1
|
Henderson J, O'Callaghan J, Campbell M. Gene therapy for glaucoma: Targeting key mechanisms. Vision Res 2024; 225:108502. [PMID: 39423611 DOI: 10.1016/j.visres.2024.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Glaucoma is a group of optic neuropathies characterised by progressive retinal ganglion cell (RGC) degeneration and is the leading cause of irreversible blindness worldwide. Current treatments for glaucoma focus on reducing intraocular pressure (IOP) with topical medications. However, many patients do not achieve sufficient IOP reductions with such treatments. Patient compliance to dosing schedules also poses a significant challenge, further limiting their effectiveness. While surgical options exist for resistant cases, these are invasive and carry risks of complications. Thus, there is a critical need for better strategies to prevent irreversible vision loss in glaucoma. Gene therapy holds significant promise in this regard, offering potential long-term solutions by targeting the disease's underlying causes at a molecular level. Gene therapy strategies for glaucoma primarily target the two key hallmarks of the disease: elevated IOP and RGC death. This review explores key mechanisms underlying these hallmarks and discusses the current state of gene therapies targeting them. In terms of IOP reduction, this review covers strategies aimed at enhancing extracellular matrix turnover in the conventional outflow pathway, targeting fibrosis, regulating aqueous humor production, and targeting myocilin for gene-specific therapy. Neuroprotective strategies explored include targeting neurotrophic factors and their receptors, reducing oxidative stress and mitochondrial dysfunction, and preventing Wallerian degeneration. This review also briefly highlights key research priorities for advancing gene therapies for glaucoma through the clinical pipeline, such as refining delivery vectors and improving transgene regulation. Addressing these priorities will be essential for translating advancements from preclinical models into effective clinical therapies for glaucoma.
Collapse
Affiliation(s)
- Jeff Henderson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
2
|
Xie M, Wang L, Deng Y, Ma K, Yin H, Zhang X, Xiang X, Tang J. Sustained and Efficient Delivery of Antivascular Endothelial Growth Factor by the Adeno-associated Virus for the Treatment of Corneal Neovascularization: An Outlook for Its Clinical Translation. J Ophthalmol 2024; 2024:5487973. [PMID: 39286553 PMCID: PMC11405113 DOI: 10.1155/2024/5487973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/16/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Corneal diseases represent 5.1% of all eye defects and are the fourth leading cause of blindness globally. Corneal neovascularization can arise from all conditions of chronic irritation or hypoxia, which disrupts the immune-privileged state of the healthy cornea, increases the risk of rejection after keratoplasty, and leads to opacity. In the past decades, significant progress has been made for neovascular diseases of the retina and choroid, with plenty of drugs getting commercialized. In addition, to overcome the barriers of the short duration and inadequate penetration of conventional formulations of antivascular endothelial growth factor (VEGF), multiple novel drug delivery systems, including adeno-associated virus (AAV)-mediated transfer have gone through the full process of bench-to-bedside translation. Like retina neovascular diseases, corneal neovascularization also suffers from chronicity and a high risk of recurrence, necessitating sustained and efficient delivery across the epithelial barrier to reach deep layers of the corneal stroma. Among the explored methods, adeno-associated virus-mediated delivery of anti-VEGF to treat corneal neovascularization is the most extensively researched and most promising strategy for clinical translation although currently although, it remains predominantly at the preclinical stage. This review comprehensively examines the necessity, benefits, and risks of applying AAV vectors for anti-VEGF drug delivery in corneal vascularization, including its current progress and challenges in clinical translation.
Collapse
Affiliation(s)
- Mengzhen Xie
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
- Beijing Institute of Ophthalmology Beijing Tongren Eye Center Beijing Tongren Hospital Capital Medical University Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Lixiang Wang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Yingping Deng
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Ke Ma
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Hongbo Yin
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Xiaolan Zhang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Xingye Xiang
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu, Sichuan, China
- Georgia State University, Atlanta, GA 30302, USA
| | - Jing Tang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Ullah Z, Tao Y, Huang J. Integrated Bioinformatics-Based Identification and Validation of Neuroinflammation-Related Hub Genes in Primary Open-Angle Glaucoma. Int J Mol Sci 2024; 25:8193. [PMID: 39125762 PMCID: PMC11311784 DOI: 10.3390/ijms25158193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Glaucoma is a leading cause of permanent blindness, affecting 80 million people worldwide. Recent studies have emphasized the importance of neuroinflammation in the early stages of glaucoma, involving immune and glial cells. To investigate this further, we used the GSE27276 dataset from the GEO (Gene Expression Omnibus) database and neuroinflammation genes from the GeneCards database to identify differentially expressed neuroinflammation-related genes associated with primary open-angle glaucoma (POAG). Subsequently, these genes were submitted to Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes for pathway enrichment analyses. Hub genes were picked out through protein-protein interaction networks and further validated using the external datasets (GSE13534 and GSE9944) and real-time PCR analysis. The gene-miRNA regulatory network, receiver operating characteristic (ROC) curve, genome-wide association study (GWAS), and regional expression analysis were performed to further validate the involvement of hub genes in glaucoma. A total of 179 differentially expressed genes were identified, comprising 60 upregulated and 119 downregulated genes. Among them, 18 differentially expressed neuroinflammation-related genes were found to overlap between the differentially expressed genes and neuroinflammation-related genes, with six genes (SERPINA3, LCN2, MMP3, S100A9, IL1RN, and HP) identified as potential hub genes. These genes were related to the IL-17 signaling pathway and tyrosine metabolism. The gene-miRNA regulatory network showed that these hub genes were regulated by 118 miRNAs. Notably, GWAS data analysis successfully identified significant single nucleotide polymorphisms (SNPs) corresponding to these six hub genes. ROC curve analysis indicated that our genes showed significant accuracy in POAG. The expression of these genes was further confirmed in microglia, Müller cells, astrocytes, and retinal ganglion cells in the Spectacle database. Moreover, three hub genes, SERPINA3, IL1R1, and LCN2, were validated as potential diagnostic biomarkers for high-risk glaucoma patients, showing increased expression in the OGD/R-induced glaucoma model. This study suggests that the identified hub genes may influence the development of POAG by regulation of neuroinflammation, and it may offer novel insights into the management of POAG.
Collapse
Affiliation(s)
| | | | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (Z.U.); (Y.T.)
| |
Collapse
|
4
|
Castro B, Steel JC, Layton CJ. AAV-mediated gene therapies for glaucoma and uveitis: are we there yet? Expert Rev Mol Med 2024; 26:e9. [PMID: 38618935 PMCID: PMC11062146 DOI: 10.1017/erm.2024.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 02/01/2024] [Indexed: 04/16/2024]
Abstract
Glaucoma and uveitis are non-vascular ocular diseases which are among the leading causes of blindness and visual loss. These conditions have distinct characteristics and mechanisms but share a multifactorial and complex nature, making their management challenging and burdensome for patients and clinicians. Furthermore, the lack of symptoms in the early stages of glaucoma and the diverse aetiology of uveitis hinder timely and accurate diagnoses, which are a cause of poor visual outcomes under both conditions. Although current treatment is effective in most cases, it is often associated with low patient adherence and adverse events, which directly impact the overall therapeutic success. Therefore, long-lasting alternatives with improved safety and efficacy are needed. Gene therapy, particularly utilising adeno-associated virus (AAV) vectors, has emerged as a promising approach to address unmet needs in these diseases. Engineered capsids with enhanced tropism and lower immunogenicity have been proposed, along with constructs designed for targeted and controlled expression. Additionally, several pathways implicated in the pathogenesis of these conditions have been targeted with single or multigene expression cassettes, gene editing and silencing approaches. This review discusses strategies employed in AAV-based gene therapies for glaucoma and non-infectious uveitis and provides an overview of current progress and future directions.
Collapse
Affiliation(s)
- Brenda Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
| | - Jason C. Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Christopher J. Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
5
|
Borrás T, Stepankoff M, Danias J. Genes as drugs for glaucoma: latest advances. Curr Opin Ophthalmol 2024; 35:131-137. [PMID: 38117663 DOI: 10.1097/icu.0000000000001025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
PURPOSE OF REVIEW To provide the latest advances on the future use of gene therapy for the treatment of glaucoma. RECENT FINDINGS In preclinical studies, a number of genes have been shown to be able to reduce elevated intraocular pressure (IOP), and to exert neuroprotection of the retinal ganglion cells. These genes target various mechanisms of action and include among others: MMP3 , PLAT, IκB, GLIS, SIRT, Tie-2, AQP1. Some of these as well as some previously identified genes ( MMP3, PLAT, BDNF, C3, TGFβ, MYOC, ANGPTL7 ) are starting to move onto drug development. At the same time, progress has been made in the methods to deliver and control gene therapeutics (advances in these areas are not covered in this review). SUMMARY While preclinical efforts continue in several laboratories, an increasing number of start-up and large pharmaceutical companies are working on developing gene therapeutics for glaucoma ( Sylentis, Quetera/Astellas, Exhaura, Ikarovec, Genentech, Regeneron, Isarna, Diorasis Therapeutics ). Despite the presence of generic medications to treat glaucoma, given the size of the potential world-wide market (∼$7B), it is likely that the number of companies developing glaucoma gene therapies will increase further in the near future.
