1
|
Delaney M, Zhao Y, van de Leemput J, Lee H, Han Z. Actin Cytoskeleton and Integrin Components Are Interdependent for Slit Diaphragm Maintenance in Drosophila Nephrocytes. Cells 2024; 13:1350. [PMID: 39195240 DOI: 10.3390/cells13161350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
In nephrotic syndrome, the podocyte filtration structures are damaged in a process called foot process effacement. This is mediated by the actin cytoskeleton; however, which actins are involved and how they interact with other filtration components, like the basement membrane, remains poorly understood. Here, we used the well-established Drosophila pericardial nephrocyte-the equivalent of podocytes in flies-knockdown models (RNAi) to study the interplay of the actin cytoskeleton (Act5C, Act57B, Act42A, and Act87E), alpha- and beta-integrin (basement membrane), and the slit diaphragm (Sns and Pyd). Knockdown of an actin gene led to variations of formation of actin stress fibers, the internalization of Sns, and a disrupted slit diaphragm cortical pattern. Notably, deficiency of Act5C, which resulted in complete absence of nephrocytes, could be partially mitigated by overexpressing Act42A or Act87E, suggesting at least partial functional redundancy. Integrin localized near the actin cytoskeleton as well as slit diaphragm components, but when the nephrocyte cytoskeleton or slit diaphragm was disrupted, this switched to colocalization, both at the surface and internalized in aggregates. Altogether, the data show that the interdependence of the slit diaphragm, actin cytoskeleton, and integrins is key to the structure and function of the Drosophila nephrocyte.
Collapse
Affiliation(s)
- Megan Delaney
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Yunpo Zhao
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Hangnoh Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
van de Leemput J, Han Z. Drosophila Nephrocyte as a Model for Studying Glomerular Basement Membrane Physiology. J Am Soc Nephrol 2024; 35:00001751-990000000-00386. [PMID: 39115859 PMCID: PMC11387028 DOI: 10.1681/asn.0000000000000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Affiliation(s)
- Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, and Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
3
|
Zhu JY, Duan J, van de Leemput J, Han Z. Dysfunction of Mitochondrial Dynamics Induces Endocytosis Defect and Cell Damage in Drosophila Nephrocytes. Cells 2024; 13:1253. [PMID: 39120284 PMCID: PMC11312102 DOI: 10.3390/cells13151253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Mitochondria are crucial for cellular ATP production. They are highly dynamic organelles, whose morphology and function are controlled through mitochondrial fusion and fission. The specific roles of mitochondria in podocytes, the highly specialized cells of the kidney glomerulus, remain less understood. Given the significant structural, functional, and molecular similarities between mammalian podocytes and Drosophila nephrocytes, we employed fly nephrocytes to explore the roles of mitochondria in cellular function. Our study revealed that alterations in the Pink1-Park (mammalian PINK1-PRKN) pathway can disrupt mitochondrial dynamics in Drosophila nephrocytes. This disruption led to either fragmented or enlarged mitochondria, both of which impaired mitochondrial function. The mitochondrial dysfunction subsequently triggered defective intracellular endocytosis, protein aggregation, and cellular damage. These findings underscore the critical roles of mitochondria in nephrocyte functionality.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jianli Duan
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Zhu JY, Fu Y, van de Leemput J, Yu Y, Li J, Ray PE, Han Z. HIV-1 Nef acts in synergy with APOL1-G1 to induce nephrocyte cell death in a new Drosophila model of HIV-related kidney diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584069. [PMID: 38496548 PMCID: PMC10942446 DOI: 10.1101/2024.03.08.584069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background: People carrying two APOL1 risk alleles (RA) G1 or G2 are at greater risk of developing HIV-associated nephropathy (HIVAN). Studies in transgenic mice showed that the expression of HIV-1 genes in podocytes, and nef in particular, led to HIVAN. However, it remains unclear whether APOL1-RA and HIV-1 Nef interact to induce podocyte cell death. Method: We generated transgenic (Tg) flies that express APOL1-G1 (derived from a child with HIVAN) and HIV-1 nef specifically in the nephrocytes, the fly equivalent of mammalian podocytes, and assessed their individual and combined effects on the nephrocyte filtration structure and function. Results: We found that HIV-1 Nef acts in synergy with APOL1-G1 resulting in nephrocyte structural and functional defects. Specifically, HIV-1 Nef itself can induce endoplasmic reticulum (ER) stress without affecting autophagy. Furthermore, Nef exacerbates the organelle acidification defects and autophagy reduction induced by APOL1-G1. The synergy between HIV-1 Nef and APOL1-G1 is built on their joint effects on elevating ER stress, triggering nephrocyte dysfunction and ultimately cell death. Conclusions: Using a new Drosophila model of HIV-1-related kidney diseases, we identified ER stress as the converging point for the synergy between HIV-1 Nef and APOL1-G1 in inducing nephrocyte cell death. Given the high relevance between Drosophila nephrocytes and human podocytes, this finding suggests ER stress as a new therapeutic target for HIV-1 and APOL1-associated nephropathies.
