1
|
Fyke Z, Johansson R, Scott AI, Wiley D, Chelsky D, Zak JD, Al Nakouzi N, Koster KP, Yoshii A. Reduction of neuroinflammation and seizures in a mouse model of CLN1 batten disease using the small molecule enzyme mimetic, N-Tert-butyl hydroxylamine. Mol Genet Metab 2024; 143:108537. [PMID: 39033629 PMCID: PMC11473239 DOI: 10.1016/j.ymgme.2024.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Infantile neuronal ceroid lipofuscinosis (CLN1 Batten Disease) is a devastating pediatric lysosomal storage disease caused by pathogenic variants in the CLN1 gene, which encodes the depalmitoylation enzyme, palmitoyl-protein thioesterase 1 (PPT1). CLN1 patients present with visual deterioration, psychomotor dysfunction, and recurrent seizures until neurodegeneration results in death, typically before fifteen years of age. Histopathological features of CLN1 include aggregation of lysosomal autofluorescent storage material (AFSM), as well as profound gliosis. The current management of CLN1 is relegated to palliative care. Here, we examine the therapeutic potential of a small molecule PPT1 mimetic, N-tert-butyl hydroxylamine (NtBuHA), in a Cln1-/- mouse model. Treatment with NtBuHA reduced AFSM accumulation both in vitro and in vivo. Importantly, NtBuHA treatment in Cln1-/- mice reduced neuroinflammation, mitigated epileptic episodes, and normalized motor function. Live cell imaging of Cln1-/- primary cortical neurons treated with NtBuHA partially rescued aberrant synaptic calcium dynamics, suggesting a potential mechanism contributing to the therapeutic effects of NtBuHA in vivo. Taken together, our findings provide supporting evidence for NtBuHA as a potential treatment for CLN1 Batten Disease.
Collapse
Affiliation(s)
- Zach Fyke
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Rachel Johansson
- School of Medicine, University of California Davis, Sacramento, CA, United States of America; Circumvent Pharmaceuticals, Portland, OR, United States of America
| | - Anna I Scott
- Circumvent Pharmaceuticals, Portland, OR, United States of America; Department of Laboratories, Seattle Children's Hospital, Seattle, WA, United States of America
| | - Devin Wiley
- Circumvent Pharmaceuticals, Portland, OR, United States of America
| | - Daniel Chelsky
- Circumvent Pharmaceuticals, Portland, OR, United States of America
| | - Joseph D Zak
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Psychology University of Illinois at Chicago, Chicago, IL, United States of America
| | - Nader Al Nakouzi
- Circumvent Pharmaceuticals, Portland, OR, United States of America.
| | - Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Neurobiology, University of Chicago, Chicago, IL, United States of America.
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Neurology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
2
|
Loeb AM, Pattwell SS, Meshinchi S, Bedalov A, Loeb KR. Donor bone marrow-derived macrophage engraftment into the central nervous system of patients following allogeneic transplantation. Blood Adv 2023; 7:5851-5859. [PMID: 37315172 PMCID: PMC10558597 DOI: 10.1182/bloodadvances.2023010409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/16/2023] Open
Abstract
Hematopoietic stem cell transplantation is a well-known treatment for hematologic malignancies, wherein nascent stem cells provide regenerating marrow and immunotherapy against the tumor. The progeny of hematopoietic stem cells also populate a wide spectrum of tissues, including the brain, as bone marrow-derived macrophages similar to microglial cells. We developed a sensitive and novel combined immunohistochemistry (IHC) and XY fluorescence in situ hybridization assay to detect, quantify, and characterize donor cells in the cerebral cortices of 19 female patients who underwent allogeneic stem cell transplantation. We showed that the number of male donor cells ranged from 0.14% to 3.0% of the total cells or from 1.2% to 25% of microglial cells. Using tyramide-based fluorescent IHC, we found that at least 80% of the donor cells expressed the microglial marker ionized calcium-binding adapter molecule-1, consistent with bone marrow-derived macrophages. The percentage of donor cells was related to pretransplantation conditioning; donor cells from radiation-based myeloablative cases averaged 8.1% of microglial cells, whereas those from nonmyeloablative cases averaged only 1.3%. The number of donor cells in patients conditioned with busulfan- or treosulfan-based myeloablation was similar to that in total body irradiation-based conditioning; donor cells averaged 6.8% of the microglial cells. Notably, patients who received multiple transplantations and those with the longest posttransplantation survival had the highest level of donor engraftment, with donor cells averaging 16.3% of the microglial cells. Our work represents the largest study characterizing bone marrow-derived macrophages in patients after transplantation. The efficiency of engraftment observed in our study warrants future research on microglial replacement as a therapeutic option for disorders of the central nervous system.
Collapse
Affiliation(s)
| | - Siobhan S. Pattwell
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Soheil Meshinchi
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Antonio Bedalov
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Keith R. Loeb
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| |
Collapse
|
3
|
Leal AF, Alméciga-Díaz CJ. Efficient CRISPR/Cas9 nickase-mediated genome editing in an in vitro model of mucopolysaccharidosis IVA. Gene Ther 2023; 30:107-114. [PMID: 35581402 DOI: 10.1038/s41434-022-00344-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 01/03/2023]
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder (LSD) caused by mutations in gene encoding for GALNS enzyme. Lack of GALNS activity leads to the accumulation of glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate. Although enzyme replacement therapy has been approved since 2014 for MPS IVA, still there is an unmet medical need to have improved therapies for this disorder. CRISPR/Cas9-based gene therapy has been tested for several LSDs with encouraging findings, but to date it has not been assayed on MPS IVA. In this work, we validated for the first time the use of CRISPR/Cas9, using a Cas9 nickase, for the knock-in of an expression cassette containing GALNS cDNA in an in vitro model of MPS IVA. The results showed the successful homologous recombination of the expression cassette into the AAVS1 locus, as well as a long-term increase in GALNS activity reaching up to 40% of wild-type levels. We also observed normalization of lysosomal mass, total GAGs, and oxidative stress, which are some of the major findings regarding the pathophysiological events in MPS IVA. These results represent a proof-of-concept of the use of CRISPR/Cas9 nickase strategy for the development of a novel therapeutic alternative for MPS IVA.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia.
| |
Collapse
|
4
|
Jimenez-Kurlander L, Duncan CN. Gene Therapy for Pediatric Neurologic Disease. Hematol Oncol Clin North Am 2022; 36:853-864. [PMID: 35760664 DOI: 10.1016/j.hoc.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pediatric lysosomal and peroxisomal storage disorders, leukodystrophies, and motor neuron diseases can have devastating neurologic manifestations. Despite efforts to exploit cross-correction to treat these monogenic disorders for several decades, definitive treatment has yet to be identified. This review explores recent attempts to transduce autologous hematopoietic stem cells with functional gene or provide therapeutic gene in vivo. Specifically, we discuss the rationale behind efforts to treat pediatric neurologic disorders with gene therapy, outline the specific disorders that have been targeted at this time, and review recent and current clinical investigations with attention to the future direction of therapy efforts.
