucoma-associated myocilin. Mutations within the olfactomedin domain of myocilin (OLF) cause a gain-of-function, namely cytotoxic intracellular aggregation, which hastens disease progression. Aggregation by wild-type OLF (OLFWT) competes with its chemical unfolding, but only below the threshold where OLF loses tertiary structure. Representative moderate (OLFD380A) and severe (OLFI499F) disease variants aggregate differently, with rates comparable to OLFWT in initial stages of unfolding, and variants adopt distinct partially folded structures seen along the OLFWT urea-unfolding pathway. Whether initiated with mutation or chemical perturbation, unfolding propagates outward to the propeller surface. In sum, for this large protein prone to amyloid formation, the requirement for a conformational change to promote amyloid fibrillization leads to direct competition between unfolding and aggregation.
Collapse
Affiliation(s)
- Emily G Saccuzzo
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Mubark D Mebrat
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA
- School of Molecular Sciences, Arizona State University, Tempe, USA
| | - Hailee F Scelsi
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Minjoo Kim
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA
- School of Molecular Sciences, Arizona State University, Tempe, USA
| | - Minh Thu Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Xinya Su
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Elisa Rheaume
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, USA
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - James C Gumbart
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
- School of Physics, Georgia Institute of Technology, Atlanta, USA
| | - Wade D Van Horn
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA.
- School of Molecular Sciences, Arizona State University, Tempe, USA.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA.
| |
Collapse
|
6
|
Ng TK, Ji J, Liu Q, Yao Y, Wang WY, Cao Y, Chen CB, Lin JW, Dong G, Cen LP, Huang C, Zhang M. Evaluation of Myocilin Variant Protein Structures Modeled by AlphaFold2. Biomolecules 2023; 14:14. [PMID: 38275755 PMCID: PMC10813463 DOI: 10.3390/biom14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Deep neural network-based programs can be applied to protein structure modeling by inputting amino acid sequences. Here, we aimed to evaluate the AlphaFold2-modeled myocilin wild-type and variant protein structures and compare to the experimentally determined protein structures. Molecular dynamic and ligand binding properties of the experimentally determined and AlphaFold2-modeled protein structures were also analyzed. AlphaFold2-modeled myocilin variant protein structures showed high similarities in overall structure to the experimentally determined mutant protein structures, but the orientations and geometries of amino acid side chains were slightly different. The olfactomedin-like domain of the modeled missense variant protein structures showed fewer folding changes than the nonsense variant when compared to the predicted wild-type protein structure. Differences were also observed in molecular dynamics and ligand binding sites between the AlphaFold2-modeled and experimentally determined structures as well as between the wild-type and variant structures. In summary, the folding of the AlphaFold2-modeled MYOC variant protein structures could be similar to that determined by the experiments but with differences in amino acid side chain orientations and geometries. Careful comparisons with experimentally determined structures are needed before the applications of the in silico modeled variant protein structures.
Collapse
Affiliation(s)
- Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (T.K.N.)
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Ji
- Network & Information Centre, Shantou University, Shantou 515041, China
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (T.K.N.)
- Key Laboratory of Carbohydrate and Lipid Metabolism Research, College of Life Science and Technology, Dalian University, Dalian 116622, China
| | - Yao Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (T.K.N.)
- Shantou University Medical College, Shantou 515041, China
| | - Wen-Ying Wang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (T.K.N.)
- Shantou University Medical College, Shantou 515041, China
| | - Yingjie Cao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (T.K.N.)
| | - Chong-Bo Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (T.K.N.)
| | - Jian-Wei Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (T.K.N.)
| | - Geng Dong
- Shantou University Medical College, Shantou 515041, China
| | - Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (T.K.N.)
| | - Chukai Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (T.K.N.)
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (T.K.N.)
| |
Collapse
|
7
|
Dai A, Cheng X, Wang W, Li R, Gao X, Li S, Liu T. A novel heterozygous c.733 T > G MYOC mutation associated with juvenile-onset open-angle glaucoma in a Chinese family. Eye (Lond) 2023; 37:2488-2493. [PMID: 36543942 PMCID: PMC10397252 DOI: 10.1038/s41433-022-02359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
AIMS To detect mutations in juvenile-onset open-angle glaucoma in a Chinese family and to describe the characteristic ophthalmic phenotypes of this pedigree. METHODS There were 14 individuals in this four-generation pedigree. All living members of the family underwent comprehensive ophthalmic examinations. Five patients presented with elevated intraocular pressures. All of them shared early-onset disease, with a mean onset age of 14.4 years and continuing aggressive damage to their optic nerves. Hyperpigmentation in the trabecular meshwork and sometimes-broad iris processes were noted in this family using gonioscopy. All exons of candidate genes (MYOC, OPTN, CYP1B1) were amplified using the polymerase chain reaction, and analysed with an ABI 3700XL Genetic Analyser. RESULTS A heterozygous missense mutation in exon 3 (c.733 T > G) of the MYOC gene was found in the five JOAG patients and one 7-year-old boy with no ophthalmic manifestation of glaucoma, but it was absent in other members of the family and in the controls. This mutation resulted in a transversion of cysteine to glycine (Cys245Gly). CONCLUSIONS We concluded the novel MYOC c.733 T > G mutation found in a Chinese family with JOAG caused a severe type of JOAG exhibiting early onset, high IOP, and severe optic nerve damage. Interestingly, unlike other reported MYOC mutation families, our patients exhibited marked angle pigmentation and iris processes.
Collapse
Affiliation(s)
- Aiai Dai
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuan Cheng
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Weifeng Wang
- Department of Gastroenterology and Hepatology, Guangdong Second Provincial General Hospital, Guangdong, China
| | - Runpu Li
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Xuhui Gao
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Shuxian Li
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Tiecheng Liu
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
8
|
Saccuzzo EG, Youngblood HA, Lieberman RL. Myocilin misfolding and glaucoma: A 20-year update. Prog Retin Eye Res 2023; 95:101188. [PMID: 37217093 PMCID: PMC10330797 DOI: 10.1016/j.preteyeres.2023.101188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Mutations in the gene MYOC account for approximately 5% of cases of primary open angle glaucoma (POAG). MYOC encodes for the protein myocilin, a multimeric secreted glycoprotein composed of N-terminal coiled-coil (CC) and leucine zipper (LZ) domains that are connected via a disordered linker to a 30 kDa olfactomedin (OLF) domain. More than 90% of glaucoma-causing mutations are localized to the OLF domain. While myocilin is expressed in numerous tissues, mutant myocilin is only associated with disease in the anterior segment of the eye, in the trabecular meshwork. The prevailing pathogenic mechanism involves a gain of toxic function whereby mutant myocilin aggregates intracellularly instead of being secreted, which causes cell stress and an early timeline for TM cell death, elevated intraocular pressure, and subsequent glaucoma-associated retinal degeneration. In this review, we focus on the work our lab has conducted over the past ∼15 years to enhance our molecular understanding of myocilin-associated glaucoma, which includes details of the molecular structure and the nature of the aggregates formed by mutant myocilin. We conclude by discussing open questions, such as predicting phenotype from genotype alone, the elusive native function of myocilin, and translational directions enabled by our work.
Collapse
Affiliation(s)
- Emily G Saccuzzo
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Hannah A Youngblood
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
9
|
Scelsi HF, Hill KR, Barlow BM, Martin MD, Lieberman RL. Quantitative differentiation of benign and misfolded glaucoma-causing myocilin variants on the basis of protein thermal stability. Dis Model Mech 2023; 16:dmm049816. [PMID: 36579626 PMCID: PMC9844228 DOI: 10.1242/dmm.049816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/28/2022] [Indexed: 12/30/2022] Open
Abstract
Accurate predictions of the pathogenicity of mutations associated with genetic diseases are key to the success of precision medicine. Inherited missense mutations in the myocilin (MYOC) gene, within its olfactomedin (OLF) domain, constitute the strongest genetic link to primary open-angle glaucoma via a toxic gain of function, and thus MYOC is an attractive precision-medicine target. However, not all mutations in MYOC cause glaucoma, and common variants are expected to be neutral polymorphisms. The Genome Aggregation Database (gnomAD) lists ∼100 missense variants documented within OLF, all of which are relatively rare (allele frequency <0.001%) and nearly all are of unknown pathogenicity. To distinguish disease-causing OLF variants from benign OLF variants, we first characterized the most prevalent population-based variants using a suite of cellular and biophysical assays, and identified two variants with features of aggregation-prone familial disease variants. Next, we considered all available biochemical and clinical data to demonstrate that pathogenic and benign variants can be differentiated statistically based on a single metric: the thermal stability of OLF. Our results motivate genotyping MYOC in patients for clinical monitoring of this widespread, painless and irreversible ocular disease.
Collapse
Affiliation(s)
- Hailee F. Scelsi
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA 30332-0400, USA
| | - Kamisha R. Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA 30332-0400, USA
| | - Brett M. Barlow
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA 30332-0400, USA
| | - Mackenzie D. Martin
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA 30332-0400, USA
| | - Raquel L. Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA 30332-0400, USA
| |
Collapse
|
10
|
Sharma R, Kumari A, Kundu B, Grover A. Amyloid fibrillation of the glaucoma associated myocilin protein is inhibited by epicatechin gallate (ECG). RSC Adv 2022; 12:29469-29481. [PMID: 36320765 PMCID: PMC9562371 DOI: 10.1039/d2ra05061g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
Abstract
Inherited glaucoma is a recent addition to the inventory of diseases arising due to protein misfolding. Mutations in the olfactomedin (OLF) domain of myocilin are the most common genetic cause behind this disease. Disease associated variants of m-OLF are predisposed to misfold and aggregate in the trabecular meshwork (TM) tissue of the eye. In recent years, the nature of these aggregates was revealed to exhibit the hallmarks of amyloids. Amyloid aggregates are highly stable structures that are formed, often with toxic consequences in a number of debilitating diseases. In spite of its clinical relevance the amyloidogenic nature of m-OLF has not been studied adequately. Here we have studied the amyloid fibrillation of m-OLF and report ECG as an inhibitor against it. Using biophysical and biochemical assays, coupled with advanced microscopic evaluations we show that ECG binds and stabilizes native m-OLF and thus prevents its aggregation into amyloid fibrils. Furthermore, we have used REMD simulations to delineate the stabilizing effects of ECG on the structure of m-OLF. Collectively, we report ECG as a molecular scaffold for designing and testing of novel inhibitors against m-OLF amyloid fibrillation.
