1
|
Dong YN, Mercado-Ayón E, Coulman J, Flatley L, Ngaba LV, Adeshina MW, Lynch DR. The Regulation of the Disease-Causing Gene FXN. Cells 2024; 13:1040. [PMID: 38920668 PMCID: PMC11202134 DOI: 10.3390/cells13121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.
Collapse
Affiliation(s)
- Yi Na Dong
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jennifer Coulman
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Liam Flatley
- The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucie Vanessa Ngaba
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miniat W. Adeshina
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David R. Lynch
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Da Conceição LMA, Cabral LM, Pereira GRC, De Mesquita JF. An In Silico Analysis of Genetic Variants and Structural Modeling of the Human Frataxin Protein in Friedreich's Ataxia. Int J Mol Sci 2024; 25:5796. [PMID: 38891993 PMCID: PMC11172458 DOI: 10.3390/ijms25115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Friedreich's Ataxia (FRDA) stands out as the most prevalent form of hereditary ataxias, marked by progressive movement ataxia, loss of vibratory sensitivity, and skeletal deformities, severely affecting daily functioning. To date, the only medication available for treating FRDA is Omaveloxolone (Skyclarys®), recently approved by the FDA. Missense mutations within the human frataxin (FXN) gene, responsible for intracellular iron homeostasis regulation, are linked to FRDA development. These mutations induce FXN dysfunction, fostering mitochondrial iron accumulation and heightened oxidative stress, ultimately triggering neuronal cell death pathways. This study amalgamated 226 FXN genetic variants from the literature and database searches, with only 18 previously characterized. Predictive analyses revealed a notable prevalence of detrimental and destabilizing predictions for FXN mutations, predominantly impacting conserved residues crucial for protein function. Additionally, an accurate, comprehensive three-dimensional model of human FXN was constructed, serving as the basis for generating genetic variants I154F and W155R. These variants, selected for their severe clinical implications, underwent molecular dynamics (MD) simulations, unveiling flexibility and essential dynamic alterations in their N-terminal segments, encompassing FXN42, FXN56, and FXN78 domains pivotal for protein maturation. Thus, our findings indicate potential interaction profile disturbances in the FXN42, FXN56, and FXN78 domains induced by I154F and W155R mutations, aligning with the existing literature.
Collapse
Affiliation(s)
- Loiane Mendonça Abrantes Da Conceição
- Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 296, Urca, Rio de Janeiro 22290-250, Brazil (J.F.D.M.)
| | - Lucio Mendes Cabral
- Pharmaceutical Industrial Technology Laboratory, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro 21941-590, Brazil
| | - Gabriel Rodrigues Coutinho Pereira
- Pharmaceutical Industrial Technology Laboratory, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro 21941-590, Brazil
- Laboratory of Molecular Modeling & QSAR, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro 21941-590, Brazil
| | - Joelma Freire De Mesquita
- Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 296, Urca, Rio de Janeiro 22290-250, Brazil (J.F.D.M.)
| |
Collapse
|
3
|
Zhang Z, Jiang W, Zhang C, Yin Y, Mu N, Wang Y, Yu L, Ma H. Frataxin inhibits the sensitivity of the myocardium to ferroptosis by regulating iron homeostasis. Free Radic Biol Med 2023; 205:305-317. [PMID: 37343689 DOI: 10.1016/j.freeradbiomed.2023.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
RATIONALE Myocardial ischemia/reperfusion (I/R) injury is characterized by cell death via various cellular mechanisms upon reperfusion. As a new type of cell death, ferroptosis provides new opportunities to reduce myocardial cell death. Ferroptosis is known to be more active during reperfusion than ischemia. However, the mechanisms regulating ferroptosis during ischemia and reperfusion remain largely unknown. METHODS The contribution of ferroptosis in ischemic and reperfused myocardium were detected by administered of Fer-1, a ferroptosis inhibitor to C57BL/6 mice, followed by left anterior descending (LAD) ligation surgery. Ferroptosis was evaluated by measurement of cell viability, ptgs2 mRNA level, iron production, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels. H9C2 cells were exposed to hypoxia/reoxygenation to mimic in vivo I/R. We used LC-MS/MS to identify potential E3 ligases that interacted with frataxin in heart tissue. Cardiac-specific overexpression of frataxin in whole heart was achieved by intracardiac injection of frataxin, carried by adeno-associated virus serotype 9 (AAV9) containing cardiac troponin T (cTnT) promoter. RESULTS We showed that regulators of iron metabolism, especially iron regulatory protein activity, were increased in the ischemic myocardium or hypoxia cardiomyocytes. In addition, we found that frataxin, which is involved in iron metabolism, is differentially expressed in the ischemic and reperfused myocardium and involved in the regulation of cardiomyocytes ferroptosis. Furthermore, we identified an E3 ligase, NHL repeat-containing 1 (NHLRC1), that mediates frataxin ubiquitination degradation. Cardiac-specific overexpression of frataxin ameliorated myocardial I/R injury through ferroptosis inhibition. CONCLUSIONS Through a multi-level study from molecule to animal model, these findings uncover the key role of frataxin in inhibiting cardiomyocyte ferroptosis and provide new strategies and perspectives for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Zihui Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Wenhua Jiang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Chan Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Heng Ma