Collapse
Affiliation(s)
- Lauren Jimenez-Kurlander
- Department of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Christine N Duncan
- Department of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Takahashi K, Nelvagal HR, Lange J, Cooper JD. Glial Dysfunction and Its Contribution to the Pathogenesis of the Neuronal Ceroid Lipofuscinoses. Front Neurol 2022; 13:886567. [PMID: 35444603 PMCID: PMC9013902 DOI: 10.3389/fneur.2022.886567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 01/05/2023] Open
Abstract
While significant efforts have been made in developing pre-clinical treatments for the neuronal ceroid lipofuscinoses (NCLs), many challenges still remain to bring children with NCLs a cure. Devising effective therapeutic strategies for the NCLs will require a better understanding of pathophysiology, but little is known about the mechanisms by which loss of lysosomal proteins causes such devastating neurodegeneration. Research into glial cells including astrocytes, microglia, and oligodendrocytes have revealed many of their critical functions in brain homeostasis and potential contributions to neurodegenerative diseases. Genetically modified mouse models have served as a useful platform to define the disease progression in the central nervous system across NCL subtypes, revealing a wide range of glial responses to disease. The emerging evidence of glial dysfunction questions the traditional “neuron-centric” view of NCLs, and would suggest that directly targeting glia in addition to neurons could lead to better therapeutic outcomes. This review summarizes the most up-to-date understanding of glial pathologies and their contribution to the pathogenesis of NCLs, and highlights some of the associated challenges that require further research.
Collapse
Affiliation(s)
- Keigo Takahashi
- Pediatric Storage Disorders Laboratory, Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Hemanth R. Nelvagal
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Jenny Lange
- Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Genetics, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Jonathan D. Cooper
| |
Collapse
|
6
|
Stütz AE, Thonhofer M, Weber P, Wolfsgruber A, Wrodnigg TM. Pharmacological Chaperones for β-Galactosidase Related to G M1 -Gangliosidosis and Morquio B: Recent Advances. CHEM REC 2021; 21:2980-2989. [PMID: 34816592 DOI: 10.1002/tcr.202100269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
A short survey on selected β-galactosidase inhibitors as potential pharmacological chaperones for GM1 -gangliosidosis and Morquio B associated mutants of human lysosomal β-galactosidase is provided highlighting recent developments in this particular area of lysosomal storage disorders and orphan diseases.
Collapse
Affiliation(s)
- Arnold E Stütz
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Martin Thonhofer
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Patrick Weber
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Andreas Wolfsgruber
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| |
Collapse
|
7
|
Marchetti M, Faggiano S, Mozzarelli A. Enzyme Replacement Therapy for Genetic Disorders Associated with Enzyme Deficiency. Curr Med Chem 2021; 29:489-525. [PMID: 34042028 DOI: 10.2174/0929867328666210526144654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Mutations in human genes might lead to loss of functional proteins, causing diseases. Among these genetic disorders, a large class is associated with the deficiency in metabolic enzymes, resulting in both an increase in the concentration of substrates and a loss in the metabolites produced by the catalyzed reactions. The identification of therapeutic actions based on small molecules represents a challenge to medicinal chemists because the target is missing. Alternative approaches are biology-based, ranging from gene and stem cell therapy, CRISPR/Cas9 technology, distinct types of RNAs, and enzyme replacement therapy (ERT). This review will focus on the latter approach that since the 1990s has been successfully applied to cure many rare diseases, most of them being lysosomal storage diseases or metabolic diseases. So far, a dozen enzymes have been approved by FDA/EMA for lysosome storage disorders and only a few for metabolic diseases. Enzymes for replacement therapy are mainly produced in mammalian cells and some in plant cells and yeasts and are further processed to obtain active, highly bioavailable, less degradable products. Issues still under investigation for the increase in ERT efficacy are the optimization of enzymes interaction with cell membrane and internalization, the reduction in immunogenicity, and the overcoming of blood-brain barrier limitations when neuronal cells need to be targeted. Overall, ERT has demonstrated its efficacy and safety in the treatment of many genetic rare diseases, both saving newborn lives and improving patients' life quality, and represents a very successful example of targeted biologics.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Biopharmanet-TEC Interdepartmental Center, University of Parma, Parco Area delle Scienze, Bldg 33., 43124, Parma, Italy
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Andrea Mozzarelli
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
8
|
Juchniewicz P, Piotrowska E, Kloska A, Podlacha M, Mantej J, Węgrzyn G, Tukaj S, Jakóbkiewicz-Banecka J. Dosage Compensation in Females with X-Linked Metabolic Disorders. Int J Mol Sci 2021; 22:ijms22094514. [PMID: 33925963 PMCID: PMC8123450 DOI: 10.3390/ijms22094514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/19/2023] Open
Abstract
Through the use of new genomic and metabolomic technologies, our comprehension of the molecular and biochemical etiologies of genetic disorders is rapidly expanding, and so are insights into their varying phenotypes. Dosage compensation (lyonization) is an epigenetic mechanism that balances the expression of genes on heteromorphic sex chromosomes. Many studies in the literature have suggested a profound influence of this phenomenon on the manifestation of X-linked disorders in females. In this review, we summarize the clinical and genetic findings in female heterozygotic carriers of a pathogenic variant in one of ten selected X-linked genes whose defects result in metabolic disorders.
Collapse
Affiliation(s)
- Patrycja Juchniewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
- Correspondence: ; Tel.: +48-58-523-6040
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| |
Collapse
|
9
|
Cadaoas J, Hu H, Boyle G, Gomero E, Mosca R, Jayashankar K, Machado M, Cullen S, Guzman B, van de Vlekkert D, Annunziata I, Vellard M, Kakkis E, Koppaka V, d’Azzo A. Galactosialidosis: preclinical enzyme replacement therapy in a mouse model of the disease, a proof of concept. Mol Ther Methods Clin Dev 2021; 20:191-203. [PMID: 33426146 PMCID: PMC7782203 DOI: 10.1016/j.omtm.2020.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Galactosialidosis is a rare lysosomal storage disease caused by a congenital defect of protective protein/cathepsin A (PPCA) and secondary deficiency of neuraminidase-1 and β-galactosidase. PPCA is a lysosomal serine carboxypeptidase that functions as a chaperone for neuraminidase-1 and β-galactosidase within a lysosomal multi-protein complex. Combined deficiency of the three enzymes leads to accumulation of sialylated glycoproteins and oligosaccharides in tissues and body fluids and manifests in a systemic disease pathology with severity mostly correlating with the type of mutation(s) and age of onset of the symptoms. Here, we describe a proof-of-concept, preclinical study toward the development of enzyme replacement therapy for galactosialidosis, using a recombinant human PPCA. We show that the recombinant enzyme, taken up by patient-derived fibroblasts, restored cathepsin A, neuraminidase-1, and β-galactosidase activities. Long-term, bi-weekly injection of the recombinant enzyme in a cohort of mice with null mutation at the PPCA (CTSA) locus (PPCA -/- ), a faithful model of the disease, demonstrated a dose-dependent, systemic internalization of the enzyme by cells of various organs, including the brain. This resulted in restoration/normalization of the three enzyme activities, resolution of histopathology, and reduction of sialyloligosacchariduria. These positive results underscore the benefits of a PPCA-mediated enzyme replacement therapy for the treatment of galactosialidosis.