Collapse
|
5
|
Zhu JY, van de Leemput J, Han Z. Promoting mitochondrial dynamics by inhibiting the PINK1-PRKN pathway to relieve diabetic nephropathy. Dis Model Mech 2024; 17:dmm050471. [PMID: 38602042 PMCID: PMC11095637 DOI: 10.1242/dmm.050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Diabetes is a metabolic disorder characterized by high blood glucose levels and is a leading cause of kidney disease. Diabetic nephropathy has been attributed to dysfunctional mitochondria. However, many questions remain about the exact mechanism. The structure, function and molecular pathways are highly conserved between mammalian podocytes and Drosophila nephrocytes; therefore, we used flies on a high-sucrose diet to model type 2 diabetic nephropathy. The nephrocytes from flies on a high-sucrose diet showed a significant functional decline and decreased cell size, associated with a shortened lifespan. Structurally, the nephrocyte filtration structure, known as the slit diaphragm, was disorganized. At the cellular level, we found altered mitochondrial dynamics and dysfunctional mitochondria. Regulating mitochondrial dynamics by either genetic modification of the Pink1-Park (mammalian PINK1-PRKN) pathway or treatment with BGP-15, mitigated the mitochondrial defects and nephrocyte functional decline. These findings support a role for Pink1-Park-mediated mitophagy and associated control of mitochondrial dynamics in diabetic nephropathy, and demonstrate that targeting this pathway might provide therapeutic benefits for type 2 diabetic nephropathy.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Duan J, Wen P, Zhao Y, van de Leemput J, Lai Yee J, Fermin D, Warady BA, Furth SL, Ng DK, Sampson MG, Han Z. A Drosophila model to screen Alport syndrome COL4A5 variants for their functional pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583697. [PMID: 38559272 PMCID: PMC10979928 DOI: 10.1101/2024.03.06.583697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alport syndrome is a hereditary chronic kidney disease, attributed to rare pathogenic variants in either of three collagen genes (COL4A3/4/5) with most localized in COL4A5. Trimeric type IV Collagen α3α4α5 is essential for the glomerular basement membrane that forms the kidney filtration barrier. A means to functionally assess the many candidate variants and determine pathogenicity is urgently needed. We used Drosophila, an established model for kidney disease, and identify Col4a1 as the functional homolog of human COL4A5 in the fly nephrocyte (equivalent of human podocyte). Fly nephrocytes deficient for Col4a1 showed an irregular and thickened basement membrane and significantly reduced nephrocyte filtration function. This phenotype was restored by expressing human reference (wildtype) COL4A5, but not by COL4A5 carrying any of three established pathogenic patient-derived variants. We then screened seven additional patient COL4A5 variants; their ClinVar classification was either likely pathogenic or of uncertain significance. The findings support pathogenicity for four of these variants; the three others were found benign. Thus, demonstrating the effectiveness of this Drosophila in vivo kidney platform in providing the urgently needed variant-level functional validation.
Collapse
Affiliation(s)
- Jianli Duan
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
| | - Pei Wen
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
| | - Yunpo Zhao
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
| | - Jennifer Lai Yee
- Division of Nephrology, Department of Pediatric, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
| | - Damian Fermin
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
| | - Bradley A Warady
- Division of Pediatric Nephrology, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Susan L Furth
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Nephrology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derek K Ng
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, MD 21205, USA
| | - Matthew G Sampson
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School Boston, MA 02115, USA
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
| |
Collapse
|
7
|
Koehler S, Huber TB. Insights into human kidney function from the study of Drosophila. Pediatr Nephrol 2023; 38:3875-3887. [PMID: 37171583 PMCID: PMC10584755 DOI: 10.1007/s00467-023-05996-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
Biological and biomedical research using Drosophila melanogaster as a model organism has gained recognition through several Nobel prizes within the last 100 years. Drosophila exhibits several advantages when compared to other in vivo models such as mice and rats, as its life cycle is very short, animal maintenance is easy and inexpensive and a huge variety of transgenic strains and tools are publicly available. Moreover, more than 70% of human disease-causing genes are highly conserved in the fruit fly. Here, we explain the use of Drosophila in nephrology research and describe two kidney tissues, Malpighian tubules and the nephrocytes. The latter are the homologous cells to mammalian glomerular podocytes and helped to provide insights into a variety of signaling pathways due to the high morphological similarities and the conserved molecular make-up between nephrocytes and podocytes. In recent years, nephrocytes have also been used to study inter-organ communication as links between nephrocytes and the heart, the immune system and the muscles have been described. In addition, other tissues such as the eye and the reproductive system can be used to study the functional role of proteins being part of the kidney filtration barrier.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Boettcher S, Simons M. Model organisms for functional validation in genetic renal disease. MED GENET-BERLIN 2022; 34:287-296. [PMID: 38836086 PMCID: PMC11006349 DOI: 10.1515/medgen-2022-2162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Functional validation is key for establishing new disease genes in human genetics. Over the years, model organisms have been utilized in a very effective manner to prove causality of genes or genetic variants for a wide variety of diseases. Also in hereditary renal disease, model organisms are very helpful for functional validation of candidate genes and variants identified by next-generation sequencing strategies and for obtaining insights into the pathophysiology. Due to high genetic conservation as well as high anatomical and physiological similarities with the human kidney, almost all genetic kidney diseases can be studied in the mouse. However, mouse work is time consuming and expensive, so there is a need for alternative models. In this review, we will provide an overview of model organisms used in renal research, focusing on mouse, zebrafish, frog, and fruit flies.
Collapse
Affiliation(s)
- Susanne Boettcher
- Sektion Nephrogenetik, Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Matias Simons
- Sektion Nephrogenetik, Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
10
|
Kozyraki R, Verroust P, Cases O. Cubilin, the intrinsic factor-vitamin B12 receptor. VITAMINS AND HORMONES 2022; 119:65-119. [PMID: 35337634 DOI: 10.1016/bs.vh.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cubilin (CUBN), the intrinsic factor-vitamin B12 receptor is a large endocytic protein involved in various physiological functions: vitamin B12 uptake in the gut; reabsorption of albumin and maturation of vitamin D in the kidney; nutrient delivery during embryonic development. Cubilin is an atypical receptor, peripherally associated to the plasma membrane. The transmembrane proteins amnionless (AMN) and Lrp2/Megalin are the currently known molecular partners contributing to plasma membrane transport and internalization of Cubilin. The role of Cubilin/Amn complex in the handling of vitamin B12 in health and disease has extensively been studied and so is the role of the Cubilin-Lrp2 tandem in renal pathophysiology. Accumulating evidence strongly supports a role of Cubilin in some developmental defects including impaired closure of the neural tube. Are these defects primarily caused by the dysfunction of a specific Cubilin ligand or are they secondary to impaired vitamin B12 or protein uptake? We will present the established Cubilin functions, discuss the developmental data and provide an overview of the emerging implications of Cubilin in the field of cardiovascular disease and cancer pathogenesis.