Collapse
Affiliation(s)
- Teresa Borrás
- University of North Carolina at Chapel Hill, North Carolina
| | | | - John Danias
- Downstate Health Science University, SUNY, New York, USA
| |
Collapse
|
6
|
He X, Fu Y, Ma L, Yao Y, Ge S, Yang Z, Fan X. AAV for Gene Therapy in Ocular Diseases: Progress and Prospects. RESEARCH (WASHINGTON, D.C.) 2023; 6:0291. [PMID: 38188726 PMCID: PMC10768554 DOI: 10.34133/research.0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Owing to the promising therapeutic effect and one-time treatment advantage, gene therapy may completely change the management of eye diseases, especially retinal diseases. Adeno-associated virus (AAV) is considered one of the most promising viral gene delivery tools because it can infect various types of tissues and is considered as a relatively safe gene delivery vector. The eye is one of the most popular organs for gene therapy, since its limited volume is suitable for small doses of AAV stably transduction. Recently, an increasing number of clinical trials of AAV-mediated gene therapy are underway. This review summarizes the biological functions of AAV and its application in the treatment of various ocular diseases, as well as the characteristics of different AAV delivery routes in clinical applications. Here, the latest research progresses in AAV-mediated gene editing and silencing strategies to modify that the genetic ocular diseases are systematically outlined, especially by base editing and prime editing. We discuss the progress of AAV in ocular optogenetic therapy. We also summarize the application of AAV-mediated gene therapy in animal models and the difficulties in its clinical transformation.
Collapse
Affiliation(s)
- Xiaoyu He
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yidian Fu
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Liang Ma
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yizheng Yao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease,
The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Zhi Yang
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
7
|
Sharif NA. Gene therapies and gene product-based drug candidates for normalizing and preserving tissue functions in animal models of ocular hypertension and glaucoma. Mol Aspects Med 2023; 94:101218. [PMID: 37976898 DOI: 10.1016/j.mam.2023.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
More than 76 million people worldwide are afflicted with the neurodegenerative eye diseases described and grouped together as glaucoma. A common feature amongst the many forms of glaucoma is chronically elevated intraocular pressure (IOP) within the anterior chamber of the eye that physically damages the retina, optic nerve and parts of the brain connected with visual perception. The mediators of the contusing raised IOP responsible for such damage and loss of vision include locally released inflammatory agents, tissue remodeling enzymes and infiltrating immune cells which damage the retinal ganglion cell (RGC) axons and eventually kill a significant number of the RGCs. Additional culprits include genetic defects of the patient that involve aberrations in receptors, enzymes and/or endogenous ligands and possible over- or under-production of the latter. Other genetic abnormalities may include issues with signal transduction machinery within key cells of critical tissues in the front (e.g. trabecular meshwork [TM] and Schlemm's canal [SC]) and back of the eye (e.g. retinal ganglion cells and their axons). Genome-wide associated studies (GWAS) coupled with next generation sequencing have provided powerful linkage of certain gene defects and polymorphic variants to the onset and progression of diseases of the tissues involved in fluid dynamics in the TM and SC, and many retinal elements (lamina cribosa, optic nerve head) at the back of the eye which cause ocular hypertension (OHT) and glaucomatous optic neuropathy (GON), respectively. Despite the availability of some drugs, fluid drainage microshunts and full surgical techniques to lower and control intraocular pressure, the major modifiable biomarker of open-angle and other forms of glaucoma, their side-effect profiles, less than optimum effectiveness and short duration of action present opportunities to clinically manage the glaucomas with next generation of treatments with high therapeutic indices, including gene therapies. Thus, identification, characterization and deployment of genetic data coupled with traditional drug discovery and novel gene replacement, gene editing and genetic engineering technologies may provide some solutions to the aforementioned problems. These aspects will be discussed in this article.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-APC Duke-NUS Medical School, Singapore, 169856, Singapore; Institute of Ophthalmology, University College London, London, W2 1PG, UK; Imperial College of Science and Technology, St. Mary's Campus, London, WC1E 6BT, UK; Department of Pharmacy Sciences, Creighton University, Omaha, NE, 68178, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX, 76107, USA; Singapore Eye Research Institute, Singapore, 169856, Singapore; Global Research & Development, Nanoscope Therapeutics Inc., Dallas, TX 75207, USA.
| |
Collapse
|
8
|
Zhang Y, Han R, Xu S, Chen J, Zhong Y. Matrix Metalloproteinases in Glaucoma: An Updated Overview. Semin Ophthalmol 2023; 38:703-712. [PMID: 37224230 DOI: 10.1080/08820538.2023.2211149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Matrix metalloproteinases (MMPs) are important regulators of the extracellular matrix (ECM) and are involved in many stages of cellular growth and development. An imbalance of MMP expression is also the basis of many diseases, including eye diseases, such as diabetic retinopathy (DR), glaucoma, dry eye, corneal ulcer, keratoconus. This paper describes the role of MMPs in the glaucoma and their role in the glaucomatous trabecular meshwork (TM), aqueous outflow channel, retina, and optic nerve (ON). This review also summarizes several treatments for glaucoma that target MMPs imbalance and suggests that MMPs may represent a viable therapeutic target for glaucoma.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Ruiqi Han
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Shushu Xu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
9
|
Sharif NA. Elevated Intraocular Pressure and Glaucomatous Optic Neuropathy: Genes to Disease Mechanisms, Therapeutic Drugs, and Gene Therapies. Pharmaceuticals (Basel) 2023; 16:870. [PMID: 37375817 DOI: 10.3390/ph16060870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This review article focuses on the pathogenesis of and genetic defects linked with chronic ocular hypertension (cOHT) and glaucoma. The latter ocular disease constitutes a group of ocular degenerative diseases whose hallmark features are damage to the optic nerve, apoptotic demise of retinal ganglion cells, disturbances within the brain regions involved in visual perception and considerable visual impairment that can lead to blindness. Even though a number of pharmaceuticals, surgical and device-based treatments already exist addressing cOHT associated with the most prevalent of the glaucoma types, primary open-angle glaucoma (POAG), they can be improved upon in terms of superior efficacy with reduced side-effects and with longer duration of activity. The linkage of disease pathology to certain genes via genome-wide associated studies are illuminating new approaches to finding novel treatment options for the aforementioned ocular disorders. Gene replacement, gene editing via CRISPR-Cas9, and the use of optogenetic technologies may replace traditional drug-based therapies and/or they may augment existing therapeutics for the treatment of cOHT and POAG in the future.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-APC Duke-NUS Medical School, Singapore 169857, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX 76107, USA
- Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
- Imperial College of Science and Technology, St. Mary's Campus, London W2 1PG, UK
- Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
10
|
Sharif NA. Recently Approved Drugs for Lowering and Controlling Intraocular Pressure to Reduce Vision Loss in Ocular Hypertensive and Glaucoma Patients. Pharmaceuticals (Basel) 2023; 16:791. [PMID: 37375739 DOI: 10.3390/ph16060791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Serious vision loss occurs in patients affected by chronically raised intraocular pressure (IOP), a characteristic of many forms of glaucoma where damage to the optic nerve components causes progressive degeneration of retinal and brain neurons involved in visual perception. While many risk factors abound and have been validated for this glaucomatous optic neuropathy (GON), the major one is ocular hypertension (OHT), which results from the accumulation of excess aqueous humor (AQH) fluid in the anterior chamber of the eye. Millions around the world suffer from this asymptomatic and progressive degenerative eye disease. Since clinical evidence has revealed a strong correlation between the reduction in elevated IOP/OHT and GON progression, many drugs, devices, and surgical techniques have been developed to lower and control IOP. The constant quest for new pharmaceuticals and other modalities with superior therapeutic indices has recently yielded health authority-approved novel drugs with unique pharmacological signatures and mechanism(s) of action and AQH drainage microdevices for effectively and durably treating OHT. A unique nitric oxide-donating conjugate of latanoprost, an FP-receptor prostaglandin (PG; latanoprostene bunod), new rho kinase inhibitors (ripasudil; netarsudil), a novel non-PG EP2-receptor-selective agonist (omidenepag isopropyl), and a form of FP-receptor PG in a slow-release intracameral implant (Durysta) represent the additions to the pharmaceutical toolchest to mitigate the ravages of OHT. Despite these advances, early diagnosis of OHT and glaucoma still lags behind and would benefit from further concerted effort and attention.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-APC Duke-NUS Medical School, Singapore 169856, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX 76107, USA
- Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
- Imperial College of Science and Technology, St. Mary's Campus, London SW7 2BX, UK
- Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
11
|
Sarkar S, Panikker P, D’Souza S, Shetty R, Mohan RR, Ghosh A. Corneal Regeneration Using Gene Therapy Approaches. Cells 2023; 12:1280. [PMID: 37174680 PMCID: PMC10177166 DOI: 10.3390/cells12091280] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
One of the most remarkable advancements in medical treatments of corneal diseases in recent decades has been corneal transplantation. However, corneal transplants, including lamellar strategies, have their own set of challenges, such as graft rejection, delayed graft failure, shortage of donor corneas, repeated treatments, and post-surgical complications. Corneal defects and diseases are one of the leading causes of blindness globally; therefore, there is a need for gene-based interventions that may mitigate some of these challenges and help reduce the burden of blindness. Corneas being immune-advantaged, uniquely avascular, and transparent is ideal for gene therapy approaches. Well-established corneal surgical techniques as well as their ease of accessibility for examination and manipulation makes corneas suitable for in vivo and ex vivo gene therapy. In this review, we focus on the most recent advances in the area of corneal regeneration using gene therapy and on the strategies involved in the development of such therapies. We also discuss the challenges and potential of gene therapy for the treatment of corneal diseases. Additionally, we discuss the translational aspects of gene therapy, including different types of vectors, particularly focusing on recombinant AAV that may help advance targeted therapeutics for corneal defects and diseases.
