1
|
Liu G, Yang C, Wang X, Chen X, Cai H, Le W. Cerebellum in neurodegenerative diseases: Advances, challenges, and prospects. iScience 2024; 27:111194. [PMID: 39555407 PMCID: PMC11567929 DOI: 10.1016/j.isci.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progressive dysfunction of neurons and glial cells, leading to their structural and functional degradation in the central and/or peripheral nervous system. Historically, research on NDs has primarily focused on the brain, brain stem, or spinal cord associated with disease-related symptoms, often overlooking the role of the cerebellum. However, an increasing body of clinical and biological evidence suggests a significant connection between the cerebellum and NDs. In several NDs, cerebellar pathology and biochemical changes may start in the early disease stages. This article provides a comprehensive update on the involvement of the cerebellum in the clinical features and pathogenesis of multiple NDs, suggesting that the cerebellum is involved in the onset and progression of NDs through various mechanisms, including specific neurodegeneration, neuroinflammation, abnormal mitochondrial function, and altered metabolism. Additionally, this review highlights the significant therapeutic potential of cerebellum-related treatments for NDs.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 200237, China
| |
Collapse
|
2
|
Zareba J, Cattaneo EF, Villani A, Othman A, Streb S, Peri F. NPC1 links cholesterol trafficking to microglial morphology via the gastrosome. Nat Commun 2024; 15:8638. [PMID: 39366931 PMCID: PMC11452621 DOI: 10.1038/s41467-024-52874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Microglia play important roles in brain development and homeostasis by removing dying neurons through efferocytosis. Morphological changes in microglia are hallmarks of many neurodegenerative conditions, such as Niemann-Pick disease type C. Here, NPC1 loss causes microglia to shift from a branched to an ameboid form, though the cellular basis and functional impact of this change remain unclear. Using zebrafish, we show that NPC1 deficiency causes an efferocytosis-dependent expansion of the microglial gastrosome, a collection point for engulfed material. In vivo and in vitro experiments on microglia and mammalian macrophages demonstrate that NPC1 localizes to the gastrosome, and its absence leads to cholesterol accumulation in this compartment. NPC1 loss and neuronal cell death synergistically affect gastrosome size and cell shape, increasing the sensitivity of NPC1-deficient cells to neuronal cell death. Finally, we demonstrate conservation of cholesterol accumulation and gastrosome expansion in NPC patient-derived fibroblasts, offering an interesting target for further disease investigation.
Collapse
Affiliation(s)
- Joanna Zareba
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Elena F Cattaneo
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ambra Villani
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Alaa Othman
- Functional Genomic Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Sebastian Streb
- Functional Genomic Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Francesca Peri
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Azaria RD, Correia AB, Schache KJ, Zapata M, Pathmasiri KC, Mohanty V, Nannapaneni DT, Ashfeld BL, Helquist P, Wiest O, Ohgane K, Li Q, Fredenburg RA, Blagg BS, Cologna SM, Schultz ML, Lieberman AP. Mutant induced neurons and humanized mice enable identification of Niemann-Pick type C1 proteostatic therapies. JCI Insight 2024; 9:e179525. [PMID: 39207850 PMCID: PMC11530122 DOI: 10.1172/jci.insight.179525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Therapeutics that rescue folding, trafficking, and function of disease-causing missense mutants are sought for a host of human diseases, but efforts to leverage model systems to test emerging strategies have met with limited success. Such is the case for Niemann-Pick type C1 disease, a lysosomal disorder characterized by impaired intracellular cholesterol trafficking, progressive neurodegeneration, and early death. NPC1, a multipass transmembrane glycoprotein, is synthesized in the endoplasmic reticulum and traffics to late endosomes/lysosomes, but this process is often disrupted in disease. We sought to identify small molecules that promote folding and enable lysosomal localization and functional recovery of mutant NPC1. We leveraged a panel of isogenic human induced neurons expressing distinct NPC1 missense mutations. We used this panel to rescreen compounds that were reported previously to correct NPC1 folding and trafficking. We established mo56-hydroxycholesterol (mo56Hc) as a potent pharmacological chaperone for several NPC1 mutants. Furthermore, we generated mice expressing human I1061T NPC1, a common mutation in patients. We demonstrated that this model exhibited disease phenotypes and recapitulated the protein trafficking defects, lipid storage, and response to mo56Hc exhibited by human cells expressing I1061T NPC1. These tools established a paradigm for testing and validation of proteostatic therapeutics as an important step toward the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Ruth D. Azaria
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Adele B. Correia
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kylie J. Schache
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Manuela Zapata
- Department of Chemistry, University of Illinois Chicago, Illinois, USA
| | | | | | | | - Brandon L. Ashfeld
- Department of Chemistry & Biochemistry and
- Warren Family Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana, USA
| | | | - Olaf Wiest
- Department of Chemistry & Biochemistry and
| | - Kenji Ohgane
- Department of Chemistry, Ochanomizu University, Tokyo, Japan
| | | | - Ross A. Fredenburg
- Ara Parseghian Medical Research Fund at Notre Dame University, Notre Dame, Indiana, USA
| | - Brian S.J. Blagg
- Department of Chemistry & Biochemistry and
- Warren Family Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana, USA
| | | | - Mark L. Schultz
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Andrew P. Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Agostini F, Pereyra L, Dale J, Yambire KF, Maglioni S, Schiavi A, Ventura N, Milosevic I, Raimundo N. Upregulation of cholesterol synthesis by lysosomal defects requires a functional mitochondrial respiratory chain. J Biol Chem 2024; 300:107403. [PMID: 38782205 PMCID: PMC11254723 DOI: 10.1016/j.jbc.2024.107403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria and lysosomes are two organelles that carry out both signaling and metabolic roles in cells. Recent evidence has shown that mitochondria and lysosomes are dependent on one another, as primary defects in one cause secondary defects in the other. Although there are functional impairments in both cases, the signaling consequences of primary mitochondrial dysfunction and lysosomal defects are dissimilar. Here, we used RNA sequencing to obtain transcriptomes from cells with primary mitochondrial or lysosomal defects to identify the global cellular consequences associated with mitochondrial or lysosomal dysfunction. We used these data to determine the pathways affected by defects in both organelles, which revealed a prominent role for the cholesterol synthesis pathway. We observed a transcriptional upregulation of this pathway in cellular and murine models of lysosomal defects, while it is transcriptionally downregulated in cellular and murine models of mitochondrial defects. We identified a role for the posttranscriptional regulation of transcription factor SREBF1, a master regulator of cholesterol and lipid biosynthesis, in models of mitochondrial respiratory chain deficiency. Furthermore, we found that retention of Ca2+ in lysosomes of cells with mitochondrial respiratory chain defects contributes to the differential regulation of the cholesterol synthesis pathway in the mitochondrial and lysosomal defects tested. Finally, we verified in vivo, using a model of mitochondria-associated disease in Caenorhabditis elegans that normalization of lysosomal Ca2+ levels results in partial rescue of the developmental delay induced by the respiratory chain deficiency.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Leonardo Pereyra