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| |
Collapse
|
4
|
Luffarelli R, Panarello L, Quatrana A, Tiano F, Fortuni S, Rufini A, Malisan F, Testi R, Condò I. Interferon Gamma Enhances Cytoprotective Pathways via Nrf2 and MnSOD Induction in Friedreich's Ataxia Cells. Int J Mol Sci 2023; 24:12687. [PMID: 37628866 PMCID: PMC10454386 DOI: 10.3390/ijms241612687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Friedreich's ataxia (FRDA) is a rare monogenic disease characterized by multisystem, slowly progressive degeneration. Because of the genetic defect in a non-coding region of FXN gene, FRDA cells exhibit severe deficit of frataxin protein levels. Hence, FRDA pathophysiology is characterized by a plethora of metabolic disruptions related to iron metabolism, mitochondrial homeostasis and oxidative stress. Importantly, an impairment of the antioxidant defences exacerbates the oxidative damage. This appears closely associated with the disablement of key antioxidant proteins, such as the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and the mitochondrial superoxide dismutase (MnSOD). The cytokine interferon gamma (IFN-γ) has been shown to increase frataxin expression in FRDA cells and to improve functional deficits in FRDA mice. Currently, IFN-γ represents a potential therapy under clinical evaluation in FRDA patients. Here, we show that IFN-γ induces a rapid expression of Nrf2 and MnSOD in different cell types, including FRDA patient-derived fibroblasts. Our data indicate that IFN-γ signals two separate pathways to enhance Nrf2 and MnSOD levels in FRDA fibroblasts. MnSOD expression increased through an early transcriptional regulation, whereas the levels of Nrf2 are induced by a post-transcriptional mechanism. We demonstrate that the treatment of FRDA fibroblasts with IFN-γ stimulates a non-canonical Nrf2 activation pathway through p21 and potentiates antioxidant responses under exposure to hydrogen peroxide. Moreover, IFN-γ significantly reduced the sensitivity to hydrogen peroxide-induced cell death in FRDA fibroblasts. Collectively, these results indicate the presence of multiple pathways triggered by IFN-γ with therapeutic relevance to FRDA.
Collapse
Affiliation(s)
- Riccardo Luffarelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Luca Panarello
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Andrea Quatrana
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Francesca Tiano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Silvia Fortuni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Florence Malisan
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Ivano Condò
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| |
Collapse
|
5
|
Brignone MS, Lanciotti A, Michelucci A, Mallozzi C, Camerini S, Catacuzzeno L, Sforna L, Caramia M, D’Adamo MC, Ceccarini M, Molinari P, Macioce P, Macchia G, Petrucci TC, Pessia M, Visentin S, Ambrosini E. The CaMKII/MLC1 Axis Confers Ca2+-Dependence to Volume-Regulated Anion Channels (VRAC) in Astrocytes. Cells 2022; 11:cells11172656. [PMID: 36078064 PMCID: PMC9454758 DOI: 10.3390/cells11172656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Astrocytes, the main glial cells of the central nervous system, play a key role in brain volume control due to their intimate contacts with cerebral blood vessels and the expression of a distinctive equipment of proteins involved in solute/water transport. Among these is MLC1, a protein highly expressed in perivascular astrocytes and whose mutations cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, chronic brain edema, cysts, myelin vacuolation, and astrocyte swelling. Although, in astrocytes, MLC1 mutations are known to affect the swelling-activated chloride currents (ICl,swell) mediated by the volume-regulated anion channel (VRAC), and the regulatory volume decrease, MLC1′s proper function is still unknown. By combining molecular, biochemical, proteomic, electrophysiological, and imaging techniques, we here show that MLC1 is a Ca2+/Calmodulin-dependent protein kinase II (CaMKII) target protein, whose phosphorylation, occurring in response to intracellular Ca2+ release, potentiates VRAC-mediated ICl,swell. Overall, these findings reveal that MLC1 is a Ca2+-regulated protein, linking volume regulation to Ca2+ signaling in astrocytes. This knowledge provides new insight into the MLC1 protein function and into the mechanisms controlling ion/water exchanges in the brain, which may help identify possible molecular targets for the treatment of MLC and other pathological conditions caused by astrocyte swelling and brain edema.
