1
|
Jiang G, Cao L, Wang Y, Li L, Wang Z, Zhao H, Qiu Y, Feng B. Causality between Telomere Length and the Risk of Hematologic Malignancies: A Bidirectional Mendelian Randomization Study. CANCER RESEARCH COMMUNICATIONS 2024; 4:2815-2822. [PMID: 39373625 PMCID: PMC11513617 DOI: 10.1158/2767-9764.crc-24-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Growing evidence indicates a relationship between telomere length (TL) and the stage, prognosis, and treatment responsiveness of hematopoietic malignancies. However, the relationship between TL and the risk of hematologic malignancies remains unclear, considering the vulnerability of observational studies to potential confounding and reverse causation. A two-sample bidirectional Mendelian randomization (MR) analysis was conducted utilizing publicly available genome-wide association study data to assess whether TL was causally associated with the risk of hematologic malignancies. The inverse variance weighted approach was used as the primary assessment approach to evaluate the effects of the causes, augmented by the weighted median and MR-Egger methods. Cochran's Q test, MR-Egger intercept test, MR-Pleiotropy Residual Sum and Outlier test, and leave-one-out analysis were performed to evaluate sensitivity, heterogeneity, and pleiotropy. According to forward MR estimations, longer TL was related to an increased risk of acute lymphocytic leukemia (OR = 2.690; P = 0.041), chronic lymphocytic leukemia (OR = 2.155; P = 0.005), multiple myeloma (OR = 1.845; P = 0.024), Hodgkin lymphoma (OR = 1.697; P = 0.014), and non-Hodgkin lymphoma (OR = 1.737; P = 0.009). Specific types of non-Hodgkin lymphoma were also associated with TL. The reverse MR results revealed that hematologic malignancies had no effect on TL. This MR analysis revealed an association between longer TL and an increased risk of specific hematologic malignancies, indicating a potential role of TL in risk evaluation and management in hematologic malignancies. SIGNIFICANCE In contrast to observational studies, this study uncovered the reliable causal relationships between TL and hematologic malignancies, emphasizing the potential role of telomeres in tumor development. TL maintenance may offer a promising strategy to reduce the risk of hematologic malignancies.
Collapse
Affiliation(s)
- Guoyun Jiang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - LingXiao Cao
- Department of Neurology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Li Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zie Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui Zhao
- Department of Medical Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yang Qiu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Feng
- Department of Medical Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Song T, Liu J, Zhao K, Li S, Qiu M, Zhang M, Wang H. The causal effect of telomere length on the risk of malignant lymphoma: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39584. [PMID: 39312382 PMCID: PMC11419458 DOI: 10.1097/md.0000000000039584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Telomere length (TL) has been implicated in the risk assessment of numerous cancers in observational studies. Nevertheless, the relationship between TL and malignant lymphoma remains unclear, displaying inconsistent patterns across different studies. A summary dataset for genome-wide association study of TL and malignant lymphoma was acquired from the OpenGWAS website. An extensive 2-sample Mendelian randomization (MR) analysis was performed, encompassing various methodologies such as MR-Egger, weighted median, weighted mode, simple mode, and the primary method of inverse-variance weighting (IVW). Sensitivity evaluations were performed using the Cochran Q test, MR-Egger regression, and leave-one-out analysis. The main method IVW revealed that TL substantially increased the risk of Hodgkin lymphoma (HL; odds ratio [OR] = 2.135; 95% confidence interval [CI] = 1.181-3.859; P = .012). Both the IVW and weighted median methods indicated statistical associations between genetically predicted TL and other types of non-HL (OR = 1.671, 95% CI = 1.009-2.768, P = .045; OR = 2.310, 95% CI = 1.033-5.169, P = .042). However, there was no association between TL and diffuse large B-cell lymphoma, follicular lymphoma, or mature T/natural Killer-cell lymphoma, and sensitivity analysis revealed no heterogeneity or horizontal pleiotropy, indicating that the causal effect was robust. Our study shows that TL plays different roles in different types of lymphomas. A longer TL significantly increases the risk of HL and other types of non-HL.
Collapse
Affiliation(s)
- Teng Song
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Jie Liu
- Department of Cardiology, Tianjin Bei Chen Hospital, Tianjin, China
| | - Ke Zhao
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shuping Li
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Minghan Qiu
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Miao Zhang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Huaqing Wang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Wong JYY, Blechter B, Liu Z, Shi J, Roger VL. Genetic susceptibility to chronic diseases leads to heart failure among Europeans: the influence of leukocyte telomere length. Hum Mol Genet 2024; 33:1262-1272. [PMID: 38676403 PMCID: PMC11227624 DOI: 10.1093/hmg/ddae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Genetic susceptibility to various chronic diseases has been shown to influence heart failure (HF) risk. However, the underlying biological pathways, particularly the role of leukocyte telomere length (LTL), are largely unknown. We investigated the impact of genetic susceptibility to chronic diseases and various traits on HF risk, and whether LTL mediates or modifies the pathways. METHODS We conducted prospective cohort analyses on 404 883 European participants from the UK Biobank, including 9989 incident HF cases. Multivariable Cox regression was used to estimate associations between HF risk and 24 polygenic risk scores (PRSs) for various diseases or traits previously generated using a Bayesian approach. We assessed multiplicative interactions between the PRSs and LTL previously measured in the UK Biobank using quantitative PCR. Causal mediation analyses were conducted to estimate the proportion of the total effect of PRSs acting indirectly through LTL, an integrative marker of biological aging. RESULTS We identified 9 PRSs associated with HF risk, including those for various cardiovascular diseases or traits, rheumatoid arthritis (P = 1.3E-04), and asthma (P = 1.8E-08). Additionally, longer LTL was strongly associated with decreased HF risk (P-trend = 1.7E-08). Notably, LTL strengthened the asthma-HF relationship significantly (P-interaction = 2.8E-03). However, LTL mediated only 1.13% (P < 0.001) of the total effect of the asthma PRS on HF risk. CONCLUSIONS Our findings shed light onto the shared genetic susceptibility between HF risk, asthma, rheumatoid arthritis, and other traits. Longer LTL strengthened the genetic effect of asthma in the pathway to HF. These results support consideration of LTL and PRSs in HF risk prediction.
Collapse
Affiliation(s)
- Jason Y Y Wong
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, United States
| | - Zhonghua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, United States
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, United States
| | - Véronique L Roger
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, 10 Center Drive, Bethesda, MD 20892, United States
| |
Collapse
|
4
|
Wang Y, Liu Q, Liang S, Yao M, Zheng H, Hu D, Wang Y. Genetically predicted telomere length and the risk of 11 hematological diseases: a Mendelian randomization study. Aging (Albany NY) 2024; 16:4270-4281. [PMID: 38393686 PMCID: PMC10968687 DOI: 10.18632/aging.205583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Previous studies have demonstrated that various hematologic diseases (HDs) induce alterations in telomere length (TL). The aim of this study is to investigate whether genetically predicted changes in TL have an impact on the risk of developing HDs. METHODS GWAS data for TL and 11 HDs were extracted from the database. The R software package "TwoSampleMR" was employed to conduct a two-sample Mendelian randomization (MR) analysis, in order to estimate the influence of TL changes on the risk of developing the 11 HDs. RESULTS We examined the effect of TL changes on the risk of developing the 11 HDs. The IVW results revealed a significant causal association between genetically predicted longer TL and the risk of developing acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MANTLE), and hodgkin lymphoma (HODGKIN). However, there was no significant causal relationship observed between TL changes and the risk of developing chronic myeloid leukemia (CML), diffuse large b-cell lymphoma (DLBCL), marginal zone b-cell lymphoma (MARGINAL), follicular lymphoma (FOLLICULAR), monocytic leukemia (MONOCYTIC), and mature T/NK-cell lymphomas (TNK). CONCLUSIONS The MR analysis revealed a positive association between genetically predicted longer TL and an increased risk of developing ALL, AML, CLL, MANTLE, and HODGKIN. This study further supports the notion that cells with longer TL have greater proliferative and mutational potential, leading to an increased risk of certain HDs.
Collapse
Affiliation(s)
- Yimin Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shibing Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghao Yao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huimin Zheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongqing Hu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Sullivan SM, Cole B, Lane J, Meredith JJ, Langer E, Hooten AJ, Roesler M, McGraw KL, Pankratz N, Poynter JN. Predicted leukocyte telomere length and risk of myeloid neoplasms. Hum Mol Genet 2023; 32:2996-3005. [PMID: 37531260 PMCID: PMC10549790 DOI: 10.1093/hmg/ddad126] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Maintenance of telomere length has long been established to play a role in the biology of cancer and several studies suggest that it may be especially important in myeloid malignancies. To overcome potential bias in confounding and reverse causation of observational studies, we use both a polygenic risk score (PRS) and inverse-variance weighted (IVW) Mendelian randomization (MR) analyses to estimate the relationship between genetically predicted leukocyte telomere length (LTL) and acute myeloid leukemia (AML) risk in 498 cases and 2099 controls and myelodysplastic syndrome (MDS) risk in 610 cases and 1759 controls. Genetic instruments derived from four recent studies explaining 1.23-4.57% of telomere variability were considered. We used multivariable logistic regression to estimate odds ratios (OR, 95% confidence intervals [CI]) as the measure of association between individual single-nucleotide polymorphisms and myeloid malignancies. We observed a significant association between a PRS of longer predicted LTL and AML using three genetic instruments (OR = 4.03 per ~1200 base pair [bp] increase in LTL, 95% CI: 1.65, 9.85 using Codd et al. [Codd, V., Nelson, C.P., Albrecht, E., Mangino, M., Deelen, J., Buxton, J.L., Hottenga, J.J., Fischer, K., Esko, T., Surakka, I. et al. (2013) Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet., 45, 422-427 427e421-422.], OR = 3.48 per one-standard deviation increase in LTL, 95% CI: 1.74, 6.97 using Li et al. [Li, C., Stoma, S., Lotta, L.A., Warner, S., Albrecht, E., Allione, A., Arp, P.P., Broer, L., Buxton, J.L., Alves, A.D.S.C. et al. (2020) Genome-wide association analysis in humans links nucleotide metabolism to leukocyte telomere length. Am. J. Hum. Genet., 106, 389-404.] and OR = 2.59 per 1000 bp increase in LTL, 95% CI: 1.03, 6.52 using Taub et al. [Taub, M.A., Conomos, M.P., Keener, R., Iyer, K.R., Weinstock, J.S., Yanek, L.R., Lane, J., Miller-Fleming, T.W., Brody, J.A., Raffield, L.M. et al. (2022) Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed. Cell Genom., 2.] genetic instruments). MR analyses further indicated an association between LTL and AML risk (PIVW ≤ 0.049) but not MDS (all PIVW ≥ 0.076). Findings suggest variation in genes relevant to telomere function and maintenance may be important in the etiology of AML but not MDS.
Collapse
Affiliation(s)
- Shannon M Sullivan
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ben Cole
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - John J Meredith
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erica Langer
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anthony J Hooten
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michelle Roesler
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kathy L McGraw
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jenny N Poynter
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Dratwa M, Łacina P, Butrym A, Porzuczek D, Mazur G, Bogunia-Kubik K. Telomere length and hTERT genetic variants as potential prognostic markers in multiple myeloma. Sci Rep 2023; 13:15792. [PMID: 37737335 PMCID: PMC10517131 DOI: 10.1038/s41598-023-43141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023] Open
Abstract
Telomere dysfunction is a notable event observed in many cancers contributing to their genomic instability. A major factor controlling telomere stability is the human telomerase reverse transcriptase catalytic subunit (hTERT). Telomere shortening has been observed in multiple myeloma (MM), a plasma cell malignancy with a complex and heterogeneous genetic background. In the present study, we aimed to analyse telomere length and hTERT genetic variants as potential markers of risk and survival in 251 MM patients. We found that telomere length was significantly shorter in MM patients than in healthy individuals, and patients with more advanced disease (stage III according to the International Staging System) had shorter telomeres than patients with less advanced disease. MM patients with hTERT allele rs2736100 T were characterized with significantly shorter progression-free survival (PFS). Moreover, allele rs2736100 T was also found to be less common in patients with disease progression in response to treatment. hTERT rs2853690 T was associated with higher haemoglobin blood levels and lower C-reactive protein. In conclusion, our results suggest that telomere length and hTERT genetic variability may affect MM development and can be potential prognostic markers in this disease.