- Department of Cellular Biochemistry, University Medical Center, Goettingen, Germany
| | - Justin Dale
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - King Faisal Yambire
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, New York, USA
| | - Silvia Maglioni
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Alfonso Schiavi
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Natascia Ventura
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Ira Milosevic
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Multidisciplinary Institute for Ageing, University of Coimbra, Coimbra, Portugal
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Penn State Cancer Institute, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
5
|
Agostini F, Pereyra L, Dale J, Yambire KF, Maglioni S, Schiavi A, Ventura N, Milosevic I, Raimundo N. Up-regulation of cholesterol synthesis by lysosomal defects requires a functional mitochondrial respiratory chain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583589. [PMID: 38496624 PMCID: PMC10942416 DOI: 10.1101/2024.03.06.583589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Mitochondria and lysosomes are two organelles that carry out both signaling and metabolic roles in the cells. Recent evidence has shown that mitochondria and lysosomes are dependent on one another, as primary defects in one cause secondary defects in the other. Nevertheless, the signaling consequences of primary mitochondrial malfunction and of primary lysosomal defects are not similar, despite in both cases there are impairments of mitochondria and of lysosomes. Here, we used RNA sequencing to obtain transcriptomes from cells with primary mitochondrial or lysosomal defects, to identify what are the global cellular consequences that are associated with malfunction of mitochondria or lysosomes. We used these data to determine what are the pathways that are affected by defects in both organelles, which revealed a prominent role for the cholesterol synthesis pathway. This pathway is transcriptionally up-regulated in cellular and mouse models of lysosomal defects and is transcriptionally down-regulated in cellular and mouse models of mitochondrial defects. We identified a role for post-transcriptional regulation of the transcription factor SREBF1, a master regulator of cholesterol and lipid biosynthesis, in models of mitochondrial respiratory chain deficiency. Furthermore, the retention of Ca 2+ in the lysosomes of cells with mitochondrial respiratory chain defects contributes to the differential regulation of the cholesterol synthesis pathway in the mitochondrial and lysosomal defects tested. Finally, we verified in vivo , using models of mitochondria-associated diseases in C. elegans , that normalization of lysosomal Ca 2+ levels results in partial rescue of the developmental arrest induced by the respiratory chain deficiency.
Collapse
|
6
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
7
|
Schultz ML, Schache KJ, Azaria RD, Kuiper EQ, Erwood S, Ivakine EA, Farhat NY, Porter FD, Pathmasiri KC, Cologna SM, Uhler MD, Lieberman AP. Species-specific differences in NPC1 protein trafficking govern therapeutic response in Niemann-Pick type C disease. JCI Insight 2022; 7:e160308. [PMID: 36301667 PMCID: PMC9746915 DOI: 10.1172/jci.insight.160308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/26/2022] [Indexed: 01/12/2023] Open
Abstract
The folding and trafficking of transmembrane glycoproteins are essential for cellular homeostasis and are compromised in many diseases. In Niemann-Pick type C disease, a lysosomal disorder characterized by impaired intracellular cholesterol trafficking, the transmembrane glycoprotein NPC1 misfolds due to disease-causing missense mutations. While mutant NPC1 has emerged as a robust target for proteostasis modulators, drug development efforts have been unsuccessful in mouse models. Here, we demonstrated unexpected differences in trafficking through the medial Golgi between mouse and human I1061T-NPC1, a common disease-causing mutant. We established that these distinctions are governed by differences in the NPC1 protein sequence rather than by variations in the endoplasmic reticulum-folding environment. Moreover, we demonstrated direct effects of mutant protein trafficking on the response to small molecules that modulate the endoplasmic reticulum-folding environment by affecting Ca++ concentration. Finally, we developed a panel of isogenic human NPC1 iNeurons expressing WT, I1061T-, and R934L-NPC1 and demonstrated their utility in testing these candidate therapeutics. Our findings identify important rules governing mutant NPC1's response to proteostatic modulators and highlight the importance of species- and mutation-specific responses for therapy development.
Collapse
Affiliation(s)
- Mark L. Schultz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kylie J. Schache
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ruth D. Azaria
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Esmée Q. Kuiper
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven Erwood
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics and
| | - Evgueni A. Ivakine
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Y. Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Forbes D. Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | - Michael D. Uhler
- Michigan Neuroscience Institute and
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew P. Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Lei J, Zhao J, Long MYC, Cao XW, Wang FJ. In addition to its endosomal escape effect, platycodin D also synergizes with ribosomal inactivation protein to induce apoptosis in hepatoma cells through AKT and MAPK signaling pathways. Chem Biol Interact 2022; 364:110058. [PMID: 35872048 DOI: 10.1016/j.cbi.2022.110058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
Efficient endosomal escape after cellular uptake is a major challenge for the clinical application of therapeutic proteins. To overcome this obstacle, several strategies have been used to help protein drugs escape from endosomes without affecting the integrity of the cell membrane. Among them, some triterpenoid saponins with special structures were used to greatly enhance the anti-tumor therapeutic effect of protein toxins. Herein, we demonstrated that platycodin D (PD), polygalacin D (PGD) and platycodin D2 (PD2) from Platycodonis Radix significantly enhanced the ability of MHBP (a type I ribosome-inactivating protein toxin MAP30 fused with a cell-penetrating peptide HBP) to induce apoptosis in hepatoma cells. Based on the results of co-localization of endocytosed EGFP-HBP with a lysosomal probe and Galectin-9 vesicle membrane damage sensor, we demonstrated that PD, PGD and PD2 have the ability to promote endosomal escape of endocytic proteins without affecting the integrity of the plasma membrane. Meanwhile, we observed that cholesterol metabolism plays an important role in the activity of PD by RNA-seq analysis and KEGG pathway enrichment analysis, and confirm that PD, PGD and PD2 enhance the anti-tumor activity of MHBP by inducing the redistribution of free cholesterol and inhibiting the activity of cathepsin B and cathepsin D. Finally, we found that PD synergized with MHBP to induce caspase-dependent apoptosis through inhibiting Akt and ERK1/2 signaling pathways and activating JNK and p38 MAPK signaling pathways. This study provides new insights into the application of PD in cancer therapy and provides efficient and promising strategies for the cytosolic delivery of therapeutic proteins.