Collapse
Affiliation(s)
| | - Huimin Hu
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | - Elida Gomero
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Rosario Mosca
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | - Mike Machado
- Ultragenyx Pharmaceutical, Novato, CA 94949, USA
| | - Sean Cullen
- Ultragenyx Pharmaceutical, Novato, CA 94949, USA
| | - Belle Guzman
- Ultragenyx Pharmaceutical, Novato, CA 94949, USA
| | - Diantha van de Vlekkert
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ida Annunziata
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | - Emil Kakkis
- Ultragenyx Pharmaceutical, Novato, CA 94949, USA
| | - Vish Koppaka
- Ultragenyx Pharmaceutical, Novato, CA 94949, USA
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
10
|
Biferi MG, Cohen-Tannoudji M, García-Silva A, Souto-Rodríguez O, Viéitez-González I, San-Millán-Tejado B, Fernández-Carrera A, Pérez-Márquez T, Teijeira-Bautista S, Barrera S, Domínguez V, Marais T, González-Fernández Á, Barkats M, Ortolano S. Systemic Treatment of Fabry Disease Using a Novel AAV9 Vector Expressing α-Galactosidase A. Mol Ther Methods Clin Dev 2021; 20:1-17. [PMID: 33335943 PMCID: PMC7725667 DOI: 10.1016/j.omtm.2020.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/17/2020] [Indexed: 01/10/2023]
Abstract
Fabry disease is a rare X-linked disorder affecting α-galactosidase A, a rate-limiting enzyme in lysosomal catabolism of glycosphingolipids. Current treatments present important limitations, such as low half-life and limited distribution, which gene therapy can overcome. The aim of this work was to test a novel adeno-associated viral vector, serotype 9 (AAV9), ubiquitously expressing human α-galactosidase A to treat Fabry disease (scAAV9-PGK-GLA). The vector was preliminary tested in newborns of a Fabry disease mouse model. 5 months after treatment, α-galactosidase A activity was detectable in the analyzed tissues, including the central nervous system. Moreover, we tested the vector in adult animals of both sexes at two doses and disease stages (presymptomatic and symptomatic) by single intravenous injection. We found that the exogenous α-galactosidase A was active in peripheral tissues as well as the central nervous system and prevented glycosphingolipid accumulation in treated animals up to 5 months following injection. Antibodies against α-galactosidase A were produced in 9 out of 32 treated animals, although enzyme activity in tissues was not significantly affected. These results demonstrate that scAAV9-PGK-GLA can drive widespread and sustained expression of α-galactosidase A, cross the blood brain barrier after systemic delivery, and reduce pathological signs of the Fabry disease mouse model.
Collapse
Affiliation(s)
- Maria Grazia Biferi
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, 75013 Paris, France
| | - Mathilde Cohen-Tannoudji
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, 75013 Paris, France
| | - Andrea García-Silva
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Olga Souto-Rodríguez
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Irene Viéitez-González
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Beatriz San-Millán-Tejado
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Andrea Fernández-Carrera
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Tania Pérez-Márquez
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Susana Teijeira-Bautista
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Soraya Barrera
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Vanesa Domínguez
- Bioexperimentation Service of the University of Vigo (Sbio), Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain
- Immunology Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Thibaut Marais
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, 75013 Paris, France
| | - África González-Fernández
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain
- Immunology Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Martine Barkats
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, 75013 Paris, France
| | - Saida Ortolano
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| |
Collapse
|
11
|
Sugiman-Marangos SN, Beilhartz GL, Zhao X, Zhou D, Hua R, Kim PK, Rini JM, Minassian BA, Melnyk RA. Exploiting the diphtheria toxin internalization receptor enhances delivery of proteins to lysosomes for enzyme replacement therapy. SCIENCE ADVANCES 2020; 6:6/50/eabb0385. [PMID: 33310843 PMCID: PMC7732195 DOI: 10.1126/sciadv.abb0385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/21/2020] [Indexed: 05/17/2023]
Abstract
Enzyme replacement therapy, in which a functional copy of an enzyme is injected either systemically or directly into the brain of affected individuals, has proven to be an effective strategy for treating certain lysosomal storage diseases. The inefficient uptake of recombinant enzymes via the mannose-6-phosphate receptor, however, prohibits the broad utility of replacement therapy. Here, to improve the efficiency and efficacy of lysosomal enzyme uptake, we exploited the strategy used by diphtheria toxin to enter into the endolysosomal network of cells by creating a chimera between the receptor-binding fragment of diphtheria toxin and the lysosomal hydrolase TPP1. We show that chimeric TPP1 binds with high affinity to target cells and is efficiently delivered into lysosomes. Further, we show superior uptake of chimeric TPP1 over TPP1 alone in brain tissue following intracerebroventricular injection in mice lacking TPP1, demonstrating the potential of this strategy for enhancing lysosomal storage disease therapy.
Collapse
Affiliation(s)
| | - Greg L Beilhartz
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xiaochu Zhao
- Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dongxia Zhou
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Rong Hua
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, Canada
| | - Peter K Kim
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, Canada
| | - James M Rini
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, ON M5S1A8, Canada
| | - Berge A Minassian
- Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics and Dallas Children's Medical Center, University of Texas Southwestern, Dallas, TX 75390-9063, USA
| | - Roman A Melnyk
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Luciani M, Gritti A, Meneghini V. Human iPSC-Based Models for the Development of Therapeutics Targeting Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:224. [PMID: 33062642 PMCID: PMC7530250 DOI: 10.3389/fmolb.2020.00224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/10/2020] [Indexed: 01/30/2023] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of rare genetic conditions. The absence or deficiency of lysosomal proteins leads to excessive storage of undigested materials and drives secondary pathological mechanisms including autophagy, calcium homeostasis, ER stress, and mitochondrial abnormalities. A large number of LSDs display mild to severe central nervous system (CNS) involvement. Animal disease models and post-mortem tissues partially recapitulate the disease or represent the final stage of CNS pathology, respectively. In the last decades, human models based on induced pluripotent stem cells (hiPSCs) have been extensively applied to investigate LSD pathology in several tissues and organs, including the CNS. Neural stem/progenitor cells (NSCs) derived from patient-specific hiPSCs (hiPS-NSCs) are a promising tool to define the effects of the pathological storage on neurodevelopment, survival and function of neurons and glial cells in neurodegenerative LSDs. Additionally, the development of novel 2D co-culture systems and 3D hiPSC-based models is fostering the investigation of neuron-glia functional and dysfunctional interactions, also contributing to define the role of neurodevelopment and neuroinflammation in the onset and progression of the disease, with important implications in terms of timing and efficacy of treatments. Here, we discuss the advantages and limits of the application of hiPS-NSC-based models in the study and treatment of CNS pathology in different LSDs. Additionally, we review the state-of-the-art and the prospective applications of NSC-based therapy, highlighting the potential exploitation of hiPS-NSCs for gene and cell therapy approaches in the treatment of neurodegenerative LSDs.