Collapse
Affiliation(s)
- Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, Wrocław, Poland
| | - Diana Porzuczek
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| |
Collapse
|
7
|
Tsatsakis A, Oikonomopoulou T, Nikolouzakis TK, Vakonaki E, Tzatzarakis M, Flamourakis M, Renieri E, Fragkiadaki P, Iliaki E, Bachlitzanaki M, Karzi V, Katsikantami I, Kakridonis F, Hatzidaki E, Tolia M, Svistunov AA, Spandidos DA, Nikitovic D, Tsiaoussis J, Berdiaki A. Role of telomere length in human carcinogenesis (Review). Int J Oncol 2023; 63:78. [PMID: 37232367 PMCID: PMC10552730 DOI: 10.3892/ijo.2023.5526] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Cancer is considered the most important clinical, social and economic issue regarding cause‑specific disability‑adjusted life years among all human pathologies. Exogenous, endogenous and individual factors, including genetic predisposition, participate in cancer triggering. Telomeres are specific DNA structures positioned at the end of chromosomes and consist of repetitive nucleotide sequences, which, together with shelterin proteins, facilitate the maintenance of chromosome stability, while protecting them from genomic erosion. Even though the connection between telomere status and carcinogenesis has been identified, the absence of a universal or even a cancer‑specific trend renders consent even more complex. It is indicative that both short and long telomere lengths have been associated with a high risk of cancer incidence. When evaluating risk associations between cancer and telomere length, a disparity appears to emerge. Even though shorter telomeres have been adopted as a marker of poorer health status and an older biological age, longer telomeres due to increased cell growth potential are associated with the acquirement of cancer‑initiating somatic mutations. Therefore, the present review aimed to comprehensively present the multifaceted pattern of telomere length and cancer incidence association.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Tatiana Oikonomopoulou
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Taxiarchis Konstantinos Nikolouzakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Elisavet Renieri
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Evaggelia Iliaki
- Laboratory of Microbiology, University Hospital of Heraklion, 71500 Heraklion
| | - Maria Bachlitzanaki
- Department of Medical Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion
| | - Vasiliki Karzi
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Ioanna Katsikantami
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Fotios Kakridonis
- Department of Spine Surgery and Scoliosis, KAT General Hospital, 14561 Athens
| | - Eleftheria Hatzidaki
- Department of Neonatology and Neonatal Intensive Care Unit (NICU), University Hospital of Heraklion, 71500 Heraklion
| | - Maria Tolia
- Department of Radiation Oncology, University Hospital of Crete, 71110 Heraklion, Greece
| | - Andrey A. Svistunov
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
8
|
Giaccherini M, Gentiluomo M, Arcidiacono PG, Falconi M, Testoni SGG, Apadula L, Lauri G, Di Franco G, Fatucchi LM, Petrone MC, Corradi C, Crippa S, Morelli L, Capurso G, Campa D. A polymorphic variant in telomere maintenance is associated with worrisome features and high-risk stigmata development in IPMNs. Carcinogenesis 2022; 43:728-735. [PMID: 35675759 DOI: 10.1093/carcin/bgac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) are nonobligatory precursor lesions of pancreatic ductal adenocarcinoma (PDAC). The identification of molecular biomarkers able to predict the risk of progression of IPMNs toward malignancy is largely lacking and sorely needed. Telomere length (TL) is associated with the susceptibility of developing cancers, including PDAC. Moreover, several PDAC risk factors have been shown to be associated with IPMN transition to malignancy. TL is genetically determined, and the aim of this study was to use 11 SNPs, alone or combined in a score (teloscore), to estimate the causal relation between genetically determined TL and IPMNs progression. For this purpose, 173 IPMN patients under surveillance were investigated. The teloscore did not show any correlation, however, we observed an association between PXK-rs6772228-A and an increased risk of IPMN transition to malignancy (HR = 3.17; 95%CI 1.47-6.84; P = 3.24 × 10-3). This effect was also observed in a validation cohort of 142 IPMNs even though the association was not statistically significant. The combined analysis was consistent showing an association between PXK-rs6772228-A and increased risk of progression. The A allele of this SNP is strongly associated with shorter LTL that in turn have been reported to be associated with increased risk of developing PDAC. These results clearly highlight the importance of looking for genetic variants as potential biomarkers in this setting in order to further our understanding the etiopathogenesis of PDAC and suggest that genetically determined TL might be an additional marker of IPMN prognosis.
Collapse
Affiliation(s)
| | | | - Paolo Giorgio Arcidiacono
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Sabrina Gloria Giulia Testoni
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Apadula
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Gaetano Lauri
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Gregorio Di Franco
- General Surgery Unit, Cisanello Hospital, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lorenzo Maria Fatucchi
- General Surgery Unit, Cisanello Hospital, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Chiara Petrone
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Stefano Crippa
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Morelli
- General Surgery Unit, Cisanello Hospital, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gabriele Capurso
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Pan L, Tormey D, Bobon N, Baumann P. Rap1 prevents fusions between long telomeres in fission yeast. EMBO J 2022; 41:e110458. [PMID: 36059259 PMCID: PMC9574727 DOI: 10.15252/embj.2021110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
The conserved Rap1 protein is part of the shelterin complex that plays critical roles in chromosome end protection and telomere length regulation. Previous studies have addressed how fission yeast Rap1 contributes to telomere length maintenance, but the mechanism by which the protein inhibits end fusions has remained elusive. Here, we use a mutagenesis screen in combination with high‐throughput sequencing to identify several amino acid positions in Rap1 that have key roles in end protection. Interestingly, mutations at these sites render cells susceptible to genome instability in a conditional manner, whereby longer telomeres are prone to undergoing end fusions, while telomeres within the normal length range are sufficiently protected. The protection of long telomeres is in part dependent on their nuclear envelope attachment mediated by the Rap1–Bqt4 interaction. Our data demonstrate that long telomeres represent a challenge for the maintenance of genome integrity, thereby providing an explanation for species‐specific upper limits on telomere length.
Collapse
Affiliation(s)
- Lili Pan
- Department of Biology, Johannes Gutenberg University, Mainz, Germany
| | - Duncan Tormey
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Nadine Bobon
- Department of Biology, Johannes Gutenberg University, Mainz, Germany
| | - Peter Baumann
- Department of Biology, Johannes Gutenberg University, Mainz, Germany.,Institute of Molecular Biology, Mainz, Germany
| |
Collapse
|
10
|
Markozannes G, Kanellopoulou A, Dimopoulou O, Kosmidis D, Zhang X, Wang L, Theodoratou E, Gill D, Burgess S, Tsilidis KK. Systematic review of Mendelian randomization studies on risk of cancer. BMC Med 2022; 20:41. [PMID: 35105367 PMCID: PMC8809022 DOI: 10.1186/s12916-022-02246-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We aimed to map and describe the current state of Mendelian randomization (MR) literature on cancer risk and to identify associations supported by robust evidence. METHODS We searched PubMed and Scopus up to 06/10/2020 for MR studies investigating the association of any genetically predicted risk factor with cancer risk. We categorized the reported associations based on a priori designed levels of evidence supporting a causal association into four categories, namely robust, probable, suggestive, and insufficient, based on the significance and concordance of the main MR analysis results and at least one of the MR-Egger, weighed median, MRPRESSO, and multivariable MR analyses. Associations not presenting any of the aforementioned sensitivity analyses were not graded. RESULTS We included 190 publications reporting on 4667 MR analyses. Most analyses (3200; 68.6%) were not accompanied by any of the assessed sensitivity analyses. Of the 1467 evaluable analyses, 87 (5.9%) were supported by robust, 275 (18.7%) by probable, and 89 (6.1%) by suggestive evidence. The most prominent robust associations were observed for anthropometric indices with risk of breast, kidney, and endometrial cancers; circulating telomere length with risk of kidney, lung, osteosarcoma, skin, thyroid, and hematological cancers; sex steroid hormones and risk of breast and endometrial cancer; and lipids with risk of breast, endometrial, and ovarian cancer. CONCLUSIONS Despite the large amount of research on genetically predicted risk factors for cancer risk, limited associations are supported by robust evidence for causality. Most associations did not present a MR sensitivity analysis and were thus non-evaluable. Future research should focus on more thorough assessment of sensitivity MR analyses and on more transparent reporting.
Collapse
Affiliation(s)
- Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Afroditi Kanellopoulou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Dimitrios Kosmidis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Xiaomeng Zhang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Lijuan Wang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
11
|
Groarke EM, Calado RT, Liu JM. Cell senescence and malignant transformation in the inherited bone marrow failure syndromes: Overlapping pathophysiology with therapeutic implications. Semin Hematol 2022; 59:30-37. [PMID: 35491056 PMCID: PMC9062194 DOI: 10.1053/j.seminhematol.2022.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/02/2023]
Abstract
Fanconi anemia, telomeropathies and ribosomopathies are members of the inherited bone marrow failure syndromes, rare genetic disorders that lead to failure of hematopoiesis, developmental abnormalities, and cancer predisposition. While each disorder is caused by different genetic defects in seemingly disparate processes of DNA repair, telomere maintenance, or ribosome biogenesis, they appear to lead to a common pathway characterized by premature senescence of hematopoietic stem cells. Here we review the experimental data on senescence and inflammation underlying marrow failure and malignant transformation. We conclude with a critical assessment of current and future therapies targeting these pathways in inherited bone marrow failure syndromes patients.
Collapse
Affiliation(s)
- Emma M Groarke
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Johnson M Liu
- Division of Hematology, Maine Medical Center, Portland, ME
| |
Collapse
|
12
|
Gentiluomo M, Giaccherini M, Gào X, Guo F, Stocker H, Schöttker B, Brenner H, Canzian F, Campa D. Genome-wide association study of mitochondrial copy number. Hum Mol Genet 2021; 31:1346-1355. [PMID: 34964454 DOI: 10.1093/hmg/ddab341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial DNA copy number (mtDNAcn) variation has been associated with increased risk of several human diseases in epidemiological studies. The quantification of mtDNAcn performed with real-time PCR is currently considered the de facto standard among several techniques. However, the heterogeneity of the laboratory methods (DNA extraction, storage, processing) used could give rise to results that are difficult to compare and reproduce across different studies. Several lines of evidence suggest that mtDNAcn is influenced by nuclear and mitochondrial genetic variability, however this relation is largely unexplored. The aim of this work was to elucidate the genetic basis of mtDNAcn variation. We performed a genome-wide association study (GWAS) of mtDNAcn in 6836 subjects from the ESTHER prospective cohort, and included, as replication set, the summary statistics of a GWAS that used 295 150 participants from the UK Biobank. We observed two novel associations with mtDNAcn variation on chromosome 19 (rs117176661), and 12 (rs7136238) that reached statistical significance at the genome-wide level. A polygenic score that we called mitoscore including all known single nucleotide polymorphisms explained 1.11% of the variation of mtDNAcn (p = 5.93 × 10-7). In conclusion, we performed a GWAS on mtDNAcn, adding to the evidence of the genetic background of this trait.
Collapse
Affiliation(s)
- Manuel Gentiluomo
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy
| | - Matteo Giaccherini
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy.,Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Feng Guo
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, 69120, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg, 69120, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Daniele Campa
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy
| |
Collapse
|
13
|
Giaccherini M, Gentiluomo M, Fornili M, Lucenteforte E, Baglietto L, Campa D. Association between telomere length and mitochondrial copy number and cancer risk in humans: A meta-analysis on more than 300,000 individuals. Crit Rev Oncol Hematol 2021; 167:103510. [PMID: 34695574 DOI: 10.1016/j.critrevonc.2021.103510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
In the last decades the association of leukocyte telomere length (LTL) and mitochondrial copy number (mtDNAcn) with cancer risk has been the focus of many reports, however the relation is not yet completely understood. A meta-analysis of 112 studies including 64,184 cancer cases and 278,641 controls that analysed LTL and mtDNAcn in relation to cancer risk has been conducted to further our understanding of the topic. Stratified analyses for tumor type were also performed. Overall, no association was observed for all cancer combined neither for LTL nor mtDNAcn. Significant associations were detected for these biomarkers and specific cancer type; however, a large degree of heterogeneity was present, even within the same tumor type. Alternatives approaches based on polymorphic variants, such as polygenic risk scores and mendelian randomization, could be adopted to unravel the causal correlation of telomere length and mitochondrial copy number with cancer risk.
Collapse
Affiliation(s)
| | | | - Marco Fornili
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126, Pisa, Italy.
| |
Collapse
|
14
|
Giaccherini M, Macauda A, Orciuolo E, Rymko M, Gruenpeter K, Dumontet C, Raźny M, Moreno V, Buda G, Beider K, Varkonyi J, Avet-Loiseau H, Martinez-Lopez J, Marques H, Watek M, Sarasquete ME, Andersen V, Karlin L, Suska A, Kruszewski M, Abildgaard N, Dudziński M, Butrym A, Nagler A, Vangsted AJ, Kadar K, Waldemar T, Jamroziak K, Jacobsen SEH, Ebbesen LH, Taszner M, Mazur G, Lesueur F, Pelosini M, Garcia-Sanz R, Jurczyszyn A, Demangel D, Reis RM, Iskierka-Jażdżewska E, Markiewicz M, Gemignani F, Subocz E, Zawirska D, Druzd-Sitek A, Stępień A, Alonso MH, Sainz J, Canzian F, Campa D. Genetically determined telomere length and multiple myeloma risk and outcome. Blood Cancer J 2021; 11:74. [PMID: 33854038 PMCID: PMC8046773 DOI: 10.1038/s41408-021-00462-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Telomeres are involved in processes like cellular growth, chromosomal stability, and proper segregation to daughter cells. Telomere length measured in leukocytes (LTL) has been investigated in different cancer types, including multiple myeloma (MM). However, LTL measurement is prone to heterogeneity due to sample handling and study design (retrospective vs. prospective). LTL is genetically determined; genome-wide association studies identified 11 SNPs that, combined in a score, can be used as a genetic instrument to measure LTL and evaluate its association with MM risk. This approach has been already successfully attempted in various cancer types but never in MM. We tested the "teloscore" in 2407 MM patients and 1741 controls from the International Multiple Myeloma rESEarch (IMMeNSE) consortium. We observed an increased risk for longer genetically determined telomere length (gdTL) (OR = 1.69; 95% CI 1.36-2.11; P = 2.97 × 10-6 for highest vs. lowest quintile of the score). Furthermore, in a subset of 1376 MM patients we tested the relationship between the teloscore and MM patients survival, observing a better prognosis for longer gdTL compared with shorter gdTL (HR = 0.93; 95% CI 0.86-0.99; P = 0.049). In conclusion, we report convincing evidence that longer gdTL is a risk marker for MM risk, and that it is potentially involved in increasing MM survival.