Collapse
Affiliation(s)
- Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France.
| | - Pierre Verroust
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| |
Collapse
|
11
|
van de Leemput J, Wen P, Han Z. Using Drosophila Nephrocytes to Understand the Formation and Maintenance of the Podocyte Slit Diaphragm. Front Cell Dev Biol 2022; 10:837828. [PMID: 35265622 PMCID: PMC8898902 DOI: 10.3389/fcell.2022.837828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
The podocyte slit diaphragm (SD) is an essential component of the glomerular filtration barrier and its disruption is a common cause of proteinuria and many types of kidney disease. Therefore, better understanding of the pathways and proteins that play key roles in SD formation and maintenance has been of great interest. Podocyte and SD biology have been mainly studied using mouse and other vertebrate models. However, vertebrates are limited by inherent properties and technically challenging in vivo access to the podocytes. Drosophila is a relatively new alternative model system but it has already made great strides. Past the initial obvious differences, mammalian podocytes and fly nephrocytes are remarkably similar at the genetic, molecular and functional levels. This review discusses SD formation and maintenance, and their dependence on cell polarity, the cytoskeleton, and endo- and exocytosis, as learned from studies in fly nephrocytes and mammalian podocytes. In addition, it reflects on the remaining gaps in our knowledge, the physiological implications for glomerular diseases and how we can leverage the advantages Drosophila has to offer to further our understanding.
Collapse
Affiliation(s)
- Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Pei Wen
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Selma-Soriano E, Casillas-Serra C, Artero R, Llamusi B, Navarro JA, Redón J. Rabphilin silencing causes dilated cardiomyopathy in a Drosophila model of nephrocyte damage. Sci Rep 2021; 11:15287. [PMID: 34315987 PMCID: PMC8316431 DOI: 10.1038/s41598-021-94710-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Heart failure (HF) and the development of chronic kidney disease (CKD) have a direct association. Both can be cause and consequence of the other. Many factors are known, such as diabetes or hypertension, which can lead to the appearance and/or development of these two conditions. However, it is suspected that other factors, namely genetic ones, may explain the differences in the manifestation and progression of HF and CKD among patients. One candidate factor is Rph, a gene expressed in the nervous and excretory system in mammals and Drosophila, encoding a Rab small GTPase family effector protein implicated in vesicular trafficking. We found that Rph is expressed in the Drosophila heart, and the silencing of Rph gene expression in this organ had a strong impact in the organization of fibers and functional cardiac parameters. Specifically, we observed a significant increase in diastolic and systolic diameters of the heart tube, which is a phenotype that resembles dilated cardiomyopathy in humans. Importantly, we also show that silencing of Rabphilin (Rph) expression exclusively in the pericardial nephrocytes, which are part of the flies' excretory system, brings about a non-cell-autonomous effect on the Drosophila cardiac system. In summary, in this work, we demonstrate the importance of Rph in the fly cardiac system and how silencing Rph expression in nephrocytes affects the Drosophila cardiac system.
Collapse
Affiliation(s)
- Estela Selma-Soriano
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Department of Genetics, University of Valencia, 46100, Burjassot, Spain
| | - Carlos Casillas-Serra
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Department of Genetics, University of Valencia, 46100, Burjassot, Spain
| | - Rubén Artero
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain. .,Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100, Burjassot, Spain. .,CIPF-INCLIVA Joint Unit, Valencia, Spain.
| | - Beatriz Llamusi
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100, Burjassot, Spain.,CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - Juan Antonio Navarro
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Department of Genetics, University of Valencia, 46100, Burjassot, Spain
| | - Josep Redón
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Hypertension Unit, Hospital Clínico Universitario, 46010, Valencia, Spain.,CIBERObn, Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Mysh M, Poulton JS. The Basolateral Polarity Module Promotes Slit Diaphragm Formation in Drosophila Nephrocytes, a Model of Vertebrate Podocytes. J Am Soc Nephrol 2021; 32:1409-1424. [PMID: 33795424 PMCID: PMC8259641 DOI: 10.1681/asn.2020071050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/12/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocyte slit diaphragms (SDs) are intercellular junctions that function as size-selective filters, excluding most proteins from urine. Abnormalities in SDs cause proteinuria and nephrotic syndrome. Podocytes exhibit apicobasal polarity, which can affect fundamental aspects of cell biology, including morphology, intercellular junction formation, and asymmetric protein distribution along the plasma membrane. Apical polarity protein mutations cause nephrotic syndrome, and data suggest apical polarity proteins regulate SD formation. However, there is no evidence that basolateral polarity proteins regulate SDs. Thus, the role of apicobasal polarity in podocytes remains unclear. METHODS Genetic manipulations and transgenic reporters determined the effects of disrupting apicobasal polarity proteins in Drosophila nephrocytes, which have SDs similar to those of mammalian podocytes. Confocal and electron microscopy were used to characterize SD integrity after loss of basolateral polarity proteins, and genetic-interaction studies illuminated relationships among apicobasal polarity proteins. RESULTS The study identified four novel regulators of nephrocyte SDs: Dlg, Lgl, Scrib, and Par-1. These proteins comprise the basolateral polarity module and its effector kinase. The data suggest these proteins work together, with apical polarity proteins, to regulate SDs by promoting normal endocytosis and trafficking of SD proteins. CONCLUSIONS Given the recognized importance of apical polarity proteins and SD protein trafficking in podocytopathies, the findings connecting basolateral polarity proteins to these processes significantly advance our understanding of SD regulation.