Collapse
Affiliation(s)
- Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru UniversityNew Delhi-110067India+91-8130738032
| | - Anchala Kumari
- Indian Council of Medical Research, International Health DivisionNew Delhi-110029India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology DelhiHauz KhasNew DelhiIndia – 110016
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru UniversityNew Delhi-110067India+91-8130738032
| |
Collapse
|
11
|
Zhou B, Lin X, Li Z, Yao Y, Yang J, Zhu Y. Structure‒function‒pathogenicity analysis of C-terminal myocilin missense variants based on experiments and 3D models. Front Genet 2022; 13:1019208. [PMID: 36267417 PMCID: PMC9577182 DOI: 10.3389/fgene.2022.1019208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
MYOC is a common pathogenic gene for primary open-angle glaucoma and encodes the protein named myocilin. Multiple MYOC variations have been found, with different clinical significance. However, the pathogenesis of glaucoma induced by MYOC mutations has not been fully clarified. Here, we analyze the molecular and cellular biological differences caused by multiple variant myocilins, including protein secretion characteristics, structural changes, subcellular localization, cellular autophagic activity and oxidative stress. Denaturing and nondenaturing electrophoresis showed myocilin to be a secreted protein with the tendency to self-oligomerize. The full-length myocilin and its C-terminal cleavage fragment are secreted. Secretion analysis of 23 variant myocilins indicated that secretion defects are closely related to the pathogenicity of MYOC variants. Structural analysis showed that the alteration of steric clash is associated with the secretion characteristics and pathogenicity of myocilin variants. Immunocytochemistry results demonstrated that mutated myocilins are retained in the endoplasmic reticulum and disrupt autophagy. MTT assay, MitoTracker staining, and DCFH-DA staining showed increased oxidative injury in cells expressing MYOC mutants. Taken together, MYOC mutations are able to induce cell dysfunction via secretion defects and intracellular accumulation resulting from steric clash alterations.
Collapse
Affiliation(s)
- Biting Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaojia Lin
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhong Li
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yihua Yao
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Juhua Yang
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, China
- *Correspondence: Yihua Zhu, ; Juhua Yang,
| | - Yihua Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Yihua Zhu, ; Juhua Yang,
| |
Collapse
|
12
|
Transgenic Overexpression of Myocilin Leads to Variable Ocular Anterior Segment and Retinal Alterations Associated with Extracellular Matrix Abnormalities in Adult Zebrafish. Int J Mol Sci 2022; 23:ijms23179989. [PMID: 36077382 PMCID: PMC9456529 DOI: 10.3390/ijms23179989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Myocilin is an enigmatic glaucoma-associated glycoprotein whose biological role remains incompletely understood. To gain novel insight into its normal function, we used transposon-mediated transgenesis to generate the first zebrafish line stably overexpressing myocilin [Tg(actb1:myoc-2A-mCherry)]. qPCR showed an approximately four-fold increased myocilin expression in transgenic zebrafish embryos (144 hpf). Adult (13 months old) transgenic animals displayed variable and age-dependent ocular anterior segment alterations. Almost 60% of two-year-old male, but not female, transgenic zebrafish developed enlarged eyes with severe asymmetrical and variable abnormalities in the anterior segment, characterized by corneal limbus hypertrophy, and thickening of the cornea, iris, annular ligament and lens capsule. The most severe phenotype presented small or absent ocular anterior chamber and pupils, due to iris overgrowth along with dysplastic retinal growth and optic nerve hypertrophy. Immunohistochemistry revealed increased presence of myocilin in most altered ocular tissues of adult transgenic animals, as well as signs of retinal gliosis and expanded ganglion cells and nerve fibers. The preliminary results indicate that these cells contributed to retinal dysplasia. Visual impairment was demonstrated in all old male transgenic zebrafish. Transcriptomic analysis of the abnormal transgenic eyes identified disrupted expression of genes involved in lens, muscular and extracellular matrix activities, among other processes. In summary, the developed transgenic zebrafish provides a new tool to investigate this puzzling protein and provides evidence for the role of zebrafish myocilin in ocular anterior segment and retinal biology, through the influence of extracellular matrix organization and cellular proliferation.
Collapse
|
13
|
Saccuzzo EG, Martin MD, Hill KR, Ma MT, Ku Y, Lieberman RL. Calcium dysregulation potentiates wild-type myocilin misfolding: implications for glaucoma pathogenesis. J Biol Inorg Chem 2022; 27:553-564. [PMID: 35831671 PMCID: PMC10085244 DOI: 10.1007/s00775-022-01946-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
Abstract
Myocilin is secreted from trabecular meshwork cells to an eponymous extracellular matrix that is critical for maintaining intraocular pressure. Missense mutations found in the myocilin olfactomedin domain (OLF) lead to intracellular myocilin misfolding and are causative for the heritable form of early-onset glaucoma. The OLF domain contains a unique internal, hetero-dinuclear calcium site. Here, we tested the hypothesis that calcium dysregulation causes wild-type (WT) myocilin misfolding reminiscent of that observed for disease variants. Using two cellular models expressing WT myocilin, we show that the Ca2+ ATPase channel blocker thapsigargin inhibits WT myocilin secretion. Intracellular WT myocilin is at least partly insoluble and aggregated in the endoplasmic reticulum (ER), and stains positively with an amyloid dye. By comparing the effect of thapsigargin on WT myocilin to that on a de novo secretion-competent Ca2+-free variant D478S, we discern that non-secretion of WT myocilin is due initially to calcium dysregulation, and is potentiated further by resultant ER stress. In E. coli, depletion of calcium leads to recombinant expression of misfolded isolated WT OLF but the D478S variant is still produced as a folded monomer. Treatment of cells expressing a double mutant composed of D478S and either disease variants P370L or Y437H with thapsigargin promotes its misfolding and aggregation, demonstrating the limits of D478S to correct secretion defects. Taken together, the heterodinuclear calcium site is a liability for proper folding of myocilin. Our study suggests a molecular mechanism by which WT myocilin misfolding may contribute broadly to glaucoma-associated ER stress. This study explores the effect of calcium depletion on myocilin olfactomedin domain folding.
Collapse
Affiliation(s)
- Emily G Saccuzzo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Mackenzie D Martin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Kamisha R Hill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Minh Thu Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Yemo Ku
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
14
|
Tanji T, Cohen E, Shen D, Zhang C, Yu F, Coleman AL, Zheng JJ. Age at Glaucoma Diagnosis in Germline Myocilin Mutation Patients: Associations with Polymorphisms in Protein Stabilities. Genes (Basel) 2021; 12:genes12111802. [PMID: 34828408 PMCID: PMC8623052 DOI: 10.3390/genes12111802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide, with elevated intraocular pressure (IOP) as the only known modifiable risk factor. Trabecular meshwork (TM)-inducible myocilin (the MYOC gene) was the first to be identified and linked to juvenile and primary open-angle glaucoma. It has been suggested that mutations in the MYOC gene and the aggregation of mutant myocilin in the endoplasmic reticulum (ER) of TM may cause ER stress, resulting in a reduced outflow of aqueous humor and an increase in IOP. We selected 20 MYOC mutations with experimentally determined melting temperatures of mutated myocilin proteins. We included 40 published studies with at least one glaucoma patient with one of these 20 MYOC mutations and information on age at glaucoma diagnosis. Based on data from 458 patients, we found that a statistically significant but weak correlation was present between age and melting temperature based on various assumptions for age. We therefore conclude that genetic analysis of MYOC mutations alone cannot be used to accurately predict age at glaucoma diagnosis. However, it might be an important prognostic factor combined with other clinical factors for critical and early detection of glaucoma.
Collapse
|
15
|
Martin MD, Huard DJ, Guerrero-Ferreira RC, Desai IM, Barlow BM, Lieberman RL. Molecular architecture and modifications of full-length myocilin. Exp Eye Res 2021; 211:108729. [DOI: 10.1016/j.exer.2021.108729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 01/06/2023]
|
16
|
Is Obesity a Risk or Protective Factor for Open-Angle Glaucoma in Adults? A Two-Database, Asian, Matched-Cohort Study. J Clin Med 2021; 10:jcm10174021. [PMID: 34501469 PMCID: PMC8432455 DOI: 10.3390/jcm10174021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Obesity contributes to multiple systemic disorders; however, extensive discussion regarding obesity and open-angle glaucoma (OAG) remains limited, and conclusions in the existing literature diverge. This study aims to analyze the risk of OAG among obese adults in Taiwan. In this study, adults (aged ≥18 years) with a diagnostic code of obesity or morbid obesity registered in the Longitudinal Health Insurance Database (LHID) 2000 and LHID2005 from 1 January 2001 to 31 December 2010 were included. All adults were traced until the diagnosis of OAG, the occurrence of death, or 31 December 2013. Risk of OAG was significantly higher in obese adults than in non-obese adults after multivariable adjustment (adjusted hazard ratio (aHR): 1.43 (95% confidence interval (CI) 1.11-1.84)/aHR: 1.54 (95% CI 1.23-1.94) in the LHID2000/LHID2005). Both databases demonstrated that young obese adults (aged ≤40 years) had a remarkably increased risk of OAG compared with young non-obese adults (aHR 3.08 (95% CI 1.82-5.21)/aHR 3.81 (95% CI 2.26-6.42) in the LHID2000/LHID2005). This two-database matched-cohort study suggests that obese adults have an increased risk of OAG. In young adults, in particular, obesity could be a potential risk factor of OAG.