Collapse
Affiliation(s)
| | - Angelica Macauda
- Department of Biology, University of Pisa, Pisa, Italy.,Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Enrico Orciuolo
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marcin Rymko
- Department of Hematology, Copernicus Hospital, Torun, Poland
| | - Karolina Gruenpeter
- Department of Haematology and Bone Marrow Transplantation, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Malgorzata Raźny
- Department of Hematology, Rydygier Specialistic Hospital, Cracow, Poland
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), IDIBELL, CIBERESP and Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Gabriele Buda
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Katia Beider
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | - Hervé Avet-Loiseau
- Laboratory for Genomics in Myeloma, Institut Universitaire du Cancer and University Hospital, Centre de Recherche en Cancerologie de Toulouse, Toulouse, France
| | | | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marzena Watek
- Department of Hematology, Holy Cross Cancer Center, Kielce, Poland.,Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Vibeke Andersen
- Department of Biochemistry, University Hospital of Southern Jutland, Sønderborg, Denmark.,IRS-Center Soenderjylland, University Hospital of Southern Jutland, Aabenraa, Denmark
| | | | - Anna Suska
- Department of Hematology, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Kruszewski
- Department of Hematology, University Hospital No. 2 in Bydgoszcz, Bydgoszcz, Poland
| | - Niels Abildgaard
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Marek Dudziński
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, Rzeszow, Poland
| | - Aleksandra Butrym
- Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Arnold Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | | | - Tomczak Waldemar
- Department of Haemato-oncology and Bone Marrow Transplantation and Department of Internal Medicine in Nursing, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | | | - Michał Taszner
- Department of Hematology and Transplantology Medical University of Gdansk, Gdańsk, Poland
| | - Grzegorz Mazur
- Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Matteo Pelosini
- U.O. Dipartimento di Ematologia, Azienda USL Toscana Nord Ovest, Livorno, Italy, currently Ospedale Santa Chiara, Pisa, Italy
| | - Ramon Garcia-Sanz
- Hematology Department, University Hospital of Salamanca, CIBERONC, Salamanca, Spain
| | - Artur Jurczyszyn
- Department of Hematology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Miroslaw Markiewicz
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, Rzeszow, Poland
| | | | - Edyta Subocz
- Department of Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Daria Zawirska
- Department of Haematology, University Hospital in Cracow, Cracow, Poland
| | - Agnieszka Druzd-Sitek
- Department of Lymphoid Malignancies, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Stępień
- Laboratory of Clinical and Transplant Immunology and Genetics, Copernicus Memorial Hospital, Łódź, Poland
| | - M Henar Alonso
- Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), IDIBELL, CIBERESP and Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain.,Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Zhang B, Liu L, Guo L, Guo S, Zhao X, Liu G, Li Q, Jiang L, Pan B, Nie J, Yang J. Telomere length mediates the association between polycyclic aromatic hydrocarbons exposure and abnormal glucose level among Chinese coke oven plant workers. CHEMOSPHERE 2021; 266:129111. [PMID: 33310362 DOI: 10.1016/j.chemosphere.2020.129111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Diabetes is a chronic and complex disease determined by environmental and genetic factors. This study aimed to investigate the association between polycyclic aromatic hydrocarbons (PAHs) exposure and fasting blood glucose levels and telomere length among coke-oven plant workers, to explore potential role of telomere length (TL) in the association between PAHs exposure and abnormal glucose level. METHODS The cross-sectional survey was conducted in 2017. The high-performance liquid chromatography mass spectrometry (HPLC-MS) was used to detect 11 urine biomarkers of PAHs exposure. TL was measured using the Real-time quantitative polymerase chain reaction (RT-qPCR) method. Logistic regression model, the modified Poisson regression models, and mediation analysis were used to evaluate the associations between PAHs exposure, TL, and abnormal glucose. RESULTS The results showed that the urinary 1-hydroxypyrene (1-PYR) was positively related to abnormal glucose in a dose-dependent manner (Ptrend = 0.007), the prevalence ratio of abnormal glucose was 8% (95% CI: 1.01-1.16) higher in 3rd tertile of urinary 1-PYR levels. Urinary 1-PYR in the 2nd tertile and 3rd tertile were associated with a 53% (OR = 0.47, 95% CI: 0.28-0.79) and 59% (OR = 0.41, 95% CI: 0.23-0.76) higher risk of shortening TL. And there was a negatively association between 1-PYR and TL in a dose-dependent manner (Ptrend = 0.045). We observed that the association between 1-PYR and abnormal glucose was more significantly positive among participants with median TL level (Ptrend = 0.006). In addition, mediation analysis showed the TL could explain 11.7% of the effect of abnormal glucose related to PAHs exposure. CONCLUSIONS Our findings suggested the effect of abnormal glucose related to PAHs exposure was mediated by telomere length in coke oven plant workers.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Lu Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Lan Guo
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Shugang Guo
- Shanxi Provincial Center for Disease Control and Prevention, China
| | - Xinyu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Gaisheng Liu
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Qiang Li
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Liuquan Jiang
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Baolong Pan
- General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd., China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China.
| |
Collapse
|
16
|
Brown DW, Lin SH, Loh PR, Chanock SJ, Savage SA, Machiela MJ. Genetically predicted telomere length is associated with clonal somatic copy number alterations in peripheral leukocytes. PLoS Genet 2020; 16:e1009078. [PMID: 33090998 PMCID: PMC7608979 DOI: 10.1371/journal.pgen.1009078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 11/03/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Telomeres are DNA-protein structures at the ends of chromosomes essential in maintaining chromosomal stability. Observational studies have identified associations between telomeres and elevated cancer risk, including hematologic malignancies; but biologic mechanisms relating telomere length to cancer etiology remain unclear. Our study sought to better understand the relationship between telomere length and cancer risk by evaluating genetically-predicted telomere length (gTL) in relation to the presence of clonal somatic copy number alterations (SCNAs) in peripheral blood leukocytes. Genotyping array data were acquired from 431,507 participants in the UK Biobank and used to detect SCNAs from intensity information and infer telomere length using a polygenic risk score (PRS) of variants previously associated with leukocyte telomere length. In total, 15,236 (3.5%) of individuals had a detectable clonal SCNA on an autosomal chromosome. Overall, higher gTL value was positively associated with the presence of an autosomal SCNA (OR = 1.07, 95% CI = 1.05–1.09, P = 1.61×10−15). There was high consistency in effect estimates across strata of chromosomal event location (e.g., telomeric ends, interstitial or whole chromosome event; Phet = 0.37) and strata of copy number state (e.g., gain, loss, or neutral events; Phet = 0.05). Higher gTL value was associated with a greater cellular fraction of clones carrying autosomal SCNAs (β = 0.004, 95% CI = 0.002–0.007, P = 6.61×10−4). Our population-based examination of gTL and SCNAs suggests inherited components of telomere length do not preferentially impact autosomal SCNA event location or copy number status, but rather likely influence cellular replicative potential. Telomeres lie at the ends of chromosomes and protect from damage and chromosomal fusions. Recent studies have identified relationships between telomere length and cancer risk; however, exactly how telomere length impacts cancer risk is unknown. We investigated potential associations between telomere length and somatic copy number alterations (SCNAs), as SCNAs are associated with cancer risk and may be responsible for some of the observed association between telomere length and cancer. We analyzed blood-derived DNA from over 430,000 participants in a large UK based study and identified an association between elevated telomere length (as inferred from genetic variants) and increased frequency of SCNAs. We did not find any difference in the relationship between telomere length and SCNAs based on specific regions of chromosomes impacted or whether chromosomes were lost or gained. However, we did note that longer predicted telomere length is associated with higher proportions of cells containing a SCNA. Although further studies are needed, our results provide new evidence indicating SCNAs may be a potential mechanism by which telomere length could impact cancer risk.
Collapse
Affiliation(s)
- Derek W. Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, United States of America
- * E-mail:
| | - Shu-Hong Lin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
| | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
| | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
| |
Collapse
|
17
|
Giaccherini M, Macauda A, Sgherza N, Sainz J, Gemignani F, Maldonado JMS, Jurado M, Tavano F, Mazur G, Jerez A, Góra-Tybor J, Gołos A, Mohedo FH, Lopez JM, Várkonyi J, Spadano R, Butrym A, Canzian F, Campa D. Genetic polymorphisms associated with telomere length and risk of developing myeloproliferative neoplasms. Blood Cancer J 2020; 10:89. [PMID: 32873778 PMCID: PMC7463014 DOI: 10.1038/s41408-020-00356-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Telomere length measured in leukocyte (LTL) has been found to be associated with the risk of developing several cancer types, including myeloproliferative neoplasms (MPNs). LTL is genetically determined by, at least, 11 SNPs previously shown to influence LTL. Their combination in a score has been used as a genetic instrument to measure LTL and evaluate the causative association between LTL and the risk of several cancer types. We tested, for the first time, the “teloscore” in 480 MPN patients and 909 healthy controls in a European multi-center case–control study. We found an increased risk to develop MPNs with longer genetically determined telomeres (OR = 1.82, 95% CI 1.24–2.68, P = 2.21 × 10−3, comparing the highest with the lowest quintile of the teloscore distribution). Analyzing the SNPs individually we confirm the association between TERT-rs2736100-C allele and increased risk of developing MPNs and we report a novel association of the OBFC1-rs9420907-C variant with higher MPN risk (ORallelic = 1.43; 95% CI 1.15–1.77; P = 1.35 × 10−3). Consistently with the results obtained with the teloscore, both risk alleles are also associated with longer LTL. In conclusion, our results suggest that genetically determined longer telomeres could be a risk marker for MPN development.
Collapse
Affiliation(s)
- Matteo Giaccherini
- Department of Biology, University of Pisa, Pisa, Italy.,Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelica Macauda
- Department of Biology, University of Pisa, Pisa, Italy.,Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicola Sgherza
- Division of Hematology, Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,U.O.C. Ematologia con Trapianto, Azienda Ospedaliero-Universitaria Consorzionale, Policlinico di Bari, Bari, Italy
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Granada, Spain.,Monoclonal Gammopathies Unit, University Hospital Virgen de las Nieves, Granada, Spain.,Pharmacogenetics Unit, Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain.,Department of Medicine, University of Granada, Granada, Spain
| | | | - Josè Manuel Sanchez Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Granada, Spain.,Monoclonal Gammopathies Unit, University Hospital Virgen de las Nieves, Granada, Spain.,Pharmacogenetics Unit, Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Manuel Jurado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Granada, Spain.,Monoclonal Gammopathies Unit, University Hospital Virgen de las Nieves, Granada, Spain.,Pharmacogenetics Unit, Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Andrés Jerez
- Hematology and Medical Oncology Department, University Hospital Morales Meseguer-IMIB, CIBERER, Murcia, Spain
| | | | - Aleksandra Gołos
- Department of Clinical Oncology and Chemotherapy, Magodent Hospital, Warsaw, Poland
| | - Francisca Hernández Mohedo
- Monoclonal Gammopathies Unit, University Hospital Virgen de las Nieves, Granada, Spain.,Pharmacogenetics Unit, Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Joaquin Martinez Lopez
- Hospital 12 de Octubre, H12O-CNIO Hematological Malignancies Clinical Research Unitc Compluntense University, CIBERONC, Madrid, Spain
| | - Judit Várkonyi
- Third Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Raffaele Spadano
- Division of Hematology, Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
High homocysteine promotes telomere dysfunction and chromosomal instability in human neuroblastoma SH-SY5Y cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 854-855:503197. [PMID: 32660821 DOI: 10.1016/j.mrgentox.2020.503197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
Abstract
Telomeres, specialized structures at the ends of linear chromosomes, protect chromosome ends from degradation, recombination, and mis-repair. Critically short telomere length (TL) may result in chromosome instability (CIN), causing tumor promotion and, at higher levels, cell death and tumor suppression. Homocysteine (Hcy) is a sulfur-containing amino acid involved in one-carbon metabolism. Elevated plasma Hcy is a cancer risk factor. Human SH-SY5Y neuroblastoma cells were treated with pathophysiological concentrations of Hcy (15-120 μM) for 14 and 28 days. The cytokinesis-block micronucleus cytome assay was used to determine cytostasis (nuclear division index, NDI), cell death (apoptosis and necrosis), and CIN (micronuclei, nucleoplasmic bridges, and nuclear buds in binucleated cells). Quantitative PCR was used to measure TL and the expression of hTERT, the gene encoding the catalytic subunit of telomerase for TL elongation. The results showed that Hcy induced elongation of TL and fluctuating changes in expression of hTERT. TL elongation was associated with increased CIN. Hcy decreased the NDI and increased cell death. This study shows that there is cross-talk between Hcy and TL in tumor cells and supports the concept that high Hcy inhibits cell division and promotes the death of tumor cells by abnormal elongation of TL and elevation of CIN.
Collapse
|
19
|
Nelson CP, Codd V. Genetic determinants of telomere length and cancer risk. Curr Opin Genet Dev 2020; 60:63-68. [PMID: 32171108 DOI: 10.1016/j.gde.2020.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
The relationship of telomere length with cancer risk has been the source of much debate within epidemiological studies, which have produced inconsistent finding both between and within different cancer types. Over recent years, genome-wide association studies of increasing size have identified variants that determine human telomere length. These variants have subsequently been utilised as instrumental variables in Mendelian randomisation based studies, allowing the investigation of potential causal relationships between telomere length and cancer. Here we discuss recent advances in both genomic discovery, studies that give increasing evidence towards a causal role for telomere length in cancer risk and considerations for future studies.
Collapse
Affiliation(s)
- Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, UK; NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, UK; NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
| |
Collapse
|
20
|
Long Leukocyte Telomere Length Is Associated with Increased Risks of Soft Tissue Sarcoma: A Mendelian Randomization Study. Cancers (Basel) 2020; 12:cancers12030594. [PMID: 32150919 PMCID: PMC7139681 DOI: 10.3390/cancers12030594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Leukocyte telomere length (LTL) has been associated with the risks of several cancers in observational studies. Mendelian randomization (MR) studies, using genetic variants as instrumental variables, have also shown associations of genetically predicted LTL with cancer risks. In this study, we performed the first MR analysis on soft tissue sarcoma (STS) to investigate the causal relationship between LTL and the risk of STS. Methods: Genotypes from eleven LTL-associated single nucleotide polymorphisms (SNPs) in 821 STS cases and 851 cancer-free controls were aggregated into a weighted genetic risk score (GRS) to predict LTL. Multivariate logistic regression was used to assess the association of STS risk with individual SNPs and aggregated GRS. Results: Four SNPs displayed evidence for an individual association between long LTL-conferring allele and increased STS risk: rs7675998 (odds ratio (OR) = 1.21, 95% confidence interval (CI) = 1.02–1.43), rs9420907 (OR = 1.31, 95% CI = 1.08–1.59), rs8105767 (OR = 1.18, 95% CI = 1.02–1.37), and rs412658 (OR = 1.18, 95% CI = 1.02–1.36). Moreover, longer genetically predicted LTL, calculated as GRS, was strongly associated with an increased risk of STS (OR = 1.44, 95% CI = 1.18–1.75, p < 0.001), and there was a significant dose-response association (p for trend <0.001 in tertile and quartile analyses). The association of longer LTL with higher STS risk was more evident in women than in men. In stratified analyses by major STS subtypes, longer LTL was significantly associated with higher risks of leiomyosarcoma and gastrointestinal stromal tumors. Conclusions: Longer LTL is associated with increased risks of STS.