Collapse
Affiliation(s)
- Michael Mysh
- Department of Biology, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John S. Poulton
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
14
|
Wang L, Wen P, van de Leemput J, Zhao Z, Han Z. Slit diaphragm maintenance requires dynamic clathrin-mediated endocytosis facilitated by AP-2, Lap, Aux and Hsc70-4 in nephrocytes. Cell Biosci 2021; 11:83. [PMID: 33975644 PMCID: PMC8111712 DOI: 10.1186/s13578-021-00595-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background The Slit diaphragm (SD) is the key filtration structure in human glomerular kidney that is affected in many types of renal diseases. SD proteins are known to undergo endocytosis and recycling to maintain the integrity of the filtration structure. However, the key components of this pathway remain unclear. Methods Using the Drosophila nephrocyte as a genetic screen platform, we screened most genes involved in endocytosis and cell trafficking, and identified the key components of the cell trafficking pathway required for SD protein endocytosis and recycling. Results We discovered that the SD protein endocytosis and recycling pathway contains clathrin, dynamin, AP-2 complex, like-AP180 (Lap), auxilin and Hsc70-4 (the endocytosis part) followed by Rab11 and the exocyst complex (the recycling part). Disrupting any component in this pathway led to disrupted SD on the cell surface and intracellular accumulation of mislocalized SD proteins. We also showed the first in vivo evidence of trapped SD proteins in clathrin-coated pits at the plasma membrane when this pathway is disrupted. Conclusions All genes in this SD protein endocytosis and recycling pathway, as well as SD proteins themselves, are highly conserved from flies to humans. Thus, our results suggest that the SD proteins in human kidney undergo the same endocytosis and recycling pathway to maintain the filtration structure, and mutations in any genes in this pathway could lead to abnormal SD and renal diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00595-4.
Collapse
Affiliation(s)
- Luyao Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Eastern Road, Zhengzhou, 450052, Henan, China.,Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA.,Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Pei Wen
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA.,Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA.,Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Eastern Road, Zhengzhou, 450052, Henan, China.
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA. .,Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Heiden S, Siwek R, Lotz ML, Borkowsky S, Schröter R, Nedvetsky P, Rohlmann A, Missler M, Krahn MP. Apical-basal polarity regulators are essential for slit diaphragm assembly and endocytosis in Drosophila nephrocytes. Cell Mol Life Sci 2021; 78:3657-3672. [PMID: 33651172 PMCID: PMC8038974 DOI: 10.1007/s00018-021-03769-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/02/2022]
Abstract
Apical-basal polarity is a key feature of most epithelial cells and it is regulated by highly conserved protein complexes. In mammalian podocytes, which emerge from columnar epithelial cells, this polarity is preserved and the tight junctions are converted to the slit diaphragms, establishing the filtration barrier. In Drosophila, nephrocytes show several structural and functional similarities with mammalian podocytes and proximal tubular cells. However, in contrast to podocytes, little is known about the role of apical-basal polarity regulators in these cells. In this study, we used expansion microscopy and found the apical polarity determinants of the PAR/aPKC and Crb-complexes to be predominantly targeted to the cell cortex in proximity to the nephrocyte diaphragm, whereas basolateral regulators also accumulate intracellularly. Knockdown of PAR-complex proteins results in severe endocytosis and nephrocyte diaphragm defects, which is due to impaired aPKC recruitment to the plasma membrane. Similar, downregulation of most basolateral polarity regulators disrupts Nephrin localization but had surprisingly divergent effects on endocytosis. Our findings suggest that morphology and slit diaphragm assembly/maintenance of nephrocytes is regulated by classical apical-basal polarity regulators, which have distinct functions in endocytosis.
Collapse
Affiliation(s)
- Stefanie Heiden
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Rebecca Siwek
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Marie-Luise Lotz
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Sarah Borkowsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Rita Schröter
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Pavel Nedvetsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, University of Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University of Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Michael P Krahn
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany.
| |
Collapse
|
16
|
Selma-Soriano E, Llamusi B, Fernández-Costa JM, Ozimski LL, Artero R, Redón J. Rabphilin involvement in filtration and molecular uptake in Drosophila nephrocytes suggests a similar role in human podocytes. Dis Model Mech 2020; 13:dmm041509. [PMID: 32680845 PMCID: PMC7522021 DOI: 10.1242/dmm.041509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/07/2020] [Indexed: 02/04/2023] Open
Abstract
Drosophila nephrocytes share functional, structural and molecular similarities with human podocytes. It is known that podocytes express the rabphilin 3A (RPH3A)-RAB3A complex, and its expression is altered in mouse and human proteinuric disease. Furthermore, we previously identified a polymorphism that suggested a role for RPH3A protein in the development of urinary albumin excretion. As endocytosis and vesicle trafficking are fundamental pathways for nephrocytes, the objective of this study was to assess the role of the RPH3A orthologue in Drosophila, Rabphilin (Rph), in the structure and function of nephrocytes. We confirmed that Rph is required for the correct function of the endocytic pathway in pericardial Drosophila nephrocytes. Knockdown of Rph reduced the expression of the cubilin and stick and stones genes, which encode proteins that are involved in protein uptake and filtration. We also found that reduced Rph expression resulted in a disappearance of the labyrinthine channel structure and a reduction in the number of endosomes, which ultimately leads to changes in the number and volume of nephrocytes. Finally, we demonstrated that the administration of retinoic acid to IR-Rph nephrocytes rescued some altered aspects, such as filtration and molecular uptake, as well as the maintenance of cell fate. According to our data, Rph is crucial for nephrocyte filtration and reabsorption, and it is required for the maintenance of the ultrastructure, integrity and differentiation of the nephrocyte.