Collapse
|
17
|
Sharma R, Grover A. Myocilin-associated Glaucoma: A Historical Perspective and Recent Research Progress. Mol Vis 2021; 27:480-493. [PMID: 34497454 PMCID: PMC8403517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/18/2021] [Indexed: 10/29/2022] Open
Abstract
Glaucoma a debilitating disease, is globally the second most common kind of permanent blindness. Primary open-angle glaucoma (POAG) is its most prevalent form and is often linked with alterations in the myocilin gene (MYOC). MYOC encodes the myocilin protein, which is expressed throughout the body, but primarily in trabecular meshwork (TM) tissue in the eyes. TM is principally involved in regulating intraocular pressure (IOP), and elevated IOP is the main risk factor associated with glaucoma. The myocilin protein's function remains unknown; however, mutations compromise its folding and processing inside TM cells, contributing to the glaucoma phenotype. While glaucoma is a complex disease with various molecules and factors as contributing causes, the role played by myocilin has been the most widely studied. The current review describes the present understanding of myocilin and its association with glaucoma and aims to shift the focus toward developing targeted therapies for treating glaucoma patients with variations in MYOC.
Collapse
|
18
|
Scelsi HF, Barlow BM, Saccuzzo EG, Lieberman RL. Common and rare myocilin variants: Predicting glaucoma pathogenicity based on genetics, clinical, and laboratory misfolding data. Hum Mutat 2021; 42:903-946. [PMID: 34082484 DOI: 10.1002/humu.24238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Rare variants of the olfactomedin domain of myocilin are considered causative for inherited, early-onset open-angle glaucoma, with a misfolding toxic gain-of-function pathogenic mechanism detailed by 20 years of laboratory research. Myocilin variants are documented in the scientific literature and identified through large-scale genetic sequencing projects such as those curated in the Genome Aggregation Database (gnomAD). In the absence of key clinical and laboratory information, however, the pathogenicity of any given variant is not clear, because glaucoma is a heterogeneous and prevalent age-onset disease, and common variants are likely benign. In this review, we reevaluate the likelihood of pathogenicity for the ~100 nonsynonymous missense, insertion-deletion, and premature termination of myocilin olfactomedin variants documented in the literature. We integrate available clinical, laboratory cellular, biochemical and biophysical data, the olfactomedin domain structure, and population genetics data from gnomAD. Of the variants inspected, ~50% can be binned based on a preponderance of data, leaving many of uncertain pathogenicity that motivate additional studies. Ultimately, the approach of combining metrics from different disciplines will likely resolve outstanding complexities regarding the role of this misfolding-prone protein within the context of a multifactorial and prevalent ocular disease, and pave the way for new precision medicine therapeutics.
Collapse
Affiliation(s)
- Hailee F Scelsi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brett M Barlow
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Emily G Saccuzzo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Lieberman RL, Ma MT. Molecular Insights into Myocilin and Its Glaucoma-Causing Misfolded Olfactomedin Domain Variants. Acc Chem Res 2021; 54:2205-2215. [PMID: 33847483 DOI: 10.1021/acs.accounts.1c00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous human disorders arise due to the inability of a particular protein to adopt its correct three-dimensional structure in the context of the cell, leading to aggregation. A new addition to the list of such protein conformational disorders is the inherited subtype of glaucoma. Different and rare coding mutations in myocilin, found in families throughout the world, are causal for early onset ocular hypertension, a key glaucoma risk factor. Myocilin is expressed at high levels in the trabecular meshwork (TM) extracellular matrix. The TM is the anatomical region of the eye that regulates intraocular pressure, and its dysfunction is associated with most forms of glaucoma. Disease variants, distributed across the 30 kDa olfactomedin domain (mOLF), cause myocilin to be sequestered intracellularly instead of being secreted to the TM extracellular matrix. The working hypothesis is that the intracellular aggregates cause a toxic gain of function: TM cell death is thought to lead to TM matrix dysfunction, hastening elevated intraocular pressure and subsequent vision loss.Our lab has provided molecular underpinnings for myocilin structure and misfolding, placing myocilin-associated glaucoma within the context of amyloid diseases like Alzheimer and diabetes. We have dissected complexities of the modular wild-type (WT) myocilin structure and associated misfolded states. Our data support the model that full-length WT myocilin adopts a Y-shaped dimer-of-dimers conferred by two different coiled-coil regions, generating new hypotheses regarding its mysterious function. The mOLF β-propellers are paired at each tip of the Y. Disease-associated variants aggregate because mOLFs are less stable, leading to facile aggregation under physiological conditions (37 °C, pH 7.2). Mutant myocilin aggregates exhibit numerous characteristics of amyloid in vitro and in cells, and aggregation proceeds from a partially folded state accessed preferentially by disease variants at physiological conditions. Interestingly, destabilization is not a universal consequence of mutation. We identified counterintuitive, stabilizing point variants that adopt a non-native structure and do not aggregate; however, these variants have not been identified in glaucoma patients. An ongoing effort is predicting the consequence of any given mutation. This effort is relevant to interpreting data from large-scale sequencing projects where clinical and family history data are not available. Finally, our work suggests avenues to develop disease-modifying precision medicines for myocilin-associated glaucoma.
Collapse
Affiliation(s)
- Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, Georgia 30332-0400, United States
| | - Minh Thu Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
20
|
Rozpędek-Kamińska W, Galita G, Siwecka N, Carroll SL, Diehl JA, Kucharska E, Pytel D, Majsterek I. The Potential Role of Small-Molecule PERK Inhibitor LDN-0060609 in Primary Open-Angle Glaucoma Treatment. Int J Mol Sci 2021; 22:ijms22094494. [PMID: 33925820 PMCID: PMC8123501 DOI: 10.3390/ijms22094494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/13/2023] Open
Abstract
Primary open-angle glaucoma (POAG) constitutes the most common type of glaucoma. Emerging evidence suggests that Endoplasmic Reticulum (ER) stress and the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-mediated Unfolded Protein Response (UPR) signaling pathway play a key role in POAG pathogenesis. Thus, the main aim of the study was to evaluate the effectiveness of the PERK inhibitor LDN-0060609 in cellular model of glaucoma using primary human trabecular meshwork (HTM) cells. To evaluate the level of the ER stress marker proteins, Western blotting and TaqMan gene expression assay were used. The cytotoxicity was measured by XTT, LDH assays and Giemsa staining, whereas genotoxicity via comet assay. Changes in cell morphology were assessed by phase-contrast microscopy. Analysis of apoptosis was performed by caspase-3 assay and flow cytometry (FC), whereas cell cycle progression by FC. The results obtained have demonstrated that LDN-0060609 triggered a significant decrease of ER stress marker proteins within HTM cells with induced ER stress conditions. Moreover, LDN-0060609 effectively increased viability, reduced DNA damage, increased proliferation, restored normal morphology, reduced apoptosis and restored normal cell cycle distribution of HTM cells with induced ER stress conditions. Thereby, PERK inhibitors, such as LDN-0060609, may provide an innovative, ground-breaking treatment strategy against POAG.
Collapse
Affiliation(s)
- Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (N.S.)
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (N.S.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (N.S.)
| | - Steven L. Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - John Alan Diehl
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ewa Kucharska
- Department of Gerontology, Geriatrics and Social Work, Jesuit University Ignatianum, 31-501 Krakow, Poland;
| | - Dariusz Pytel
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (N.S.)
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Correspondence: (D.P.); (I.M.); Tel.: +48-42-272-53-00 (D.P. & I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (N.S.)
- Correspondence: (D.P.); (I.M.); Tel.: +48-42-272-53-00 (D.P. & I.M.)
| |
Collapse
|
21
|
Li X, Xiao X, Li S, Sun W, Wang P, Zhang Q. Systemic Genotype-Phenotype Analysis of MYOC Variants Based on Exome Sequencing and Literature Review. Asia Pac J Ophthalmol (Phila) 2021; 10:173-182. [PMID: 33793440 DOI: 10.1097/apo.0000000000000382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE This study aims to characterize disease-causing variants in the myocilin gene (MYOC), which is associated with autosomal dominant primary open-angle glaucoma (adPOAG). DESIGN Case-control study. METHODS MYOC variants were collected from in-house exome sequencing data of 7092 individuals. Genotype-phenotype analysis and bioinformatics evaluation were used to distinguish potential pathogenic variants for POAG from others. MYOC mutations in published works of literature were also systemically analyzed. RESULTS In total, 53 variants in MYOC were detected in the 7092 subjects, including 45 rare variants (MAF < 0.01) and 8 polymorphisms (MAF ≥ 0.01), or 48 missense variants and 5 truncation variants. There was no difference in the frequency of the 8 polymorphisms between subjects with and without POAG (P > 0.05). The total number of rare MYOC variants was significantly higher in POAG than that in in-house controls (P = 3.31E-14). The pathogenic/likely pathogenic variants (p.P254T, p.S341P, p.G367R, p.P370L, p.D378G, p.C433Y, and p.L486F) were exclusively present in 8 POAG but absent in in-house controls (P = 2.79E-10). Rare truncation MYOC variants were not enriched in POAG as compared with those in in-house controls (P = 0.28). Further analysis of previously reported MYOC variants suggested that pathogenic/likely pathogenic variants were enriched in the conserved olfactomedin domain. Truncation MYOC variants were scattered in the coding region, where only p.Q368∗ had relatively strong evidence to be causative for adPOAG, whereas most others are questionable. CONCLUSIONS Most MYOC variants contributing to adPOAG could be characterized as rare missense variants located in OLF-domain and predicted to be damaging through multiple tools. The effect of other variants, especially for truncation variants (except for p.Q368∗) need further clarification.