Collapse
|
21
|
Arbeev KG, Verhulst S, Steenstrup T, Kark JD, Bagley O, Kooperberg C, Reiner AP, Hwang SJ, Levy D, Fitzpatrick AL, Christensen K, Yashin AI, Aviv A. Association of Leukocyte Telomere Length With Mortality Among Adult Participants in 3 Longitudinal Studies. JAMA Netw Open 2020; 3:e200023. [PMID: 32101305 PMCID: PMC7137690 DOI: 10.1001/jamanetworkopen.2020.0023] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
IMPORTANCE Leukocyte telomere length (LTL) is a trait associated with risk of cardiovascular disease and cancer, the 2 major disease categories that largely define longevity in the United States. However, it remains unclear whether LTL is associated with the human life span. OBJECTIVE To examine whether LTL is associated with the life span of contemporary humans. DESIGN, SETTING, AND PARTICIPANTS This cohort study included 3259 adults of European ancestry from the Cardiovascular Health Study (CHS), Framingham Heart Study (FHS), and Women's Health Initiative (WHI). Leukocyte telomere length was measured in 1992 and 1997 in the CHS, from 1995 to 1998 in the FHS, and from 1993 to 1998 in the WHI. Data analysis was conducted from February 2017 to December 2019. MAIN OUTCOMES AND MEASURES Death and LTL, measured by Southern blots of the terminal restriction fragments, were the main outcomes. Cause of death was adjudicated by end point committees. RESULTS The analyzed sample included 3259 participants (2342 [71.9%] women), with a median (range) age of 69.0 (50.0-98.0) years at blood collection. The median (range) follow-up until death was 10.9 (0.2-23.0) years in CHS, 19.7 (3.4-23.0) years in FHS, and 16.6 (0.5-20.0) years in WHI. During follow-up, there were 1525 deaths (482 [31.6%] of cardiovascular disease; 373 [24.5%] of cancer, and 670 [43.9%] of other or unknown causes). Short LTL, expressed in residual LTL, was associated with increased mortality risk. Overall, the hazard ratio for all-cause mortality for a 1-kilobase decrease in LTL was 1.34 (95% CI, 1.21-1.47). This association was stronger for noncancer causes of death (cardiovascular death: hazard ratio, 1.28; 95% CI, 1.08-1.52; cancer: hazard ratio, 1.13; 95% CI, 0.93-1.36; and other causes: hazard ratio, 1.53; 95% CI, 1.32-1.77). CONCLUSIONS AND RELEVANCE The results of this study indicate that LTL is associated with a natural life span limit in contemporary humans.
Collapse
Affiliation(s)
- Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Troels Steenstrup
- Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of South Denmark, Odense, Denmark
| | - Jeremy D. Kark
- Epidemiology Unit, Hebrew University–Hadassah School of Public Health and Community Medicine, Jerusalem, Israel
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- The Framingham Heart Study, Framingham, Massachusetts
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- The Framingham Heart Study, Framingham, Massachusetts
| | | | - Kaare Christensen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Abraham Aviv
- Center of Human Development and Aging, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| |
Collapse
|
22
|
Song N, Li Z, Qin N, Howell CR, Wilson CL, Easton J, Mulder HL, Edmonson MN, Rusch MC, Zhang J, Hudson MM, Yasui Y, Robison LL, Ness KK, Wang Z. Shortened Leukocyte Telomere Length Associates with an Increased Prevalence of Chronic Health Conditions among Survivors of Childhood Cancer: A Report from the St. Jude Lifetime Cohort. Clin Cancer Res 2020; 26:2362-2371. [PMID: 31969337 DOI: 10.1158/1078-0432.ccr-19-2503] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/11/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE We aimed to analyze and compare leukocyte telomere length (LTL) and age-dependent LTL attrition between childhood cancer survivors and noncancer controls, and to evaluate the associations of LTL with treatment exposures, chronic health conditions (CHC), and health behaviors among survivors. EXPERIMENTAL DESIGN We included 2,427 survivors and 293 noncancer controls of European ancestry, drawn from the participants in St. Jude Lifetime Cohort Study (SJLIFE), a retrospective hospital-based study with prospective follow-up (2007-2016). Common nonneoplastic CHCs (59 types) and subsequent malignant neoplasms (5 types) were clinically assessed. LTL was measured with whole-genome sequencing data. RESULTS After adjusting for age at DNA sampling, gender, genetic risk score based on 9 SNPs known to be associated with telomere length, and eigenvectors, LTL among survivors was significantly shorter both overall [adjusted mean (AM) = 6.20 kb; SE = 0.03 kb] and across diagnoses than controls (AM = 6.69 kb; SE = 0.07 kb). Among survivors, specific treatment exposures associated with shorter LTL included chest or abdominal irradiation, glucocorticoid, and vincristine chemotherapies. Significant negative associations of LTL with 14 different CHCs, and a positive association with subsequent thyroid cancer occurring out of irradiation field were identified. Health behaviors were significantly associated with LTL among survivors aged 18 to 35 years (P trend = 0.03). CONCLUSIONS LTL is significantly shorter among childhood cancer survivors than noncancer controls, and is associated with CHCs and health behaviors, suggesting LTL as an aging biomarker may be a potential mechanistic target for future intervention studies designed to prevent or delay onset of CHCs in childhood cancer survivors.See related commentary by Walsh, p. 2281.
Collapse
Affiliation(s)
- Nan Song
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhenghong Li
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Na Qin
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Carrie R Howell
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Carmen L Wilson
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael C Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee. .,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
23
|
Xu J, Chang WS, Tsai CW, Bau DT, Xu Y, Davis JW, Thompson TC, Logothetis CJ, Gu J. Leukocyte telomere length is associated with aggressive prostate cancer in localized prostate cancer patients. EBioMedicine 2020; 52:102616. [PMID: 31981976 PMCID: PMC6992931 DOI: 10.1016/j.ebiom.2019.102616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Telomeres play important roles in cancer initiation and progression. The aim of this study is to investigate whether leukocyte telomere length (LTL) is associated with aggressive prostate cancer (PCa). METHODS We measured relative LTL in a cohort of 1,889 white PCa patients who were treated and followed up at the University of Texas MD Anderson Cancer Center and assessed its associations with aggressive disease characteristics at diagnosis and biochemical recurrence (BCR) after active treatments (radical prostatectomy and radiotherapy). We further used a Mendelian randomization (MR) approach to compute a weighted genetic risk score (GRS) predictive of LTL using 10 established LTL-associated genetic variants and determined whether this GRS is associated with aggressive PCa. FINDINGS LTL was significantly shorter in patients with higher Gleason scores at diagnosis. Dichotomized at the median value of LTL, patients with short LTL exhibited a 2.74-fold (95% confidence interval, 1.79-4.18, P = 3.11 × 10-6) increased risk of presenting with GS≥8 disease than those with long LTL in multivariate logistic regression analysis. Moreover, shorter LTL was significantly associated with an increased risk of BCR (hazard ratio = 1.53, 95% confidence interval, 1.01-2.34) compared to longer LTL in localized patients receiving prostatectomy or radiotherapy with a significant dose-response association (P for trend = 0.017) in multivariate Cox proportional hazards regression analysis. In MR analysis, genetically predicted short LTL was also associated with an increased risk of BCR (HR=1.73, 95% CI, 1.08-2.78). INTERPRETATION Our results showed for the first time that LTL was shorter in PCa patients with high Gleason scores and that short LTL and genetically predicted short LTL are associated with worse prognosis in PCa patients receiving prostatectomy or radiotherapy. FUNDING Cancer Prevention and Research Institute of Texas (CPRIT) grant (RP140556), National Cancer Institute Specialized Program of Research Excellence (SPORE) grant (CA140388), and MD Anderson Cancer Center start-up fund.
Collapse
Affiliation(s)
- Junfeng Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States; Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States; Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - John W Davis
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
24
|
Ackermann S, Fischer M. Telomere Maintenance in Pediatric Cancer. Int J Mol Sci 2019; 20:E5836. [PMID: 31757062 PMCID: PMC6928840 DOI: 10.3390/ijms20235836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Telomere length has been proposed as a biomarker of biological age and a risk factor for age-related diseases and cancer. Substantial progress has been made in recent decades in understanding the complex molecular relationships in this research field. However, the majority of telomere studies have been conducted in adults. The data on telomere dynamics in pediatric cancers is limited, and interpretation can be challenging, especially in cases where results are contrasting to those in adult entities. This review describes recent advances in the molecular characterization of structure and function of telomeres, regulation of telomerase activity in cancer pathogenesis in general, and highlights the key advances that have expanded our views on telomere biology in pediatric cancer, with special emphasis on the central role of telomere maintenance in neuroblastoma. Furthermore, open questions in the field of telomere maintenance research are discussed in the context of recently published literature.
Collapse
Affiliation(s)
- Sandra Ackermann
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Faculty of Medicine and University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931 Cologne, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Faculty of Medicine and University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931 Cologne, Germany
| |
Collapse
|
25
|
Cao X, Huang M, Zhu M, Fang R, Ma Z, Jiang T, Dai J, Ma H, Jin G, Shen H, Du J, Xu L, Hu Z. Mendelian randomization study of telomere length and lung cancer risk in East Asian population. Cancer Med 2019; 8:7469-7476. [PMID: 31605466 PMCID: PMC6885879 DOI: 10.1002/cam4.2590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
Associations between telomere length and cancer risk have been investigated in many epidemiological studies, but the results are controversial. These associations may be biased by reverse causation or confounded by environmental exposures. To avoid potential biases, we used Mendelian randomization method to evaluate whether TL is the causal risk factor for lung cancer. We conducted Mendelian randomization analysis in two published East Asian GWAS studies (7127 cases and 6818 controls). We used both weighted genetic risk score and inverse‐variance weighting method to estimate the relationship between TL and lung cancer risk. Nonlinear test also used to detect potential association trends. We observed that increased weight GRS was associated with increased risk of lung cancer (OR = 2.25, 95%CI: 1.81‐2.78, P = 1.18 × 10−13). In different subtypes, weight GRS was significantly associated with lung adenocarcinoma risk (OR = 2.69, 95% CI: 2.11‐3.42, P = 7.20 × 10−16); while lung squamous cell carcinoma showed a marginal association (OR = 1.45, 95% CI = 1.01‐2.10, P = .047). Nonlinear analysis suggested a log‐linear dose‐response relationship between increased weight GRS and lung cancer risk. Our results indicated that longer TL increases lung cancer risk. Those biological mechanisms changes caused by long TL may play an important role in lung carcinogenesis.
Collapse
Affiliation(s)
- Xuguang Cao
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Department of Thoracic and Cardiovascular Surgery, First People's Hospital of Yancheng, Yancheng, China
| | - Mingtao Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Rui Fang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zijian Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Tao Jiang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jiangbo Du
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Stelzer AS, Maccioni L, Gerhold-Ay A, Smedby KE, Schumacher M, Nieters A, Binder H. A multivariable approach for risk markers from pooled molecular data with only partial overlap. BMC MEDICAL GENETICS 2019; 20:128. [PMID: 31324155 PMCID: PMC6642584 DOI: 10.1186/s12881-019-0849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/19/2019] [Indexed: 11/29/2022]
Abstract
Background Increasingly, molecular measurements from multiple studies are pooled to identify risk scores, with only partial overlap of measurements available from different studies. Univariate analyses of such markers have routinely been performed in such settings using meta-analysis techniques in genome-wide association studies for identifying genetic risk scores. In contrast, multivariable techniques such as regularized regression, which might potentially be more powerful, are hampered by only partial overlap of available markers even when the pooling of individual level data is feasible for analysis. This cannot easily be addressed at a preprocessing level, as quality criteria in the different studies may result in differential availability of markers – even after imputation. Methods Motivated by data from the InterLymph Consortium on risk factors for non-Hodgkin lymphoma, which exhibits these challenges, we adapted a regularized regression approach, componentwise boosting, for dealing with partial overlap in SNPs. This synthesis regression approach is combined with resampling to determine stable sets of single nucleotide polymorphisms, which could feed into a genetic risk score. The proposed approach is contrasted with univariate analyses, an application of the lasso, and with an analysis that discards studies causing the partial overlap. The question of statistical significance is faced with an approach called stability selection. Results Using an excerpt of the data from the InterLymph Consortium on two specific subtypes of non-Hodgkin lymphoma, it is shown that componentwise boosting can take into account all applicable information from different SNPs, irrespective of whether they are covered by all investigated studies and for all individuals in the single studies. The results indicate increased power, even when studies that would be discarded in a complete case analysis only comprise a small proportion of individuals. Conclusions Given the observed gains in power, the proposed approach can be recommended more generally whenever there is only partial overlap of molecular measurements obtained from pooled studies and/or missing data in single studies. A corresponding software implementation is available upon request. Trial registration All involved studies have provided signed GWAS data submission certifications to the U.S. National Institute of Health and have been retrospectively registered. Electronic supplementary material The online version of this article (10.1186/s12881-019-0849-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne-Sophie Stelzer
- Forest Research Institute Baden-Württemberg (FVA), Wonnhaldestraße 4, Freiburg, 79100, Germany. .,Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Stefan-Meier-Straße 26, Freiburg, 79104, Germany. .,Freiburg Center for Data Analysis and Modeling, University of Freiburg, Eckerstraße 1, Freiburg, 79104, Germany. .,Center for Chronic Immunodeficiency, Faculty of Medicine and Medical Center - University of Freiburg, Breisacher Straße 115, Freiburg, 79106, Germany.