Collapse
Affiliation(s)
- Estela Selma-Soriano
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Beatriz Llamusi
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Juan Manuel Fernández-Costa
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Lauren Louise Ozimski
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Josep Redón
- Hypertension Unit, Hospital Clínico Universitario, 46010 Valencia, Spain
| |
Collapse
|
17
|
Molinari E, Sayer JA. Disease Modeling To Understand the Pathomechanisms of Human Genetic Kidney Disorders. Clin J Am Soc Nephrol 2020; 15:855-872. [PMID: 32139361 PMCID: PMC7274277 DOI: 10.2215/cjn.08890719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The class of human genetic kidney diseases is extremely broad and heterogeneous. Accordingly, the range of associated disease phenotypes is highly variable. Many children and adults affected by inherited kidney disease will progress to ESKD at some point in life. Extensive research has been performed on various different disease models to investigate the underlying causes of genetic kidney disease and to identify disease mechanisms that are amenable to therapy. We review some of the research highlights that, by modeling inherited kidney disease, contributed to a better understanding of the underlying pathomechanisms, leading to the identification of novel genetic causes, new therapeutic targets, and to the development of new treatments. We also discuss how the implementation of more efficient genome-editing techniques and tissue-culture methods for kidney research is providing us with personalized models for a precision-medicine approach that takes into account the specificities of the patient and the underlying disease. We focus on the most common model systems used in kidney research and discuss how, according to their specific features, they can differentially contribute to biomedical research. Unfortunately, no definitive treatment exists for most inherited kidney disorders, warranting further exploitation of the existing disease models, as well as the implementation of novel, complex, human patient-specific models to deliver research breakthroughs.
Collapse
Affiliation(s)
- Elisa Molinari
- Faculty of Medical Sciences, Translational and Clinical Research Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A. Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Renal Services, Newcastle Upon Tyne Hospitals National Health Service Trust, Newcastle upon Tyne, United Kingdom
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
18
|
Garrett MR, Korstanje R. Using Genetic and Species Diversity to Tackle Kidney Disease. Trends Genet 2020; 36:499-509. [PMID: 32362446 DOI: 10.1016/j.tig.2020.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Progress in the identification of causal genes and understanding of the mechanism underlying kidney disease is hindered by the almost exclusive use of a few animal models with restrictive monogenic backgrounds that may be more resistant to kidney disease compared with humans and, therefore, poor models. Exploring the large genetic diversity in classical animal models, such as mice and rats, and leveraging species diversity will allow us to use the genetic advantages of zebrafish, Drosophila, and other species, to develop both new animal models that are more relevant to the study of human kidney disease and potential therapies.
Collapse
Affiliation(s)
- Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS, USA; Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, MS, USA; Department of Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, MS, USA
| | - Ron Korstanje
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine, ME, USA; Mount Desert Island Biological Laboratory, Bar Harbor, Maine, ME, USA.
| |
Collapse
|
19
|
Lepa C, Möller-Kerutt A, Stölting M, Picciotto C, Eddy ML, Butt E, Kerjaschki D, Korb-Pap A, Vollenbröker B, Weide T, George B, Kremerskothen J, Pavenstädt H. LIM and SH3 protein 1 (LASP-1): A novel link between the slit membrane and actin cytoskeleton dynamics in podocytes. FASEB J 2020; 34:5453-5464. [PMID: 32086849 DOI: 10.1096/fj.201901443r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/27/2020] [Accepted: 02/11/2020] [Indexed: 02/03/2023]
Abstract
The foot processes of podocytes exhibit a dynamic actin cytoskeleton, which maintains their complex cell structure and antagonizes the elastic forces of the glomerular capillary. Interdigitating secondary foot processes form a highly selective filter for proteins in the kidney, the slit membrane. Knockdown of slit membrane components such as Nephrin or Neph1 and cytoskeletal adaptor proteins such as CD2AP in mice leads to breakdown of the filtration barrier with foot process effacement, proteinuria, and early death of the mice. Less is known about the crosstalk between the slit membrane-associated proteins and cytoskeletal components inside the podocyte foot processes. Our study shows that LASP-1, an actin-binding protein, is highly expressed in podocytes. Electron microscopy studies demonstrate that LASP-1 is found at the slit membrane suggesting a role in anchoring slit membrane components to the actin cytoskeleton. Live cell imaging experiments with transfected podocytes reveal that LASP-1 is either part of a highly dynamic granular complex or a static, actin cytoskeleton-bound protein. We identify CD2AP as a novel LASP-1 binding partner that regulates its association with the actin cytoskeleton. Activation of the renin-angiotensin-aldosterone system, which is crucial for podocyte function, leads to phosphorylation and altered localization of LASP-1. In vivo studies using the Drosophila nephrocyte model indicate that Lasp is necessary for the slit membrane integrity and functional filtration.