Collapse
Affiliation(s)
- Jin Lei
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Zhao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Meng-Yi-Chen Long
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xue-Wei Cao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Fu-Jun Wang
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd. 209 West Hulian Road, Dongyang, 322100, Zhejiang, China; Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
9
|
Cabrera-Reyes F, Parra-Ruiz C, Yuseff MI, Zanlungo S. Alterations in Lysosome Homeostasis in Lipid-Related Disorders: Impact on Metabolic Tissues and Immune Cells. Front Cell Dev Biol 2021; 9:790568. [PMID: 34957117 PMCID: PMC8703004 DOI: 10.3389/fcell.2021.790568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Lipid-related disorders, which primarily affect metabolic tissues, including adipose tissue and the liver are associated with alterations in lysosome homeostasis. Obesity is one of the more prevalent diseases, which results in energy imbalance within metabolic tissues and lysosome dysfunction. Less frequent diseases include Niemann-Pick type C (NPC) and Gaucher diseases, both of which are known as Lysosomal Storage Diseases (LSDs), where lysosomal dysfunction within metabolic tissues remains to be fully characterized. Adipocytes and hepatocytes share common pathways involved in the lysosome-autophagic axis, which are regulated by the function of cathepsins and CD36, an immuno-metabolic receptor and display alterations in lipid diseases, and thereby impacting metabolic functions. In addition to intrinsic defects observed in metabolic tissues, cells of the immune system, such as B cells can infiltrate adipose and liver tissues, during metabolic imbalance favoring inflammation. Moreover, B cells rely on lysosomes to promote the processing and presentation of extracellular antigens and thus could also present lysosome dysfunction, consequently affecting such functions. On the other hand, growing evidence suggests that cells accumulating lipids display defective inter-organelle membrane contact sites (MCSs) established by lysosomes and other compartments, which contribute to metabolic dysfunctions at the cellular level. Overall, in this review we will discuss recent findings addressing common mechanisms that are involved in lysosome dysregulation in adipocytes and hepatocytes during obesity, NPC, and Gaucher diseases. We will discuss whether these mechanisms may modulate the function of B cells and how inter-organelle contacts, emerging as relevant cellular mechanisms in the control of lipid homeostasis, have an impact on these diseases.
Collapse
Affiliation(s)
- Fernanda Cabrera-Reyes
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Parra-Ruiz
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Isabel Yuseff
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Yoon MC, Solania A, Jiang Z, Christy MP, Podvin S, Mosier C, Lietz CB, Ito G, Gerwick WH, Wolan DW, Hook G, O’Donoghue AJ, Hook V. Selective Neutral pH Inhibitor of Cathepsin B Designed Based on Cleavage Preferences at Cytosolic and Lysosomal pH Conditions. ACS Chem Biol 2021; 16:1628-1643. [PMID: 34416110 DOI: 10.1021/acschembio.1c00138] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cathepsin B is a cysteine protease that normally functions within acidic lysosomes for protein degradation, but in numerous human diseases, cathepsin B translocates to the cytosol having neutral pH where the enzyme activates inflammation and cell death. Cathepsin B is active at both the neutral pH 7.2 of the cytosol and the acidic pH 4.6 within lysosomes. We evaluated the hypothesis that cathepsin B may possess pH-dependent cleavage preferences that can be utilized for design of a selective neutral pH inhibitor by (1) analysis of differential cathepsin B cleavage profiles at neutral pH compared to acidic pH using multiplex substrate profiling by mass spectrometry (MSP-MS), (2) design of pH-selective peptide-7-amino-4-methylcoumarin (AMC) substrates, and (3) design and validation of Z-Arg-Lys-acyloxymethyl ketone (AOMK) as a selective neutral pH inhibitor. Cathepsin B displayed preferences for cleaving peptides with Arg in the P2 position at pH 7.2 and Glu in the P2 position at pH 4.6, represented by its primary dipeptidyl carboxypeptidase and modest endopeptidase activity. These properties led to design of the substrate Z-Arg-Lys-AMC having neutral pH selectivity, and its modification with the AOMK warhead to result in the inhibitor Z-Arg-Lys-AOMK. This irreversible inhibitor displays nanomolar potency with 100-fold selectivity for inhibition of cathepsin B at pH 7.2 compared to pH 4.6, shows specificity for cathepsin B over other cysteine cathepsins, and is cell permeable and inhibits intracellular cathepsin B. These findings demonstrate that cathepsin B possesses pH-dependent cleavage properties that can lead to development of a potent, neutral pH inhibitor of this enzyme.