| | - Livia Maccioni
- Center for Chronic Immunodeficiency, Faculty of Medicine and Medical Center - University of Freiburg, Breisacher Straße 115, Freiburg, 79106, Germany
| | - Aslihan Gerhold-Ay
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 69, Mainz, 55131, Germany
| | - Karin E Smedby
- Department of Medicine, Solna (MedS), Eugeniahemmet, T2, Karolinska Universitetssjukhuset, Solna, Stockholm, 17176, Sweden
| | - Martin Schumacher
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Stefan-Meier-Straße 26, Freiburg, 79104, Germany
| | - Alexandra Nieters
- Center for Chronic Immunodeficiency, Faculty of Medicine and Medical Center - University of Freiburg, Breisacher Straße 115, Freiburg, 79106, Germany
| | - Harald Binder
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Stefan-Meier-Straße 26, Freiburg, 79104, Germany
| |
Collapse
|
27
|
Wysoczanska B, Dratwa M, Gebura K, Mizgala J, Mazur G, Wrobel T, Bogunia-Kubik K. Variability within the human TERT gene, telomere length and predisposition to chronic lymphocytic leukemia. Onco Targets Ther 2019; 12:4309-4320. [PMID: 31239704 PMCID: PMC6551596 DOI: 10.2147/ott.s198313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The human telomerase reverse transcriptase (TERT) gene encodes the catalytic subunit of telomerase that is essential for maintenance of telomere length. We aimed to find out whether variability within the TERT gene could be associated with telomere length and development of the disease in non-treated patients with chronic lymphocytic leukemia (CLL). Materials and methods: Telomere length, rs2736100, rs2853690, rs33954691, rs35033501 single-nucleotide polymorphisms, and variable number of tandem repeats (VNTR-MNS16A) were assessed in patients at diagnosis. In addition, blood donors served as controls for the polymorphism studies. Results: The minor rs35033501 A variant was more frequent among CLL patients than in healthy controls (OR=3.488, p=0.039). CLL patients over 60 years of age were characterized with lower disease stage at diagnosis (p=0.001 and p=0.008, for the Rai and Binet criteria, respectively). The MNS16A VNTR-243 short allele was more frequent in patients with a low disease stage (p=0.020 and p=0.028, for the Rai and Binet staging system) and also among older patients having longer telomeres (p=0.046). Patients with Rai 0-I stage were characterized with longer telomeres than those with more advanced disease (p=0.030). This relationship was especially pronounced in patients carrying the rs2736100 C allele, independently of the criteria used, ie, Binet (p=0.048) or Rai (p=0.001). Conclusion: Our results showed that the genetic variation within the TERT gene seems to play a regulatory role in CLL and telomere length.
Collapse
Affiliation(s)
- Barbara Wysoczanska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Katarzyna Gebura
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Jakub Mizgala
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, 50-001, Poland
| | - Tomasz Wrobel
- Department of Haematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw50-367, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| |
Collapse
|
28
|
Campa D, Matarazzi M, Greenhalf W, Bijlsma M, Saum KU, Pasquali C, van Laarhoven H, Szentesi A, Federici F, Vodicka P, Funel N, Pezzilli R, Bueno-de-Mesquita HB, Vodickova L, Basso D, Obazee O, Hackert T, Soucek P, Cuk K, Kaiser J, Sperti C, Lovecek M, Capurso G, Mohelnikova-Duchonova B, Khaw KT, König AK, Kupcinskas J, Kaaks R, Bambi F, Archibugi L, Mambrini A, Cavestro GM, Landi S, Hegyi P, Izbicki JR, Gioffreda D, Zambon CF, Tavano F, Talar-Wojnarowska R, Jamroziak K, Key TJ, Fave GD, Strobel O, Jonaitis L, Andriulli A, Lawlor RT, Pirozzi F, Katzke V, Valsuani C, Vashist YK, Brenner H, Canzian F. Genetic determinants of telomere length and risk of pancreatic cancer: A PANDoRA study. Int J Cancer 2019; 144:1275-1283. [PMID: 30325019 DOI: 10.1002/ijc.31928] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 02/05/2023]
Abstract
Telomere deregulation is a hallmark of cancer. Telomere length measured in lymphocytes (LTL) has been shown to be a risk marker for several cancers. For pancreatic ductal adenocarcinoma (PDAC) consensus is lacking whether risk is associated with long or short telomeres. Mendelian randomization approaches have shown that a score built from SNPs associated with LTL could be used as a robust risk marker. We explored this approach in a large scale study within the PANcreatic Disease ReseArch (PANDoRA) consortium. We analyzed 10 SNPs (ZNF676-rs409627, TERT-rs2736100, CTC1-rs3027234, DHX35-rs6028466, PXK-rs6772228, NAF1-rs7675998, ZNF208-rs8105767, OBFC1-rs9420907, ACYP2-rs11125529 and TERC-rs10936599) alone and combined in a LTL genetic score ("teloscore", which explains 2.2% of the telomere variability) in relation to PDAC risk in 2,374 cases and 4,326 controls. We identified several associations with PDAC risk, among which the strongest were with the TERT-rs2736100 SNP (OR = 1.54; 95%CI 1.35-1.76; p = 1.54 × 10-10 ) and a novel one with the NAF1-rs7675998 SNP (OR = 0.80; 95%CI 0.73-0.88; p = 1.87 × 10-6 , ptrend = 3.27 × 10-7 ). The association of short LTL, measured by the teloscore, with PDAC risk reached genome-wide significance (p = 2.98 × 10-9 for highest vs. lowest quintile; p = 1.82 × 10-10 as a continuous variable). In conclusion, we present a novel genome-wide candidate SNP for PDAC risk (TERT-rs2736100), a completely new signal (NAF1-rs7675998) approaching genome-wide significance and we report a strong association between the teloscore and risk of pancreatic cancer, suggesting that telomeres are a potential risk factor for pancreatic cancer.
Collapse
Affiliation(s)
- Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Martina Matarazzi
- Department of Biology, University of Pisa, Pisa, Italy
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - William Greenhalf
- Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom
| | - Maarten Bijlsma
- Medical Oncology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Kai-Uwe Saum
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudio Pasquali
- Pancreatic and Digestive Endocrine Surgery - Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | | | - Andrea Szentesi
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Francesca Federici
- Oncological Department, Azienda USL Toscana Nord Ovest, Oncological Unit of Massa Carrara, Carrara, Italy
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Science of Czech Republic, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Niccola Funel
- Department of Surgery, Unit of Experimental Surgical Pathology, University of Pisa, Pisa, Italy
| | - Raffaele Pezzilli
- Pancreas Unit, Department of Digestive System, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - H Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Science of Czech Republic, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Daniela Basso
- Department of Laboratory Medicine, University-Hospital of Padova, Padua, Italy
| | - Ofure Obazee
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Katarina Cuk
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Kaiser
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Cosimo Sperti
- Third Surgical Clinic - Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Martin Lovecek
- Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, S. Andrea Hospital, 'Sapienza' University, Rome, Italy
- PancreatoBiliary Endoscopy and EUS Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita Salute San Raffaele University, Milan, Italy
| | - Beatrice Mohelnikova-Duchonova
- Department of Oncology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kay-Tee Khaw
- University of Cambridge School of Clinical Medicine Clinical Gerontology Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Anna-Katharina König
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franco Bambi
- Blood Transfusion Service, Azienda Ospedaliero-Universitaria Meyer, Florence, Italy
| | - Livia Archibugi
- Digestive and Liver Disease Unit, S. Andrea Hospital, 'Sapienza' University, Rome, Italy
- PancreatoBiliary Endoscopy and EUS Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita Salute San Raffaele University, Milan, Italy
| | - Andrea Mambrini
- Oncological Department, Azienda USL Toscana Nord Ovest, Oncological Unit of Massa Carrara, Carrara, Italy
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Péter Hegyi
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
- First Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Translational Gastroenterology Research Group, Szeged, Hungary
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Domenica Gioffreda
- Division of Gastroenterology and Molecular Biology Lab, IRCCS Ospedale Casa Sollievo Sofferenza, San Giovanni Rotondo, Italy
| | - Carlo Federico Zambon
- Third Surgical Clinic - Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Molecular Biology Lab, IRCCS Ospedale Casa Sollievo Sofferenza, San Giovanni Rotondo, Italy
| | | | | | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Gianfranco Delle Fave
- Digestive and Liver Disease Unit, S. Andrea Hospital, 'Sapienza' University, Rome, Italy
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Laimas Jonaitis
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Angelo Andriulli
- Division of Gastroenterology and Molecular Biology Lab, IRCCS Ospedale Casa Sollievo Sofferenza, San Giovanni Rotondo, Italy
| | - Rita T Lawlor
- ARC-NET, University and Hospital Trust of Verona, Verona, Italy
| | - Felice Pirozzi
- Division of Abdominal Surgery, IRCCS Ospedale Casa Sollievo Sofferenza, San Giovanni Rotondo, Italy
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara Valsuani
- Oncological Department, Azienda USL Toscana Nord Ovest, Oncological Unit of Massa Carrara, Carrara, Italy
| | - Yogesh K Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
29
|
Muskens IS, Hansen HM, Smirnov IV, Molinaro AM, Bondy ML, Schildkraut JM, Wrensch M, Wiemels JL, Claus EB. Longer genotypically-estimated leukocyte telomere length is associated with increased meningioma risk. J Neurooncol 2019; 142:479-487. [PMID: 30796745 DOI: 10.1007/s11060-019-03119-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/02/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Telomere length-associated SNPs have been associated with incidence and survival rates for malignant brain tumors such as glioma. Here, we study the influence of genetically determined lymphocyte telomere length (LTL) by comparing telomerase associated SNPs between the most common non-malignant brain tumor, i.e. meningioma, and healthy controls. METHODS/PATIENTS One thousand fifty-three (1053) surgically treated meningioma patients and 4437 controls of Western European ancestry were included. Germline DNA was genotyped for 8 SNPs previously significantly associated with LTL. Genotypically-estimated LTL was then calculated by summing each SNP's genotypically-specified telomere length increase in base pairs (bp) for each person. Odds ratios for genotypically-estimated LTL in meningioma cases and controls were evaluated using logistic regression with the first two ancestral principal components and sex as covariates. RESULTS Three out of the eight evaluated LTL SNPs were significantly associated with increased meningioma risk (rs10936599: OR 1.14, 95% CI 1.01-1.28, rs2736100: OR 1.13, 95% CI 1.03-1.25, rs9420907: OR 1.22, 95% CI 1.07-1.39). Only rs9420907 remained significant after correction for multiple testing. Average genotypically-estimated LTL was significantly longer for those with meningioma compared to controls [mean cases: 560.2 bp (standard error (SE): 4.05 bp), mean controls: 541.5 bp (SE: 2.02 bp), logistic regression p value = 2.13 × 10-5]. CONCLUSION Increased genotypically-estimated LTL was significantly associated with increased meningioma risk. A role for telomere length in the pathophysiology of meningioma is novel, and could lead to new insights on the etiology of meningioma.
Collapse
Affiliation(s)
- Ivo S Muskens
- Department of Neurosurgery, Brigham and Woman's Hospital, Boston, MA, USA.,Center for Genetic Epidemiology, Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helen M Hansen
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ivan V Smirnov
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Melissa L Bondy
- Section of Epidemiology and Popular Sciences, Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Margaret Wrensch
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA, USA.,Institute of Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth B Claus
- Department of Neurosurgery, Brigham and Woman's Hospital, Boston, MA, USA. .,School of Public Health, Yale University, 60 College St, PO Box 208034, 06520-8034, New Haven, CT, USA.
| |
Collapse
|
30
|
Sheth KR, Kovar E, White JT, Chambers TM, Peckham-Gregory EC, O'Neill M, Langlois PH, Seth A, Scheurer ME, Lupo PJ, Jorgez CJ. Hypospadias risk is increased with maternal residential exposure to hormonally active hazardous air pollutants. Birth Defects Res 2019; 111:345-352. [PMID: 30694020 DOI: 10.1002/bdr2.1461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/19/2018] [Accepted: 12/28/2018] [Indexed: 11/12/2022]
Abstract
BACKGROUND With the increasing birth prevalence of hypospadias, there is growing concern for pollutant exposure interfering with normal penile development. We assess the association between hypospadias and hormonally active hazardous air pollutants (HAHAPs) through a nationwide database of hazardous air pollutants and the Texas Birth Defects Registry (TBDR). METHODS Using the TBDR, we identified 8,981 nonsyndromic isolated hypospadias cases from 1999 to 2008. Birth certificate controls were matched for birth year at a 10:1 ratio to cases. Estimated HAHAP concentrations from the 2005 U.S. EPA National-Scale Air Toxics Assessment were used to assign exposure based on maternal residence at birth. Exposure levels were categorized as quintiles based on the distribution in controls. Logistic regression was used to calculate the odds ratio (OR) and 95% confidence interval (CI) for each increasing exposure category of selected HAHAPs. RESULTS Of the 10 HAHAPs studied, seven were significantly associated with hypospadias risk. The HAHAP that was most strongly associated with hypospadias was phenol, which was associated with risk in all groups except the high exposure group. Cumulative HAHAP exposure demonstrated a modest increase in hypospadias risk (OR 1.15, 95% CI: 1.07-1.24, p < 0.001) in the medium and medium-high quintiles. CONCLUSIONS While maternal exposure to some HAHAPs was significantly associated with the risk of hypospadias in male offspring, the effects were modest, and no dose-response effects were observed. Future work should employ biomarkers of exposure to better delineate the relationship.