Collapse
Affiliation(s)
- Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
22
|
Knockout of myoc Provides Evidence for the Role of Myocilin in Zebrafish Sex Determination Associated with Wnt Signalling Downregulation. BIOLOGY 2021; 10:biology10020098. [PMID: 33573230 PMCID: PMC7912607 DOI: 10.3390/biology10020098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Myocilin is a secreted glycoprotein with a poorly understood biological function and it is mainly known as the first glaucoma gene. To explore the normal role of this protein in vivo we developed a myoc knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. This line carries a homozygous variant (c.236_239delinsAAAGGGGAAGGGGA) that is predicted to result in a loss-of-function of the protein because of a premature termination codon p.(V75EfsX60) that resulted in a significant reduction of myoc mRNA levels. Immunohistochemistry showed the presence of myocilin in wild-type embryonic (96 h post-fertilization) anterior segment eye structures and caudal muscles. The protein was also detected in different adult ocular and non-ocular tissues. No gross macroscopic or microscopic alterations were identified in the KO zebrafish, but, remarkably, we observed absence of females among the adult KO animals and apoptosis in the immature juvenile gonad (28 dpf) of these animals, which is characteristic of male development. Transcriptomic analysis showed that adult KO males overexpressed key genes involved in male sex determination and presented differentially expressed Wnt signalling genes. These results show that myocilin is required for ovary differentiation in zebrafish and provides in vivo support for the role of myocilin as a Wnt signalling pathway modulator. In summary, this myoc KO zebrafish line can be useful to investigate the elusive function of this protein, and it provides evidence for the unexpected function of myocilin as a key factor in zebrafish sex determination.
Collapse
|
23
|
The Genetic and Endoplasmic Reticulum-Mediated Molecular Mechanisms of Primary Open-Angle Glaucoma. Int J Mol Sci 2020; 21:ijms21114171. [PMID: 32545285 PMCID: PMC7312987 DOI: 10.3390/ijms21114171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is a heterogenous, chronic, progressive group of eye diseases, which results in irreversible loss of vision. There are several types of glaucoma, whereas the primary open-angle glaucoma (POAG) constitutes the most common type of glaucoma, accounting for three-quarters of all glaucoma cases. The pathological mechanisms leading to POAG pathogenesis are multifactorial and still poorly understood, but it is commonly known that significantly elevated intraocular pressure (IOP) plays a crucial role in POAG pathogenesis. Besides, genetic predisposition and aggregation of abrogated proteins within the endoplasmic reticulum (ER) lumen and subsequent activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent unfolded protein response (UPR) signaling pathway may also constitute important factors for POAG pathogenesis at the molecular level. Glaucoma is commonly known as a ‘silent thief of sight’, as it remains asymptomatic until later stages, and thus its diagnosis is frequently delayed. Thereby, detailed knowledge about the glaucoma pathophysiology is necessary to develop both biochemical and genetic tests to improve its early diagnosis as well as develop a novel, ground-breaking treatment strategy, as currently used medical therapies against glaucoma are limited and may evoke numerous adverse side-effects in patients.
Collapse
|
24
|
Naik S, Pandey A, Lewis SA, Rao BSS, Mutalik S. Neuroprotection: A versatile approach to combat glaucoma. Eur J Pharmacol 2020; 881:173208. [PMID: 32464192 DOI: 10.1016/j.ejphar.2020.173208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022]
Abstract
In most retinal diseases, neuronal loss is the main cause of vision loss. Neuroprotection is the alteration of neurons and/or their environment to encourage the survival and function of the neurons, especially in environments that are deleterious to the neuronal health. The area of neuroprotection progresses with a therapeutically-based hope of improving vision and clinical outcomes for patients through the developments in neurotrophic therapy, antioxidative therapy, anti-excitotoxic, anti-ischemic, anti-inflammatory, and anti-apoptotic care. In this review, we summarize the various neuroprotection strategies for the treatment of glaucoma, genetics of glaucoma and the role of various nanoplatforms in the treatment of glaucoma.
Collapse
Affiliation(s)
- Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India.
| |
Collapse
|
25
|
Liu T, Tang C, Shi X. Analysis of variants in Chinese individuals with primary open-angle glaucoma using molecular inversion probe (MIP)-based panel sequencing. Mol Vis 2020; 26:378-391. [PMID: 32476818 PMCID: PMC7245608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/19/2020] [Indexed: 10/29/2022] Open
Abstract
Purpose Family-based genetic linkage analysis and genome-wide association studies (GWASs) have identified many genomic loci associated with primary open-angle glaucoma (POAG). Several causative genes of POAG have been intensively analyzed by sequencing in different populations. However, few investigations have been conducted on the identification of variants of coding region in the genes identified in GWASs. Therefore, further research is needed to investigate whether they harbor pathogenically relevant rare coding variants and account for the observed association. Methods To identify the potentially disease-relevant variants (PDVs) in POAG-associated genes in Chinese patients, we applied molecular inversion probe (MIP)-based panel sequencing to analyze 26 candidate genes in 235 patients with POAG and 241 control subjects. Results The analysis identified 82 PDVs in 66 individuals across 235 patients with POAG. By comparison, only 18 PDVs in 19 control subjects were found, indicating an enrichment of PDVs in the POAG cohort (28.1% versus 7.9%, p = 8.629e-09). Among 26 candidate genes, the prevalence rate of PDVs in five genes showed a statistically significant difference between patients and controls (33 out of 235 versus 1 out of 241, p = 4.533e-10), including ATXN2 (p = 0.0033), TXNRD2 (p = 0.0190), MYOC (p = 0.0140), FOXC1 (p = 0.0140), and CDKN2B (p = 0.0287). Furthermore, two sisters harboring a stop-loss mutation EFEMP1 p.Ter494Glu were found in the POAG cohort, and further analysis of the family strongly suggested that EFEMP1 p.Ter494Glu was a potentially disease-causing mutation for POAG. A statistically significant difference in age at diagnosis between patients with PDVs and those without PDVs was found, implying that some of the identified PDVs may have a role in promoting the early onset of POAG disease. Conclusions The results suggest that some of the associations identified in POAG risk loci can be ascribed to rare coding variants with likely functional effects that modify POAG risk.
Collapse
Affiliation(s)
- Ting Liu
- Department of ophthalmology, Daping Hospital of the Army Medical University, Chongqing, China
| | - Chao Tang
- Radiation & Cancer Biology Laboratory, Oncology Radiotherapy Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Xiaolong Shi
- Radiation & Cancer Biology Laboratory, Oncology Radiotherapy Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|
26
|
Balendra SI, Zollet P, Cisa Asinari Di Gresy E Casasca G, Cordeiro MF. Personalized approaches for the management of glaucoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1756770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shiama Indu Balendra
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College, London, UK
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London, UK
| | - Piero Zollet
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College, London, UK
- Department of Ophthalmology, University Vita-Salute San Raffaele, San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Cisa Asinari Di Gresy E Casasca
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College, London, UK
- Department of Ophthalmology, University Vita-Salute San Raffaele, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Francesca Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College, London, UK
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
27
|
Gupta V, Somarajan BI, Gupta S, Walia GK, Singh A, Sofi R, Chaudhary RS, Sharma A. The mutational spectrum of Myocilin gene among familial versus sporadic cases of Juvenile onset open angle glaucoma. Eye (Lond) 2020; 35:400-408. [PMID: 32300215 DOI: 10.1038/s41433-020-0850-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Juvenile onset primary open angle glaucoma (JOAG) is a rare disorder associated with high IOP and progressive optic neuropathy in patients diagnosed before the age of 40 years. While in some populations it has primarily an autosomal dominant pattern of inheritance, in others it occurs in a primarily sporadic form. The main aim of the study was to assess the relative prevalence of Myocilin (MYOC) mutations in familial versus sporadic cases of JOAG. METHODS We screened 92 unrelated (sporadic) JOAG patients, and 22 affected families (70 affected members and 36 unaffected) for variations in the MYOC gene. We also analyzed the clinical features associated with these variations. RESULTS Three coding sequence variants were identified as mutations causing JOAG. Four families segregated distinct mutations at Gly367Arg, and two families at Gln337Arg, while only two sporadic JOAG cases harbored MYOC mutations (Gly367Arg and Gln48His). The frequency of MYOC mutations in familial cases (27%) was significantly higher than in sporadic JOAG cases (2%); p = 0.001. A 90% penetrance for the Gly367Arg variant was seen by the age of 40 years in our patients. Characteristic allele signatures, indicative of specific founder effects, were not observed for the Gly367Arg mutation that was looked for in 12 patients among 2 geographically close families, which harbored this mutation. CONCLUSION Our data demonstrated that genetic screening for MYOC mutations should be focused toward cases with familial rather than sporadically occurring JOAG.
Collapse
Affiliation(s)
- Viney Gupta
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| | - Bindu I Somarajan
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Shikha Gupta
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | | | - Abhishek Singh
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Rayees Sofi
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Richard Sher Chaudhary
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Arundhati Sharma
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
28
|
Childhood glaucoma genes and phenotypes: Focus on FOXC1 mutations causing anterior segment dysgenesis and hearing loss. Exp Eye Res 2019; 190:107893. [PMID: 31836490 DOI: 10.1016/j.exer.2019.107893] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/16/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022]
Abstract
Childhood glaucoma is an important cause of blindness world-wide. Eleven genes are currently known to cause inherited forms of glaucoma with onset before age 20. While all the early-onset glaucoma genes cause severe disease, considerable phenotypic variability is observed among mutations carriers. In particular, FOXC1 genetic variants are associated with a broad range of phenotypes including multiple forms of glaucoma and also systemic abnormalities, especially hearing loss. FOXC1 is a member of the forkhead family of transcription factors and is involved in neural crest development necessary for formation of anterior eye structures and also pharyngeal arches that form the middle ear bones. In this study we review the clinical phenotypes reported for known FOXC1 mutations and show that mutations in patients with reported ocular anterior segment abnormalities and hearing loss primarily disrupt the critically important forkhead domain. These results suggest that optimal care for patients affected with anterior segment dysgenesis should include screening for FOXC1 mutations and also testing for hearing loss.