Collapse
Affiliation(s)
- Michael C. Yoon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Angelo Solania
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Mitchell P. Christy
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Christopher B. Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Gen Ito
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Dennis W. Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gregory Hook
- American Life Sciences Pharmaceuticals, Inc., La Jolla, California 92037, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Liu EA, Mori E, Hamasaki F, Lieberman AP. TDP-43 proteinopathy occurs independently of autophagic substrate accumulation and underlies nuclear defects in Niemann-Pick C disease. Neuropathol Appl Neurobiol 2021; 47:1019-1032. [PMID: 34048071 DOI: 10.1111/nan.12738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
AIMS Neuronal cytoplasmic inclusions of TAR-DNA binding protein of 43 kDa (TDP-43) are a pathological hallmark of diverse neurodegenerative disorders, yet the processes that mediate their formation and their functional significance remain incompletely understood. Both dysfunction in autophagy and neuroinflammation have been linked to TDP-43 mislocalisation. Here, we investigate TDP-43 proteinopathy in Niemann-Pick type C disease (NPC), an autosomal recessive lysosomal storage disease (LSD) distinguished by the accumulation of unesterified cholesterol within late endosomes and lysosomes. NPC is characterised by neurodegeneration, neuroinflammation and multifocal disruption of the autophagy pathway. METHODS We utilised immunohistochemistry, confocal microscopy, electron microscopy and biochemical and gene expression studies to characterise TDP-43 pathology and autophagic substrate accumulation in Npc1-deficient mice. RESULTS In the NPC brain, cytoplasmic TDP-43 mislocalisation was independent of autophagic substrate accumulation. These pathologies occurred in distinct neuronal subtypes, as brainstem cholinergic neurons were more susceptible to TDP-43 mislocalisation, whereas glutamatergic neurons exhibited hallmarks of autophagic dysfunction. Furthermore, TDP-43 mislocalisation did not co-localise with markers of stress granules or progress to ubiquitinated aggregates over months in vivo, indicating a stable, early stage in the aggregation process. Neither microgliosis nor neuroinflammation were sufficient to drive TDP-43 proteinopathy in the NPC brain. Notably, cytoplasmic TDP-43 co-localised with the nuclear import factor importin α, and TDP-43 mislocalised neurons demonstrated nuclear membrane abnormalities and disruption of nucleocytoplasmic transport. CONCLUSION Our findings highlight the relationship between LSDs and TDP-43 proteinopathy, define its functional importance in NPC by triggering nuclear dysfunction, and expand the spectrum of TDP-43 pathology in the diseased brain.
Collapse
Affiliation(s)
- Elaine A Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA.,Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Erika Mori
- Yamaguchi University School of Medicine, Ube, Japan
| | | | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Abstract
Proteases comprise a variety of enzymes defined by their ability to catalytically hydrolyze the peptide bonds of other proteins, resulting in protein lysis. Cathepsins, specifically, encompass a class of at least twenty proteases with potent endopeptidase activity. They are located subcellularly in lysosomes, organelles responsible for the cell’s degradative and autophagic processes, and are vital for normal lysosomal function. Although cathepsins are involved in a multitude of cell signaling activities, this chapter will focus on the role of cathepsins (with a special emphasis on Cathepsin B) in neuronal plasticity. We will broadly define what is known about regulation of cathepsins in the central nervous system and compare this with their dysregulation after injury or disease. Importantly, we will delineate what is currently known about the role of cathepsins in axon regeneration and plasticity after spinal cord injury. It is well established that normal cathepsin activity is integral to the function of lysosomes. Without normal lysosomal function, autophagy and other homeostatic cellular processes become dysregulated resulting in axon dystrophy. Furthermore, controlled activation of cathepsins at specialized neuronal structures such as axonal growth cones and dendritic spines have been positively implicated in their plasticity. This chapter will end with a perspective on the consequences of cathepsin dysregulation versus controlled, localized regulation to clarify how cathepsins can contribute to both neuronal plasticity and neurodegeneration.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
13
|
Davis OB, Shin HR, Lim CY, Wu EY, Kukurugya M, Maher CF, Perera RM, Ordonez MP, Zoncu R. NPC1-mTORC1 Signaling Couples Cholesterol Sensing to Organelle Homeostasis and Is a Targetable Pathway in Niemann-Pick Type C. Dev Cell 2020; 56:260-276.e7. [PMID: 33308480 DOI: 10.1016/j.devcel.2020.11.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 01/22/2023]
Abstract
Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC.
Collapse
Affiliation(s)
- Oliver B Davis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hijai R Shin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chun-Yan Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emma Y Wu
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Department of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California, San Diego, La Jolla, CA 92037, USA
| | - Matthew Kukurugya
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Claire F Maher
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rushika M Perera
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - M Paulina Ordonez
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Department of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Jürs AV, Völkner C, Liedtke M, Huth K, Lukas J, Hermann A, Frech MJ. Oxidative Stress and Alterations in the Antioxidative Defense System in Neuronal Cells Derived from NPC1 Patient-Specific Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21207667. [PMID: 33081384 PMCID: PMC7593914 DOI: 10.3390/ijms21207667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress (OS) represents a state of an imbalanced amount of reactive oxygen species (ROS) and/or a hampered efficacy of the antioxidative defense system. Cells of the central nervous system are particularly sensitive to OS, as they have a massive need of oxygen to maintain proper function. Consequently, OS represents a common pathophysiological hallmark of neurodegenerative diseases and is discussed to contribute to the neurodegeneration observed amongst others in Alzheimer’s disease and Parkinson’s disease. In this context, accumulating evidence suggests that OS is involved in the pathophysiology of Niemann-Pick type C1 disease (NPC1). NPC1, a rare hereditary neurodegenerative disease, belongs to the family of lysosomal storage disorders. A major hallmark of the disease is the accumulation of cholesterol and other glycosphingolipids in lysosomes. Several studies describe OS both in murine in vivo and in vitro NPC1 models. However, studies based on human cells are limited to NPC1 patient-derived fibroblasts. Thus, we analyzed OS in a human neuronal model based on NPC1 patient-specific induced pluripotent stem cells (iPSCs). Higher ROS levels, as determined by DCF (dichlorodihydrofluorescein) fluorescence, indicated oxidative stress in all NPC1-deficient cell lines. This finding was further supported by reduced superoxide dismutase (SOD) activity. The analysis of mRNA and protein levels of SOD1 and SOD2 did not reveal any difference between control cells and NPC1-deficient cells. Interestingly, we observed a striking decrease in catalase mRNA and protein levels in all NPC1-deficient cell lines. As catalase is a key enzyme of the cellular antioxidative defense system, we concluded that the lack of catalase contributes to the elevated ROS levels observed in NPC1-deficient cells. Thus, a restitution of a physiological catalase level may pose an intervention strategy to rescue NPC1-deficient cells from the repercussions of oxidative stress contributing to the neurodegeneration observed in NPC1.