Collapse
Affiliation(s)
- Kunj R Sheth
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas.,Division of Pediatric Urology, Department of Surgery, Texas Children's Hospital, Houston, Texas.,Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas
| | - Erin Kovar
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Jeffrey T White
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas.,Division of Pediatric Urology, Department of Surgery, Texas Children's Hospital, Houston, Texas.,Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas
| | - Tiffany M Chambers
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Erin C Peckham-Gregory
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas
| | - Marisol O'Neill
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Peter H Langlois
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin, Texas
| | - Abhishek Seth
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas.,Division of Pediatric Urology, Department of Surgery, Texas Children's Hospital, Houston, Texas.,Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas
| | - Michael E Scheurer
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas
| | - Philip J Lupo
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas
| | - Carolina J Jorgez
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas.,Division of Pediatric Urology, Department of Surgery, Texas Children's Hospital, Houston, Texas.,Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
31
|
Eisenberg DTA, Kuzawa CW. The paternal age at conception effect on offspring telomere length: mechanistic, comparative and adaptive perspectives. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0442. [PMID: 29335366 DOI: 10.1098/rstb.2016.0442] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 01/14/2023] Open
Abstract
Telomeres are repeating DNA found at the ends of chromosomes that, in the absence of restorative processes, shorten with cell replications and are implicated as a cause of senescence. It appears that sperm telomere length (TL) increases with age in humans, and as a result offspring of older fathers inherit longer telomeres. We review possible mechanisms underlying this paternal age at conception (PAC) effect on TL, including sperm telomere extension due to telomerase activity, age-dependent changes in the spermatogonial stem cell population (possibly driven by 'selfish' spermatogonia) and non-causal confounding. In contrast to the lengthening of TL with PAC, higher maternal age at conception appears to predict shorter offspring TL in humans. We review evidence for heterogeneity across species in the PAC effect on TL, which could relate to differences in statistical power, sperm production rates or testicular telomerase activity. Finally, we review the hypothesis that the PAC effect on TL may allow a gradual multi-generational adaptive calibration of maintenance effort, and reproductive lifespan, to local demographic conditions: descendants of males who reproduced at a later age are likely to find themselves in an environment where increased maintenance effort, allowing later reproduction, represents a fitness improving resource allocation.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Dan T A Eisenberg
- Department of Anthropology, Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA
| | - Christopher W Kuzawa
- Department of Anthropology, Institute for Policy Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
32
|
Gramatges MM, Morton LM, Yasui Y, Arnold MA, Neglia JP, Leisenring WM, Machiela MJ, Dagnall CL, Chanock SJ, Armstrong GT, Robison LL, Bhatia S, Lupo PJ. Telomere Length-Associated Genetic Variants and the Risk of Thyroid Cancer in Survivors of Childhood Cancer: A Report from the Childhood Cancer Survivor Study (CCSS). Cancer Epidemiol Biomarkers Prev 2018; 28:417-419. [PMID: 30377209 DOI: 10.1158/1055-9965.epi-18-0972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/03/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Given the inverse relationship described previously between telomere content and thyroid subsequent malignant neoplasm (thyroid SMN) in survivors of childhood cancer, we investigated the relationship between known genetic determinants of leukocyte telomere length (LTL) and thyroid SMN among survivors. METHODS Leveraging data from a large, genotyped survivor cohort, the Childhood Cancer Survivor Study, we used a well-described genetic risk score method to estimate the HR for thyroid SMN among 5,324 genotyped survivors. RESULTS We identified 118 survivors with thyroid SMN and 5,206 without thyroid SMN. No association between genetically estimated LTL and risk for thyroid SMN was identified. CONCLUSIONS Our results suggest that variation in common SNPs influencing LTL is not strongly associated with risk for thyroid SMN in survivors of childhood cancer. IMPACT The previously observed inverse relationship between LTL and thyroid SMN risk in survivors of childhood cancer may be related to alternative molecular mechanisms and warrants further study.
Collapse
Affiliation(s)
- Maria M Gramatges
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas.
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael A Arnold
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Joseph P Neglia
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Wendy M Leisenring
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Casey L Dagnall
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Philip J Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
33
|
Peacock SD, Massey TE, Vanner SJ, King WD. Telomere length in the colon is related to colorectal adenoma prevalence. PLoS One 2018; 13:e0205697. [PMID: 30332457 PMCID: PMC6192597 DOI: 10.1371/journal.pone.0205697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022] Open
Abstract
Telomere length has been associated with risk of several cancers. However, studies of the relationship between telomere length and colorectal cancer risk have been inconsistent. This study examined the relationship between telomere length in normal colon tissue and the prevalence of colorectal adenoma, a precursor to colorectal cancer. This nested case-control study consisted of 85 patients aged 40 to 65 undergoing a screening colonoscopy: 40 cases with adenoma(s) detected at colonoscopy and 45 controls with normal colonoscopy. During the colonoscopy, two pinch biopsies of healthy, normal appearing mucosa were obtained from the descending colon. Relative telomere length (rTL) was quantified in DNA extracted from colon mucosa using quantitative real-time PCR. Logistic regression was used to assess the relationship between telomere length and adenoma prevalence and estimate odds ratios and 95% confidence intervals. rTL was significantly longer in colon tissue of individuals with adenomas compared to healthy individuals (p = 0.008). When rTL was categorized into quartiles according to the distribution of rTL among controls, individuals with the longest telomeres had increased odds of adenoma when compared to individuals with shortest telomeres (OR = 4.58, 95% CI: 1.19, 17.7). This study suggests that long telomeres in normal colon tissue are associated with increased colorectal cancer risk.
Collapse
Affiliation(s)
- Sarah D. Peacock
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| | - Thomas E. Massey
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Stephen J. Vanner
- Gastrointestinal Disease Research Unit, Queen’s University, Kingston, Ontario, Canada
| | - Will D. King
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
34
|
Abstract
Telomere length measurement is increasingly recognized as a clinical gauge for age-related disease risk. There are several methods for studying blood telomere length (BTL) as a clinical biomarker. The first is an observational study approach, which directly measures telomere lengths using either cross-sectional or longitudinal patient cohorts and compares them to a population of age- and sex-matched individuals. These direct traceable measurements can be considered reflective of an individual's current health or disease state. Escalating interest in personalized medicine, access to high-throughput genotyping and resulting acquisition of large volumes of genetic data corroborates the second method, Mendelian randomization (MR). MR employs telomere length-associated genetic variants to indicate predisposition to disease risk based on the genomic composition of the individual. When assessed from cells in the bloodstream, telomeres can show variation from their genetically predisposed lengths due to environmental-induced changes. These alterations in telomere length act as an indicator of cellular health, which, in turn, can provide disease risk status. Overall, BTL measurement is a dynamic marker of biological health and well-being that together with genetically defined telomere lengths can provide insights into improved healthcare for the individual.
Collapse
|
35
|
Genetic Determinants of Telomere Length in African American Youth. Sci Rep 2018; 8:13265. [PMID: 30185882 PMCID: PMC6125592 DOI: 10.1038/s41598-018-31238-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022] Open
Abstract
Telomere length (TL) is associated with numerous disease states and is affected by genetic and environmental factors. However, TL has been mostly studied in adult populations of European or Asian ancestry. These studies have identified 34 TL-associated genetic variants recently used as genetic proxies for TL. The generalizability of these associations to pediatric populations and racially diverse populations, specifically of African ancestry, remains unclear. Furthermore, six novel variants associated with TL in a population of European children have been identified but not validated. We measured TL from whole blood samples of 492 healthy African American youth (children and adolescents between 8 and 20 years old) and performed the first genome-wide association study of TL in this population. We were unable to replicate neither the 34 reported genetic associations found in adults nor the six genetic associations found in European children. However, we discovered a novel genome-wide significant association between TL and rs1483898 on chromosome 14. Our results underscore the importance of examining genetic associations with TL in diverse pediatric populations such as African Americans.
Collapse
|
36
|
Abstract
Purpose of review In this paper, we summarize prior studies that have used Mendelian Randomization (MR) methods to study the effects of exposures, lifestyle factors, physical traits, and/or biomarkers on cancer risk in humans. Many such risk factors have been associated with cancer risk in observational studies, and the MR approach can be used to provide evidence as to whether these associations represent causal relationships. MR methods require a risk factor of interest to have known genetic determinants that can be used as proxies for the risk factor (i.e., "instrumental variables" or IVs), and these can be used to obtain an effect estimate that, under certain assumptions, is not prone to bias caused by unobserved confounding or reverse causality. This review seeks to describe how MR studies have contributed to our understanding of cancer causation. Recent findings We searched the published literature and identified 76 MR studies of cancer risk published prior to October 31, 2017. Risk factors commonly studied included alcohol consumption, Vitamin D, anthropometric traits, telomere length, lipid traits, glycemic traits, and markers of inflammation. Risk factors showing compelling evidence of a causal association with risk for at least one cancer type include alcohol consumption (for head/neck and colorectal), adult body mass index (increases risk for multiple cancers, but decreases risk for breast), height (increases risk for breast, colorectal, and lung; decreases risk for esophageal), telomere length (increases risk for lung adenocarcinoma, melanoma, renal cell carcinoma, glioma, B-cell lymphoma subtypes, chronic lymphocytic leukemia, and neuroblastoma), and hormonal factors (affects risk for sex-steroid sensitive cancers). Summary This review highlights alcohol consumption, body mass index, height, telomere length, and the hormonal exposures as factors likely to contribute to cancer causation. This review also highlights the need to study specific cancer types, ideally subtypes, as the effects of risk factors can be heterogeneous across cancer types. As consortia-based genome-wide association studies increase in sample size and analytical methods for MR continue to become more sophisticated, MR will become an increasingly powerful tool for understanding cancer causation.
Collapse
|
37
|
|
38
|
Larfors G, Glimelius I, Eloranta S, Smedby KE. Parental Age and Risk of Lymphoid Neoplasms. Am J Epidemiol 2017; 186:1159-1167. [PMID: 29149251 DOI: 10.1093/aje/kwx185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
High parental age at childbirth has repeatedly been linked to childhood malignancies, while few studies have focused on the offspring's risk of adult cancer. In this population-based case-control study, we identified 32,000 patients with lymphoid neoplasms, diagnosed at ages 0-79 years during the period 1987-2011, and 160,000 matched controls in Sweden. Using prospectively registered data on their first-degree relatives, we evaluated the impact of parental age on the risk of lymphoid neoplasms by subtype. Overall, each 5-year increment in maternal age was associated with a 3% increase in incidence of offspring lymphoid neoplasms (hazard ratio = 1.03, 95% confidence interval: 1.02, 1.04). The association was similar for paternal age and present even among individuals older than 70 years of age at diagnosis. Stratified analyses further revealed that the association was limited to certain subtypes, mostly of indolent nature. Risks of chronic lymphocytic leukemia, follicular lymphoma, and mantle cell lymphoma were 5%-10% higher per 5-year increment in maternal age, but no associations were observed for acute lymphoblastic leukemia, plasma cell neoplasms, or diffuse large B-cell lymphoma. These findings indicated that prenatal genetic or epigenetic changes influence risk of adult lymphoid neoplasms and suggest a difference in this association between aggressive and indolent lymphoma subtypes.
Collapse
|
39
|
Machiela MJ, Hofmann JN, Carreras-Torres R, Brown KM, Johansson M, Wang Z, Foll M, Li P, Rothman N, Savage SA, Gaborieau V, McKay JD, Ye Y, Henrion M, Bruinsma F, Jordan S, Severi G, Hveem K, Vatten LJ, Fletcher T, Koppova K, Larsson SC, Wolk A, Banks RE, Selby PJ, Easton DF, Pharoah P, Andreotti G, Freeman LEB, Koutros S, Albanes D, Mannisto S, Weinstein S, Clark PE, Edwards TE, Lipworth L, Gapstur SM, Stevens VL, Carol H, Freedman ML, Pomerantz MM, Cho E, Kraft P, Preston MA, Wilson KM, Gaziano JM, Sesso HS, Black A, Freedman ND, Huang WY, Anema JG, Kahnoski RJ, Lane BR, Noyes SL, Petillo D, Colli LM, Sampson JN, Besse C, Blanche H, Boland A, Burdette L, Prokhortchouk E, Skryabin KG, Yeager M, Mijuskovic M, Ognjanovic M, Foretova L, Holcatova I, Janout V, Mates D, Mukeriya A, Rascu S, Zaridze D, Bencko V, Cybulski C, Fabianova E, Jinga V, Lissowska J, Lubinski J, Navratilova M, Rudnai P, Szeszenia-Dabrowska N, Benhamou S, Cancel-Tassin G, Cussenot O, Bueno-de-Mesquita HB, Canzian F, Duell EJ, Ljungberg B, Sitaram RT, Peters U, White E, Anderson GL, Johnson L, Luo J, Buring J, Lee IM, Chow WH, Moore LE, Wood C, Eisen T, Larkin J, Choueiri TK, Lathrop GM, Teh BT, Deleuze JF, Wu X, Houlston RS, Brennan P, Chanock SJ, Scelo G, Purdue MP. Genetic Variants Related to Longer Telomere Length are Associated with Increased Risk of Renal Cell Carcinoma. Eur Urol 2017; 72:747-754. [PMID: 28797570 PMCID: PMC5641242 DOI: 10.1016/j.eururo.2017.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/17/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND Relative telomere length in peripheral blood leukocytes has been evaluated as a potential biomarker for renal cell carcinoma (RCC) risk in several studies, with conflicting findings. OBJECTIVE We performed an analysis of genetic variants associated with leukocyte telomere length to assess the relationship between telomere length and RCC risk using Mendelian randomization, an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations. DESIGN, SETTING, AND PARTICIPANTS Genotypes from nine telomere length-associated variants for 10 784 cases and 20 406 cancer-free controls from six genome-wide association studies (GWAS) of RCC were aggregated into a weighted genetic risk score (GRS) predictive of leukocyte telomere length. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Odds ratios (ORs) relating the GRS and RCC risk were computed in individual GWAS datasets and combined by meta-analysis. RESULTS AND LIMITATIONS Longer genetically inferred telomere length was associated with an increased risk of RCC (OR=2.07 per predicted kilobase increase, 95% confidence interval [CI]:=1.70-2.53, p<0.0001). As a sensitivity analysis, we excluded two telomere length variants in linkage disequilibrium (R2>0.5) with GWAS-identified RCC risk variants (rs10936599 and rs9420907) from the telomere length GRS; despite this exclusion, a statistically significant association between the GRS and RCC risk persisted (OR=1.73, 95% CI=1.36-2.21, p<0.0001). Exploratory analyses for individual histologic subtypes suggested comparable associations with the telomere length GRS for clear cell (N=5573, OR=1.93, 95% CI=1.50-2.49, p<0.0001), papillary (N=573, OR=1.96, 95% CI=1.01-3.81, p=0.046), and chromophobe RCC (N=203, OR=2.37, 95% CI=0.78-7.17, p=0.13). CONCLUSIONS Our investigation adds to the growing body of evidence indicating some aspect of longer telomere length is important for RCC risk. PATIENT SUMMARY Telomeres are segments of DNA at chromosome ends that maintain chromosomal stability. Our study investigated the relationship between genetic variants associated with telomere length and renal cell carcinoma risk. We found evidence suggesting individuals with inherited predisposition to longer telomere length are at increased risk of developing renal cell carcinoma.