Collapse
|
29
|
Pronker MF, van den Hoek H, Janssen BJC. Design and structural characterisation of olfactomedin-1 variants as tools for functional studies. BMC Mol Cell Biol 2019; 20:50. [PMID: 31726976 PMCID: PMC6857237 DOI: 10.1186/s12860-019-0232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Olfactomedin-1 (Olfm1; also known as Noelin or Pancortin) is a highly-expressed secreted brain and retina protein and its four isoforms have different roles in nervous system development and function. Structural studies showed that the long Olfm1 isoform BMZ forms a disulfide-linked tetramer with a V-shaped architecture. The tips of the Olfm1 "V" each consist of two C-terminal β-propeller domains that enclose a calcium binding site. Functional characterisation of Olfm1 may be aided by new biochemical tools derived from these core structural elements. RESULTS Here we present the production, purification and structural analysis of three novel monomeric, dimeric and tetrameric forms of mammalian Olfm1 for functional studies. We characterise these constructs structurally by high-resolution X-ray crystallography and small-angle X-ray scattering. The crystal structure of the Olfm1 β-propeller domain (to 1.25 Å) represents the highest-resolution structure of an olfactomedin family member to date, revealing features such as a hydrophilic tunnel containing water molecules running into the core of the domain where the calcium binding site resides. The shorter Olfactomedin-1 isoform BMY is a disulfide-linked tetramer with a shape similar to the corresponding region in the longer BMZ isoform. CONCLUSIONS These recombinantly-expressed protein tools should assist future studies, for example of biophysical, electrophysiological or morphological nature, to help elucidate the functions of Olfm1 in the mature mammalian brain. The control over the oligomeric state of Olfm1 provides a firm basis to better understand the role of Olfm1 in the (trans-synaptic) tethering or avidity-mediated clustering of synaptic receptors such as post-synaptic AMPA receptors and pre-synaptic amyloid precursor protein. In addition, the variation in domain composition of these protein tools provides a means to dissect the Olfm1 regions important for receptor binding.
Collapse
Affiliation(s)
- Matti F Pronker
- MRC Laboratory of Molecular Biology, Division of Neurobiology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. .,Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Hugo van den Hoek
- Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Department of Molecular Structural Biology, Max Planck institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Bert J C Janssen
- Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
30
|
Different Grp94 components interact transiently with the myocilin olfactomedin domain in vitro to enhance or retard its amyloid aggregation. Sci Rep 2019; 9:12769. [PMID: 31484937 PMCID: PMC6726633 DOI: 10.1038/s41598-019-48751-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
The inherited form of open angle glaucoma arises due to a toxic gain-of-function intracellular misfolding event involving a mutated myocilin olfactomedin domain (OLF). Mutant myocilin is recognized by the endoplasmic reticulum (ER)-resident heat shock protein 90 paralog, glucose regulated protein 94 (Grp94), but their co-aggregation precludes mutant myocilin clearance by ER-associated degradation. When the Grp94-mutant myocilin interaction is abrogated by inhibitors or siRNA, mutant myocilin is efficiently degraded. Here we dissected Grp94 into component domains (N, NM, MC) to better understand the molecular factors governing its interaction with OLF. We show that the Grp94 N-terminal nucleotide-binding N domain is responsible for accelerating OLF aggregation in vitro. Upon inhibiting the isolated N domain pharmacologically or removing the Pre-N terminal 57 residues from full-length Grp94, OLF aggregation rates revert to those seen for OLF alone, but only pharmacological inhibition rescues co-aggregation. The Grp94-OLF interaction is below the detection limit of fluorescence polarization measurements, but chemical crosslinking paired with mass spectrometry analyses traps a reproducible interaction between OLF and the Grp94 N domain, as well as between OLF and the Grp94 M domain. The emerging molecular-level picture of quinary interactions between Grp94 and myocilin points to a role for the far N-terminal sequence of the Grp94 N domain and a cleft in the M domain. Our work further supports drug discovery efforts to inhibit these interactions as a strategy to treat myocilin-associated glaucoma.
Collapse
|
31
|
Hill SE, Cho H, Raut P, Lieberman RL. Calcium-ligand variants of the myocilin olfactomedin propeller selected from invertebrate phyla reveal cross-talk with N-terminal blade and surface helices. Acta Crystallogr D Struct Biol 2019; 75:817-824. [PMID: 31478904 PMCID: PMC6719662 DOI: 10.1107/s205979831901074x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/31/2019] [Indexed: 11/10/2022] Open
Abstract
Olfactomedins are a family of modular proteins found in multicellular organisms that all contain five-bladed β-propeller olfactomedin (OLF) domains. In support of differential functions for the OLF propeller, the available crystal structures reveal that only some OLF domains harbor an internal calcium-binding site with ligands derived from a triad of residues. For the myocilin OLF domain (myoc-OLF), ablation of the ion-binding site (triad Asp, Asn, Asp) by altering the coordinating residues affects the stability and overall structure, in one case leading to misfolding and glaucoma. Bioinformatics analysis reveals a variety of triads with possible ion-binding characteristics lurking in OLF domains in invertebrate chordates such as Arthropoda (Asp-Glu-Ser), Nematoda (Asp-Asp-His) and Echinodermata (Asp-Glu-Lys). To test ion binding and to extend the observed connection between ion binding and distal structural rearrangements, consensus triads from these phyla were installed in the myoc-OLF. All three protein variants exhibit wild-type-like or better stability, but their calcium-binding properties differ, concomitant with new structural deviations from wild-type myoc-OLF. Taken together, the results indicate that calcium binding is not intrinsically destabilizing to myoc-OLF or required to observe a well ordered side helix, and that ion binding is a differential feature that may underlie the largely elusive biological function of OLF propellers.
Collapse
Affiliation(s)
- Shannon E. Hill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400, USA
| | - Hayeon Cho
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400, USA
| | - Priyam Raut
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive NW, Atlanta, GA 30318, USA
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400, USA
| |
Collapse
|
32
|
Hill SE, Kwon MS, Martin MD, Suntharalingam A, Hazel A, Dickey CA, Gumbart JC, Lieberman RL. Stable calcium-free myocilin olfactomedin domain variants reveal challenges in differentiating between benign and glaucoma-causing mutations. J Biol Chem 2019; 294:12717-12728. [PMID: 31270212 PMCID: PMC6709634 DOI: 10.1074/jbc.ra119.009419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Nonsynonymous gene mutations can be beneficial, neutral, or detrimental to the stability, structure, and biological function of the encoded protein, but the effects of these mutations are often not readily predictable. For example, the β-propeller olfactomedin domain of myocilin (mOLF) exhibits a complex interrelationship among structure(s), stability, and aggregation. Numerous mutations within mOLF are linked to glaucoma; the resulting variants are less stable, aggregation-prone, and sequestered intracellularly, causing cytotoxicity. Here, we report the first stable mOLF variants carrying substitutions in the calcium-binding site that exhibit solution characteristics indistinguishable from those of glaucoma variants. Crystal structures of these stable variants at 1.8-2.0-Å resolution revealed features that we could not predict by molecular dynamics simulations, including loss of loop structure, helix unwinding, and a blade shift. Double mutants that combined a stabilizing substitution and a selected glaucoma-causing single-point mutant rescued in vitro folding and stability defects. In the context of full-length myocilin, secretion of stable single variants was indistinguishable from that of the WT protein, and the double mutants were secreted to varying extents. In summary, our finding that mOLF can tolerate particular substitutions that render the protein stable despite a conformational switch emphasizes the complexities in differentiating between benign and glaucoma-causing variants and provides new insight into the possible biological function of myocilin.
Collapse
Affiliation(s)
- Shannon E. Hill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Michelle S. Kwon
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Mackenzie D. Martin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Amirthaa Suntharalingam
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida 33613
| | - Anthony Hazel
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Chad A. Dickey
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida 33613
| | - James C. Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332,School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, To whom correspondence should be addressed:
School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA 30332-0400. E-mail:
| |
Collapse
|
33
|
Sears NC, Boese EA, Miller MA, Fingert JH. Mendelian genes in primary open angle glaucoma. Exp Eye Res 2019; 186:107702. [PMID: 31238079 DOI: 10.1016/j.exer.2019.107702] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
Mutations in each of three genes, myocilin (MYOC), optineurin (OPTN), and TANK binding kinase 1 (TBK1), may cause primary open-angle glaucoma (POAG) that is inherited as a Mendelian trait. MYOC mutations cause 3-4% of POAG cases with IOP >21 mmHg, while mutations in OPTN, TBK1, and MYOC each cause ∼1% of POAG with IOP ≤21 mmHg, i.e. normal tension glaucoma. Identification of these disease-causing genes has provided insights into glaucoma pathogenesis. Mutations in MYOC cause a cascade of abnormalities in the trabecular meshwork including intracellular retention of MYOC protein, decreased aqueous outflow, higher intraocular pressure, and glaucoma. Investigation of MYOC mutations demonstrated that abnormal retention of intracellular MYOC and stimulation of endoplasmic reticular (ER) stress may be important steps in the development of MYOC-associated glaucoma. Mutations in OPTN and TBK1 cause a dysregulation of autophagy which may directly cause retinal ganglion cell damage and normal tension glaucoma. Discovery of these Mendelian causes of glaucoma has also provided a new set of potential therapeutic targets that may ultimately lead to novel, gene-directed glaucoma treatments.