Collapse
Affiliation(s)
- Alexandra V. Jürs
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (A.V.J.); (C.V.); (M.L.); (K.H.); (J.L.); (A.H.)
| | - Christin Völkner
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (A.V.J.); (C.V.); (M.L.); (K.H.); (J.L.); (A.H.)
| | - Maik Liedtke
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (A.V.J.); (C.V.); (M.L.); (K.H.); (J.L.); (A.H.)
| | - Katharina Huth
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (A.V.J.); (C.V.); (M.L.); (K.H.); (J.L.); (A.H.)
| | - Jan Lukas
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (A.V.J.); (C.V.); (M.L.); (K.H.); (J.L.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (A.V.J.); (C.V.); (M.L.); (K.H.); (J.L.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, University of Rostock, 18147 Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| | - Moritz J. Frech
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (A.V.J.); (C.V.); (M.L.); (K.H.); (J.L.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, University of Rostock, 18147 Rostock, Germany
- Correspondence:
| |
Collapse
|
15
|
Liu EA, Schultz ML, Mochida C, Chung C, Paulson HL, Lieberman AP. Fbxo2 mediates clearance of damaged lysosomes and modifies neurodegeneration in the Niemann-Pick C brain. JCI Insight 2020; 5:136676. [PMID: 32931479 PMCID: PMC7605537 DOI: 10.1172/jci.insight.136676] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
A critical response to lysosomal membrane permeabilization (LMP) is the clearance of damaged lysosomes through a selective form of macroautophagy known as lysophagy. Although regulators of this process are emerging, whether organ- and cell-specific components contribute to the control of lysophagy remains incompletely understood. Here, we examined LMP and lysophagy in Niemann-Pick type C (NPC) disease, an autosomal recessive disorder characterized by the accumulation of unesterified cholesterol within late endosomes and lysosomes, leading to neurodegeneration and early death. We demonstrated that NPC human fibroblasts show enhanced sensitivity to lysosomal damage as a consequence of lipid storage. Moreover, we described a role for the glycan-binding F-box protein 2 (Fbxo2) in CNS lysophagy. Fbxo2 functions as a component of the S phase kinase-associated protein 1–cullin 1–F-box protein (SKP1-CUL1-SCF) ubiquitin ligase complex. Loss of Fbxo2 in mouse primary cortical cultures delayed clearance of damaged lysosomes and decreased viability after lysosomal damage. Moreover, Fbxo2 deficiency in a mouse model of NPC exacerbated deficits in motor function, enhanced neurodegeneration, and reduced survival. Collectively, our data identified a role for Fbxo2 in CNS lysophagy and establish its functional importance in NPC. Glycan binding protein Fbxo2 regulates lysophagy in the brain, and its deficiency exacerbates neuronal deficits in a mouse model of Niemann-Pick type C disease.
Collapse
Affiliation(s)
- Elaine A Liu
- Department of Pathology.,Cellular and Molecular Biology Graduate Program, and.,Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Chisaki Mochida
- Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | | | - Henry L Paulson
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
16
|
Single Cell Transcriptome Analysis of Niemann-Pick Disease, Type C1 Cerebella. Int J Mol Sci 2020; 21:ijms21155368. [PMID: 32731618 PMCID: PMC7432835 DOI: 10.3390/ijms21155368] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Niemann-Pick disease, type C1 (NPC1) is a lysosomal disease characterized by endolysosomal storage of unesterified cholesterol and decreased cellular cholesterol bioavailability. A cardinal symptom of NPC1 is cerebellar ataxia due to Purkinje neuron loss. To gain an understanding of the cerebellar neuropathology we obtained single cell transcriptome data from control (Npc1+/+) and both three-week-old presymptomatic and seven-week-old symptomatic mutant (Npc1-/-) mice. In seven-week-old Npc1-/- mice, differential expression data was obtained for neuronal, glial, vascular, and myeloid cells. As anticipated, we observed microglial activation and increased expression of innate immunity genes. We also observed increased expression of innate immunity genes by other cerebellar cell types, including Purkinje neurons. Whereas neuroinflammation mediated by microglia may have both neuroprotective and neurotoxic components, the contribution of increased expression of these genes by non-immune cells to NPC1 pathology is not known. It is possible that dysregulated expression of innate immunity genes by non-immune cells is neurotoxic. We did not anticipate a general lack of transcriptomic changes in cells other than microglia from presymptomatic three-week-old Npc1-/- mice. This observation suggests that microglia activation precedes neuronal dysfunction. The data presented in this paper will be useful for generating testable hypotheses related to disease progression and Purkinje neurons loss as well as providing insight into potential novel therapeutic interventions.
Collapse
|
17
|
Ballout RA, Sviridov D, Bukrinsky MI, Remaley AT. The lysosome: A potential juncture between SARS-CoV-2 infectivity and Niemann-Pick disease type C, with therapeutic implications. FASEB J 2020; 34:7253-7264. [PMID: 32367579 PMCID: PMC7383733 DOI: 10.1096/fj.202000654r] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Drug repurposing is potentially the fastest available option in the race to identify safe and efficacious drugs that can be used to prevent and/or treat COVID‐19. By describing the life cycle of the newly emergent coronavirus, SARS‐CoV‐2, in light of emerging data on the therapeutic efficacy of various repurposed antimicrobials undergoing testing against the virus, we highlight in this review a possible mechanistic convergence between some of these tested compounds. Specifically, we propose that the lysosomotropic effects of hydroxychloroquine and several other drugs undergoing testing may be responsible for their demonstrated in vitro antiviral activities against COVID‐19. Moreover, we propose that Niemann‐Pick disease type C (NPC), a lysosomal storage disorder, may provide new insights into potential future therapeutic targets for SARS‐CoV‐2, by highlighting key established features of the disorder that together result in an “unfavorable” host cellular environment that may interfere with viral propagation. Our reasoning evolves from previous biochemical and cell biology findings related to NPC, coupled with the rapidly evolving data on COVID‐19. Our overall aim is to suggest that pharmacological interventions targeting lysosomal function in general, and those particularly capable of reversibly inducing transient NPC‐like cellular and biochemical phenotypes, constitute plausible mechanisms that could be used to therapeutically target COVID‐19.