Collapse
Affiliation(s)
- Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
13
|
Weber P, Thonhofer M, Averill S, Davies GJ, Santana AG, Müller P, Nasseri SA, Offen WA, Pabst BM, Paschke E, Schalli M, Torvisco A, Tschernutter M, Tysoe C, Windischhofer W, Withers SG, Wolfsgruber A, Wrodnigg TM, Stütz AE. Mechanistic Insights into the Chaperoning of Human Lysosomal-Galactosidase Activity: Highly Functionalized Aminocyclopentanes and C-5a-Substituted Derivatives of 4- epi-Isofagomine. Molecules 2020; 25:molecules25174025. [PMID: 32899288 PMCID: PMC7504770 DOI: 10.3390/molecules25174025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
Glycosidase inhibitors have shown great potential as pharmacological chaperones for lysosomal storage diseases. In light of this, a series of new cyclopentanoid β-galactosidase inhibitors were prepared and their inhibitory and pharmacological chaperoning activities determined and compared with those of lipophilic analogs of the potent β-d-galactosidase inhibitor 4-epi-isofagomine. Structure-activity relationships were investigated by X-ray crystallography as well as by alterations in the cyclopentane moiety such as deoxygenation and replacement by fluorine of a “strategic” hydroxyl group. New compounds have revealed highly promising activities with a range of β-galactosidase-compromised human cell lines and may serve as leads towards new pharmacological chaperones for GM1-gangliosidosis and Morquio B disease.
Collapse
Affiliation(s)
- Patrick Weber
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria; (P.W.); (M.T.); (S.A.); (M.S.); (A.W.); (T.M.W.)
| | - Martin Thonhofer
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria; (P.W.); (M.T.); (S.A.); (M.S.); (A.W.); (T.M.W.)
| | - Summer Averill
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria; (P.W.); (M.T.); (S.A.); (M.S.); (A.W.); (T.M.W.)
| | - Gideon J. Davies
- Department of Chemistry, University of York, Heslington, York YO10 5DD, North Yorkshire, UK; (G.J.D.); (W.A.O.)
| | - Andres Gonzalez Santana
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; (A.G.S.); (S.A.N.); (C.T.); (S.G.W.)
| | - Philipp Müller
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria; (P.M.); (A.T.)
| | - Seyed A. Nasseri
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; (A.G.S.); (S.A.N.); (C.T.); (S.G.W.)
| | - Wendy A. Offen
- Department of Chemistry, University of York, Heslington, York YO10 5DD, North Yorkshire, UK; (G.J.D.); (W.A.O.)
| | - Bettina M. Pabst
- Laboratory of Metabolic Diseases, Department of Pediatrics, MedUni Graz, Auenbruggerplatz 30, A-8036 Graz, Austria; (B.M.P.); (E.P.); (M.T.); (W.W.)
| | - Eduard Paschke
- Laboratory of Metabolic Diseases, Department of Pediatrics, MedUni Graz, Auenbruggerplatz 30, A-8036 Graz, Austria; (B.M.P.); (E.P.); (M.T.); (W.W.)
| | - Michael Schalli
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria; (P.W.); (M.T.); (S.A.); (M.S.); (A.W.); (T.M.W.)
| | - Ana Torvisco
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria; (P.M.); (A.T.)
| | - Marion Tschernutter
- Laboratory of Metabolic Diseases, Department of Pediatrics, MedUni Graz, Auenbruggerplatz 30, A-8036 Graz, Austria; (B.M.P.); (E.P.); (M.T.); (W.W.)
| | - Christina Tysoe
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; (A.G.S.); (S.A.N.); (C.T.); (S.G.W.)
| | - Werner Windischhofer
- Laboratory of Metabolic Diseases, Department of Pediatrics, MedUni Graz, Auenbruggerplatz 30, A-8036 Graz, Austria; (B.M.P.); (E.P.); (M.T.); (W.W.)
| | - Stephen G. Withers
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; (A.G.S.); (S.A.N.); (C.T.); (S.G.W.)
| | - Andreas Wolfsgruber
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria; (P.W.); (M.T.); (S.A.); (M.S.); (A.W.); (T.M.W.)
| | - Tanja M. Wrodnigg
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria; (P.W.); (M.T.); (S.A.); (M.S.); (A.W.); (T.M.W.)
| | - Arnold E. Stütz
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria; (P.W.); (M.T.); (S.A.); (M.S.); (A.W.); (T.M.W.)
- Correspondence: ; Tel.: +43-316-873-32079
| |
Collapse
|
14
|
Leal AF, Benincore-Flórez E, Solano-Galarza D, Garzón Jaramillo RG, Echeverri-Peña OY, Suarez DA, Alméciga-Díaz CJ, Espejo-Mojica AJ. GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies. Int J Mol Sci 2020; 21:ijms21176213. [PMID: 32867370 PMCID: PMC7503724 DOI: 10.3390/ijms21176213] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay-Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy. The blood-brain barrier represents a challenge for the development of therapeutic agents for these disorders. In this sense, alternative routes of administration (e.g., intrathecal or intracerebroventricular) have been evaluated, as well as the design of fusion peptides that allow the protein transport from the brain capillaries to the central nervous system. In this review, we outline the current knowledge about clinical and physiopathological findings of GM2 gangliosidoses, as well as the ongoing proposals to overcome some limitations of the traditional alternatives by using novel strategies such as molecular Trojan horses or advanced tools of genome editing.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
| | - Eliana Benincore-Flórez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
| | - Daniela Solano-Galarza
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
| | - Rafael Guillermo Garzón Jaramillo
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
| | - Olga Yaneth Echeverri-Peña
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
| | - Diego A. Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
- Correspondence: (C.J.A.-D.); (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.)
| | - Angela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
- Correspondence: (C.J.A.-D.); (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.)