Collapse
Affiliation(s)
- Subhradeep Sarkar
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Priyalakshmi Panikker
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
| | - Sharon D’Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore 560010, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore 560010, Karnataka, India
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
| |
Collapse
|
12
|
O’Callaghan J, Delaney C, O’Connor M, van Batenburg-Sherwood J, Schicht M, Lütjen-Drecoll E, Hudson N, Ni Dhubhghaill S, Humphries P, Stanley C, Keravala A, Chalberg T, Lawrence MS, Campbell M. Matrix metalloproteinase-3 (MMP-3)-mediated gene therapy for glaucoma. SCIENCE ADVANCES 2023; 9:eadf6537. [PMID: 37075118 PMCID: PMC10115410 DOI: 10.1126/sciadv.adf6537] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Approximately 80 million people globally are affected by glaucoma, with a projected increase to over 110 million by 2040. Substantial issues surrounding patient compliance remain with topical eye drops, and up to 10% of patients become treatment resistant, putting them at risk of permanent vision loss. The major risk factor for glaucoma is elevated intraocular pressure, which is regulated by the balance between the secretion of aqueous humor and the resistance to its flow across the conventional outflow pathway. Here, we show that adeno-associated virus 9 (AAV9)-mediated expression of matrix metalloproteinase-3 (MMP-3) can increase outflow in two murine models of glaucoma and in nonhuman primates. We show that long-term AAV9 transduction of the corneal endothelium in the nonhuman primate is safe and well tolerated. Last, MMP-3 increases outflow in donor human eyes. Collectively, our data suggest that glaucoma can be readily treated with gene therapy-based methods, paving the way for deployment in clinical trials.
Collapse
Affiliation(s)
| | - Conor Delaney
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | | | - Martin Schicht
- Institute of Functional and Clinical Anatomy, University of Erlangen-Nuremburg, Erlangen, Germany
| | - Elke Lütjen-Drecoll
- Institute of Functional and Clinical Anatomy, University of Erlangen-Nuremburg, Erlangen, Germany
| | - Natalie Hudson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Peter Humphries
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- Corresponding author.
| |
Collapse
|
13
|
Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023; 15:v15030698. [PMID: 36992407 PMCID: PMC10059137 DOI: 10.3390/v15030698] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and even cure of cancers in animal models. In a broader meaning, vaccine development against infectious diseases and various cancers has been considered as a type of gene therapy. Especially in the case of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic, neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for human use.
Collapse
|
14
|
Lundstrom K. Gene Therapy Cargoes Based on Viral Vector Delivery. Curr Gene Ther 2023; 23:111-134. [PMID: 36154608 DOI: 10.2174/1566523222666220921112753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Viral vectors have been proven useful in a broad spectrum of gene therapy applications due to their possibility to accommodate foreign genetic material for both local and systemic delivery. The wide range of viral vectors has enabled gene therapy applications for both acute and chronic diseases. Cancer gene therapy has been addressed by the delivery of viral vectors expressing anti-tumor, toxic, and suicide genes for the destruction of tumors. Delivery of immunostimulatory genes such as cytokines and chemokines has also been applied for cancer therapy. Moreover, oncolytic viruses specifically replicating in and killing tumor cells have been used as such for tumor eradication or in combination with tumor killing or immunostimulatory genes. In a broad meaning, vaccines against infectious diseases and various cancers can be considered gene therapy, which has been highly successful, not the least for the development of effective COVID-19 vaccines. Viral vector-based gene therapy has also demonstrated encouraging and promising results for chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, and hemophilia. Preclinical gene therapy studies in animal models have demonstrated proof-of-concept for a wide range of disease indications. Clinical evaluation of drugs and vaccines in humans has showed high safety levels, good tolerance, and therapeutic efficacy. Several gene therapy drugs such as the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, lentivirus-based treatment of SCID-X1 disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease, and adenovirus-based vaccines against COVID-19 have been developed.
Collapse
|
15
|
Abstract
The trabecular meshwork (TM) of the eye serves as an essential tissue in controlling aqueous humor (AH) outflow and intraocular pressure (IOP) homeostasis. However, dysfunctional TM cells and/or decreased TM cellularity is become a critical pathogenic cause for primary open-angle glaucoma (POAG). Consequently, it is particularly valuable to investigate TM characteristics, which, in turn, facilitates the development of new treatments for POAG. Since 2006, the advancement in induced pluripotent stem cells (iPSCs) provides a new tool to (1) model the TM in vitro and (2) regenerate degenerative TM in POAG. In this context, we first summarize the current approaches to induce the differentiation of TM-like cells from iPSCs and compare iPSC-derived TM models to the conventional in vitro TM models. The efficacy of iPSC-derived TM cells for TM regeneration in POAG models is also discussed. Through these approaches, iPSCs are becoming essential tools in glaucoma modeling and for developing personalized treatments for TM regeneration.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China.
| | - Xiaoyan Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
16
|
In situ transduction of cells in human corneal limbus using adeno-associated viruses: an ex vivo study. Sci Rep 2022; 12:22481. [PMID: 36577775 PMCID: PMC9797548 DOI: 10.1038/s41598-022-26926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
This study aimed to evaluate the efficacy of in situ adeno-associated virus (AAV)-mediated gene delivery into the human corneal limbal region via targeted sub-limbal injection technique. Human cadaveric corneal tissues were fixed on an artificial anterior chamber. Feasibility of sub-limbal injection technique was tested using trypan blue and black India ink. An enhanced green fluorescent protein (eGFP) encoding AAV DJ was injected into sub-limbal region. After AAV injection, corneal tissues were incubated in air-lift culture and prepared for immunohistochemical analysis. Cell survivial and expression of eGFP, stem cell markers (p63α and cytokeratin 19 (KRT19)), and differentiation marker cytokeratin 3 (KRT3) were evaluated using confocal microscopy. Both trypan blue and black India ink stained and were retained sub-limbally establishing specificity of the injection technique. Immunohistochemical analysis of corneas injected with AAV DJ-eGFP indicated that AAV-transduced cells in the limbal region co-express eGFP, p63α, and KRT19 and that these transduced cells were capable of differentiating to KRT3 postitive corneal epithelial cells. Our sub-limbal injection technique can target cells in the human limbus in a reproducible and efficient manner. Thus, we demonstrate that in situ injection of corneal limbus may provide a feasible mode of genetic therapy for corneal disorders with an epithelial etiology.
Collapse
|
17
|
Qiao Y, Sun Z, Tan C, Lai J, Sun X, Chen J. Intracameral Injection of AAV-DJ.COMP-ANG1 Reduces the IOP of Mice by Reshaping the Trabecular Outflow Pathway. Invest Ophthalmol Vis Sci 2022; 63:15. [PMID: 36520455 PMCID: PMC9769031 DOI: 10.1167/iovs.63.13.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The angiopoietin-1 (ANG1)-TIE signaling pathway orchestrates the development and maintenance of the Schlemm's canal (SC). In this study, we investigated the impact of adeno-associated virus (AAV)-mediated gene therapy with cartilage oligomeric matrix protein-ANG1 (COMP-ANG1) on trabecular outflow pathway. Methods Different serotypes of AAVs were compared for transduction specificity and efficiency in the anterior segment. The selected AAVs encoding COMP-ANG1 or ZsGreen1 (control) were delivered into the anterior chambers of wild-type C57BL/6J mice. The IOP and ocular surface were monitored regularly. Ocular perfusion was performed to measure the outflow facility and label flow patterns of the trabecular drainage pathway. Structural features of SC as well as limbal, retinal, and skin vessels were visualized by immunostaining. Ultrastructural changes in the SC and trabecular meshwork were observed under transmission electron microscopy. Results AAV-DJ could effectively infect the anterior segment. Intracameral injection of AAV-DJ.COMP-ANG1 lowered IOP in wild-type C57BL/6J mice. No signs of inflammation or angiogenesis were noticed. Four weeks after AAV injection, the conventional outflow facility and effective filtration area were increased significantly (P = 0.005 and P = 0.04, respectively). Consistently, the area of the SC was enlarged (P < 0.001) with increased density of giant vacuoles in the inner wall (P = 0.006). In addition, the SC endothelia lay on a more discontinuous basement membrane (P = 0.046) and a more porous juxtacanalicular tissue (P = 0.005) in the COMP-ANG1 group. Conclusions Intracamerally injected AAV-DJ.COMP-ANG1 offers a significant IOP-lowering effect by remodeling the trabecular outflow pathway of mouse eyes.