Collapse
Affiliation(s)
- Rami A Ballout
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dmitri Sviridov
- Lipoproteins and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Michael I Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Boutté AM, Hook V, Thangavelu B, Sarkis GA, Abbatiello BN, Hook G, Jacobsen JS, Robertson CS, Gilsdorf J, Yang Z, Wang KKW, Shear DA. Penetrating Traumatic Brain Injury Triggers Dysregulation of Cathepsin B Protein Levels Independent of Cysteine Protease Activity in Brain and Cerebral Spinal Fluid. J Neurotrauma 2020; 37:1574-1586. [PMID: 31973644 DOI: 10.1089/neu.2019.6537] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cathepsin B (CatB), a lysosomal cysteine protease, is important to brain function and may have dual utility as a peripheral biomarker of moderate-severe traumatic brain injury (TBI). The present study determined levels of pro- and mature (mat) CatB protein as well as cysteine protease activity within the frontal cortex (FC; proximal injury site), hippocampus (HC; distal injury site), and cerebral spinal fluid (CSF) collected 1-7 days after craniotomy and penetrating ballistic-like brain injury (PBBI) in rats. Values were compared with naïve controls. Further, the utility of CatB protein as a translational biomarker was determined in CSF derived from patients with severe TBI. Craniotomy increased matCatB levels in the FC and HC, and led to elevation of HC activity at day 7. PBBI caused an even greater elevation in matCatB within the FC and HC within 3-7 days. After PBBI, cysteine protease activity peaked at 3 days in the FC and was elevated at 1 day and 7 days, but not 3 days, in the HC. In rat CSF, proCatB, matCatB, and cysteine protease activity peaked at 3 days after craniotomy and PBBI. Addition of CA-074, a CatB-specific inhibitor, confirmed that protease activity was due to active matCatB in rat brain tissues and CSF at all time-points. In patients, CatB protein was detectable from 6 h through 10 days after TBI. Notably, CatB levels were significantly higher in CSF collected within 3 days after TBI compared with non-TBI controls. Collectively, this work indicates that CatB and its cysteine protease activity may serve as collective molecular signatures of TBI progression that differentially vary within both proximal and distal brain regions. CatB and its protease activity may have utility as a surrogate, translational biomarker of acute-subacute TBI.
Collapse
Affiliation(s)
- Angela M Boutté
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Bharani Thangavelu
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - George Anis Sarkis
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachussets, USA
| | - Brittany N Abbatiello
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Gregory Hook
- American Life Science Pharmaceuticals, Inc., La Jolla, California, USA
| | - J Steven Jacobsen
- American Life Science Pharmaceuticals, Inc., La Jolla, California, USA
| | - Claudia S Robertson
- The Center for Neurosurgical Intensive Care, Ben Taub General Hospital Baylor College of Medicine, Department of Neurosurgery, Houston, Texas, USA
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
19
|
Patel N, Mills P, Davison J, Cleary M, Gissen P, Banushi B, Doykov I, Dorman M, Mills K, Heywood WE. Free urinary glycosylated hydroxylysine as an indicator of altered collagen degradation in the mucopolysaccharidoses. J Inherit Metab Dis 2020; 43:309-317. [PMID: 31452203 DOI: 10.1002/jimd.12166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
Extracellular matrix (ECM) disruption is known to be an early pathological feature of the Mucopolysaccharidoses (MPS). Collagen is the main component of the ECM and its metabolism could act as a useful indicator of ECM disruption. We have measured the specific collagen breakdown products; urinary free hydroxylated (Lys-OH) and glycosylated hydroxylysines (Lys-O-Gal and Lys-O-GalGlc) in MPS patients using a tandem liquid chromatography tandem mass spectrometry assay. A pilot study cohort analysis indicated that concentrations of lysine and Lys-OH were raised significantly in MPS I (Hurler) disease patients. Lys-O-GalGlc was raised in MPS II and MPS VI patients and demonstrated a significant difference between MPS I Hurler and an MPS I Hurler-Scheie group. Further analysis determined an age association for glycosylated hydroxylysine in control samples similar to that observed for the glycosaminoglycans. Using defined age ranges and treatment naïve patient samples we confirmed an increase in glycosylated hydroxylysines in MPS I and in adult MPS IVA. We also looked at the ratio of Lys-O-Gal to Lys-O-GalGlc, an indicator of the source of collagen degradation, and noticed a significant change in the ratio for all pediatric MPS I, II, and IV patients, and a small significant increase in adult MPS IV. This indicated that the collagen degradation products were coming from a source other than bone such as cartilage or connective tissue. To see how specific the changes in glycosylated hydroxylysine were to MPS patients we also looked at levels in patients with other inherited metabolic disorders. MPS patients showed a trend towards increased glycosylated hydroxylysines and an elevated ratio compared to other metabolic disorders that included Battens disease, Fabry disease, Pyridoxine-dependent epilepsy (due to mutations in ALDH7A1), and Niemann Pick C disease.
Collapse
Affiliation(s)
- Nina Patel
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Philippa Mills
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - James Davison
- NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maureen Cleary
- NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Paul Gissen
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Blerida Banushi
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ivan Doykov
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Megan Dorman
- NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kevin Mills
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Wendy E Heywood
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
20
|
Wang C, Scott SM, Sun S, Zhao P, Hutt DM, Shao H, Gestwicki JE, Balch WE. Individualized management of genetic diversity in Niemann-Pick C1 through modulation of the Hsp70 chaperone system. Hum Mol Genet 2020; 29:1-19. [PMID: 31509197 PMCID: PMC7001602 DOI: 10.1093/hmg/ddz215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/05/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022] Open
Abstract
Genetic diversity provides a rich repository for understanding the role of proteostasis in the management of the protein fold in human biology. Failure in proteostasis can trigger multiple disease states, affecting both human health and lifespan. Niemann-Pick C1 (NPC1) disease is a rare genetic disorder triggered by mutations in NPC1, a multi-spanning transmembrane protein that is trafficked through the exocytic pathway to late endosomes (LE) and lysosomes (Ly) (LE/Ly) to globally manage cholesterol homeostasis. Defects triggered by >300 NPC1 variants found in the human population inhibit export of NPC1 protein from the endoplasmic reticulum (ER) and/or function in downstream LE/Ly, leading to cholesterol accumulation and onset of neurodegeneration in childhood. We now show that the allosteric inhibitor JG98, that targets the cytosolic Hsp70 chaperone/co-chaperone complex, can significantly improve the trafficking and post-ER protein level of diverse NPC1 variants. Using a new approach to model genetic diversity in human disease, referred to as variation spatial profiling, we show quantitatively how JG98 alters the Hsp70 chaperone/co-chaperone system to adjust the spatial covariance (SCV) tolerance and set-points on an amino acid residue-by-residue basis in NPC1 to differentially regulate variant trafficking, stability, and cholesterol homeostasis, results consistent with the role of BCL2-associated athanogene family co-chaperones in managing the folding status of NPC1 variants. We propose that targeting the cytosolic Hsp70 system by allosteric regulation of its chaperone/co-chaperone based client relationships can be used to adjust the SCV tolerance of proteostasis buffering capacity to provide an approach to mitigate systemic and neurological disease in the NPC1 population.