| |
Collapse
|
15
|
kleine Holthaus SM, Aristorena M, Maswood R, Semenyuk O, Hoke J, Hare A, Smith AJ, Mole SE, Ali RR. Gene Therapy Targeting the Inner Retina Rescues the Retinal Phenotype in a Mouse Model of CLN3 Batten Disease. Hum Gene Ther 2020; 31:709-718. [PMID: 32578444 PMCID: PMC7404834 DOI: 10.1089/hum.2020.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), often referred to as Batten disease, are inherited lysosomal storage disorders that represent the most common neurodegeneration during childhood. Symptoms include seizures, vision loss, motor and cognitive decline, and premature death. The development of brain-directed treatments for NCLs has made noteworthy progress in recent years. Clinical trials are currently ongoing or planned for different forms of the disease. Despite these promising advances, it is unlikely that therapeutic interventions targeting the brain will prevent loss of vision in patients as retinal cells remain untreated and will continue to degenerate. Here, we demonstrate that Cln3Δex7/8 mice, a mouse model of CLN3 Batten disease with juvenile onset, suffer from a decline in inner retinal function resulting from the death of rod bipolar cells, interneurons vital for signal transmission from photoreceptors to ganglion cells in the retina. We also show that this ocular phenotype can be treated by adeno-associated virus (AAV)-mediated expression of CLN3 in cells of the inner retina, leading to significant survival of bipolar cells and preserved retinal function. In contrast, the treatment of photoreceptors, which are lost in patients at late disease stages, was not therapeutic in Cln3Δex7/8 mice, underlining the notion that CLN3 disease is primarily a disease of the inner retina with secondary changes in the outer retina. These data indicate that bipolar cells play a central role in this disease and identify this cell type as an important target for ocular AAV-based gene therapies for CLN3 disease.
Collapse
Affiliation(s)
| | - Mikel Aristorena
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Ryea Maswood
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Olha Semenyuk
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Justin Hoke
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Aura Hare
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Alexander J. Smith
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Sara E. Mole
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- UCL Institute of Child Health, London, United Kingdom
- UCL Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Robin R. Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Correspondence: Prof. Robin R. Ali, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom.
| |
Collapse
|
16
|
D’Avanzo F, Rigon L, Zanetti A, Tomanin R. Mucopolysaccharidosis Type II: One Hundred Years of Research, Diagnosis, and Treatment. Int J Mol Sci 2020; 21:E1258. [PMID: 32070051 PMCID: PMC7072947 DOI: 10.3390/ijms21041258] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) was first described by Dr. Charles Hunter in 1917. Since then, about one hundred years have passed and Hunter syndrome, although at first neglected for a few decades and afterwards mistaken for a long time for the similar disorder Hurler syndrome, has been clearly distinguished as a specific disease since 1978, when the distinct genetic causes of the two disorders were finally identified. MPS II is a rare genetic disorder, recently described as presenting an incidence rate ranging from 0.38 to 1.09 per 100,000 live male births, and it is the only X-linked-inherited mucopolysaccharidosis. The complex disease is due to a deficit of the lysosomal hydrolase iduronate 2-sulphatase, which is a crucial enzyme in the stepwise degradation of heparan and dermatan sulphate. This contributes to a heavy clinical phenotype involving most organ-systems, including the brain, in at least two-thirds of cases. In this review, we will summarize the history of the disease during this century through clinical and laboratory evaluations that allowed its definition, its correct diagnosis, a partial comprehension of its pathogenesis, and the proposition of therapeutic protocols. We will also highlight the main open issues related to the possible inclusion of MPS II in newborn screenings, the comprehension of brain pathogenesis, and treatment of the neurological compartment.
Collapse
Affiliation(s)
- Francesca D’Avanzo
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| | - Laura Rigon
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
- Molecular Developmental Biology, Life & Medical Science Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Alessandra Zanetti
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| |
Collapse
|
17
|
Affiliation(s)
- Luisa Natalia Pimentel Vera
- Centro de Pesquisa Experimental, Centro De Terapia Gênica- Hospital De Clínicas De Porto Alegre, Porto Alegre, Brazil
| | - Guilherme Baldo
- Centro de Pesquisa Experimental, Centro De Terapia Gênica- Hospital De Clínicas De Porto Alegre, Porto Alegre, Brazil
- Centro de Pesquisa Experimental, Programa De Pós-Graduação Em Genética E Biologia Molecular-UFRGS, Porto Alegre, Brazil
| |
Collapse
|
18
|
Chugani HT. Positron Emission Tomography in Pediatric Neurodegenerative Disorders. Pediatr Neurol 2019; 100:12-25. [PMID: 31416725 DOI: 10.1016/j.pediatrneurol.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 12/01/2022]
Abstract
Application of molecular neuroimaging using positron emission tomographic techniques to assess pediatric neurodegenerative disorders has been limited, unlike in adults where positron emission tomography has contributed to clinical diagnosis, monitoring of neurodegenerative disease progression, and assessment of novel therapeutic approaches. Yet, there is a huge unexplored potential of molecular imaging to improve our understanding of the pathophysiology of neurodegenerative disorders in children and provide radiological biomarkers that can be applied clinically. The obstacles in performing PET scans on children include sedation, radiation exposure, and access but, as will be illustrated, these barriers can be easily overcome. This review summarizes findings from PET studies that have been performed over the past three decades on children with various neurodegenerative disorders, including the neuronal ceroid lipofuscinoses, juvenile Huntington disease, Wilson disease, Niemann-Pick disease type C, Dravet syndrome, dystonia, mitochondrial disorders, inborn errors of metabolism, lysosomal storage diseases, dysmyelinating disorders, Rett syndrome, neurotransmitter disorders, glucose transporter Glut 1 deficiency, and Lesch-Nyhan disease. Because positron emission tomographic scans have often been clinically useful and have contributed to the management of these disorders, we suggest that the time has come for glucose metabolism positron emission tomographic scans to be reimbursed by insurance carriers for children with neurodegenerative disorders, and not restricted only to epilepsy surgery evaluation.
Collapse
Affiliation(s)
- Harry T Chugani
- Department of Neurology, NYU School of Medicine, New York, New York.
| |
Collapse
|
19
|
Neonatal brain-directed gene therapy rescues a mouse model of neurodegenerative CLN6 Batten disease. Hum Mol Genet 2019; 28:3867-3879. [DOI: 10.1093/hmg/ddz210] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract
The neuronal ceroid lipofuscinoses (NCLs), more commonly referred to as Batten disease, are a group of inherited lysosomal storage disorders that present with neurodegeneration, loss of vision and premature death. There are at least 13 genetically distinct forms of NCL. Enzyme replacement therapies and pre-clinical studies on gene supplementation have shown promising results for NCLs caused by lysosomal enzyme deficiencies. The development of gene therapies targeting the brain for NCLs caused by defects in transmembrane proteins has been more challenging and only limited therapeutic effects in animal models have been achieved so far. Here, we describe the development of an adeno-associated virus (AAV)-mediated gene therapy to treat the neurodegeneration in a mouse model of CLN6 disease, a form of NCL with a deficiency in the membrane-bound protein CLN6. We show that neonatal bilateral intracerebroventricular injections with AAV9 carrying CLN6 increase lifespan by more than 90%, maintain motor skills and motor coordination and reduce neuropathological hallmarks of Cln6-deficient mice up to 23 months post vector administration. These data demonstrate that brain-directed gene therapy is a valid strategy to treat the neurodegeneration of CLN6 disease and may be applied to other forms of NCL caused by transmembrane protein deficiencies in the future.