Collapse
Affiliation(s)
- Nathan C Sears
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erin A Boese
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mathew A Miller
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John H Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
34
|
Patterson-Orazem AC, Lieberman RL. Antibodies Used to Detect Glaucoma-Associated Myocilin: More or Less Than Meets the Eye? Invest Ophthalmol Vis Sci 2019; 60:2034-2037. [PMID: 31067323 PMCID: PMC6890424 DOI: 10.1167/iovs.19-26843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antibodies are key reagents used in vision research, indeed across biomedical research, but they often do not reveal the whole story about a sample. It is important for researchers to be aware of aspects of antibodies that may affect or limit data interpretation. Federal agencies now require funded grants to demonstrate how they will authenticate reagents used. There is also a push for recombinant antibodies, enabled by phage display technology awarded the 2018 Nobel Prize in Chemistry, which allow for thorough validation and a fixed DNA sequence. Here, we discuss how issues surrounding antibodies are pertinent to detecting myocilin, a protein found in trabecular meshwork and associated with a portion of hereditary glaucoma. Confirmation of myocilin expression in tissues and cell culture has been adopted as validation standard in trabecular meshwork research; thus, a discussion of antibody characteristics and fidelity is critical. Further, based on our basic structural understanding of myocilin architecture and its biophysical aggregation properties, we provide a wish list for the characteristics of next-generation antibody reagents for vision researchers. In the long term, well-characterized antibodies targeting myocilin will enable new insights into its function and involvement in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Athéna C Patterson-Orazem
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
35
|
Svidnicki PV, Braghini CA, Costa VP, Schimiti RB, de Vasconcellos JPC, de Melo MB. Occurrence of MYOC and CYP1B1 variants in juvenile open angle glaucoma Brazilian patients. Ophthalmic Genet 2019; 39:717-724. [PMID: 30484747 DOI: 10.1080/13816810.2018.1546405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The purpose of this study was to screen juvenile open angle glaucoma (JOAG) patients from Brazil for variants within the MYOC and CYP1B1 genes. MATERIAL AND METHODS In this study, we evaluated the coding regions of MYOC and CYP1B1 genes in 100 non-related patients with JOAG and 200 controls through Sanger sequencing. We also tested the most frequent single nucleotide variants of CYP1B1 for association with JOAG. RESULTS Sixteen different sequence variants in the MYOC gene were observed in JOAG patients: eight variants were described as neutral and eight were identified in 34 out of 100 patients with JOAG and no controls, thus being considered damaging. In the CYP1B1 gene, nine neutral variants and two damaging alterations were found among JOAG patients. No association between CYP1B1 variants and JOAG was detected. CONCLUSION While MYOC damaging alterations were highly prevalent (34%), CYP1B1 damaging variants were less frequent (2%) in this cohort of Brazilian JOAG patients.
Collapse
Affiliation(s)
- Paulo Vinicius Svidnicki
- a Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering - CBMEG , University of Campinas - UNICAMP , Campinas , SP , Brazil
| | - Carolina Ayumi Braghini
- a Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering - CBMEG , University of Campinas - UNICAMP , Campinas , SP , Brazil
| | - Vital Paulino Costa
- b Department of Ophthalmology, Faculty of Medical Sciences , University of Campinas - UNICAMP , Campinas , SP , Brazil
| | - Rui Barroso Schimiti
- b Department of Ophthalmology, Faculty of Medical Sciences , University of Campinas - UNICAMP , Campinas , SP , Brazil.,c Glaucoma Service , Hoftalon Hospital , Londrina , PR , Brazil
| | | | - Mônica Barbosa de Melo
- a Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering - CBMEG , University of Campinas - UNICAMP , Campinas , SP , Brazil
| |
Collapse
|
36
|
Patterson-Orazem AC, Hill SE, Wang Y, Dominic IM, Hall CK, Lieberman RL. Differential Misfolding Properties of Glaucoma-Associated Olfactomedin Domains from Humans and Mice. Biochemistry 2019; 58:1718-1727. [PMID: 30802039 DOI: 10.1021/acs.biochem.8b01309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutations in myocilin, predominantly within its olfactomedin (OLF) domain, are causative for the heritable form of open angle glaucoma in humans. Surprisingly, mice expressing Tyr423His mutant myocilin, corresponding to a severe glaucoma-causing mutation (Tyr437His) in human subjects, exhibit a weak, if any, glaucoma phenotype. To address possible protein-level discrepancies between mouse and human OLFs, which might lead to this outcome, biophysical properties of mouse OLF were characterized for comparison with those of human OLF. The 1.55 Å resolution crystal structure of mouse OLF reveals an asymmetric 5-bladed β-propeller that is nearly indistinguishable from previous structures of human OLF. Wild-type and selected mutant mouse OLFs mirror thermal stabilities of their human OLF counterparts, including characteristic stabilization in the presence of calcium. Mouse OLF forms thioflavin T-positive aggregates with a similar end-point morphology as human OLF, but amyloid aggregation kinetic rates of mouse OLF are faster than human OLF. Simulations and experiments support the interpretation that kinetics of mouse OLF are faster because of a decreased charge repulsion arising from more neutral surface electrostatics. Taken together, phenotypic differences observed in mouse and human studies of mutant myocilin could be a function of aggregation kinetics rates, which would alter the lifetime of putatively toxic protofibrillar intermediates.
Collapse
Affiliation(s)
- Athéna C Patterson-Orazem
- School of Chemistry & Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332-0400 , United States
| | - Shannon E Hill
- School of Chemistry & Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332-0400 , United States
| | - Yiming Wang
- Department of Chemical & Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695-7905 , United States
| | - Iramofu M Dominic
- School of Chemistry & Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332-0400 , United States
| | - Carol K Hall
- Department of Chemical & Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695-7905 , United States
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332-0400 , United States
| |
Collapse
|
37
|
Hamada N, Azizova TV, Little MP. Glaucomagenesis following ionizing radiation exposure. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 779:36-44. [PMID: 31097150 PMCID: PMC10654893 DOI: 10.1016/j.mrrev.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
Glaucoma is a group of optic neuropathies causing optic nerve damage and visual field defects, and is one of the leading causes of blindness. Nearly a century has passed since the first report of glaucoma manifested following ionizing radiation therapy of cancers. Nevertheless, associations between glaucoma and radiation exposures, a dose response relationship, and the mechanistic underpinnings remain incompletely understood. Here we review the current knowledge on manifestations and mechanisms of radiogenic glaucoma. There is some evidence that neovascular glaucoma is manifest relatively quickly, within a few years after high-dose and high dose-rate radiotherapeutic exposure, but little evidence of excess risks of glaucoma after exposure to much lower doses or dose rates. As such, glaucoma appears to have some of the characteristics of a tissue reaction effect, with a threshold of at least 5 Gy but possibly much higher.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo, 201-8511, Japan.
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, 456780, Russia.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, MSC 9778, Bethesda, MD, 20892-9778, USA.
| |
Collapse
|
38
|
Aroca-Aguilar JD, Fernández-Navarro A, Ontañón J, Coca-Prados M, Escribano J. Identification of myocilin as a blood plasma protein and analysis of its role in leukocyte adhesion to endothelial cell monolayers. PLoS One 2018; 13:e0209364. [PMID: 30557320 PMCID: PMC6296516 DOI: 10.1371/journal.pone.0209364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
Myocilin is an extracellular glycoprotein with a poorly understood biological function and typically known because of its association with glaucoma. In this study, we analyzed the expression and biological activity of human myocilin in some non-ocular tissues. Western immunoblot showed the presence of myocilin in blood plasma as well as in liver and lymphoid tissues (thymus and lymph node). Quantitative PCR confirmed the expression of MYOC in these lymphoid organs and revealed that its mRNA is also present in T-lymphocytes and leukocytes. In addition, detection of 30 kDa C-terminal myocilin fragments in thymus and liver suggested that myocilin undergoes an in vivo proteolytic processing that might regulate its biological activity. The presence of myocilin in blood was further corroborated by peptide mass fingerprinting of the HPLC-isolated protein, and gross estimation of its concentration by Western immunoblot indicated that it is a medium-abundance serum protein with an approximate concentration of 0.85 mg/ml (15.5 μM). Finally, in vitro analyses indicated that myocilin acts as an anti-adhesive protein for human circulating leukocytes incubated with endothelial cell monolayers. Altogether, these data provide insightful information on new biological properties of myocilin and suggest its putative role as a blood matricellular protein.