Collapse
Affiliation(s)
- Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Samantha M Scott
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Shuhong Sun
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Pei Zhao
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Darren M Hutt
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Hao Shao
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158, USA
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Wheeler S, Sillence DJ. Niemann-Pick type C disease: cellular pathology and pharmacotherapy. J Neurochem 2019; 153:674-692. [PMID: 31608980 DOI: 10.1111/jnc.14895] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022]
Abstract
Niemann-Pick type C disease (NPCD) was first described in 1914 and affects approximately 1 in 150 000 live births. It is characterized clinically by diverse symptoms affecting liver, spleen, motor control, and brain; premature death invariably results. Its molecular origins were traced, as late as 1997, to a protein of late endosomes and lysosomes which was named NPC1. Mutation or absence of this protein leads to accumulation of cholesterol in these organelles. In this review, we focus on the intracellular events that drive the pathology of this disease. We first introduce endocytosis, a much-studied area of dysfunction in NPCD cells, and survey the various ways in which this process malfunctions. We briefly consider autophagy before attempting to map the more complex pathways by which lysosomal cholesterol storage leads to protein misregulation, mitochondrial dysfunction, and cell death. We then briefly introduce the metabolic pathways of sphingolipids (as these emerge as key species for treatment) and critically examine the various treatment approaches that have been attempted to date.
Collapse
Affiliation(s)
- Simon Wheeler
- School of Pharmacy, De Montfort University, The Gateway, Leicester, UK
| | - Dan J Sillence
- School of Pharmacy, De Montfort University, The Gateway, Leicester, UK
| |
Collapse
|
22
|
Wheeler S, Haberkant P, Bhardwaj M, Tongue P, Ferraz MJ, Halter D, Sprong H, Schmid R, Aerts JM, Sullo N, Sillence DJ. Cytosolic glucosylceramide regulates endolysosomal function in Niemann-Pick type C disease. Neurobiol Dis 2019; 127:242-252. [DOI: 10.1016/j.nbd.2019.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
|
23
|
Gabandé-Rodríguez E, Pérez-Cañamás A, Soto-Huelin B, Mitroi DN, Sánchez-Redondo S, Martínez-Sáez E, Venero C, Peinado H, Ledesma MD. Lipid-induced lysosomal damage after demyelination corrupts microglia protective function in lysosomal storage disorders. EMBO J 2018; 38:embj.201899553. [PMID: 30530526 PMCID: PMC6331723 DOI: 10.15252/embj.201899553] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/12/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
Neuropathic lysosomal storage disorders (LSDs) present with activated pro‐inflammatory microglia. However, anti‐inflammatory treatment failed to improve disease pathology. We characterise the mechanisms underlying microglia activation in Niemann–Pick disease type A (NPA). We establish that an NPA patient and the acid sphingomyelinase knockout (ASMko) mouse model show amoeboid microglia in neurodegeneration‐prone areas. In vivo microglia ablation worsens disease progression in ASMko mice. We demonstrate the coexistence of different microglia phenotypes in ASMko brains that produce cytokines or counteract neuronal death by clearing myelin debris. Overloading microglial lysosomes through myelin debris accumulation and sphingomyelin build‐up induces lysosomal damage and cathepsin B extracellular release by lysosomal exocytosis. Inhibition of cathepsin B prevents neuronal death and behavioural anomalies in ASMko mice. Similar microglia phenotypes occur in a Niemann–Pick disease type C mouse model and patient. Our results show a protective function for microglia in LSDs and how this is corrupted by lipid lysosomal overload. Data indicate cathepsin B as a key molecule mediating neurodegeneration, opening research pathways for therapeutic targeting of LSDs and other demyelinating diseases.
Collapse
Affiliation(s)
- Enrique Gabandé-Rodríguez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain .,Barts Cancer Institute, Centre for Cancer & Inflammation, Queen Mary University of London, London, UK
| | - Azucena Pérez-Cañamás
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Beatriz Soto-Huelin
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Daniel N Mitroi
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Martínez-Sáez
- Department of Pathology, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Department of Pediatrics, Drukier Institute for Children's Health and Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - María Dolores Ledesma
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| |
Collapse
|
24
|
Zeng H, Nanayakkara GK, Shao Y, Fu H, Sun Y, Cueto R, Yang WY, Yang Q, Sheng H, Wu N, Wang L, Yang W, Chen H, Shao L, Sun J, Qin X, Park JY, Drosatos K, Choi ET, Zhu Q, Wang H, Yang X. DNA Checkpoint and Repair Factors Are Nuclear Sensors for Intracellular Organelle Stresses-Inflammations and Cancers Can Have High Genomic Risks. Front Physiol 2018; 9:516. [PMID: 29867559 PMCID: PMC5958474 DOI: 10.3389/fphys.2018.00516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/20/2018] [Indexed: 12/28/2022] Open
Abstract
Under inflammatory conditions, inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) which cause DNA damage. If not appropriately repaired, DNA damage leads to gene mutations and genomic instability. DNA damage checkpoint factors (DDCF) and DNA damage repair factors (DDRF) play a vital role in maintaining genomic integrity. However, how DDCFs and DDRFs are modulated under physiological and pathological conditions are not fully known. We took an experimental database analysis to determine the expression of 26 DNA DDCFs and 42 DNA DDRFs in 21 human and 20 mouse tissues in physiological/pathological conditions. We made the following significant findings: (1) Few DDCFs and DDRFs are ubiquitously expressed in tissues while many are differentially regulated.; (2) the expression of DDCFs and DDRFs are modulated not only in cancers but also in sterile inflammatory disorders and metabolic diseases; (3) tissue methylation status, pro-inflammatory cytokines, hypoxia regulating factors and tissue angiogenic potential can determine the expression of DDCFs and DDRFs; (4) intracellular organelles can transmit the stress signals to the nucleus, which may modulate the cell death by regulating the DDCF and DDRF expression. Our results shows that sterile inflammatory disorders and cancers increase genomic instability, therefore can be classified as pathologies with a high genomic risk. We also propose a new concept that as parts of cellular sensor cross-talking network, DNA checkpoint and repair factors serve as nuclear sensors for intracellular organelle stresses. Further, this work would lead to identification of novel therapeutic targets and new biomarkers for diagnosis and prognosis of metabolic diseases, inflammation, tissue damage and cancers.