Collapse
Affiliation(s)
- Carolin Lepa
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Münster, Germany
| | - Annika Möller-Kerutt
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Münster, Germany
| | - Miriam Stölting
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Münster, Germany
| | - Cara Picciotto
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Münster, Germany
| | - Mee-Ling Eddy
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Münster, Germany
| | - Elke Butt
- Institutfür Experimentelle Biomedizin II, Klinikum der Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Dontscho Kerjaschki
- Klinisches Institut für Pathologie, Medizinische Universität Wien, Wien, Austria
| | - Adelheid Korb-Pap
- Institut für Experimentelle Muskuloskelettale Medizin, Universitätsklinikum Münster, Münster, Germany
| | - Beate Vollenbröker
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Münster, Germany
| | - Thomas Weide
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Münster, Germany
| | - Britta George
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Münster, Germany
| | - Joachim Kremerskothen
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Münster, Germany
| | - Hermann Pavenstädt
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Münster, Germany
| |
Collapse
|
20
|
Koehler S, Kuczkowski A, Kuehne L, Jüngst C, Hoehne M, Grahammer F, Eddy S, Kretzler M, Beck BB, Höhfeld J, Schermer B, Benzing T, Brinkkoetter PT, Rinschen MM. Proteome Analysis of Isolated Podocytes Reveals Stress Responses in Glomerular Sclerosis. J Am Soc Nephrol 2020; 31:544-559. [PMID: 32047005 DOI: 10.1681/asn.2019030312] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Understanding podocyte-specific responses to injury at a systems level is difficult because injury leads to podocyte loss or an increase of extracellular matrix, altering glomerular cellular composition. Finding a window into early podocyte injury might help identify molecular pathways involved in the podocyte stress response. METHODS We developed an approach to apply proteome analysis to very small samples of purified podocyte fractions. To examine podocytes in early disease states in FSGS mouse models, we used podocyte fractions isolated from individual mice after chemical induction of glomerular disease (with Doxorubicin or LPS). We also applied single-glomerular proteome analysis to tissue from patients with FSGS. RESULTS Transcriptome and proteome analysis of glomeruli from patients with FSGS revealed an underrepresentation of podocyte-specific genes and proteins in late-stage disease. Proteome analysis of purified podocyte fractions from FSGS mouse models showed an early stress response that includes perturbations of metabolic, mechanical, and proteostasis proteins. Additional analysis revealed a high correlation between the amount of proteinuria and expression levels of the mechanosensor protein Filamin-B. Increased expression of Filamin-B in podocytes in biopsy samples from patients with FSGS, in single glomeruli from proteinuric rats, and in podocytes undergoing mechanical stress suggests that this protein has a role in detrimental stress responses. In Drosophila, nephrocytes with reduced filamin homolog Cher displayed altered filtration capacity, but exhibited no change in slit diaphragm structure. CONCLUSIONS We identified conserved mechanisms of the podocyte stress response through ultrasensitive proteome analysis of human glomerular FSGS tissue and purified native mouse podocytes during early disease stages. This approach enables systematic comparisons of large-scale proteomics data and phenotype-to-protein correlation.
Collapse
Affiliation(s)
- Sybille Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alexander Kuczkowski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lucas Kuehne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Jüngst
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Martin Hoehne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Eppendorf, Hamburg, Germany
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, and
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, and.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Bodo B Beck
- Department of Human Genetics, University Hospital Cologne, Cologne, Germany
| | - Jörg Höhfeld
- Cell Biology, University of Bonn, Bonn, Germany; and
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany;
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
21
|
Cinà DP, Ketela T, Brown KR, Chandrashekhar M, Mero P, Li C, Onay T, Fu Y, Han Z, Saleem M, Moffat J, Quaggin SE. Forward genetic screen in human podocytes identifies diphthamide biosynthesis genes as regulators of adhesion. Am J Physiol Renal Physiol 2019; 317:F1593-F1604. [PMID: 31566424 PMCID: PMC6962514 DOI: 10.1152/ajprenal.00195.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/28/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Podocyte function is tightly linked to the complex organization of its cytoskeleton and adhesion to the underlying glomerular basement membrane. Adhesion of cultured podocytes to a variety of substrates is reported to correlate with podocyte health. To identify novel genes that are important for podocyte function, we designed an in vitro genetic screen based on podocyte adhesion to plates coated with either fibronectin or soluble Fms-like tyrosine kinase-1 (sFLT1)/Fc. A genome-scale pooled RNA interference screen on immortalized human podocytes identified 77 genes that increased adhesion to fibronectin, 101 genes that increased adhesion to sFLT1/Fc, and 44 genes that increased adhesion to both substrates when knocked down. Multiple shRNAs against diphthamide biosynthesis protein 1-4 (DPH1-DPH4) were top hits for increased adhesion. Immortalized human podocyte cells stably expressing these hairpins displayed increased adhesion to both substrates. We then used CRISPR-Cas9 to generate podocyte knockout cells for DPH1, DPH2, or DPH3, which also displayed increased adhesion to both fibronectin and sFLT1/Fc, as well as a spreading defect. Finally, we showed that Drosophila nephrocyte-specific knockdown of Dph1, Dph2, and Dph4 resulted in altered nephrocyte function. In summary, we report here a novel high-throughput method to identify genes important for podocyte function. Given the central role of podocyte adhesion as a marker of podocyte health, these data are a rich source of candidate regulators of glomerular disease.
Collapse
Affiliation(s)
- Davide P Cinà
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Troy Ketela
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Kevin R Brown
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Megha Chandrashekhar
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Mero
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Chengjin Li
- Tanenbaum-Lunenfeld Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Tuncer Onay
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yulong Fu
- Center for Genetic Medicine Research, Children's National Health System, Washington, District of Columbia
| | - Zhe Han
- Center for Genetic Medicine Research, Children's National Health System, Washington, District of Columbia
| | - Moin Saleem
- School of Clinical Sciences, Children's Renal Unit and Academic Renal Unit, University of Bristol, Bristol, United Kingdom
| | - Jason Moffat
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Susan E Quaggin
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
22
|
Ojelade SA, Lee TV, Giagtzoglou N, Yu L, Ugur B, Li Y, Duraine L, Zuo Z, Petyuk V, De Jager PL, Bennett DA, Arenkiel BR, Bellen HJ, Shulman JM. cindr, the Drosophila Homolog of the CD2AP Alzheimer's Disease Risk Gene, Is Required for Synaptic Transmission and Proteostasis. Cell Rep 2019; 28:1799-1813.e5. [PMID: 31412248 PMCID: PMC6703184 DOI: 10.1016/j.celrep.2019.07.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
The Alzheimer's disease (AD) susceptibility gene, CD2-associated protein (CD2AP), encodes an actin binding adaptor protein, but its function in the nervous system is largely unknown. Loss of the Drosophila ortholog cindr enhances neurotoxicity of human Tau, which forms neurofibrillary tangle pathology in AD. We show that Cindr is expressed in neurons and present at synaptic terminals. cindr mutants show impairments in synapse maturation and both synaptic vesicle recycling and release. Cindr associates and genetically interacts with 14-3-3ζ, regulates the ubiquitin-proteasome system, and affects turnover of Synapsin and the plasma membrane calcium ATPase (PMCA). Loss of cindr elevates PMCA levels and reduces cytosolic calcium. Studies of Cd2ap null mice support a conserved role in synaptic proteostasis, and CD2AP protein levels are inversely related to Synapsin abundance in human postmortem brains. Our results reveal CD2AP neuronal requirements with relevance to AD susceptibility, including for proteostasis, calcium handling, and synaptic structure and function.