Collapse
|
20
|
Solovyeva VV, Shaimardanova AA, Chulpanova DS, Kitaeva KV, Chakrabarti L, Rizvanov AA. New Approaches to Tay-Sachs Disease Therapy. Front Physiol 2018; 9:1663. [PMID: 30524313 PMCID: PMC6256099 DOI: 10.3389/fphys.2018.01663] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
Tay-Sachs disease belongs to the group of autosomal-recessive lysosomal storage metabolic disorders. This disease is caused by β-hexosaminidase A (HexA) enzyme deficiency due to various mutations in α-subunit gene of this enzyme, resulting in GM2 ganglioside accumulation predominantly in lysosomes of nerve cells. Tay-Sachs disease is characterized by acute neurodegeneration preceded by activated microglia expansion, macrophage and astrocyte activation along with inflammatory mediator production. In most cases, the disease manifests itself during infancy, the “infantile form,” which characterizes the most severe disorders of the nervous system. The juvenile form, the symptoms of which appear in adolescence, and the most rare form with late onset of symptoms in adulthood are also described. The typical features of Tay-Sachs disease are muscle weakness, ataxia, speech, and mental disorders. Clinical symptom severity depends on residual HexA enzymatic activity associated with some mutations. Currently, Tay-Sachs disease treatment is based on symptom relief and, in case of the late-onset form, on the delay of progression. There are also clinical reports of substrate reduction therapy using miglustat and bone marrow or hematopoietic stem cell transplantation. At the development stage there are methods of Tay-Sachs disease gene therapy using adeno- or adeno-associated viruses as vectors for the delivery of cDNA encoding α and β HexA subunit genes. Effectiveness of this approach is evaluated in α or β HexA subunit defective model mice or Jacob sheep, in which Tay-Sachs disease arises spontaneously and is characterized by the same pathological features as in humans. This review discusses the possibilities of new therapeutic strategies in Tay-Sachs disease therapy aimed at preventing neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
21
|
Wilcken B. Newborn Screening for Lysosomal Disease: Mission Creep and a Taste of Things to Come? Int J Neonatal Screen 2018; 4:21. [PMID: 33072944 PMCID: PMC7510244 DOI: 10.3390/ijns4030021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
Newborn screening for several lysosomal disorders can now be accomplished successfully for case finding. However, many cases identified do not require immediate intervention and it is not yet clear, for some disorders, if there is a benefit in early diagnosis for those cases, or what should be called a benefit. Diagnosing adult-onset cases, especially when there are quite imperfect genotype-phenotype correlations, represents a significant expansion of what has heretofore been considered the aim of newborn screening. This mission creep should be carefully discussed, and certain aspects of newborn screening strengthened. We should all proceed with caution in this field.
Collapse
Affiliation(s)
- Bridget Wilcken
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW 2031, Australia; ; Tel.: +61-293-825-609
- Paediatrics and Child Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
Frati G, Luciani M, Meneghini V, De Cicco S, Ståhlman M, Blomqvist M, Grossi S, Filocamo M, Morena F, Menegon A, Martino S, Gritti A. Human iPSC-based models highlight defective glial and neuronal differentiation from neural progenitor cells in metachromatic leukodystrophy. Cell Death Dis 2018; 9:698. [PMID: 29899471 PMCID: PMC5997994 DOI: 10.1038/s41419-018-0737-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022]
Abstract
The pathological cascade leading from primary storage to neural cell dysfunction and death in metachromatic leukodystrophy (MLD) has been poorly elucidated in human-derived neural cell systems. In the present study, we have modeled the progression of pathological events during the differentiation of patient-specific iPSCs to neuroepithelial progenitor cells (iPSC-NPCs) and mature neurons, astrocytes, and oligodendrocytes at the morphological, molecular, and biochemical level. We showed significant sulfatide accumulation and altered sulfatide composition during the differentiation of MLD iPSC-NPCs into neuronal and glial cells. Changes in sulfatide levels and composition were accompanied by the expansion of the lysosomal compartment, oxidative stress, and apoptosis. The neuronal and glial differentiation capacity of MLD iPSC-NPCs was significantly impaired. We showed delayed appearance and/or reduced levels of oligodendroglial and astroglial markers as well as reduced number of neurons and disorganized neuronal network. Restoration of a functional Arylsulfatase A (ARSA) enzyme in MLD cells using lentiviral-mediated gene transfer normalized sulfatide levels and composition, globally rescuing the pathological phenotype. Our study points to MLD iPSC-derived neural progeny as a useful in vitro model to assess the impact of ARSA deficiency along NPC differentiation into neurons and glial cells. In addition, iPSC-derived neural cultures allowed testing the impact of ARSA reconstitution/overexpression on disease correction and, importantly, on the biology and functional features of human NPCs, with important therapeutic implications.
Collapse
Affiliation(s)
- Giacomo Frati
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy
| | - Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy.,Institute Imagine, 24 Boulevard du Montparnasse, 75015, Paris, France
| | - Silvia De Cicco
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Otfried-Müller Str.23, 72076, Tübingen, Germany
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, SE-41101, Gothenburg, Sweden
| | - Maria Blomqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-41101, Gothenburg, Sweden
| | - Serena Grossi
- UOSD Centro di diagnostica genetica e biochimica delle malattie metaboliche, IRCCS G. Gaslini Institute, Via G. Gaslini, 16147, Genova, Italy
| | - Mirella Filocamo
- UOSD Centro di diagnostica genetica e biochimica delle malattie metaboliche, IRCCS G. Gaslini Institute, Via G. Gaslini, 16147, Genova, Italy
| | - Francesco Morena
- Department of Chemistry, Biology, and Biotechnologies, University of Perugia, Via del Giochetto, 06126, Perugia, Italy
| | - Andrea Menegon
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabata Martino
- Department of Chemistry, Biology, and Biotechnologies, University of Perugia, Via del Giochetto, 06126, Perugia, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy.