Collapse
Affiliation(s)
- Yunsheng Qiao
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongmou Sun
- University of Rochester, School of Medicine and Dentistry, Rochester, New York, New York, United States
| | - Chen Tan
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junyi Lai
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Junyi Chen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| |
Collapse
|
18
|
Chern KJ, Nettesheim ER, Reid CA, Li NW, Marcoe GJ, Lipinski DM. Prostaglandin-based rAAV-mediated glaucoma gene therapy in Brown Norway rats. Commun Biol 2022; 5:1169. [PMID: 36329259 PMCID: PMC9633612 DOI: 10.1038/s42003-022-04134-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Prostaglandin analogs are first-line treatments for open angle glaucoma and while effective at lowering intraocular pressure, they are undermined by patient non-compliance, causing atrophy of the optic nerve and severe visual impairment. Herein, we evaluate the safety and efficacy of a recombinant adeno-associated viral vector-mediated gene therapy aimed at permanently lowering intraocular pressure through de novo biosynthesis of prostaglandin F2α within the anterior chamber. This study demonstrated a dose dependent reduction in intraocular pressure in normotensive Brown Norway rats maintained over 12-months. Crucially, therapy could be temporarily halted through off-type riboswitch activation, reverting intraocular pressure to normal. Longitudinal multimodal imaging, electrophysiology, and post-mortem histology revealed the therapy was well tolerated at low and medium doses, with no major adverse effects to anterior chamber health, offering a promising alternative to current treatment strategies leading to clinically relevant reductions in intraocular pressure without the need for adherence to a daily treatment regimen.
Collapse
Affiliation(s)
- Kristina J Chern
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emily R Nettesheim
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher A Reid
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nathan W Li
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gavin J Marcoe
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel M Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
19
|
Sharif NA. Degeneration of retina-brain components and connections in glaucoma: Disease causation and treatment options for eyesight preservation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100037. [PMID: 36685768 PMCID: PMC9846481 DOI: 10.1016/j.crneur.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eyesight is the most important of our sensory systems for optimal daily activities and overall survival. Patients who experience visual impairment due to elevated intraocular pressure (IOP) are often those afflicted with primary open-angle glaucoma (POAG) which slowly robs them of their vision unless treatment is administered soon after diagnosis. The hallmark features of POAG and other forms of glaucoma are damaged optic nerve, retinal ganglion cell (RGC) loss and atrophied RGC axons connecting to various brain regions associated with receipt of visual input from the eyes and eventual decoding and perception of images in the visual cortex. Even though increased IOP is the major risk factor for POAG, the disease is caused by many injurious chemicals and events that progress slowly within all components of the eye-brain visual axis. Lowering of IOP mitigates the damage to some extent with existing drugs, surgical and device implantation therapeutic interventions. However, since multifactorial degenerative processes occur during aging and with glaucomatous optic neuropathy, different forms of neuroprotective, nutraceutical and electroceutical regenerative and revitalizing agents and processes are being considered to combat these eye-brain disorders. These aspects form the basis of this short review article.
Collapse
Affiliation(s)
- Najam A. Sharif
- Duke-National University of Singapore Medical School, Singapore,Singapore Eye Research Institute (SERI), Singapore,Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA,Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA,Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK,Department of Pharmacy Sciences, School of School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA.
| |
Collapse
|
20
|
Caban M, Owczarek K, Lewandowska U. The Role of Metalloproteinases and Their Tissue Inhibitors on Ocular Diseases: Focusing on Potential Mechanisms. Int J Mol Sci 2022; 23:ijms23084256. [PMID: 35457074 PMCID: PMC9026850 DOI: 10.3390/ijms23084256] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Eye diseases are associated with visual impairment, reduced quality of life, and may even lead to vision loss. The efficacy of available treatment of eye diseases is not satisfactory. The unique environment of the eye related to anatomical and physiological barriers and constraints limits the bioavailability of existing agents. In turn, complex ethiopathogenesis of ocular disorders that used drugs generally are non-disease specific and do not act causally. Therefore, there is a need for the development of a new therapeutic and preventive approach. It seems that matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have a significant role in the development and progression of eye diseases and could be used in the therapy of these disorders as pharmacological targets. MMPs and TIMPs play an important role in the angiogenesis, epithelial-mesenchymal transition, cell invasion, and migration, which occur in ocular diseases. In this review, we aim to describe the participation of MMPs and TIMPs in the eye diseases, such as age-related macular degeneration, cataract, diabetic retinopathy, dry eye syndrome, glaucoma, and ocular cancers, posterior capsule opacification focusing on potential mechanisms.
Collapse
|
21
|
Wang Q, Dou S, Zhang B, Jiang H, Qi X, Duan H, Wang X, Dong C, Zhang BN, Xie L, Cao Y, Zhou Q, Shi W. Heterogeneity of human corneal endothelium implicates lncRNA NEAT1 in Fuchs endothelial corneal dystrophy. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:880-893. [PMID: 35141048 PMCID: PMC8807987 DOI: 10.1016/j.omtn.2022.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 11/05/2022]
Abstract
The corneal endothelium is critical for maintaining corneal clarity by mediating hydration through barrier and pump functions. Progressive loss of corneal endothelial cells during aging has been associated with the development of Fuchs endothelial corneal dystrophy (FECD), one of the main causes of cornea-related vision loss. The mechanisms underlying FECD development remain elusive. Single-cell RNA sequencing of isolated healthy human corneas discovered 4 subpopulations of corneal endothelial cells with distinctive signatures. Unsupervised clustering analysis uncovered nuclear enriched abundant transcript 1 (NEAT1), a long non-coding RNA (lncRNA), as the top expressed gene in the C0-endothelial subpopulation, but markedly downregulated in FECD. Consistent with human corneas, a UVA-induced mouse FECD model validated the loss of NEAT1 expression. Loss of NEAT1 function by an in vivo genetic approach reproduced the exacerbated phenotype of FECD by ablating corneal endothelial cells. Conversely, gain of function by a CRISPR-activated adenoviral delivery system protected corneas from UVA-induced FECD. Our findings provide novel mechanistic insights into the development of FECD, and targeting NEAT1 offers an attractive approach for treating FECD.
Collapse
|
22
|
Shyam R, Ogando DG, Kim ET, Murugan S, Choi M, Bonanno JA. Rescue of the Congenital Hereditary Endothelial Dystrophy Mouse Model by Adeno-Associated Viruse-Mediated Slc4a11 Replacement. OPHTHALMOLOGY SCIENCE 2022; 2:100084. [PMID: 36051248 PMCID: PMC9432820 DOI: 10.1016/j.xops.2021.100084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022]
Abstract
Purpose Congenital hereditary endothelial dystrophy (CHED) is a rare condition that manifests at an early age showing corneal edema, increased oxidative stress, mitochondrial dysfunction, and eventually apoptosis of the endothelium due to loss of function of the membrane transport protein SLC4A11. This project tested whether replacing Slc4a11 into the Slc4a11 -/- CHED mouse model can reverse the disease-associated phenotypes. Design Experimental study. Participants Five-week-old or 11-week-old Slc4a11 -/- mice. Age- and gender-matched Slc4a11 +/+ animals were used as controls. A total of 124 animals (62 female, and 62 male) were used in this study. Fifty-three animals of the genotype Slc4a11 +/+ were used as age- and gender-matched noninjected controls. Seventy-one Slc4a11 -/- mice were administered anterior chamber injections of adeno-associated virus (AAV). Methods Anterior chambers of young (5 weeks old) or older (11 weeks old) Slc4a11 -/- mice were injected once with adeno-associated virus serotype 9 (AAV9) mouse Slc4a11 or AAV9-Null vectors. Corneal thickness was measured using OCT. End point analysis included corneal endothelial cell density, mitochondrial oxidative stress, and corneal lactate concentration. Main Outcome Measures Corneal thickness, endothelial cell loss, lactate levels, and mitochondrial oxidative stress. Results In the young animals, AAV9-Slc4a11 reversed corneal edema, endothelial cell loss, mitochondrial oxidative stress, lactate transporter expression, and corneal lactate concentration to the levels observed in wild-type animals. In the older animals, gene replacement did not reverse the phenotype but prevented progression. Conclusions Functional rescue of CHED phenotypes in the Slc4a11 -/- mouse is possible; however, early intervention is critical.