Collapse
Affiliation(s)
- Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | | | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | | | - Zhaoming Wang
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthieu Foll
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Peng Li
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | | | - James D McKay
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Yuanqing Ye
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Fiona Bruinsma
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Australia
| | - Susan Jordan
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Public Health, The University of Queensland, Brisbane, Australia
| | - Gianluca Severi
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Australia; Human Genetics Foundation (HuGeF), Torino, Italy; Centre de Recherche en Épidémiologie et Santé des Populations, Université Paris-Saclay, UPS, USQ, Gustave Roussy, Villejuif, France
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Sweden
| | - Lars J Vatten
- Department of Public Health and General Practice, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Kvetoslava Koppova
- Regional Authority of Public Health in Banska Bystrica, Banska Bystrica, Slovakia
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rosamonde E Banks
- Leeds Institute of Cancer and Pathology, University of Leeds, Cancer Research Building, St James's University Hospital, Leeds, UK
| | - Peter J Selby
- Leeds Institute of Cancer and Pathology, University of Leeds, Cancer Research Building, St James's University Hospital, Leeds, UK
| | - Douglas F Easton
- Department of Oncology, and Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul Pharoah
- Department of Oncology, and Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | - Satu Mannisto
- National Institute for Health and Welfare, Helsinki, Finland
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | | | | | | | | | | | | | | | | | | | - Peter Kraft
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - J Michael Gaziano
- Brigham and Women's Hospital, Boston, MA, USA; Veterans Administration, Boston, MA, USA
| | - Howard S Sesso
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | - John G Anema
- Division of Urology, Spectrum Health, Grand Rapids, MI, USA
| | | | - Brian R Lane
- Division of Urology, Spectrum Health, Grand Rapids, MI, USA; College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Sabrina L Noyes
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, MI, USA
| | - David Petillo
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, MI, USA
| | - Leandro M Colli
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | - Celine Besse
- Centre National de Recherche en Genomique Humaine (CNRGH), Institut de biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives, Evry, France
| | - Helene Blanche
- Fondation Jean Dausset-Centre d'Etude du Polymorphisme Humain, Paris, France
| | - Anne Boland
- Centre National de Recherche en Genomique Humaine (CNRGH), Institut de biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives, Evry, France
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | - Egor Prokhortchouk
- Center 'Bioengineering' of the Russian Academy of Sciences, Moscow, Russian Federation; Kurchatov Scientific Center, Moscow, Russian Federation
| | - Konstantin G Skryabin
- Center 'Bioengineering' of the Russian Academy of Sciences, Moscow, Russian Federation; Kurchatov Scientific Center, Moscow, Russian Federation
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | | | - Miodrag Ognjanovic
- International Organization for Cancer Prevention and Research (IOCPR), Belgrade, Serbia
| | - Lenka Foretova
- International Organization for Cancer Prevention and Research (IOCPR), Belgrade, Serbia
| | - Ivana Holcatova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Vladimir Janout
- Second Faculty of Medicine, Institute of Public Health and Preventive Medicine, Charles University, Prague, Czech Republic
| | - Dana Mates
- Department of Preventive Medicine, Faculty of Medicine, Palacky University, Czech Republic
| | | | - Stefan Rascu
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - David Zaridze
- National Institute of Public Health, Bucharest, Romania
| | - Vladimir Bencko
- Carol Davila University of Medicine and Pharmacy, Th. Burghele Hospital, Bucharest, Romania
| | - Cezary Cybulski
- First Faculty of Medicine, Institute of Hygiene and Epidemiology, Charles University, Prague, Czech Republic
| | - Eleonora Fabianova
- Regional Authority of Public Health in Banska Bystrica, Banska Bystrica, Slovakia
| | - Viorel Jinga
- Carol Davila University of Medicine and Pharmacy, Th. Burghele Hospital, Bucharest, Romania
| | - Jolanta Lissowska
- The M Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jan Lubinski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Marie Navratilova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Peter Rudnai
- National Public Health Center, National Directorate of Environmental Health, Budapest, Hungary
| | | | - Simone Benhamou
- INSERM U946, Paris, France; CNRS UMR8200, Institute Gustave Roussy, Villejuif, France
| | - Geraldine Cancel-Tassin
- CeRePP, Paris, France; UPMC Univ Paris 06, Institut Universitaire de Cancérologie, Paris, France
| | - Olivier Cussenot
- CeRePP, Paris, France; UPMC Univ Paris 06, Institut Universitaire de Cancérologie, Paris, France; AP-HP, Department of Urology, Hopitaux Universitaires Est Parisien Tenon, Paris, France
| | - H Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands; Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, UK; Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Pantai Valley, Kuala Lumpur, Malaysia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Raviprakash T Sitaram
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Ulrike Peters
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Emily White
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Lisa Johnson
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Juhua Luo
- Department of Epidemiology and Biostatistics, School of Public Health Indiana University Bloomington, Bloomington, IN, USA
| | - Julie Buring
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - I-Min Lee
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| | - Wong-Ho Chow
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lee E Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | - Christopher Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - G Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Bin Tean Teh
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, MI, USA
| | - Jean-Francois Deleuze
- Centre National de Recherche en Genomique Humaine (CNRGH), Institut de biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives, Evry, France; Fondation Jean Dausset-Centre d'Etude du Polymorphisme Humain, Paris, France
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MS, USA.
| |
Collapse
|
40
|
Renault AL, Mebirouk N, Cavaciuti E, Le Gal D, Lecarpentier J, d'Enghien CD, Laugé A, Dondon MG, Labbé M, Lesca G, Leroux D, Gladieff L, Adenis C, Faivre L, Gilbert-Dussardier B, Lortholary A, Fricker JP, Dahan K, Bay JO, Longy M, Buecher B, Janin N, Zattara H, Berthet P, Combès A, Coupier I, Hall J, Stoppa-Lyonnet D, Andrieu N, Lesueur F. Telomere length, ATM mutation status and cancer risk in Ataxia-Telangiectasia families. Carcinogenesis 2017; 38:994-1003. [PMID: 28981872 PMCID: PMC5862273 DOI: 10.1093/carcin/bgx074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 07/08/2017] [Indexed: 11/12/2022] Open
Abstract
Recent studies have linked constitutive telomere length (TL) to aging-related diseases including cancer at different sites. ATM participates in the signaling of telomere erosion, and inherited mutations in ATM have been associated with increased risk of cancer, particularly breast cancer. The goal of this study was to investigate whether carriage of an ATM mutation and TL interplay to modify cancer risk in ataxia-telangiectasia (A-T) families.The study population consisted of 284 heterozygous ATM mutation carriers (HetAT) and 174 non-carriers (non-HetAT) from 103 A-T families. Forty-eight HetAT and 14 non-HetAT individuals had cancer, among them 25 HetAT and 6 non-HetAT were diagnosed after blood sample collection. We measured mean TL using a quantitative PCR assay and genotyped seven single-nucleotide polymorphisms (SNPs) recurrently associated with TL in large population-based studies.HetAT individuals were at increased risk of cancer (OR = 2.3, 95%CI = 1.2-4.4, P = 0.01), and particularly of breast cancer for women (OR = 2.9, 95%CI = 1.2-7.1, P = 0.02), in comparison to their non-HetAT relatives. HetAT individuals had longer telomeres than non-HetAT individuals (P = 0.0008) but TL was not associated with cancer risk, and no significant interaction was observed between ATM mutation status and TL. Furthermore, rs9257445 (ZNF311) was associated with TL in HetAT subjects and rs6060627 (BCL2L1) modified cancer risk in HetAT and non-HetAT women.Our findings suggest that carriage of an ATM mutation impacts on the age-related TL shortening and that TL per se is not related to cancer risk in ATM carriers. TL measurement alone is not a good marker for predicting cancer risk in A-T families.
Collapse
Affiliation(s)
- Anne-Laure Renault
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Noura Mebirouk
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Eve Cavaciuti
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Dorothée Le Gal
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Julie Lecarpentier
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | | | - Marie-Gabrielle Dondon
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Martine Labbé
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Gaetan Lesca
- CHU de Lyon, Groupement Hospitalier Est, Service de Génétique Médicale, Lyon, France
| | - Dominique Leroux
- CHU de Grenoble, Hôpital Couple-Enfant, Département de Génétique, Grenoble, France
| | - Laurence Gladieff
- Institut Claudius Regaud-IUCT-Oncopole, Service d'Oncologie Médicale, Toulouse, France
| | | | - Laurence Faivre
- Hôpital d'Enfants, Service de Génétique Médicale, Dijon, France
| | | | - Alain Lortholary
- Centre Catherine de Sienne, Service d'Oncologie Médicale, Nantes, France
| | | | - Karin Dahan
- Clinique Universitaire Saint-Luc, Génétique, Bruxelles, Belgium
| | | | | | | | - Nicolas Janin
- Clinique Universitaire Saint-Luc, Génétique, Bruxelles, Belgium
| | | | - Pascaline Berthet
- Centre François Baclesse, Unité de Pathologie Gynécologique, Caen, France
| | - Audrey Combès
- Centre Hospitalier Universitaire de Nîmes, Unité de Génétique Médicale et Cytogénétique, Nîmes, France
| | - Isabelle Coupier
- Hôpital Arnaud de Villeneuve, CHU Montpellier, Service de Génétique Médicale et Oncogénétique, Montpellier, France.,ICM Val d'Aurel, Unité d'Oncogénétique, Montpellier, France
| | | | - Janet Hall
- Centre de Recherche en Cancérologie de Lyon, Lyon, France.,UMR INSERM 1052, Lyon, France.,CNRS 5286, Lyon, France
| | - Dominique Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Paris, France.,INSERM, U830, Paris, France.,Université Paris Descartes, Paris, France
| | - Nadine Andrieu
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Fabienne Lesueur
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| |
Collapse
|
41
|
Antwi SO, Bamlet WR, Broderick BT, Chaffee KG, Oberg A, Jatoi A, Boardman LA, Petersen GM. Genetically Predicted Telomere Length is not Associated with Pancreatic Cancer Risk. Cancer Epidemiol Biomarkers Prev 2017; 26:971-974. [PMID: 28264873 PMCID: PMC5483972 DOI: 10.1158/1055-9965.epi-17-0100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 01/20/2023] Open
Abstract
Background: Epidemiologic associations of leukocyte telomere length (LTL) and pancreatic ductal adenocarcinoma (PDAC) have been inconsistent owing, in part, to variation in telomere length (TL) assessment across studies. To overcome this limitation and address concerns of potential reverse causation, we used carriage of telomere-related alleles to genetically predict TL and examined its association with PDAC.Methods: A case-control study of 1,500 PDAC cases and 1,500 controls, frequency-matched on age and sex was performed. Eight of nine polymorphisms previously associated with variation in LTL were analyzed. Genetic risk scores (GRS) consisting of the TL-related polymorphisms were computed as the number of long TL alleles carried by an individual scaled to published kilobase pairs of TL associated with each allele. Participants were further categorized on the basis of the number of short TL alleles they carry across all eight SNPs. Associations were examined in additive and dominant models using logistic regression to calculate ORs and 95% confidence intervals (CI).Results: In age- and sex-adjusted models, one short TL allele (rs10936599, T) was associated with reduced risk, whereas another short TL allele (rs2736100, A) was associated with increased risk, with per-allele ORs of 0.89 (95% CI, 0.79-0.99) and 1.13 (95% CI, 1.01-1.24), respectively. No association was observed with GRS or short TL allele counts, and no associations were observed in the dominant models.Conclusions: Findings suggest that genetically predicted short TL is not associated with PDAC risk.Impact: Common genetic determinants of short TL do not appear to influence PDAC risk. Cancer Epidemiol Biomarkers Prev; 26(6); 971-4. ©2017 AACR.
Collapse
Affiliation(s)
- Samuel O Antwi
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - William R Bamlet
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Brendan T Broderick
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Kari G Chaffee
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Ann Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Aminah Jatoi
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Lisa A Boardman
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Gloria M Petersen
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
42
|
Bao Y, Prescott J, Yuan C, Zhang M, Kraft P, Babic A, Morales-Oyarvide V, Qian ZR, Buring JE, Cochrane BB, Gaziano JM, Giovannucci EL, Manson JE, Ng K, Ogino S, Rohan TE, Sesso HD, Stampfer MJ, Fuchs CS, De Vivo I, Amundadottir LT, Wolpin BM. Leucocyte telomere length, genetic variants at the TERT gene region and risk of pancreatic cancer. Gut 2017; 66:1116-1122. [PMID: 27797938 PMCID: PMC5442267 DOI: 10.1136/gutjnl-2016-312510] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/22/2016] [Accepted: 10/01/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Telomere shortening occurs as an early event in pancreatic tumorigenesis, and genetic variants at the telomerase reverse transcriptase (TERT) gene region have been associated with pancreatic cancer risk. However, it is unknown whether prediagnostic leucocyte telomere length is associated with subsequent risk of pancreatic cancer. DESIGN We measured prediagnostic leucocyte telomere length in 386 pancreatic cancer cases and 896 matched controls from five prospective US cohorts. ORs and 95% CIs were calculated using conditional logistic regression. Matching factors included year of birth, cohort (which also matches on sex), smoking status, fasting status and month/year of blood collection. We additionally examined single-nucleotide polymorphisms (SNPs) at the TERT region in relation to pancreatic cancer risk and leucocyte telomere length using logistic and linear regression, respectively. RESULTS Shorter prediagnostic leucocyte telomere length was associated with higher risk of pancreatic cancer (comparing extreme quintiles of telomere length, OR 1.72; 95% CI 1.07 to 2.78; ptrend=0.048). Results remained unchanged after adjustment for diabetes, body mass index and physical activity. Three SNPs at TERT (linkage disequilibrium r2<0.25) were associated with pancreatic cancer risk, including rs401681 (per minor allele OR 1.33; 95% CI 1.12 to 1.59; p=0.002), rs2736100 (per minor allele OR 1.36; 95% CI 1.13 to 1.63; p=0.001) and rs2736098 (per minor allele OR 0.75; 95% CI 0.63 to 0.90; p=0.002). The minor allele for rs401681 was associated with shorter telomere length (p=0.023). CONCLUSIONS Prediagnostic leucocyte telomere length and genetic variants at the TERT gene region were associated with risk of pancreatic cancer.