Collapse
Affiliation(s)
- Shamsideen A Ojelade
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Tom V Lee
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nikolaos Giagtzoglou
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Berrak Ugur
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yarong Li
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lita Duraine
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vlad Petyuk
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute, Columbia University Medical Center, New York, NY 10032, USA; Cell Circuits Program, Broad Institute, Cambridge, MA 02142, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Benjamin R Arenkiel
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Odenthal J, Brinkkoetter PT. Drosophila melanogaster and its nephrocytes: A versatile model for glomerular research. Methods Cell Biol 2019; 154:217-240. [PMID: 31493819 DOI: 10.1016/bs.mcb.2019.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Glomerular disorders are a predominant cause of chronic kidney diseases and end-stage renal failure. Especially podocytes, epithelial cells which represent the outermost part of the filtration barrier, are affected by disease and experience a gradual loss of function. Despite recent advances in identifying potential pathways underlying podocyte injury, treatment remains challenging. It is therefore desirable to employ suitable model organisms in order to study glomerular disease and elucidate affected pathways. Due to its diverse ways of genetic manipulation and high genomic conservation, Drosophila melanogaster is a powerful model organism for biomedical research. The fly was recently used to assess podocytopathies by exploiting the nephrocyte system. Nephrocytes are spherical cells within the body cavity of the fly responsible for detoxification and clearance of unwanted substances. More importantly, they share many characteristics with mammalian podocytes. Here, we summarize how to use Drosophila as a model organism for podocyte research. We discuss examples of techniques that can be used to genetically manipulate nephrocytes and provide protocols for nephrocyte isolation and for morphological as well as functional analysis.
Collapse
Affiliation(s)
- Johanna Odenthal
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Paul Thomas Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
24
|
Zhao F, Zhu JY, Richman A, Fu Y, Huang W, Chen N, Pan X, Yi C, Ding X, Wang S, Wang P, Nie X, Huang J, Yang Y, Yu Z, Han Z. Mutations in NUP160 Are Implicated in Steroid-Resistant Nephrotic Syndrome. J Am Soc Nephrol 2019; 30:840-853. [PMID: 30910934 DOI: 10.1681/asn.2018080786] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Studies have identified mutations in >50 genes that can lead to monogenic steroid-resistant nephrotic syndrome (SRNS). The NUP160 gene, which encodes one of the protein components of the nuclear pore complex nucleoporin 160 kD (Nup160), is expressed in both human and mouse kidney cells. Knockdown of NUP160 impairs mouse podocytes in cell culture. Recently, siblings with SRNS and proteinuria in a nonconsanguineous family were found to carry compound-heterozygous mutations in NUP160. METHODS We identified NUP160 mutations by whole-exome and Sanger sequencing of genomic DNA from a young girl with familial SRNS and FSGS who did not carry mutations in other genes known to be associated with SRNS. We performed in vivo functional validation studies on the NUP160 mutations using a Drosophila model. RESULTS We identified two compound-heterozygous NUP160 mutations, NUP160R1173× and NUP160E803K . We showed that silencing of Drosophila NUP160 specifically in nephrocytes (fly renal cells) led to functional abnormalities, reduced cell size and nuclear volume, and disorganized nuclear membrane structure. These defects were completely rescued by expression of the wild-type human NUP160 gene in nephrocytes. By contrast, expression of the NUP160 mutant allele NUP160R1173× completely failed to rescue nephrocyte phenotypes, and mutant allele NUP160E803K rescued only nuclear pore complex and nuclear lamin localization defects. CONCLUSIONS Mutations in NUP160 are implicated in SRNS. Our findings indicate that NUP160 should be included in the SRNS diagnostic gene panel to identify additional patients with SRNS and homozygous or compound-heterozygous NUP160 mutations and further strengthen the evidence that NUP160 mutations can cause SRNS.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China.,Center for Genetic Medicine Research, Children's National Health System, Washington, DC.,Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fujian, People's Republic of China.,Department of Pediatrics, Fuzhou Clinical Medical College, Fujian Medical University, Fujian, People's Republic of China
| | - Jun-Yi Zhu
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC
| | - Adam Richman
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC
| | - Yulong Fu
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC
| | - Wen Huang
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC
| | - Nan Chen
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; and
| | - Xiaoxia Pan
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; and
| | - Cuili Yi
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China
| | - Xiaohua Ding
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China
| | - Si Wang
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China
| | - Ping Wang
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China
| | - Xiaojing Nie
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China.,Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fujian, People's Republic of China.,Department of Pediatrics, Fuzhou Clinical Medical College, Fujian Medical University, Fujian, People's Republic of China
| | - Jun Huang
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China.,Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fujian, People's Republic of China.,Department of Pediatrics, Fuzhou Clinical Medical College, Fujian Medical University, Fujian, People's Republic of China
| | - Yonghui Yang
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China.,Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fujian, People's Republic of China.,Department of Pediatrics, Fuzhou Clinical Medical College, Fujian Medical University, Fujian, People's Republic of China
| | - Zihua Yu
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China; .,Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fujian, People's Republic of China.,Department of Pediatrics, Fuzhou Clinical Medical College, Fujian Medical University, Fujian, People's Republic of China
| | - Zhe Han
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC; .,Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
25
|
Hagmann H, Brinkkoetter PT. Experimental Models to Study Podocyte Biology: Stock-Taking the Toolbox of Glomerular Research. Front Pediatr 2018; 6:193. [PMID: 30057894 PMCID: PMC6053518 DOI: 10.3389/fped.2018.00193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 01/17/2023] Open
Abstract
Diseases affecting the glomeruli of the kidney, the renal filtration units, are a leading cause of chronic kidney disease and end-stage renal failure. Despite recent advances in the understanding of glomerular biology, treatment of these disorders has remained extraordinarily challenging in many cases. The use of experimental models has proven invaluable to study renal, and in particular, glomerular biology and disease. Over the past 15 years, studies identified different and very distinct pathogenic mechanisms that result in damage, loss of glomerular visceral epithelial cells (podocytes) and progressive renal disease. However, animal studies and, in particular, mouse studies are often protracted and cumbersome due to the long reproductive cycle and high keeping costs. Transgenic and heterologous expression models have been speeded-up by novel gene editing techniques, yet they still take months. In addition, given the complex cellular biology of the filtration barrier, certain questions may not be directly addressed using mouse models due to the limited accessibility of podocytes for analysis and imaging. In this review, we will describe alternative models to study podocyte biology experimentally. We specifically discuss current podocyte cell culture models, their role in experimental strategies to analyze pathophysiologic mechanisms as well as limitations with regard to transferability of results. We introduce current models in Caenorhabditis elegans, Drosophila melanogaster, and Danio rerio that allow for analysis of protein interactions, and principle signaling pathways in functional biological structures, and enable high-throughput transgenic expression or compound screens in multicellular organisms.