Collapse
Affiliation(s)
| | - Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Antonio Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Cinzia Mallozzi
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Serena Camerini
- Core Facilities (FAST), Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Martino Caramia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Maria Cristina D’Adamo
- Department of Medicine and Surgery, LUM Giuseppe Degennaro University, 70010 Bari, Italy
| | - Marina Ceccarini
- National Centre for Rare Diseases, Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Paola Molinari
- National Centre for Drug Research and Evaluation (FARVA), Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Pompeo Macioce
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
| | | | | | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Sergio Visentin
- National Centre for Drug Research and Evaluation (FARVA), Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
- Correspondence: ; Tel.: +39-06-4990-2037
| |
Collapse
|
6
|
Rufini A, Malisan F, Condò I, Testi R. Drug Repositioning in Friedreich Ataxia. Front Neurosci 2022; 16:814445. [PMID: 35221903 PMCID: PMC8863941 DOI: 10.3389/fnins.2022.814445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Friedreich ataxia is a rare neurodegenerative disorder caused by insufficient levels of the essential mitochondrial protein frataxin. It is a severely debilitating disease that significantly impacts the quality of life of affected patients and reduces their life expectancy, however, an adequate cure is not yet available for patients. Frataxin function, although not thoroughly elucidated, is associated with assembly of iron-sulfur cluster and iron metabolism, therefore insufficient frataxin levels lead to reduced activity of many mitochondrial enzymes involved in the electron transport chain, impaired mitochondrial metabolism, reduced ATP production and inefficient anti-oxidant response. As a consequence, neurons progressively die and patients progressively lose their ability to coordinate movement and perform daily activities. Therapeutic strategies aim at restoring sufficient frataxin levels or at correcting some of the downstream consequences of frataxin deficiency. However, the classical pathways of drug discovery are challenging, require a significant amount of resources and time to reach the final approval, and present a high failure rate. Drug repositioning represents a viable alternative to boost the identification of a therapy, particularly for rare diseases where resources are often limited. In this review we will describe recent efforts aimed at the identification of a therapy for Friedreich ataxia through drug repositioning, and discuss the limitation of such strategies.
Collapse
Affiliation(s)
- Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
- *Correspondence: Alessandra Rufini,
| | - Florence Malisan
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
| |
Collapse
|
7
|
Stepanova A, Magrané J. Mitochondrial dysfunction in neurons in Friedreich's ataxia. Mol Cell Neurosci 2020; 102:103419. [PMID: 31770591 DOI: 10.1016/j.mcn.2019.103419] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
Friedreich's ataxia is a multisystemic genetic disorder within the family of mitochondrial diseases that is characterized by reduced levels of the essential mitochondrial protein frataxin. Based on clinical evidence, the peripheral nervous system is affected early, neuronal dysfunction progresses towards the central nervous system, and other organs (such as heart and pancreas) are affected later. However, little attention has been given to the specific aspects of mitochondria function altered by frataxin depletion in the nervous system. For years, commonly accepted views on mitochondria dysfunction in Friedreich's ataxia stemmed from studies using non-neuronal systems and may not apply to neurons, which have their own bioenergetic needs and present a unique, extensive neurite network. Moreover, the basis of the selective neuronal vulnerability, which primarily affects large sensory neurons in the dorsal root ganglia, large principal neurons in the dentate nuclei of the cerebellum, and pyramidal neurons in the cerebral cortex, remains elusive. In order to identify potential misbeliefs in the field and highlight controversies, we reviewed current knowledge on frataxin expression in different tissues, discussed the molecular function of frataxin, and the consequences of its deficiency for mitochondria structural and functional properties, with a focus on the nervous system.