Collapse
Affiliation(s)
- Ying Bao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| | - Jennifer Prescott
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| | - Chen Yuan
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Mingfeng Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Julie E. Buring
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Ambulatory Care and Prevention, Harvard Medical School, Boston, MA
| | | | - J. Michael Gaziano
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System
| | - Edward L. Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - JoAnn E. Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Thomas E. Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Howard D. Sesso
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Meir J. Stampfer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Charles S. Fuchs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| |
Collapse
|
43
|
Wan S, Hann HW, Ye Z, Hann RS, Lai Y, Wang C, Li L, Myers RE, Li B, Xing J, Yang H. Prospective and longitudinal evaluations of telomere length of circulating DNA as a risk predictor of hepatocellular carcinoma in HBV patients. Carcinogenesis 2017; 38:439-446. [PMID: 28334112 PMCID: PMC5963496 DOI: 10.1093/carcin/bgx021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Prospective and longitudinal epidemiological evidence is needed to assess the association between telomere length and risk of hepatocellular carcinoma (HCC). In 323 cancer-free Korean-American HBV patients with 1-year exclusion window (followed for >1 year and did not develop HCC within 1 year), we measured the relative telomere length (RTL) in baseline serum DNAs and conducted extensive prospective and longitudinal analyses to assess RTL-HCC relationship. We found that long baseline RTL conferred an increased HCC risk compared to short RTL [hazard ratio (HR) = 4.93, P = 0.0005). The association remained prominent when the analysis was restricted to patients with a more stringent 5-year exclusion window (HR = 7.51, P = 0.012), indicating that the association was unlikely due to including undetected HCC patients in the cohort, thus minimizing the reverse-causation limitation in most retrospective studies. Adding baseline RTL to demographic variables increased the discrimination accuracy of the time-dependent receiver operating characteristic analysis from 0.769 to 0.868 (P = 1.0 × 10-5). In a nested longitudinal subcohort of 16 matched cases-control pairs, using a mixed effects model, we observed a trend of increased RTL in cases and decreased RTL in controls along 5 years of follow-up, with a significant interaction of case/control status with time (P for interaction=0.002) and confirmed the association between long RTL and HCC risk [odds ratio [OR] = 3.63, P = 0.016]. In summary, serum DNA RTL may be a novel non-invasive prospective marker of HBV-related HCC. Independent studies are necessary to validate and generalize this finding in diverse populations and assess the clinical applicability of RTL in HCC prediction.
Collapse
Affiliation(s)
- Shaogui Wan
- Division of Population Science, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Institute of Pharmacy, Pharmaceutical College, Henan University, Kaifeng, Henan 475004, China
| | - Hie-Won Hann
- Department of Medicine, Liver Disease Prevention Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Zhong Ye
- Division of Population Science, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Richard S Hann
- Department of Medicine, Liver Disease Prevention Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yinzhi Lai
- Division of Population Science, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chun Wang
- Division of Population Science, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ling Li
- Division of Population Science, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ronald E Myers
- Division of Population Science, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37232, USA and
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Experimental Teaching Center, College of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Hushan Yang
- Division of Population Science, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
44
|
Aviv A, Anderson JJ, Shay JW. Mutations, Cancer and the Telomere Length Paradox. Trends Cancer 2017; 3:253-258. [PMID: 28718437 PMCID: PMC5903276 DOI: 10.1016/j.trecan.2017.02.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/30/2022]
Abstract
Individuals with short telomeres should be at increased risk for cancer, since short telomeres lead to genomic instability - a hallmark of cancer. However, individuals with long telomeres also display an increased risk for major cancers, thus creating a cancer-telomere length (TL) paradox. The two-stage clonal expansion model we propose is based on the thesis that a series of mutational hits (1st Hit) at the stem-cell level generates a clone with replicative advantage. A series of additional mutational hits (2nd Hit) transforms the expanding clone into cancer. By proposing that the 1st Hit is largely telomere length-independent, while the 2nd Hit is largely TL-dependent, we resolve the paradox, highlighting a regulatory role of telomeres in cancer.
Collapse
Affiliation(s)
- Abraham Aviv
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers, Newark, NJ 07103, USA.
| | - James J Anderson
- Center for Statistics and the Social Sciences and Center for Studies in Demography and Ecology, University of Washington, Seattle, WA 98105, USA
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX, 75390, USA; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
45
|
Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 2017; 18:175-186. [PMID: 28096526 PMCID: PMC5589191 DOI: 10.1038/nrm.2016.171] [Citation(s) in RCA: 437] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The shortening of human telomeres has two opposing effects during cancer development. On the one hand, telomere shortening can exert a tumour-suppressive effect through the proliferation arrest induced by activating the kinases ATM and ATR at unprotected chromosome ends. On the other hand, loss of telomere protection can lead to telomere crisis, which is a state of extensive genome instability that can promote cancer progression. Recent data, reviewed here, provide new evidence for the telomere tumour suppressor pathway and has revealed that telomere crisis can induce numerous cancer-relevant changes, including chromothripsis, kataegis and tetraploidization.
Collapse
Affiliation(s)
- John Maciejowski
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
46
|
Ozoya OO, Chavez J, Sokol L, Dalia S. Optimizing antiviral agents for hepatitis B management in malignant lymphomas. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:39. [PMID: 28251118 DOI: 10.21037/atm.2016.12.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The global scale of hepatitis B infection is well known but its impact is still being understood. Missed hepatitis B infection impacts lymphoma therapy especially increased risk of hepatitis B virus (HBV) reactivation and poor treatment outcomes. The presence of undiagnosed chronic hepatitis also undermines chronic HBV screening methods that are based on a positive HBsAg alone. The goal of this review is to evaluate the literature for optimizing antiviral therapy for lymphoma patients with HBV infection or at risk of HBV reactivation. Relevant articles for this review were identified by searching PubMed, Embase, Ovid Medline, and Scopus using the following terms, alone and in combination: "chronic hepatitis B", "occult hepatitis B", "special groups", "malignant lymphoma", "non-Hodgkin's lymphoma", "Hodgkin's lymphoma", "immunocompromised host", "immunosuppressive agents", "antiviral", "HBV reactivation". The period of the search was restricted to a 15-year period to limit the search to optimizing antiviral agents for HBV infection in malignant lymphomas [2001-2016]. Several clinical practice guidelines recommend nucleos(t)ide analogues-entecavir, tenofovir and lamivudine among others. These agents are best initiated along with or prior to immunosuppressive therapy. Additional methods recommended for optimizing antiviral therapy include laboratory modalities such as HBV genotyping, timed measurements of HBsAg and HBV DNA levels to measure and predict antiviral treatment response. In conclusion, optimizing antiviral agents for these patients require consideration of geographic prevalence of HBV, cost of antiviral therapy or testing, screening modality, hepatitis experts, type of immunosuppressive therapy and planned duration of therapy.
Collapse
Affiliation(s)
| | - Julio Chavez
- Department of Hematological Malignancies, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Lubomir Sokol
- Department of Hematological Malignancies, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Samir Dalia
- Oncology and Hematology, Mercy Clinic Joplin, Joplin, MO, USA
| |
Collapse
|
47
|
Lopizzo N, Tosato S, Begni V, Tomassi S, Cattane N, Barcella M, Turco G, Ruggeri M, Riva MA, Pariante CM, Cattaneo A. Transcriptomic analyses and leukocyte telomere length measurement in subjects exposed to severe recent stressful life events. Transl Psychiatry 2017; 7:e1042. [PMID: 28221367 PMCID: PMC5438034 DOI: 10.1038/tp.2017.5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/23/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
Stressful life events occurring in adulthood have been found able to affect mood and behavior, thus increasing the vulnerability for several stress-related psychiatric disorders. However, although there is plenty of clinical data supporting an association between stressful life events in adulthood and an enhanced vulnerability for psychopathology, the underlying molecular mechanisms are still poorly investigated. Thus, in this study we performed peripheral/whole-genome transcriptomic analyses in blood samples obtained from 53 adult subjects characterized for recent stressful life events occurred within the previous 6 months. Transcriptomic data were analyzed using Partek Genomics Suite; pathway and network analyses were performed using Ingenuity Pathway Analysis and GeneMANIA Software. We found 207 genes significantly differentially expressed in adult subjects who reported recent stressful life experiences (n=21) compared with those without such experiences (n=32). Moreover, the same subjects exposed to such stressful experiences showed a reduction in leukocyte telomere length. A correlation analyses between telomere length and transcriptomic data indicated an association between the exposures to recent stressful life events and the modulation of several pathways, mainly involved in immune-inflammatory-related processes and oxidative stress, such as natural killer cell signaling, interleukin-1 (IL-1) signaling, MIF regulation of innate immunity and IL-6 signaling. Our data suggest an association between exposures to recent stressful life events in adulthood and alterations in the immune, inflammatory and oxidative stress pathways, which could be also involved in the negative effect of stressful life events on leukocyte telomere length. The modulation of these mechanisms may underlie the clinical association between the exposure to recent Stressful life events in adulthood and an enhanced vulnerability to develop psychiatric diseases in adulthood.
Collapse
Affiliation(s)
- N Lopizzo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - S Tosato
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - V Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - S Tomassi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - N Cattane
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - M Barcella
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - G Turco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - M Ruggeri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - M A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - C M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College, London, London, UK
| | - A Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy,Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College, London, London, UK,Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK. E-mail:
| |
Collapse
|
48
|
Lam G, Xian RR, Li Y, Burns KH, Beemon KL. Lack of TERT Promoter Mutations in Human B-Cell Non-Hodgkin Lymphoma. Genes (Basel) 2016; 7:genes7110093. [PMID: 27792139 PMCID: PMC5126779 DOI: 10.3390/genes7110093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/21/2016] [Accepted: 10/13/2016] [Indexed: 11/23/2022] Open
Abstract
Non-Hodgkin lymphomas (NHL) are a heterogeneous group of immune cell neoplasms that comprise molecularly distinct lymphoma subtypes. Recent work has identified high frequency promoter point mutations in the telomerase reverse transcriptase (TERT) gene of different cancer types, including melanoma, glioma, liver and bladder cancer. TERT promoter mutations appear to correlate with increased TERT expression and telomerase activity in these cancers. In contrast, breast, pancreatic, and prostate cancer rarely demonstrate mutations in this region of the gene. TERT promoter mutation prevalence in NHL has not been thoroughly tested thus far. We screened 105 B-cell lymphoid malignancies encompassing nine NHL subtypes and acute lymphoblastic leukemia, for TERT promoter mutations. Our results suggest that TERT promoter mutations are rare or absent in most NHL. Thus, the classical TERT promoter mutations may not play a major oncogenic role in TERT expression and telomerase activation in NHL.
Collapse
Affiliation(s)
- Gary Lam
- Department of Biology, Johns Hopkins University, Baltimore, MD 21210, USA.
| | - Rena R Xian
- Department of Pathology, Johns Hopkins Medical Institutes, Baltimore, MD 212105, USA.
- Department of Pathology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Yingying Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21210, USA.
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins Medical Institutes, Baltimore, MD 212105, USA.
| | - Karen L Beemon
- Department of Biology, Johns Hopkins University, Baltimore, MD 21210, USA.
| |
Collapse
|
49
|
Association between genetic risk score for telomere length and risk of breast cancer. Cancer Causes Control 2016; 27:1219-28. [PMID: 27581250 DOI: 10.1007/s10552-016-0800-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/13/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE While leukocyte telomere length (TL) has been associated with breast cancer risk, limited information is available regarding the role of genetically-determined TL on breast cancer risk. We investigated whether aggregated TL-associated variants are associated with the risk of breast cancer in 2,865 breast cancer cases and 2,285 controls from the Shanghai Breast Cancer Genetics Study. METHODS Six genetic variants, identified through a genome-wide association study (GWAS) of TL in European-ancestry participants, were included in the study. A separate sample [n = 1,536, from the Shanghai Women's Health Study (SWHS), for whom information on both phenotypical leukocyte TL and genetic information was collected] was used to evaluate the association of six variants with TL in Asians. Three genetic risk scores (GRSs), based on the number of alleles associated with shorter TL that each individual carries for the six variants, were derived for the study: un-weighted, internally weighted (from the SWHS), and externally weighted (from the European-ancestry GWAS study), and evaluated for their association with breast cancer risk by applying logistic regression analysis. RESULTS Both internally and externally weighted GRSs were significantly associated with a decreased risk of breast cancer (OR 0.83, 95 % CI 0.72-0.95 and OR 0.84, 95 % CI 0.74-0.96, respectively, for tertile 3 vs. tertile 1). Non-genetic risk factors for breast cancer (i.e., age, years of menstruation/reproduction, oral contraceptive usage, and BMI) did not modify the association between GRSs and the risk of breast cancer. CONCLUSION Our results suggest that short TL, determined by genetic factors, may be associated with a reduced susceptibility to breast cancer.
Collapse
|