Collapse
Affiliation(s)
- Huihong Zeng
- Department of Histology and Embryology, Basic Medical School, Nanchang University, Nanchang, China
| | - Gayani K Nanayakkara
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hangfei Fu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ramon Cueto
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Qian Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Ultrasound, Xijing Hospital, Shaanxi, China
| | - Haitao Sheng
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Emergency Medicine, Shengjing Hospital, Liaoning, China
| | - Na Wu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Endocrinology, Shengjing Hospital, Liaoning, China
| | - Luqiao Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Wuping Yang
- Department of Histology and Embryology, Basic Medical School, Nanchang University, Nanchang, China
| | - Hongping Chen
- Department of Histology and Embryology, Basic Medical School, Nanchang University, Nanchang, China
| | - Lijian Shao
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Jianxin Sun
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xuebin Qin
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Joon Y Park
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Konstantinos Drosatos
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eric T Choi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Departments of Pharmacology, and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Qingxian Zhu
- Department of Histology and Embryology, Basic Medical School, Nanchang University, Nanchang, China
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
25
|
Abstract
Phagolysosome membrane rupture can trigger a maladaptive immune response that promotes tissue damage. In Science, Cantuti-Castelvetri et al. (2018) report that cholesterol-rich myelin debris overwhelms reverse cholesterol transport in aged phagocytes, leading to cholesterol crystal formation, damaged phagolysosomes, and limited tissue repair.
Collapse
Affiliation(s)
- Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Joel A Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Subramanian K, Rauniyar N, Lavalleé-Adam M, Yates JR, Balch WE. Quantitative Analysis of the Proteome Response to the Histone Deacetylase Inhibitor (HDACi) Vorinostat in Niemann-Pick Type C1 disease. Mol Cell Proteomics 2017; 16:1938-1957. [PMID: 28860124 DOI: 10.1074/mcp.m116.064949] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 07/12/2017] [Indexed: 12/22/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is an inherited, progressive neurodegenerative disorder principally caused by mutations in the NPC1 gene. NPC disease is characterized by the accumulation of unesterified cholesterol in the late endosomes (LE) and lysosomes (Ly) (LE/Ly). Vorinostat, a histone deacetylase inhibitor (HDACi), restores cholesterol homeostasis in fibroblasts derived from NPC patients; however, the exact mechanism by which Vorinostat restores cholesterol level is not known yet. In this study, we performed comparative proteomic profiling of the response of NPC1I1061T fibroblasts to Vorinostat. After stringent statistical criteria to filter identified proteins, we observed 202 proteins that are differentially expressed in Vorinostat-treated fibroblasts. These proteins are members of diverse cellular pathways including the endomembrane dependent protein folding-stability-degradation-trafficking axis, energy metabolism, and lipid metabolism. Our study shows that treatment of NPC1I1061T fibroblasts with Vorinostat not only enhances pathways promoting the folding, stabilization and trafficking of NPC1 (I1061T) mutant to the LE/Ly, but alters the expression of lysosomal proteins, specifically the lysosomal acid lipase (LIPA) involved in the LIPA->NPC2->NPC1 based flow of cholesterol from the LE/Ly lumen to the LE/Ly membrane. We posit that the Vorinostat may modulate numerous pathways that operate in an integrated fashion through epigenetic and post-translational modifications reflecting acetylation/deacetylation balance to help manage the defective NPC1 fold, the function of the LE/Ly system and/or additional cholesterol metabolism/distribution pathways, that could globally contribute to improved mitigation of NPC1 disease in the clinic based on as yet uncharacterized principles of cellular metabolism dictating cholesterol homeostasis.
Collapse
Affiliation(s)
- Kanagaraj Subramanian
- From the ‡Department of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California 92037
| | - Navin Rauniyar
- §Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Mathieu Lavalleé-Adam
- §Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - John R Yates
- §Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - William E Balch
- From the ‡Department of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California 92037;
| |
Collapse
|
27
|
Affiliation(s)
- Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Brazil
- Post-graduation Program on Genetics and Molecular Biology
- Genetics Department, Universidade Federal do Rio Grande do Sul, Brazil
| | - Gabriela Pasqualim
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Brazil
- Post-graduation Program on Genetics and Molecular Biology
- Genetics Department, Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
28
|
Schultz ML, Krus KL, Lieberman AP. Lysosome and endoplasmic reticulum quality control pathways in Niemann-Pick type C disease. Brain Res 2016; 1649:181-188. [PMID: 27026653 DOI: 10.1016/j.brainres.2016.03.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022]
Abstract
Lysosomal storage diseases result from inherited deficiencies of lysosomal hydrolytic activities or lipid transport. Collectively, these disorders are a common cause of morbidity in the pediatric population and are often associated with severe neurodegeneration. Among this group of diseases is Niemann-Pick type C, an autosomal recessive disorder of lipid trafficking that causes cognitive impairment, ataxia and death, most often in childhood. Here, we review the current knowledge of disease pathogenesis, with particular focus on insights gleaned from genetics and the study of model systems. Critical advances in understanding mechanisms that regulate intracellular cholesterol trafficking have emerged from this work and are highlighted. We review effects of disease-causing mutations on quality control pathways involving the lysosome and endoplasmic reticulum, and discuss how they function to clear the most common mutant protein found in Niemann-Pick type C patients, NPC1-I1061T. Finally, we summarize insights into the mechanisms that degrade misfolded transmembrane proteins in the endoplasmic reticulum and how manipulating these quality control pathways may lead to the identification of novel targets for disease-modifying therapies. This article is part of a Special Issue entitled SI:Autophagy.
Collapse
Affiliation(s)
- Mark L Schultz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Kelsey L Krus
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|