| |
Collapse
|
23
|
Cavalca E, Cesani M, Gifford JC, Sena-Esteves M, Terreni MR, Leoncini G, Peviani M, Biffi A. Metallothioneins are neuroprotective agents in lysosomal storage disorders. Ann Neurol 2018; 83:418-432. [DOI: 10.1002/ana.25161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/07/2017] [Accepted: 01/24/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Eleonora Cavalca
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center; Boston MA
- Vita Salute San Raffaele University; Milan Italy
- San Raffaele Telethon Institute for Gene Therapy; San Raffaele Scientific Institute; Milan Italy
| | - Martina Cesani
- San Raffaele Telethon Institute for Gene Therapy; San Raffaele Scientific Institute; Milan Italy
| | - Jennifer C. Gifford
- Department of Neurology and Horae Gene Therapy Center; University of Massachusetts Medical School; Worcester MA
| | - Miguel Sena-Esteves
- Department of Neurology and Horae Gene Therapy Center; University of Massachusetts Medical School; Worcester MA
| | | | - Giuseppe Leoncini
- Pathology Department; San Raffaele Scientific Institute; Milan Italy
| | - Marco Peviani
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center; Boston MA
| | - Alessandra Biffi
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center; Boston MA
- San Raffaele Telethon Institute for Gene Therapy; San Raffaele Scientific Institute; Milan Italy
- Harvard Medical School; Boston MA
| |
Collapse
|
24
|
Zhou X, Li M, Su D, Jia Q, Li H, Li X, Yang J. Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states. Nat Struct Mol Biol 2017; 24:1146-1154. [PMID: 29106414 PMCID: PMC5747366 DOI: 10.1038/nsmb.3502] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/10/2017] [Indexed: 12/23/2022]
Abstract
TRPML3 channels are mainly localized to endolysosomes and play a critical role in the endocytic pathway. Their dysfunction causes deafness and pigmentation defects in mice. TRPML3 activity is inhibited by low endolysosomal pH. Here we present cryo-electron microscopy (cryo-EM) structures of human TRPML3 in the closed, agonist-activated, and low-pH-inhibited states, with resolutions of 4.06, 3.62, and 4.65 Å, respectively. The agonist ML-SA1 lodges between S5 and S6 and opens an S6 gate. A polycystin-mucolipin domain (PMD) forms a luminal cap. S1 extends into this cap, forming a 'gating rod' that connects directly to a luminal pore loop, which undergoes dramatic conformational changes in response to low pH. S2 extends intracellularly and interacts with several intracellular regions to form a 'gating knob'. These unique structural features, combined with the results of electrophysiological studies, indicate a new mechanism by which luminal pH and other physiological modulators such as PIP2 regulate TRPML3 by changing S1 and S2 conformations.
Collapse
Affiliation(s)
- Xiaoyuan Zhou
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Minghui Li
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Deyuan Su
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qi Jia
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Huan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xueming Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
25
|
Platt FM. Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov 2017; 17:133-150. [PMID: 29147032 DOI: 10.1038/nrd.2017.214] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) - designated as 'orphan' diseases - are inborn errors of metabolism caused by defects in genes that encode proteins involved in various aspects of lysosomal homeostasis. For many years, LSDs were viewed as unattractive targets for the development of therapies owing to their low prevalence. However, the development and success of the first commercial biologic therapy for an LSD - enzyme replacement therapy for type 1 Gaucher disease - coupled with regulatory incentives rapidly catalysed commercial interest in therapeutically targeting LSDs. Despite ongoing challenges, various therapeutic strategies for LSDs now exist, with many agents approved, undergoing clinical trials or in preclinical development.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
26
|
Piguet F, Alves S, Cartier N. Clinical Gene Therapy for Neurodegenerative Diseases: Past, Present, and Future. Hum Gene Ther 2017; 28:988-1003. [DOI: 10.1089/hum.2017.160] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Françoise Piguet
- Translational Medicine and Neurogenetics Department, Institut de Genetique et de Biologie Moleculaire et Cellulaire, Strasbourg, France
- Inserm U596, Illkirch, France; CNRS, UMR7104, Illkirch, France
- Faculte des Sciences de la Vie, Universite de Strasbourg, Strasbourg, France
| | | | - Nathalie Cartier
- INSERM/CEA UMR1169, MIRCen Fontenay aux Roses, France
- Universite Paris-Sud, Orsay, France
| |
Collapse
|
27
|
Schalli M, Tysoe C, Fischer R, Pabst BM, Thonhofer M, Paschke E, Rappitsch T, Stütz AE, Tschernutter M, Windischhofer W, Withers SG. N-Substituted 5-amino-1-hydroxymethyl-cyclopentanetriols: A new family of activity promotors for a G M1-gangliosidosis related human lysosomal β-galactosidase mutant. Carbohydr Res 2017; 443-444:15-22. [PMID: 28319682 DOI: 10.1016/j.carres.2017.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 11/25/2022]
Abstract
From 1,2;3,4-di-O-isopropylidene-α-D-galactopyranose, a series of highly functionalized (hydroxymethyl)cyclopentanes was easily available. In line with reports by Reymond and Jäger on similar structures, these amine containing basic carbasugars are potent inhibitors of β-D-galactosidases and, for the first time, could be shown to act as pharmacological chaperones for GM1-gangliosidosis-associated lysosomal acid β-galactosidase mutant R201C, thus representing a new structural type of pharmacological chaperones for this lysosomal storage disease.
Collapse
Affiliation(s)
- Michael Schalli
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Christina Tysoe
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Roland Fischer
- Institute of Inorganic Chemistry Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Bettina M Pabst
- Laboratory of Metabolic Diseases, Department of Pediatrics, MedUni Graz, Auenbruggerplatz 30, A-8036, Graz, Austria
| | - Martin Thonhofer
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Eduard Paschke
- Laboratory of Metabolic Diseases, Department of Pediatrics, MedUni Graz, Auenbruggerplatz 30, A-8036, Graz, Austria
| | - Tanja Rappitsch
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Arnold E Stütz
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria.
| | - Marion Tschernutter
- Laboratory of Metabolic Diseases, Department of Pediatrics, MedUni Graz, Auenbruggerplatz 30, A-8036, Graz, Austria
| | - Werner Windischhofer
- Laboratory of Metabolic Diseases, Department of Pediatrics, MedUni Graz, Auenbruggerplatz 30, A-8036, Graz, Austria
| | - Stephen G Withers
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
28
|
Stapleton M, Kubaski F, Mason RW, Yabe H, Suzuki Y, Orii KE, Orii T, Tomatsu S. Presentation and Treatments for Mucopolysaccharidosis Type II (MPS II; Hunter Syndrome). Expert Opin Orphan Drugs 2017; 5:295-307. [PMID: 29158997 PMCID: PMC5693349 DOI: 10.1080/21678707.2017.1296761] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/15/2017] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Mucopolysaccharidosis Type II (MPS II; Hunter syndrome) is an X- linked lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS). IDS deficiency leads to primary accumulation of dermatan sulfate (DS) and heparan sulfate (HS). MPS II is both multi-systemic and progressive. Phenotypes are classified as either attenuated or severe (based on absence or presence of central nervous system impairment, respectively). AREAS COVERED Current treatments available are intravenous enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), anti-inflammatory treatment, and palliative care with symptomatic surgeries. Clinical trials are being conducted for intrathecal ERT and gene therapy is under pre-clinical investigation. Treatment approaches differ based on age, clinical severity, prognosis, availability and feasibility of therapy, and health insurance.This review provides a historical account of MPS II treatment as well as treatment development with insights into benefits and/or limitations of each specific treatment. EXPERT OPINION Conventional ERT and HSCT coupled with surgical intervention and palliative therapy are currently the treatment options available to MPS II patients. Intrathecal ERT and gene therapy are currently under investigation as future therapies. These investigative treatments are critical to address the limitations in treatment of the central nervous system (CNS).