Collapse
Affiliation(s)
- Rajalekshmy Shyam
- Vision Science Program, School of Optometry, Indiana University Bloomington, Bloomington, Indiana
| | - Diego G. Ogando
- Vision Science Program, School of Optometry, Indiana University Bloomington, Bloomington, Indiana
| | - Edward T. Kim
- Vision Science Program, School of Optometry, Indiana University Bloomington, Bloomington, Indiana
| | - Subashree Murugan
- Vision Science Program, School of Optometry, Indiana University Bloomington, Bloomington, Indiana
| | - Moonjung Choi
- Vision Science Program, School of Optometry, Indiana University Bloomington, Bloomington, Indiana
| | - Joseph A. Bonanno
- Vision Science Program, School of Optometry, Indiana University Bloomington, Bloomington, Indiana
| |
Collapse
|
23
|
Tan TE, Fenner BJ, Barathi VA, Tun SBB, Wey YS, Tsai ASH, Su X, Lee SY, Cheung CMG, Wong TY, Mehta JS, Teo KYC. Gene-Based Therapeutics for Acquired Retinal Disease: Opportunities and Progress. Front Genet 2021; 12:795010. [PMID: 34950193 PMCID: PMC8688942 DOI: 10.3389/fgene.2021.795010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Acquired retinal diseases such as age-related macular degeneration and diabetic retinopathy rank among the leading causes of blindness and visual loss worldwide. Effective treatments for these conditions are available, but often have a high treatment burden, and poor compliance can lead to disappointing real-world outcomes. Development of new treatment strategies that provide more durable treatment effects could help to address some of these unmet needs. Gene-based therapeutics, pioneered for the treatment of monogenic inherited retinal disease, are being actively investigated as new treatments for acquired retinal disease. There are significant advantages to the application of gene-based therapeutics in acquired retinal disease, including the presence of established therapeutic targets and common pathophysiologic pathways between diseases, the lack of genotype-specificity required, and the larger potential treatment population per therapy. Different gene-based therapeutic strategies have been attempted, including gene augmentation therapy to induce in vivo expression of therapeutic molecules, and gene editing to knock down genes encoding specific mediators in disease pathways. We highlight the opportunities and unmet clinical needs in acquired retinal disease, review the progress made thus far with current therapeutic strategies and surgical delivery techniques, and discuss limitations and future directions in the field.
Collapse
Affiliation(s)
- Tien-En Tan
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Beau James Fenner
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sai Bo Bo Tun
- Singapore Eye Research Institute, Singapore, Singapore
| | - Yeo Sia Wey
- Singapore Eye Research Institute, Singapore, Singapore
| | - Andrew Shih Hsiang Tsai
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Xinyi Su
- Singapore Eye Research Institute, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Shu Yen Lee
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Chui Ming Gemmy Cheung
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Tien Yin Wong
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jodhbir Singh Mehta
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Kelvin Yi Chong Teo
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
24
|
Pumphrey SA, Zitek-Morrison E, Pizzirani S, Meola DM. Evaluation of matrix metalloproteinases and tissue inhibitors of metalloproteinases in aqueous humor of dogs with versus without naturally occurring primary angle-closure glaucoma. Am J Vet Res 2021; 83:245-255. [PMID: 34936570 DOI: 10.2460/ajvr.21.04.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare concentrations of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in aqueous humor from ophthalmologically normal dogs and dogs with naturally occurring primary angle-closure glaucoma (cPACG). SAMPLE Aqueous humor samples from 12 eyes with cPACG and 18 ophthalmologically normal eyes of dogs. PROCEDURES A multiplex fluorescence-based ELISA was used to measure concentrations of MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-13, TIMP-1, TIMP-2, and TIMP-4. Results for eyes with versus without cPACG were compared. RESULTS Significantly higher mean concentrations of MMP-1 (45% higher), MMP-2 (55% higher), MMP-3 (39% higher), MMP-8 (79% higher), MMP-9 (29% higher), MMP-10 (60% higher), TIMP-1 (63% higher), and TIMP-2 (136% higher) were detected in aqueous humor from eyes with cPACG, compared with ophthalmologically normal eyes. CLINICAL RELEVANCE MMPs and TIMPs have pivotal roles in extracellular matrix turnover and homeostasis in the outflow pathways of the eye. Results of the present study documented higher concentrations of MMPs and TIMPs in aqueous humor samples from dog eyes with late-stage cPACG. Although, to our knowledge, TIMPs have not previously been evaluated in the context of cPACG, the markedly higher concentration of TIMPs in eyes with cPACG suggested that inhibition of proteolysis and extracellular matrix turnover might be a factor in the development of glaucoma in susceptible individuals. However, because the present study used samples from dogs with late-stage cPACG, further work is required to characterize the temporal relationship between MMP and TIMP concentration changes and onset or progression of disease.
Collapse
Affiliation(s)
- Stephanie A Pumphrey
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - Emily Zitek-Morrison
- Department of Population and Quantitative Health Sciences, UMass Chan Medical School, University of Massachusetts, Worcester, MA
| | - Stefano Pizzirani
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - Dawn M Meola
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| |
Collapse
|
25
|
Soundararajan A, Ghag SA, Vuda SS, Wang T, Pattabiraman PP. Cathepsin K Regulates Intraocular Pressure by Modulating Extracellular Matrix Remodeling and Actin-Bundling in the Trabecular Meshwork Outflow Pathway. Cells 2021; 10:cells10112864. [PMID: 34831087 PMCID: PMC8616380 DOI: 10.3390/cells10112864] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 02/02/2023] Open
Abstract
The homeostasis of extracellular matrix (ECM) and actin dynamics in the trabecular meshwork (TM) outflow pathway plays a critical role in intraocular pressure (IOP) regulation. We studied the role of cathepsin K (CTSK), a lysosomal cysteine protease and a potent collagenase, on ECM modulation and actin cytoskeleton rearrangements in the TM outflow pathway and the regulation of IOP. Initially, we found that CTSK was negatively regulated by pathological stressors known to elevate IOP. Further, inactivating CTSK using balicatib, a pharmacological cell-permeable inhibitor of CTSK, resulted in IOP elevation due to increased levels and excessive deposition of ECM-like collagen-1A in the TM outflow pathway. The loss of CTSK activity resulted in actin-bundling via fascin and vinculin reorganization and by inhibiting actin depolymerization via phospho-cofilin. Contrarily, constitutive expression of CTSK decreased ECM and increased actin depolymerization by decreasing phospho-cofilin, negatively regulated the availability of active TGFβ2, and reduced the levels of alpha-smooth muscle actin (αSMA), indicating an antifibrotic action of CTSK. In conclusion, these observations, for the first time, demonstrate the significance of CTSK in IOP regulation by maintaining the ECM homeostasis and actin cytoskeleton-mediated contractile properties of the TM outflow pathway.
Collapse
Affiliation(s)
- Avinash Soundararajan
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN 46202-5209, USA; (A.S.); (S.A.G.); (S.S.V.); (T.W.)
| | - Sachin Anil Ghag
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN 46202-5209, USA; (A.S.); (S.A.G.); (S.S.V.); (T.W.)
| | - Sai Supriya Vuda
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN 46202-5209, USA; (A.S.); (S.A.G.); (S.S.V.); (T.W.)
| | - Ting Wang
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN 46202-5209, USA; (A.S.); (S.A.G.); (S.S.V.); (T.W.)
- Stark Neuroscience Research Institute, 320 West 15th Street, Indianapolis, IN 46202-2266, USA
| | - Padmanabhan Paranji Pattabiraman
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN 46202-5209, USA; (A.S.); (S.A.G.); (S.S.V.); (T.W.)
- Stark Neuroscience Research Institute, 320 West 15th Street, Indianapolis, IN 46202-2266, USA
- Correspondence: ; Tel.: +1-317-274-2652
| |
Collapse
|
26
|
Maddineni P, Kasetti RB, Kodati B, Yacoub S, Zode GS. Sodium 4-Phenylbutyrate Reduces Ocular Hypertension by Degrading Extracellular Matrix Deposition via Activation of MMP9. Int J Mol Sci 2021; 22:10095. [PMID: 34576258 PMCID: PMC8465971 DOI: 10.3390/ijms221810095] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ocular hypertension (OHT) is a serious adverse effect of the widely prescribed glucocorticoid (GC) therapy and, if left undiagnosed, it can lead to glaucoma and complete blindness. Previously, we have shown that the small chemical chaperone, sodium-4-phenylbutyrate (PBA), rescues GC-induced OHT by reducing ocular endoplasmic reticulum (ER) stress. However, the exact mechanism of how PBA rescues GC-induced OHT is not completely understood. The trabecular meshwork (TM) is a filter-like specialized contractile tissue consisting of TM cells embedded within extracellular matrix (ECM) that controls intraocular pressure (IOP) by constantly regulating aqueous humor (AH) outflow. Induction of abnormal ECM deposition in TM is a hallmark of GC-induced OHT. Here, we investigated whether PBA reduces GC-induced OHT by degrading abnormal ECM deposition in TM using mouse model of GC-induced OHT, ex vivo cultured human TM tissues and primary human TM cells. We show that topical ocular eye drops of PBA (1%) significantly lowers elevated IOP in mouse model of GC-induced OHT. Importantly, PBA prevents synthesis and deposition of GC-induced ECM in TM. We report for the first time that PBA can degrade existing abnormal ECM in normal human TM cells/tissues by inducing matrix metalloproteinase (MMP)9 expression and activity. Furthermore, inhibition of MMPs activity by chemical-inhibitor (minocycline) abrogated PBA's effect on ECM reduction and its associated ER stress. Our study indicates a non-chaperone activity of PBA via activation of MMP9 that degrades abnormal ECM accumulation in TM.