Collapse
Affiliation(s)
- Anna Stepanova
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States of America.
| | - Jordi Magrané
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States of America.
| |
Collapse
|
8
|
Bon C, Luffarelli R, Russo R, Fortuni S, Pierattini B, Santulli C, Fimiani C, Persichetti F, Cotella D, Mallamaci A, Santoro C, Carninci P, Espinoza S, Testi R, Zucchelli S, Condò I, Gustincich S. SINEUP non-coding RNAs rescue defective frataxin expression and activity in a cellular model of Friedreich's Ataxia. Nucleic Acids Res 2019; 47:10728-10743. [PMID: 31584077 PMCID: PMC6847766 DOI: 10.1093/nar/gkz798] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/08/2019] [Accepted: 09/28/2019] [Indexed: 12/16/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an untreatable disorder with neuro- and cardio-degenerative progression. This monogenic disease is caused by the hyper-expansion of naturally occurring GAA repeats in the first intron of the FXN gene, encoding for frataxin, a protein implicated in the biogenesis of iron-sulfur clusters. As the genetic defect interferes with FXN transcription, FRDA patients express a normal frataxin protein but at insufficient levels. Thus, current therapeutic strategies are mostly aimed to restore physiological FXN expression. We have previously described SINEUPs, natural and synthetic antisense long non-coding RNAs, which promote translation of partially overlapping mRNAs through the activity of an embedded SINEB2 domain. Here, by in vitro screening, we have identified a number of SINEUPs targeting human FXN mRNA and capable to up-regulate frataxin protein to physiological amounts acting at the post-transcriptional level. Furthermore, FXN-specific SINEUPs promote the recovery of disease-associated mitochondrial aconitase defects in FRDA-derived cells. In summary, we provide evidence that SINEUPs may be the first gene-specific therapeutic approach to activate FXN translation in FRDA and, more broadly, a novel scalable platform to develop new RNA-based therapies for haploinsufficient diseases.
Collapse
Affiliation(s)
- Carlotta Bon
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Riccardo Luffarelli
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, University of Rome Tor Vergata, Rome, Italy
| | - Roberta Russo
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Silvia Fortuni
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, University of Rome Tor Vergata, Rome, Italy
| | - Bianca Pierattini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Chiara Santulli
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Cristina Fimiani
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Francesca Persichetti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Diego Cotella
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Antonello Mallamaci
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Claudio Santoro
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | - Stefano Espinoza
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Zucchelli
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| |
Collapse
|
9
|
Gottesfeld JM. Molecular Mechanisms and Therapeutics for the GAA·TTC Expansion Disease Friedreich Ataxia. Neurotherapeutics 2019; 16:1032-1049. [PMID: 31317428 PMCID: PMC6985418 DOI: 10.1007/s13311-019-00764-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Friedreich ataxia (FRDA), the most common inherited ataxia, is caused by transcriptional silencing of the nuclear FXN gene, encoding the essential mitochondrial protein frataxin. Currently, there is no approved therapy for this fatal disorder. Gene silencing in FRDA is due to hyperexpansion of the triplet repeat sequence GAA·TTC in the first intron of the FXN gene, which results in chromatin histone modifications consistent with heterochromatin formation. Frataxin is involved in mitochondrial iron homeostasis and the assembly and transfer of iron-sulfur clusters to various mitochondrial enzymes and components of the electron transport chain. Frataxin insufficiency leads to progressive spinocerebellar neurodegeneration, causing symptoms of gait and limb ataxia, slurred speech, muscle weakness, sensory loss, and cardiomyopathy in many patients, resulting in death in early adulthood. Numerous approaches are being taken to find a treatment for FRDA, including excision or correction of the repeats by genome engineering methods, gene activation with small molecules or artificial transcription factors, delivery of frataxin to affected cells by protein replacement therapy, gene therapy, or small molecules to increase frataxin protein levels, and therapies aimed at countering the cellular consequences of reduced frataxin. This review will summarize the mechanisms involved in repeat-mediated gene silencing and recent efforts aimed at development of therapeutics.