Collapse
Affiliation(s)
- José-Daniel Aroca-Aguilar
- Laboratorio de Genética Molecular Humana, Facultad de Medicina/Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
- Cooperative Research Network on Prevention, Early Detection and Treatment of Prevalent Degenerative and Chronic Ocular Pathology (OftaRed), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Fernández-Navarro
- Laboratorio de Genética Molecular Humana, Facultad de Medicina/Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Jesús Ontañón
- Servicio de Inmunología, Complejo Hospitalario Universitario de Albacete, Castilla la Mancha, Spain
| | - Miguel Coca-Prados
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, United States of America
- Fundación de Investigación Oftalmológica Instituto Oftalmológico Fernández-Vega, Oviedo, Spain
| | - Julio Escribano
- Laboratorio de Genética Molecular Humana, Facultad de Medicina/Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
- Cooperative Research Network on Prevention, Early Detection and Treatment of Prevalent Degenerative and Chronic Ocular Pathology (OftaRed), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
39
|
Wang H, Li M, Zhang Z, Xue H, Chen X, Ji Y. Physiological function of myocilin and its role in the pathogenesis of glaucoma in the trabecular meshwork (Review). Int J Mol Med 2018; 43:671-681. [PMID: 30483726 PMCID: PMC6317685 DOI: 10.3892/ijmm.2018.3992] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022] Open
Abstract
Myocilin is highly expressed in the trabecular meshwork (TM), which plays an important role in the regulation of intraocular pressure (IOP). Myocilin abnormalities may cause dysfunction of the TM, potentially leading to increased IOP. High IOP is a well‑known primary risk factor for glaucoma. Myocilin mutations are common among glaucoma patients, and they are implicated in juvenile‑onset open‑angle glaucoma (JOAG) and adult‑onset primary open‑angle glaucoma (POAG). Aggregation of aberrant mutant myocilins is closely associated with glaucoma pathogenesis. The aim of the present review was to discuss the recent findings regarding the major physiological functions of myocilin, such as intra‑ and extracellular proteolytic processes. We also aimed to discuss the risk factors associated with myocilin and the development of glaucoma, such as misfolded/mutant myocilin, imbalance of myocilin and extracellular proteins, and instability of mutant myocilin associated with temperature. Finally, we further outlined certain issues that are yet to be resolved, which may represent the basis for future studies on the role of myocilin in glaucoma.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Ophthalmology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Mingzhe Li
- Department of Ophthalmology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Zhenzhen Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Haifeng Xue
- Public Health School, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xing Chen
- Department of Science and Education, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
40
|
Lynch JM, Li B, Katoli P, Xiang C, Leehy B, Rangaswamy N, Saenz-Vash V, Wang YK, Lei H, Nicholson TB, Meredith E, Rice DS, Prasanna G, Chen A. Binding of a glaucoma-associated myocilin variant to the αB-crystallin chaperone impedes protein clearance in trabecular meshwork cells. J Biol Chem 2018; 293:20137-20156. [PMID: 30389787 DOI: 10.1074/jbc.ra118.004325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/19/2018] [Indexed: 01/09/2023] Open
Abstract
Myocilin (MYOC) was discovered more than 20 years ago and is the gene whose mutations are most commonly observed in individuals with glaucoma. Despite extensive research efforts, the function of WT MYOC has remained elusive, and how mutant MYOC is linked to glaucoma is unclear. Mutant MYOC is believed to be misfolded within the endoplasmic reticulum, and under normal physiological conditions misfolded MYOC should be retro-translocated to the cytoplasm for degradation. To better understand mutant MYOC pathology, we CRISPR-engineered a rat to have a MYOC Y435H substitution that is the equivalent of the pathological human MYOC Y437H mutation. Using this engineered animal model, we discovered that the chaperone αB-crystallin (CRYAB) is a MYOC-binding partner and that co-expression of these two proteins increases protein aggregates. Our results suggest that the misfolded mutant MYOC aggregates with cytoplasmic CRYAB and thereby compromises protein clearance mechanisms in trabecular meshwork cells, and this process represents the primary mode of mutant MYOC pathology. We propose a model by which mutant MYOC causes glaucoma, and we propose that therapeutic treatment of patients having a MYOC mutation may focus on disrupting the MYOC-CRYAB complexes.
Collapse
Affiliation(s)
- Jeffrey M Lynch
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139.
| | - Bing Li
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Parvaneh Katoli
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Chuanxi Xiang
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Barrett Leehy
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Nalini Rangaswamy
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Veronica Saenz-Vash
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Y Karen Wang
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Hong Lei
- Laboratory Animal Services, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Thomas B Nicholson
- Chemical Biology and Therapeutics, and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Erik Meredith
- Global Developmental Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Dennis S Rice
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Ganesh Prasanna
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Amy Chen
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| |
Collapse
|
41
|
Rübsam A, Dulle JE, Garnai SJ, Pawar HS, Fort PE. A Triple Mutation of BetaB2-Crystallin is Necessary to Develop Cataract and Glaucoma. ACTA ACUST UNITED AC 2018; 8. [PMID: 29805843 PMCID: PMC5967647 DOI: 10.4172/2155-9570.1000690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Crystallins are the predominant structural proteins in the lens that are evolutionarily related to stress proteins. There are two main crystallin gene families: α-crystallins and β/γ-crystallins. α- and β-crystallins were first considered to be lens-specific, but were recently recognized also as neuronal and retinal proteins. While in the ocular lens they are responsible for the maintenance of the transparency, their function in neurons is obviously different - regulating various protective mechanisms in degenerative conditions of the central nervous system. We recently reported the correlation between a gene conversion leading to a triple mutation in the betaB2-crystallin protein and a phenotype of familial congenital cataract with a high familial incidence also of primary open angle glaucoma. Congenital cataract is the leading cause of childhood blindness and progressive neuro degeneration of the optic nerve in glaucoma accounts as the leading cause of blindness worldwide. Altered solubility and stability of crystallin proteins cause cataract formation and are directly linked to a decrease in their protective function. Thus in this study, we evaluated the functional consequences of the mutations associated with this gene conversion on beta B2-crystallin protein biochemical properties in retinal neurons. We found that only the occurrence of the triple mutation leads to decreased solubility and formation of aggregates, which as we previously demonstrated, is associated with mislocalization to the mitochondria along with decreased mitochondrial function in retinal neurons and lens epithelial cells. Our data strongly support a significant role for beta B2-crystallin in both lenticular and retinal ocular tissues and warrant further analysis of its regulation and its impact not only in cataract formation but also in retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne Rübsam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer E Dulle
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Sarah J Garnai
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Hermant S Pawar
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
42
|
Wang Y, Gao Y, Hill SE, Huard DJE, Tomlin MO, Lieberman RL, Paravastu AK, Hall CK. Simulations and Experiments Delineate Amyloid Fibrilization by Peptides Derived from Glaucoma-Associated Myocilin. J Phys Chem B 2018; 122:5845-5850. [PMID: 29724098 DOI: 10.1021/acs.jpcb.8b03000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mutant myocilin aggregation is associated with inherited open angle glaucoma, a prevalent optic neuropathy leading to blindness. Comprehension of mutant myocilin aggregation is of fundamental importance to glaucoma pathogenesis and ties glaucoma to amyloid diseases such as Alzheimer's. Here, we probe the aggregation properties of peptides derived from the myocilin olfactomedin domain. Peptides P1 (residues 326-337) and P3 (residues 426-442) were identified previously to form amyloids. Coarse-grained discontinuous molecular dynamics simulations using the PRIME20 force field (DMD/PRIME20) predict that P1 and P3 are aggregation-prone; P1 consistently forms fibrillar aggregates with parallel in-register β-sheets, whereas P3 forms β-sheet-containing aggregates without distinct order. Natural abundance 13C solid-state NMR spectra validate that aggregated P1 exhibits amyloid signatures and is more homogeneous than aggregated P3. DMD/PRIME20 simulations provide a viable method to predict peptide aggregation propensities and aggregate structure/order which cannot be accessed by bioinformatics or readily attained experimentally.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695-7905 , United States
| | | | | | | | | | | | | | - Carol K Hall
- Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695-7905 , United States
| |
Collapse
|
43
|
Patterson-Orazem AC, Hill SE, Fautsch MP, Lieberman RL. Epitope mapping of commercial antibodies that detect myocilin. Exp Eye Res 2018; 173:109-112. [PMID: 29752947 DOI: 10.1016/j.exer.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/17/2018] [Accepted: 05/05/2018] [Indexed: 01/26/2023]
Abstract
The presence of myocilin is often used in the process of validating trabecular meshwork (TM) cells and eye tissues, but the antibody reagents used for detection are poorly characterized. Indeed, for over a century, researchers have been using antibodies to track proteins of interest in a variety of biological contexts, but many antibodies remain ill-defined at the molecular level and in their target epitope. Such issues have prompted efforts from major funding agencies to validate reagents and combat reproducibility issues across biomedical sciences. Here we characterize the epitopes recognized by four commercial myocilin antibodies, aided by structurally and biochemically characterized myocilin fragments. All four antibodies recognize enriched myocilin secreted from human TM cell media. The detection of myocilin fragments by ELISA and Western blot reveal a variety of epitopes across the myocilin polypeptide chain. A more precise understanding of myocilin antibody targets, including conformational specificity, should aid the community in standardizing protocols across laboratories and in turn, lead to a better understanding of eye physiology and disease.
Collapse
Affiliation(s)
- Athéna C Patterson-Orazem
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, United States
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, United States
| | - Michael P Fautsch
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, 55905, United States
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, United States.
| |
Collapse
|
44
|
Huard DJE, Crowley VM, Du Y, Cordova RA, Sun Z, Tomlin MO, Dickey CA, Koren J, Blair L, Fu H, Blagg BSJ, Lieberman RL. Trifunctional High-Throughput Screen Identifies Promising Scaffold To Inhibit Grp94 and Treat Myocilin-Associated Glaucoma. ACS Chem Biol 2018; 13:933-941. [PMID: 29402077 PMCID: PMC6195314 DOI: 10.1021/acschembio.7b01083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gain-of-function mutations within the olfactomedin (OLF) domain of myocilin result in its toxic intracellular accumulation and hasten the onset of open-angle glaucoma. The absence of myocilin does not cause disease; therefore, strategies aimed at eliminating myocilin could lead to a successful glaucoma treatment. The endoplasmic reticulum Hsp90 paralog Grp94 accelerates OLF aggregation. Knockdown or pharmacological inhibition of Grp94 in cells facilitates clearance of mutant myocilin via a non-proteasomal pathway. Here, we expanded our support for targeting Grp94 over cytosolic paralogs Hsp90α and Hsp90β. We then developed a high-throughput screening assay to identify new chemical matter capable of disrupting the Grp94/OLF interaction. When applied to a blind, focused library of 17 Hsp90 inhibitors, our miniaturized single-read in vitro thioflavin T -based kinetics aggregation assay exclusively identified compounds that target the chaperone N-terminal nucleotide binding site. In follow up studies, one compound (2) decreased the extent of co-aggregation of Grp94 with OLF in a dose-dependent manner in vitro, and enabled clearance of the aggregation-prone full-length myocilin variant I477N in cells without inducing the heat shock response or causing cytotoxicity. Comparison of the co-crystal structure of compound 2 and another non-selective hit in complex with the N-terminal domain of Grp94 reveals a docking mode tailored to Grp94 and explains its selectivity. A new lead compound has been identified, supporting a targeted chemical biology assay approach to develop a protein degradation-based therapy for myocilin-associated glaucoma by selectively inhibiting Grp94.