Collapse
Affiliation(s)
| | | | | | | | - Gulab S. Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA; (P.M.); (R.B.K.); (B.K.); (S.Y.)
| |
Collapse
|
27
|
Luna C, Parker M, Challa P, Gonzalez P. Long-Term Decrease of Intraocular Pressure in Rats by Viral Delivery of miR-146a. Transl Vis Sci Technol 2021; 10:14. [PMID: 34254987 PMCID: PMC8287046 DOI: 10.1167/tvst.10.8.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose To evaluate the effects of miR-146a in trabecular meshwork (TM) cells and on intraocular pressure (IOP) in vivo via viral delivery of miR-146a to the anterior chamber of rat eyes. Methods Human TM cells were transfected with miR-146 mimic or inhibitor. Some cells from each group were then subjected to cyclic mechanical stress (CMS). Other cells from each group had no force applied. Gene expression was then analyzed by quantitative polymerase chain reaction (qPCR). Replication-deficient adenovirus and lentivirus expressing miR-146a were inoculated into the anterior segment of Brown Norway rat eyes. IOP was monitored by rebound tonometry, visual acuity was evaluated by optokinetic tracking (OKT), and inflammation markers in the anterior segment were examined by slit-lamp, qPCR, and semi-thin sections. Results miR-146 affected the expression of genes potentially involved in outflow homeostasis at basal levels and under CMS. Both lentiviral and adenoviral vectors expressing miR-146a resulted in sustained decreases in IOP ranging from 2.6 to 4.4 mmHg. Long term follow-up of rats injected with lentiviral vectors showed a sustained effect on IOP of 4.4 ± 2.9 mmHg that lasted until rats were sacrificed more than 8 months later. Eyes showed no signs of inflammation, loss of visual acuity, or other visible abnormalities. Conclusions Intracameral delivery of miR-146a can provide a long-term decrease of IOP in rats without signs of inflammation or other visible adverse effects. Transitional Relevance The IOP-lowering effects of miR-146 observed in rats provides a necessary step toward the development of an effective gene therapy for glaucoma in humans.
Collapse
|
28
|
Acott TS, Vranka JA, Keller KE, Raghunathan V, Kelley MJ. Normal and glaucomatous outflow regulation. Prog Retin Eye Res 2021; 82:100897. [PMID: 32795516 PMCID: PMC7876168 DOI: 10.1016/j.preteyeres.2020.100897] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
Glaucoma remains only partially understood, particularly at the level of intraocular pressure (IOP) regulation. Trabecular meshwork (TM) and Schlemm's canal inner wall endothelium (SCE) are key to IOP regulation and their characteristics and behavior are the focus of much investigation. This is becoming more apparent with time. We and others have studied the TM and SCE's extracellular matrix (ECM) extensively and unraveled much about its functions and role in regulating aqueous outflow. Ongoing ECM turnover is required to maintain IOP regulation and several TM ECM manipulations modulate outflow facility. We have established clearly that the outflow pathway senses sustained pressure deviations and responds by adjusting the outflow resistance correctively to keep IOP within an appropriately narrow range which will not normally damage the optic nerve. The glaucomatous outflow pathway has in many cases lost this IOP homeostatic response, apparently due at least in part, to loss of TM cells. Depletion of TM cells eliminates the IOP homeostatic response, while restoration of TM cells restores it. Aqueous outflow is not homogeneous, but rather segmental with regions of high, intermediate and low flow. In general, glaucomatous eyes have more low flow regions than normal eyes. There are distinctive molecular differences between high and low flow regions, and during the response to an IOP homeostatic pressure challenge, additional changes in segmental molecular composition occur. In conjunction with these changes, the biomechanical properties of the juxtacanalicular (JCT) segmental regions are different, with low flow regions being stiffer than high flow regions. The JCT ECM of glaucomatous eyes is around 20 times stiffer than in normal eyes. The aqueous humor outflow resistance has been studied extensively, but neither the exact molecular components that comprise the resistance nor their exact location have been established. Our hypothetical model, based on considerable available data, posits that the continuous SCE basal lamina, which lies between 125 and 500 nm beneath the SCE basal surface, is the primary source of normal resistance. On the surface of JCT cells, small and highly controlled focal degradation of its components by podosome- or invadopodia-like structures, PILS, occurs in response to pressure-induced mechanical stretching. Sub-micron sized basement membrane discontinuities develop in the SCE basement membrane and these discontinuities allow passage of aqueous humor to and through SCE giant vacuoles and pores. JCT cells then relocate versican with its highly charged glycosaminoglycan side chains into the discontinuities and by manipulation of their orientation and concentration, the JCT and perhaps the SCE cells regulate the amount of fluid passage. Testing this outflow resistance hypothesis is ongoing in our lab and has the potential to advance our understanding of IOP regulation and of glaucoma.
Collapse
Affiliation(s)
- Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Janice A Vranka
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kate E Keller
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, The Ocular Surface Institute, College of Optometry, Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR, 97239, USA
| |
Collapse
|
29
|
Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther 2021; 22:104-131. [PMID: 33902406 DOI: 10.2174/1566523221666210423084233] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
This review provides comprehensive information about the advances in gene therapy in the anterior segment of the eye including cornea, conjunctiva, lacrimal gland, and trabecular meshwork. We discuss gene delivery systems including viral and non-viral vectors as well as gene editing techniques, mainly CRISPR-Cas9, and epigenetic treatments including antisense and siRNA therapeutics. We also provide a detailed analysis of various anterior segment diseases where gene therapy has been tested with corresponding outcomes. Disease conditions include corneal and conjunctival fibrosis and scarring, corneal epithelial wound healing, corneal graft survival, corneal neovascularization, genetic corneal dystrophies, herpetic keratitis, glaucoma, dry eye disease, and other ocular surface diseases. Although most of the analyzed results on the use and validity of gene therapy at the ocular surface have been obtained in vitro or using animal models, we also discuss the available human studies. Gene therapy approaches are currently considered very promising as emerging future treatments of various diseases, and this field is rapidly expanding.
Collapse
Affiliation(s)
- Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
30
|
Zhang Q, Zheng M, Betancourt CE, Liu L, Sitikov A, Sladojevic N, Zhao Q, Zhang JH, Liao JK, Wu R. Increase in Blood-Brain Barrier (BBB) Permeability Is Regulated by MMP3 via the ERK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6655122. [PMID: 33859779 PMCID: PMC8026308 DOI: 10.1155/2021/6655122] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/24/2020] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The blood-brain barrier (BBB) regulates the exchange of molecules between the brain and peripheral blood and is composed primarily of microvascular endothelial cells (BMVECs), which form the lining of cerebral blood vessels and are linked via tight junctions (TJs). The BBB is regulated by components of the extracellular matrix (ECM), and matrix metalloproteinase 3 (MMP3) remodels the ECM's basal lamina, which forms part of the BBB. Oxidative stress is implicated in activation of MMPs and impaired BBB. Thus, we investigated whether MMP3 modulates BBB permeability. METHODS Experiments included in vivo assessments of isoflurane anesthesia and dye extravasation from brain in wild-type (WT) and MMP3-deficient (MMP3-KO) mice, as well as in vitro assessments of the integrity of monolayers of WT and MMP3-KO BMVECs and the expression of junction proteins. RESULTS Compared to WT mice, measurements of isoflurane usage and anesthesia induction time were higher in MMP3-KO mice and lower in WT that had been treated with MMP3 (WT+MMP3), while anesthesia emergence times were shorter in MMP3-KO mice and longer in WT+MMP3 mice than in WT. Extravasation of systemically administered dyes was also lower in MMP3-KO mouse brains and higher in WT+MMP3 mouse brains, than in the brains of WT mice. The results from both TEER and Transwell assays indicated that MMP3 deficiency (or inhibition) increased, while MMP3 upregulation reduced barrier integrity in either BMVEC or the coculture. MMP3 deficiency also increased the abundance of TJs and VE-cadherin proteins in BMVECs, and the protein abundance declined when MMP3 activity was upregulated in BMVECs, but not when the cells were treated with an inhibitor of extracellular signal related-kinase (ERK). CONCLUSION MMP3 increases BBB permeability following the administration of isoflurane by upregulating the ERK signaling pathway, which subsequently reduces TJ and VE-cadherin proteins in BMVECs.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Mei Zheng
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | | | - Lifeng Liu
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Albert Sitikov
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Nikola Sladojevic
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Qiong Zhao
- Division of Cardiology, Department of Medicine, Inova Heart and Vascular Institute, USA
| | - John H. Zhang
- Center for Neuroscience Research, Loma Linda University, School of Medicine, USA
| | - James K. Liao
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Rongxue Wu
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| |
Collapse
|
31
|
Bastola P, Song L, Gilger BC, Hirsch ML. Adeno-Associated Virus Mediated Gene Therapy for Corneal Diseases. Pharmaceutics 2020; 12:pharmaceutics12080767. [PMID: 32823625 PMCID: PMC7464341 DOI: 10.3390/pharmaceutics12080767] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
According to the World Health Organization, corneal diseases are the fourth leading cause of blindness worldwide accounting for 5.1% of all ocular deficiencies. Current therapies for corneal diseases, which include eye drops, oral medications, corrective surgeries, and corneal transplantation are largely inadequate, have undesirable side effects including blindness, and can require life-long applications. Adeno-associated virus (AAV) mediated gene therapy is an optimistic strategy that involves the delivery of genetic material to target human diseases through gene augmentation, gene deletion, and/or gene editing. With two therapies already approved by the United States Food and Drug Administration and 200 ongoing clinical trials, recombinant AAV (rAAV) has emerged as the in vivo viral vector-of-choice to deliver genetic material to target human diseases. Likewise, the relative ease of applications through targeted delivery and its compartmental nature makes the cornea an enticing tissue for AAV mediated gene therapy applications. This current review seeks to summarize the development of AAV gene therapy, highlight preclinical efficacy studies, and discuss potential applications and challenges of this technology for targeting corneal diseases.