Collapse
Affiliation(s)
- Joel M Gottesfeld
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, 92037, USA.
| |
Collapse
|
10
|
Effects of hypoxia-reoxygenation stress on mitochondrial proteome and bioenergetics of the hypoxia-tolerant marine bivalve Crassostrea gigas. J Proteomics 2019; 194:99-111. [DOI: 10.1016/j.jprot.2018.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022]
|
11
|
Castro IH, Pignataro MF, Sewell KE, Espeche LD, Herrera MG, Noguera ME, Dain L, Nadra AD, Aran M, Smal C, Gallo M, Santos J. Frataxin Structure and Function. Subcell Biochem 2019; 93:393-438. [PMID: 31939159 DOI: 10.1007/978-3-030-28151-9_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian frataxin is a small mitochondrial protein involved in iron sulfur cluster assembly. Frataxin deficiency causes the neurodegenerative disease Friedreich's Ataxia. Valuable knowledge has been gained on the structural dynamics of frataxin, metal-ion-protein interactions, as well as on the effect of mutations on protein conformation, stability and internal motions. Additionally, laborious studies concerning the enzymatic reactions involved have allowed for understanding the capability of frataxin to modulate Fe-S cluster assembly function. Remarkably, frataxin biological function depends on its interaction with some proteins to form a supercomplex, among them NFS1 desulfurase and ISCU, the scaffolding protein. By combining multiple experimental tools including high resolution techniques like NMR and X-ray, but also SAXS, crosslinking and mass-spectrometry, it was possible to build a reliable model of the structure of the desulfurase supercomplex NFS1/ACP-ISD11/ISCU/frataxin. In this chapter, we explore these issues showing how the scientific view concerning frataxin structure-function relationships has evolved over the last years.
Collapse
Affiliation(s)
- Ignacio Hugo Castro
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina
- Intituto de Química y Fisicoquímica Biológicas, Dr. Alejandro Paladini Universidad de Buenos Aires, CONICET, Junín 956, 1113AAD, C.A.B.A, Argentina
| | - María Florencia Pignataro
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina
- Intituto de Química y Fisicoquímica Biológicas, Dr. Alejandro Paladini Universidad de Buenos Aires, CONICET, Junín 956, 1113AAD, C.A.B.A, Argentina
| | - Karl Ellioth Sewell
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina
- Intituto de Química y Fisicoquímica Biológicas, Dr. Alejandro Paladini Universidad de Buenos Aires, CONICET, Junín 956, 1113AAD, C.A.B.A, Argentina
| | - Lucía Daniela Espeche
- Departamento de Diagnóstico Genético, Centro Nacional de Genética Médica "Dr. Eduardo E. Castilla"-A.N.L.I.S, Av. Las Heras 2670, C1425ASQ, C.A.B.A, Argentina
| | - María Georgina Herrera
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina
| | - Martín Ezequiel Noguera
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina
- Intituto de Química y Fisicoquímica Biológicas, Dr. Alejandro Paladini Universidad de Buenos Aires, CONICET, Junín 956, 1113AAD, C.A.B.A, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Liliana Dain
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina
- Departamento de Diagnóstico Genético, Centro Nacional de Genética Médica "Dr. Eduardo E. Castilla"-A.N.L.I.S, Av. Las Heras 2670, C1425ASQ, C.A.B.A, Argentina
| | - Alejandro Daniel Nadra
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Martín Aran
- Fundación Instituto Leloir E IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | - Clara Smal
- Fundación Instituto Leloir E IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | - Mariana Gallo
- IRBM Science Park S.p.A, Via Pontina km 30,600, 00071, Pomezia, RM, Italy
| | - Javier Santos
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina.
- Intituto de Química y Fisicoquímica Biológicas, Dr. Alejandro Paladini Universidad de Buenos Aires, CONICET, Junín 956, 1113AAD, C.A.B.A, Argentina.
| |
Collapse
|
12
|
Edenharter O, Clement J, Schneuwly S, Navarro JA. Overexpression of Drosophila frataxin triggers cell death in an iron-dependent manner. J Neurogenet 2017; 31:189-202. [PMID: 28838288 DOI: 10.1080/01677063.2017.1363200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/31/2017] [Indexed: 10/24/2022]
Abstract
Friedreich ataxia (FRDA) is the most important autosomal recessive ataxia in the Caucasian population. FRDA patients display severe neurological and cardiac symptoms that reflect a strong cellular and axonal degeneration. FRDA is caused by a loss of function of the mitochondrial protein frataxin which impairs the biosynthesis of iron-sulfur clusters and in turn the catalytic activity of several enzymes in the Krebs cycle and the respiratory chain leading to a diminished energy production. Although FRDA is due to frataxin depletion, overexpression might also be very helpful to better understand cellular functions of frataxin. In this work, we have increased frataxin expression in neurons to elucidate specific roles that frataxin might play in these tissues. Using molecular, biochemical, histological and behavioral methods, we report that frataxin overexpression is sufficient to increase oxidative phosphorylation, modify mitochondrial morphology, alter iron homeostasis and trigger oxidative stress-dependent cell death. Interestingly, genetic manipulation of mitochondrial iron metabolism by silencing mitoferrin successfully improves cell survival under oxidative-attack conditions, although enhancing antioxidant defenses or mitochondrial fusion failed to ameliorate frataxin overexpression phenotypes. This result suggests that cell degeneration is directly related to enhanced incorporation of iron into the mitochondria. Drosophila frataxin overexpression might also provide an alternative approach to identify processes that are important in FRDA such as changes in mitochondrial morphology and oxidative stress induced cell death.