Collapse
Affiliation(s)
- Molly Stapleton
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Francyne Kubaski
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Robert W. Mason
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Hiromasa Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Kenji E. Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
29
|
Grabowski GA, Whitley C. Ten plus one challenges in diseases of the lysosomal system. Mol Genet Metab 2017; 120:38-46. [PMID: 27923545 DOI: 10.1016/j.ymgme.2016.11.388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 01/01/2023]
Abstract
The advent of the first effective specific therapy for a lysosomal storage disease (LSDs), Gaucher disease type 1, by Roscoe O. Brady was foundational for development of additional treatments for this group of rare diseases. The past 26years, since the approval of enzyme therapy for Gaucher disease type 1, have witnessed a burgeoning understanding of LSDs at genetic, molecular, biochemical, cell biologic, and clinical levels. Simultaneously, this expansion of knowledge has exposed our incomplete understanding of the individual pathophysiologies of LSDs as well as difficult challenges for improvement in therapy and therapeutic outcomes for afflicted individuals. Here, 10 such challenges/problems representing major impediments, which need to be overcome, to move forward toward the goals of more effective and complete therapies for these devastating diseases.
Collapse
Affiliation(s)
- Gregory A Grabowski
- Children's Hospital Medical Center, Cincinnati, OH, United States; Kiniksa Pharmaceuticals, Ltd., Wellesley, MA, United States.
| | - Chester Whitley
- Department of Pediatrics, University of Minnesota, School of Medicine, Minneapolis, MN, United States; Department of Experimental and Clinical Pharmacology, University of Minnesota, School of Medicine, Minneapolis, MN, United States
| |
Collapse
|
30
|
Bobillo Lobato J, Jiménez Hidalgo M, Jiménez Jiménez LM. Biomarkers in Lysosomal Storage Diseases. Diseases 2016; 4:diseases4040040. [PMID: 28933418 PMCID: PMC5456325 DOI: 10.3390/diseases4040040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
A biomarker is generally an analyte that indicates the presence and/or extent of a biological process, which is in itself usually directly linked to the clinical manifestations and outcome of a particular disease. The biomarkers in the field of lysosomal storage diseases (LSDs) have particular relevance where spectacular therapeutic initiatives have been achieved, most notably with the introduction of enzyme replacement therapy (ERT). There are two main types of biomarkers. The first group is comprised of those molecules whose accumulation is directly enhanced as a result of defective lysosomal function. These molecules represent the storage of the principal macro-molecular substrate(s) of a specific enzyme or protein, whose function is deficient in the given disease. In the second group of biomarkers, the relationship between the lysosomal defect and the biomarker is indirect. In this group, the biomarker reflects the effects of the primary lysosomal defect on cell, tissue, or organ functions. There is no “gold standard” among biomarkers used to diagnosis and/or monitor LSDs, but there are a number that exist that can be used to reasonably assess and monitor the state of certain organs or functions. A number of biomarkers have been proposed for the analysis of the most important LSDs. In this review, we will summarize the most promising biomarkers in major LSDs and discuss why these are the most promising candidates for screening systems.
Collapse
Affiliation(s)
- Joaquin Bobillo Lobato
- Servicio de Bioquímica Clínica, Unidad de Gestión Clínica de Laboratorios, Hospital Universitario Nuestra Señora de Valme, 41014-Sevilla, Spain.
| | - Maria Jiménez Hidalgo
- Servicio de Fisiopatología Celular y Bioenergética, Servicios Centrales de Investigación, Universidad Pablo de Olavide, 41013-Sevilla, Spain.
| | - Luis M Jiménez Jiménez
- Servicio de Fisiopatología Celular y Bioenergética, Servicios Centrales de Investigación, Universidad Pablo de Olavide, 41013-Sevilla, Spain.
| |
Collapse
|
31
|
Abstract
The ontogeny of brain-tumor-associated macrophages is poorly understood. New findings indicate that both resident microglia and blood-derived monocytes generate the pool of macrophages that infiltrate brain tumors of either primary or metastatic origin.
Collapse
Affiliation(s)
- Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
32
|
Eitan E, Suire C, Zhang S, Mattson MP. Impact of lysosome status on extracellular vesicle content and release. Ageing Res Rev 2016; 32:65-74. [PMID: 27238186 DOI: 10.1016/j.arr.2016.05.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale size bubble-like membranous structures released from cells. EVs contain RNA, lipids and proteins and are thought to serve various roles including intercellular communication and removal of misfolded proteins. The secretion of misfolded and aggregated proteins in EVs may be a cargo disposal alternative to the autophagy-lysosomal and ubiquitin-proteasome pathways. In this review we will discuss the importance of lysosome functionality for the regulation of EV secretion and content. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies (MVB) with the plasma membrane. MVBs can also fuse with lysosomes, and the trafficking pathway of MVBs can therefore determine whether or not exosomes are released from cells. Here we summarize data from studies of the effects of lysosome inhibition on the secretion of EVs and on the possibility that cells compensate for lysosome malfunction by disposal of potentially toxic cargos in EVs. A better understanding of the molecular mechanisms that regulate trafficking of MVBs to lysosomes and the plasma membrane may advance an understanding of diseases in which pathogenic proteins, lipids or infectious agents accumulate within or outside of cells.
Collapse
|
33
|
Kuech EM, Brogden G, Naim HY. Alterations in membrane trafficking and pathophysiological implications in lysosomal storage disorders. Biochimie 2016; 130:152-162. [DOI: 10.1016/j.biochi.2016.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
|
34
|
Low-dose Gene Therapy Reduces the Frequency of Enzyme Replacement Therapy in a Mouse Model of Lysosomal Storage Disease. Mol Ther 2016; 24:2054-2063. [PMID: 27658524 PMCID: PMC5159621 DOI: 10.1038/mt.2016.181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/29/2016] [Indexed: 12/29/2022] Open
Abstract
Enzyme replacement therapy (ERT) is the standard of care for several lysosomal storage diseases (LSDs). ERT, however, requires multiple and costly administrations and has limited efficacy. We recently showed that a single high dose administration of adeno-associated viral vector serotype 8 (AAV2/8) is at least as effective as weekly ERT in a mouse model of mucopolysaccharidosis type VI (MPS VI). However, systemic administration of high doses of AAV might result in both cell-mediated immune responses and insertional mutagenesis. Here we evaluated whether the combination of low doses of AAV2/8 with a less frequent (monthly) than canonical (weekly) ERT schedule may be as effective as the single treatments at high doses or frequent regimen. A greater reduction of both urinary glycosaminoglycans, considered a sensitive biomarker of therapeutic efficacy, and storage in the myocardium and heart valves was observed in mice receiving the combined than the single therapies. Importantly, these levels of correction were similar to those we obtained in a previous study following either high doses of AAV2/8 or weekly ERT. Our data show that low-dose gene therapy can be used as a means to rarify ERT administration, thus reducing both the risks and costs associated with either therapies.
Collapse
|