Collapse
Affiliation(s)
- Prabhakar Bastola
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Liujiang Song
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian C. Gilger
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Clinical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Matthew L. Hirsch
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-966-0696
| |
Collapse
|
32
|
Shi L, Bergson CM. Neuregulin 1: an intriguing therapeutic target for neurodevelopmental disorders. Transl Psychiatry 2020; 10:190. [PMID: 32546684 PMCID: PMC7297728 DOI: 10.1038/s41398-020-00868-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodevelopmental psychiatric disorders including schizophrenia (Sz) and attention deficit hyperactivity disorder (ADHD) are chronic mental illnesses, which place costly and painful burdens on patients, their families and society. In recent years, the epidermal growth factor (EGF) family member Neuregulin 1 (NRG1) and one of its receptors, ErbB4, have received considerable attention due to their regulation of inhibitory local neural circuit mechanisms important for information processing, attention, and cognitive flexibility. Here we examine an emerging body of work indicating that either decreasing NRG1-ErbB4 signaling in fast-spiking parvalbumin positive (PV+) interneurons or increasing it in vasoactive intestinal peptide positive (VIP+) interneurons could reactivate cortical plasticity, potentially making it a future target for gene therapy in adults with neurodevelopmental disorders. We propose preclinical studies to explore this model in prefrontal cortex (PFC), but also review the many challenges in pursuing cell type and brain-region-specific therapeutic approaches for the NRG1 system.
Collapse
Affiliation(s)
- Liang Shi
- grid.410427.40000 0001 2284 9329Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Boulevard, Augusta, GA 30912 USA ,grid.189967.80000 0001 0941 6502Present Address: Department of Cell Biology, Emory University School of Medicine, Atlanta, GA USA
| | - Clare M. Bergson
- grid.410427.40000 0001 2284 9329Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Boulevard, Augusta, GA 30912 USA
| |
Collapse
|
33
|
Saraswathy S, Bogarin T, Barron E, Francis BA, Tan JCH, Weinreb RN, Huang AS. Segmental differences found in aqueous angiographic-determined high - and low-flow regions of human trabecular meshwork. Exp Eye Res 2020; 196:108064. [PMID: 32439396 DOI: 10.1016/j.exer.2020.108064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/28/2023]
Abstract
This work sought to compare aqueous angiographic segmental patterns with bead-based methods which directly visualize segmental trabecular meshwork (TM) tracer trapping. Additionally, segmental protein expression differences between aqueous angiographic-derived low- and high-outflow human TM regions were evaluated. Post-mortem human eyes (One Legacy and San Diego eye banks; n = 15) were perfused with fluorescent tracers (fluorescein [2.5%], indocyanine green [0.4%], and/or fluorescent microspheres). After angiographic imaging (Spectralis HRA+OCT; Heidelberg Engineering), peri-limbal low- and high-angiographic flow regions were marked. Aqueous angiographic segmental outflow patterns were similar to fluorescent microsphere TM trapping segmental patterns. TM was dissected from low- and high-flow areas and processed for immunofluorescence or Western blot and compared. Versican expression was relatively elevated in low-flow regions while MMP3 and collagen VI were relatively elevated in high-flow regions. TGF-β2, thrombospondin-1, TGF-β receptor1, and TGF-β downstream proteins such as α-smooth muscle actin were relatively elevated in low-flow regions. Additionally, fibronectin (FN) levels were unchanged, but the EDA isoform (FN-EDA) that is associated with fibrosis was relatively elevated in low-flow regions. These results show that segmental aqueous angiographic patterns are reflective of underlying TM molecular characteristics and demonstrate increased pro-fibrotic activation in low-flow regions. Thus, we provide evidence that aqueous angiography outflow visualization, the only tracer outflow imaging method available to clinicians, is in part representative of TM biology.
Collapse
Affiliation(s)
- Sindhu Saraswathy
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Thania Bogarin
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ernesto Barron
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brian A Francis
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - James C H Tan
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology University of California, San Diego, CA, USA
| | - Alex S Huang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Geisert EE, Williams RW. Using BXD mouse strains in vision research: A systems genetics approach. Mol Vis 2020; 26:173-187. [PMID: 32180682 PMCID: PMC7058434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/04/2020] [Indexed: 11/06/2022] Open
Abstract
We illustrate the growing power of the BXD family of mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice) and companion bioinformatic tools to study complex genome-phenome relations related to glaucoma. Over the past 16 years, our group has integrated powerful murine resources and web-accessible tools to identify networks modulating visual system traits-from photoreceptors to the visual cortex. Recent studies focused on retinal ganglion cells and glaucoma risk factors, including intraocular pressure (IOP), central corneal thickness (CCT), and susceptibility of cellular stress. The BXD family was exploited to define key gene variants and then establish linkage to glaucoma in human cohorts. The power of this experimental approach to precision medicine is highlighted by recent studies that defined cadherin 11 (Cdh11) and a calcium channel (Cacna2d1) as genes modulating IOP, Pou6f2 as a genetic link between CCT and retinal ganglion cell (RGC) death, and Aldh7a1 as a gene that modulates the susceptibility of RGCs to death after elevated IOP. The role of three of these gene variants in glaucoma is discussed, along with the pathways activated in the disease process.
Collapse
Affiliation(s)
- Eldon E. Geisert
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE Atlanta GA, 30322
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 71 S Manassas St, Memphis TN 38163
| |
Collapse
|
35
|
Wu J, Bell OH, Copland DA, Young A, Pooley JR, Maswood R, Evans RS, Khaw PT, Ali RR, Dick AD, Chu CJ. Gene Therapy for Glaucoma by Ciliary Body Aquaporin 1 Disruption Using CRISPR-Cas9. Mol Ther 2020; 28:820-829. [PMID: 31981492 PMCID: PMC7054720 DOI: 10.1016/j.ymthe.2019.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a common cause of blindness, yet current therapeutic options are imperfect. Clinical trials have invariably shown that reduction in intraocular pressure (IOP) regardless of disease subtype prevents visual loss. Reducing ciliary body aqueous humor production can lower IOP, and the adeno-associated virus ShH10 serotype was identified as able to transduce mouse ciliary body epithelium following intravitreal injection. Using ShH10 to deliver a single vector CRISPR-Cas9 system disrupting Aquaporin 1 resulted in reduced IOP in treated eyes (10.4 ± 2.4 mmHg) compared with control (13.2 ± 2.0 mmHg) or non-injected eyes (13.1 ± 2.8 mmHg; p < 0.001; n = 12). Editing in the aquaporin 1 gene could be detected in ciliary body, and no off-target increases in corneal or retinal thickness were identified. In experimental mouse models of corticosteroid and microbead-induced ocular hypertension, IOP could be reduced to prevent ganglion cell loss (32 ± 4 /mm2) compared with untreated eyes (25 ± 5/mm2; p < 0.01). ShH10 could transduce human ciliary body from post-mortem donor eyes in ex vivo culture with indel formation detectable in the Aquaporin 1 locus. Clinical translation of this approach to patients with glaucoma may permit long-term reduction of IOP following a single injection.
Collapse
Affiliation(s)
- Jiahui Wu
- Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Oliver H Bell
- Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - David A Copland
- Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Alison Young
- Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - John R Pooley
- Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Ryea Maswood
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Rachel S Evans
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Peng Tee Khaw
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - Robin R Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - Andrew D Dick
- Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK; UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - Colin J Chu
- Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
36
|
Choquet H, Wiggs JL, Khawaja AP. Clinical implications of recent advances in primary open-angle glaucoma genetics. Eye (Lond) 2020; 34:29-39. [PMID: 31645673 PMCID: PMC7002426 DOI: 10.1038/s41433-019-0632-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, genetic studies, including genome-wide association studies (GWAS), have accelerated the discovery of genes and genomic regions contributing to primary open-angle glaucoma (POAG), a leading cause of irreversible vision loss. Here, we review the findings of genetic studies of POAG published in English prior to September 2019. In total, 74 genomic regions have been associated at a genome-wide level of significance with POAG susceptibility. Recent POAG GWAS provide not only insight into global and ethnic-specific genetic risk factors for POAG susceptibility across populations of diverse ancestry, but also important functional insights underlying biological mechanisms of glaucoma pathogenesis. In this review, we also summarize the genetic overlap between POAG, glaucoma endophenotypes, such as intraocular pressure and vertical cup-disc ratio (VCDR), and other eye disorders. We also discuss approaches recently developed to increase power for POAG locus discovery and to predict POAG risk. Finally, we discuss the recent development of POAG gene-based therapies and future strategies to treat glaucoma effectively. Understanding the genetic architecture of POAG is essential for an earlier diagnosis of this common eye disorder, predictive testing of at-risk patients, and design of gene-based targeted medical therapies none of which are currently available.