Collapse
Affiliation(s)
- Oliver Edenharter
- a Institute of Zoology , University of Regensburg , Regensburg , Germany
| | - Janik Clement
- a Institute of Zoology , University of Regensburg , Regensburg , Germany
| | - Stephan Schneuwly
- a Institute of Zoology , University of Regensburg , Regensburg , Germany
| | - Juan A Navarro
- a Institute of Zoology , University of Regensburg , Regensburg , Germany
| |
Collapse
|
13
|
Petrillo S, Piermarini E, Pastore A, Vasco G, Schirinzi T, Carrozzo R, Bertini E, Piemonte F. Nrf2-Inducers Counteract Neurodegeneration in Frataxin-Silenced Motor Neurons: Disclosing New Therapeutic Targets for Friedreich's Ataxia. Int J Mol Sci 2017; 18:E2173. [PMID: 29057804 PMCID: PMC5666854 DOI: 10.3390/ijms18102173] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress is actively involved in Friedreich's Ataxia (FA), thus pharmacological targeting of the antioxidant machinery may have therapeutic value. Here, we analyzed the relevance of the antioxidant phase II response mediated by the transcription factor Nrf2 on frataxin-deficient cultured motor neurons and on fibroblasts of patients. The in vitro treatment of the potent Nrf2 activator sulforaphane increased Nrf2 protein levels and led to the upregulation of phase II antioxidant enzymes. The neuroprotective effects were accompanied by an increase in neurites' number and extension. Sulforaphane (SFN) is a natural compound of many diets and is now being used in clinical trials for other pathologies. Our results provide morphological and biochemical evidence to endorse a neuroprotective strategy that may have therapeutic relevance for FA. The findings of this work reinforce the crucial importance of Nrf2 in FA and provide a rationale for using Nrf2-inducers as pharmacological agents.
Collapse
Affiliation(s)
- Sara Petrillo
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| | - Emanuela Piermarini
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
- Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | - Anna Pastore
- Laboratory of Biochemistry, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| | - Gessica Vasco
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Via Torre di Palidoro, Passoscuro Fiumicino, 00050 Rome, Italy.
| | - Tommaso Schirinzi
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Via Torre di Palidoro, Passoscuro Fiumicino, 00050 Rome, Italy.
| | - Rosalba Carrozzo
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| | - Fiorella Piemonte
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
14
|
Abstract
INTRODUCTION Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by expansion of a GAA·TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Repeat expansion results in transcriptional silencing through an epigenetic mechanism, resulting in significant decreases in frataxin protein in affected individuals. Since the FXN protein coding sequence is unchanged in FRDA, an attractive therapeutic approach for this disease would be to increase transcription of pathogenic alleles with small molecules that target the silencing mechanism. AREAS COVERED We review the evidence that histone postsynthetic modifications and heterochromatin formation are responsible for FXN gene silencing in FRDA, along with efforts to reverse silencing with drugs that target histone modifying enzymes. Chemical and pharmacological properties of histone deacetylase (HDAC) inhibitors, which reverse silencing, together with enzyme target profiles and kinetics of inhibition, are discussed. Two HDAC inhibitors have been studied in human clinical trials and the properties of these compounds are compared and contrasted. Efforts to improve on bioavailability, metabolic stability, and target activity are reviewed. EXPERT OPINION 2-aminobenzamide class I HDAC inhibitors are attractive therapeutic small molecules for FRDA. These molecules increase FXN gene expression in human neuronal cells derived from patient induced pluripotent stem cells, and in two mouse models for the disease, as well as in circulating lymphocytes in patients treated in a phase Ib clinical trial. Medicinal chemistry efforts have identified compounds with improved brain penetration, metabolic stability and efficacy in the human neuronal cell model. A clinical candidate will soon be identified for further human testing.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 USA
| | - Joel M Gottesfeld
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 USA
| |
Collapse
|