Collapse
Affiliation(s)
| | - Paul T. Brinkkoetter
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Hochapfel F, Denk L, Maaßen C, Zaytseva Y, Rachel R, Witzgall R, Krahn MP. Electron microscopy of
Drosophila
garland cell nephrocytes: Optimal preparation, immunostaining and STEM tomography. J Cell Biochem 2018; 119:8011-8021. [DOI: 10.1002/jcb.26702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/23/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Florian Hochapfel
- Molecular and Cellular AnatomyUniversity of RegensburgRegensburgGermany
- Medizinische Klinik und Poliklinik DUniversitätsklinikum MünsterMünsterGermany
| | - Lucia Denk
- Molecular and Cellular AnatomyUniversity of RegensburgRegensburgGermany
| | - Christine Maaßen
- Molecular and Cellular AnatomyUniversity of RegensburgRegensburgGermany
| | - Yulia Zaytseva
- Molecular and Cellular AnatomyUniversity of RegensburgRegensburgGermany
| | - Reinhard Rachel
- Molecular and Cellular AnatomyUniversity of RegensburgRegensburgGermany
| | - Ralph Witzgall
- Molecular and Cellular AnatomyUniversity of RegensburgRegensburgGermany
| | - Michael P. Krahn
- Molecular and Cellular AnatomyUniversity of RegensburgRegensburgGermany
- Medizinische Klinik und Poliklinik DUniversitätsklinikum MünsterMünsterGermany
| |
Collapse
|
27
|
4-Hydroxy-2-nonenal Alkylated and Peroxynitrite Nitrated Proteins Localize to the Fused Mitochondria in Malpighian Epithelial Cells of Type IV Collagen Drosophila Mutants. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3502401. [PMID: 29651426 PMCID: PMC5832051 DOI: 10.1155/2018/3502401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/03/2017] [Accepted: 01/02/2018] [Indexed: 11/18/2022]
Abstract
Background. Human type IV collagenopathy is associated with mutations within the COL4A1 and to a less extent the COL4A2 genes. The proteins encoded by these genes form heterotrimers and are the highest molar ratio components of the ubiquitous basement membrane. The clinical manifestations of the COL4A1/A2 mutations are systemic affecting many tissues and organs among these kidneys. In order to uncover the cellular and biochemical alterations associated with aberrant type IV collagen, we have explored the phenotype of the Malpighian tubules, the secretory organ and insect kidney model, in col4a1 collagen gene mutants of the fruit fly Drosophila melanogaster. In Malpighian epithelial cells of col4a1 mutants, robust mitochondrial fusion indicated mutation-induced stress. Immunohistochemistry detected proteins nitrated by peroxynitrite that localized to the enlarged mitochondria and increased level of membrane peroxidation, assessed by the amount of proteins alkylated by 4-hydroxy-2-nonenal that similarly localized to the fused mitochondria. Nuclei within the Malpighian epithelium showed TUNEL-positivity suggesting cell degradation. The results demonstrated that col4a1 mutations affect the epithelia and, consequently, secretory function of the Malpighian tubules and provide mechanistic insight into col4a1 mutation-associated functional impairments not yet reported in human patients and in mouse models with mutant COL4A1.
Collapse
|
28
|
Helmstädter M, Huber TB, Hermle T. Using the Drosophila Nephrocyte to Model Podocyte Function and Disease. Front Pediatr 2017; 5:262. [PMID: 29270398 PMCID: PMC5725439 DOI: 10.3389/fped.2017.00262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022] Open
Abstract
Glomerular disorders are a major cause of end-stage renal disease and effective therapies are often lacking. Nephrocytes are considered to be part of the Drosophila excretory system and form slit diaphragms across cellular membrane invaginations. Nehphrocytes have been shown to share functional, morphological, and molecular features with podocytes, which form the glomerular filter in vertebrates. Here, we report the progress and the evolving tool-set of this model system. Combining a functional, accessible slit diaphragm with the power of the genetic tool-kit in Drosophila, the nephrocyte has the potential to greatly advance our understanding of the glomerular filtration barrier in health and disease.
Collapse
Affiliation(s)
- Martin Helmstädter
- Renal Division, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Hermle
- Renal Division, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|