Collapse
Affiliation(s)
| | - Vincent M. Crowley
- Emory Chemical Biology Discovery Center, Department of Pharmacology, Emory University
| | - Yuhong Du
- Department of Medicinal Chemistry, The University of Kansas
| | - Ricardo A. Cordova
- Byrd Alzheimer Institute, Department of Molecular Medicine, University of South Florida
| | - Zheying Sun
- Byrd Alzheimer Institute, Department of Molecular Medicine, University of South Florida
| | - Moya O. Tomlin
- School of Chemistry & Biochemistry, Georgia Institute of Technology
| | - Chad A. Dickey
- Byrd Alzheimer Institute, Department of Molecular Medicine, University of South Florida
| | - John Koren
- Byrd Alzheimer Institute, Department of Molecular Medicine, University of South Florida
| | - Laura Blair
- Byrd Alzheimer Institute, Department of Molecular Medicine, University of South Florida
| | - Haian Fu
- Department of Medicinal Chemistry, The University of Kansas
| | - Brian S. J. Blagg
- Emory Chemical Biology Discovery Center, Department of Pharmacology, Emory University
- Department of Chemistry and Biochemistry, The University of Notre Dame
| | | |
Collapse
|
45
|
Affiliation(s)
- M Elizabeth Fini
- Keck School of Medicine of USC, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
46
|
Full-length myocilin protein is purified from mammalian cells as a dimer. Protein Expr Purif 2018; 147:38-48. [PMID: 29475084 DOI: 10.1016/j.pep.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/11/2018] [Accepted: 02/15/2018] [Indexed: 12/14/2022]
Abstract
Myocilin (MYOC) is a secreted protein found in human aqueous humor (AH) and mutations in the MYOC gene are the most common mutation observed in glaucoma patients. Human AH analyzed under non-reducing conditions suggests that MYOC is not normally found in a monomeric form, but rather is predominantly dimeric. Although MYOC was first reported almost 20 years ago, a technical challenge still faced by researchers is an inability to isolate full-length MYOC protein for experimental purposes. Herein we describe two methods by which to isolate sufficient quantities of human full-length MYOC protein from mammalian cells. One method involved identification of a cell line (HeLa S3) that would secrete full-length protein (15 mg/L) while the second method involved a purification approach from 293 cells requiring identification and modification of an internal MYOC cleavage site (Glu214/Leu215). MYOC protein yield from 293 cells was improved by mutation of two MYOC N-terminal cysteines (C47 and C61) to serines. Analytical size exclusion chromatography of our full-length MYOC protein purified from 293 cells indicated that it is predominantly dimeric and we propose a structure for the MYOC dimer. We hope that by providing methods to obtain MYOC protein, researchers will be able to utilize the protein to obtain new insights into MYOC biology. The ultimate goal of MYOC research is to better understand this target so we can help the patient that carries a MYOC mutation retain vision and maintain quality of life.
Collapse
|
47
|
Stothert AR, Suntharalingam A, Tang X, Crowley VM, Mishra SJ, Webster JM, Nordhues BA, Huard DJE, Passaglia CL, Lieberman RL, Blagg BSJ, Blair LJ, Koren J, Dickey CA. Isoform-selective Hsp90 inhibition rescues model of hereditary open-angle glaucoma. Sci Rep 2017; 7:17951. [PMID: 29263415 PMCID: PMC5738387 DOI: 10.1038/s41598-017-18344-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022] Open
Abstract
The heat shock protein 90 (Hsp90) family of molecular chaperones regulates protein homeostasis, folding, and degradation. The ER-resident Hsp90 isoform, glucose-regulated protein 94 (Grp94), promotes the aggregation of mutant forms of myocilin, a protein associated with primary open-angle glaucoma. While inhibition of Grp94 promotes the degradation of mutant myocilin in vitro, to date no Grp94-selective inhibitors have been investigated in vivo. Here, a Grp94-selective inhibitor facilitated mutant myocilin degradation and rescued phenotypes in a transgenic mouse model of hereditary primary open-angle glaucoma. Ocular toxicities previously associated with pan-Hsp90 inhibitors were not evident with our Grp94-selective inhibitor, 4-Br-BnIm. Our study suggests that selective inhibition of a distinct Hsp90 family member holds translational promise for ocular and other diseases associated with cell stress and protein misfolding.
Collapse
Affiliation(s)
- Andrew R Stothert
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Amirthaa Suntharalingam
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Xiaolan Tang
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL, 33613, USA.,Department of Chemical & Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33613, USA
| | - Vincent M Crowley
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Sanket J Mishra
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Jack M Webster
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Bryce A Nordhues
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Dustin J E Huard
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Christopher L Passaglia
- Department of Chemical & Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33613, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Brian S J Blagg
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Laura J Blair
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL, 33613, USA.
| | - John Koren
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL, 33613, USA.
| | - Chad A Dickey
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL, 33613, USA
| |
Collapse
|
48
|
Wiggs JL, Pasquale LR. Genetics of glaucoma. Hum Mol Genet 2017; 26:R21-R27. [PMID: 28505344 DOI: 10.1093/hmg/ddx184] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Genetic and genomic studies, including genome-wide association studies (GWAS) have accelerated the discovery of genes contributing to glaucoma, the leading cause of irreversible blindness world-wide. Glaucoma can occur at all ages, with Mendelian inheritance typical for the rare early onset disease (before age 40) and complex inheritance evident in common adult-onset forms of disease. Recent studies have suggested possible therapeutic targets for some patients with early-onset glaucoma based on the molecular and cellular events caused by MYOC, OPTN and TBK1 mutations. Diagnostic genetic tests using early-onset glaucoma genes are also proving useful for pre-symptomatic disease detection and genetic counseling. Recent GWAS completed for three types of common adult-onset glaucoma have identified novel loci for POAG (primary-open-angle glaucoma) (ABCA1, AFAP1, GMDS, PMM2, TGFBR3, FNDC3B, ARHGEF12, GAS7, FOXC1, ATXN2, TXNRD2); PACG (primary angle-closure glaucoma (EPDR1, CHAT, GLIS3, FERMT2, DPM2-FAM102); and exfoliation syndrome (XFS) glaucoma (CACNA1A). In total sixteen genomic regions have been associated with POAG (including the normal tension glaucoma (NTG) subgroup), 8 with PACG and 2 with XFS. These studies are defining important biological pathways and processes that contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear, Boston, MA 02114, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
49
|
Hill SE, Nguyen E, Donegan RK, Patterson-Orazem AC, Hazel A, Gumbart JC, Lieberman RL. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin. Structure 2017; 25:1697-1707.e5. [PMID: 29056483 PMCID: PMC5685557 DOI: 10.1016/j.str.2017.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/07/2017] [Accepted: 09/18/2017] [Indexed: 01/15/2023]
Abstract
Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains. Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma.
Collapse
Affiliation(s)
- Shannon E Hill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Elaine Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rebecca K Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Anthony Hazel
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
50
|
Joe MK, Lieberman RL, Nakaya N, Tomarev SI. Myocilin Regulates Metalloprotease 2 Activity Through Interaction With TIMP3. Invest Ophthalmol Vis Sci 2017; 58:5308-5318. [PMID: 29049729 PMCID: PMC5644706 DOI: 10.1167/iovs.16-20336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose To elucidate functions of wild-type myocilin, a secreted glycoprotein associated with glaucoma. Methods Lysates of mouse eyes were used for immunoprecipitation with affinity-purified antibodies against mouse myocilin. Shotgun proteomic analysis was used for the identification of proteins interacting with myocilin. Colocalization of myocilin and tissue inhibitor of metalloproteinases 3 (TIMP3) in different eye structures was investigated by a multiplex fluorescent in situ hybridization and immunofluorescent labeling with subsequent confocal microscopy. Matrix metalloproteinase 2 (MMP2) activity assay was used to test effects of myocilin on TIMP3 inhibitory action. Results TIMP3 was identified by a shotgun proteomic analysis as a protein that was coimmunoprecipitated with myocilin from eye lysates of wild-type and transgenic mice expressing elevated levels of mouse myocilin but not from lysates of transgenic mice expressing mutated mouse myocilin. Interaction of myocilin and TIMP3 was confirmed by coimmunoprecipitation of myocilin and TIMP3 from HEK293 cells transiently transfected with cDNAs encoding these proteins. The olfactomedin domain of myocilin is essential for interaction with TIMP3. In the eye, the main sites of myocilin and TIMP3 colocalization are the trabecular meshwork, sclera, and choroid. Using purified proteins, it has been shown that myocilin markedly enhanced the inhibitory activity of TIMP3 toward MMP2. Conclusions Myocilin may serve as a modulator of TIMP3 activity via interactions with the myocilin olfactomedin domain. Our data imply that in the case of MYOCILIN null or some glaucoma-causing mutations, inhibitory activity of TIMP3 toward MMP2 might be reduced, mimicking deleterious mutations in the TIMP3 gene.
Collapse
Affiliation(s)
- Myung Kuk Joe
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Naoki Nakaya
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Stanislav I Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|