Collapse
Affiliation(s)
- Hélène Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, 94612, USA.
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
37
|
Preparation and Administration of Adeno-associated Virus Vectors for Corneal Gene Delivery. Methods Mol Biol 2020; 2145:77-102. [PMID: 32542602 DOI: 10.1007/978-1-0716-0599-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gene delivery approaches using adeno-associated virus (AAV) vectors are currently the preferred method for human gene therapy applications and have demonstrated success in clinical trials for a diverse set of diseases including retinal blindness. To date, no clinical trials using AAV gene therapy in the anterior eye have been initiated; however, corneal gene delivery appears to be an attractive approach for treating both corneal and ocular surface diseases. Multiple preclinical studies by our lab and others have demonstrated efficient AAV vector-mediated gene delivery to the cornea for immunomodulation, anti-vascularization, and enzyme supplementation. Interestingly, the route of AAV vector administration and nuances such as administered volume influence vector tropism and transduction efficiency. In this chapter, a detailed protocol for AAV vector production and specific approaches for AAV-mediated gene transfer to the cornea via subconjunctival and intrastromal injections are described.
Collapse
|
38
|
Domenger C, Grimm D. Next-generation AAV vectors—do not judge a virus (only) by its cover. Hum Mol Genet 2019; 28:R3-R14. [DOI: 10.1093/hmg/ddz148] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractRecombinant adeno-associated viruses (AAV) are under intensive investigation in numerous clinical trials after they have emerged as a highly promising vector for human gene therapy. Best exemplifying their power and potential is the authorization of three gene therapy products based on wild-type AAV serotypes, comprising Glybera (AAV1), Luxturna (AAV2) and, most recently, Zolgensma (AAV9). Nonetheless, it has also become evident that the current AAV vector generation will require improvements in transduction potency, antibody evasion and cell/tissue specificity to allow the use of lower and safer vector doses. To this end, others and we devoted substantial previous research to the implementation and application of key technologies for engineering of next-generation viral capsids in a high-throughput ‘top-down’ or (semi-)rational ‘bottom-up’ approach. Here, we describe a set of recent complementary strategies to enhance features of AAV vectors that act on the level of the recombinant cargo. As examples that illustrate the innovative and synergistic concepts that have been reported lately, we highlight (i) novel synthetic enhancers/promoters that provide an unprecedented degree of AAV tissue specificity, (ii) pioneering genetic circuit designs that harness biological (microRNAs) or physical (light) triggers as regulators of AAV gene expression and (iii) new insights into the role of AAV DNA structures on vector genome stability, integrity and functionality. Combined with ongoing capsid engineering and selection efforts, these and other state-of-the-art innovations and investigations promise to accelerate the arrival of the next generation of AAV vectors and to solidify the unique role of this exciting virus in human gene therapy.
Collapse
Affiliation(s)
- Claire Domenger
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| |
Collapse
|
39
|
Tan J, Liu G, Zhu X, Wu Z, Wang N, Zhou L, Zhang X, Fan N, Liu X. Lentiviral Vector-Mediated Expression of Exoenzyme C3 Transferase Lowers Intraocular Pressure in Monkeys. Mol Ther 2019; 27:1327-1338. [PMID: 31129118 DOI: 10.1016/j.ymthe.2019.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is considered a lifelong disease characterized by optic nerve deterioration and visual field damage. Although the disease progression can usually be controlled by lowering the intraocular pressure (IOP), therapeutic effects of current approaches do not last long. Gene therapy could be a promising method for persistent treatment of the disease. Our previous study demonstrated that gene transfer of exoenzyme C3 transferase (C3) to the trabecular meshwork (TM) to inhibit Rho GTPase (Rho), the upstream signal molecule of Rho-associated kinase (ROCK), resulted in lowered IOP in normal rodent eyes. In the present study, we show that the lentiviral vector (LV)-mediated C3 expression inactivates RhoA in human TM cells by ADP ribosylation, resulting in disruption of the actin cytoskeleton and altered cell morphology. In addition, intracameral delivery of the C3 vector to monkey eyes leads to persistently lowered IOP without obvious signs of inflammation. This is the first report of using a vector to transduce the TM of an alive non-human primate with a gene that alters cellular machinery and physiology. Our results in non-human primates support that LV-mediated C3 expression in the TM may have therapeutic potential for glaucoma, the leading cause of irreversible blindness in humans.
Collapse
Affiliation(s)
- Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen, China; Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen, China
| | - Guo Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen, China
| | - Xianjun Zhu
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences, Provincial People's Hospital, Chengdu, Sichuan, China; Chengdu Institute of Biology, Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zhijian Wu
- Ocular Gene Therapy Core, National Eye Institute, NIH, 6 Center Drive, Room 307, Bethesda, MD 20892, USA
| | - Ningli Wang
- Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liang Zhou
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences, Provincial People's Hospital, Chengdu, Sichuan, China
| | - Xiaoguang Zhang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen, China; Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen, China.
| |
Collapse
|
40
|
Wolf M, Clay SM, Oldenburg CE, Rose-Nussbaumer J, Hwang DG, Chan MF. Overexpression of MMPs in Corneas Requiring Penetrating and Deep Anterior Lamellar Keratoplasty. Invest Ophthalmol Vis Sci 2019; 60:1734-1747. [PMID: 31022731 PMCID: PMC6485316 DOI: 10.1167/iovs.18-25961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Matrix metalloproteinases (MMPs) comprise a family of zinc-dependent endopeptidases involved in wound healing processes, including neovascularization and fibrosis. We assessed MMP protein expression levels in diseased corneas of patients requiring penetrating and deep anterior lamellar keratoplasty. The purpose of this study was to test the hypothesis that upregulation of MMPs in diseased corneas is positively associated with clinical levels of corneal neovascularization and fibrosis. Methods Protein expression levels of nine individual MMPs were quantified simultaneously in human corneal lysates by using the Bio-Plex Pro Human MMP 9-Plex Panel and the MAGPIX technology. Measurements of MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP10, MMP12, and MMP13 were performed on diseased specimens from 21 patients undergoing corneal transplantation (17 for penetrating keratoplasty and 4 for deep anterior lamellar keratoplasty) and 6 normal control corneas. Results Luminex-based expression analysis revealed a significant overexpression of four of the nine MMPs tested (MMP2, MMP8, MMP12, and MMP13) in patient samples compared to control. Significant overexpression of MMP1, MMP2, MMP8, MMP12, and MMP13 was observed in diseased corneas with neovascularization compared with diseased corneas without neovascularization. Overexpression of MMP1, MMP2, MMP8, MMP12, and MMP13 also corresponded with the levels of corneal fibrosis. Finally, reduced expression of MMP3 was detected in keratoconus patients. Conclusions Multiple MMPs are expressed in the corneas of patients with chronic disease requiring keratoplasty even when the pathologic process appears to be clinically inactive. In particular, the expression of several MMPs (MMP2, MMP8, MMP12, and MMP13) is positively associated with increased levels corneal fibrosis and neovascularization.
Collapse
Affiliation(s)
- Marie Wolf
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Selene M Clay
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Catherine E Oldenburg
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| | - Jennifer Rose-Nussbaumer
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| | - David G Hwang
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| | - Matilda F Chan
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| |
Collapse
|
41
|
Mietzner R, Breunig M. Causative glaucoma treatment: promising targets and delivery systems. Drug Discov Today 2019; 24:1606-1613. [PMID: 30905679 DOI: 10.1016/j.drudis.2019.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
Glaucoma is one of the most common causes of blindness worldwide. Elevated intraocular pressure (IOP) is the major modifiable risk factor of the disease. Conventional therapy suffers from poor compliance, low bioavailability, and the lack of causative treatment options. To improve therapeutic success, it is crucial to identify major mediators of pathological changes associated with elevated IOP and to intervene at the molecular level. Here, we discuss relevant key functions of transforming growth factor-β2 (TGF-β2), connective tissue growth factor (CTGF), integrins, Rho-associated kinase (ROCK), and nitric oxide (NO) with regard to the onset of glaucoma, highlighting new drug delivery approaches for causative treatment.
Collapse
Affiliation(s)
- Raphael Mietzner
- Department of Pharmaceutical Technology, University Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany.
| |
Collapse
|
42
|
O'Callaghan J, Campbell M, Humphries P. Intracameral Delivery of AAV to Corneal Endothelium for Expression of Secretory Proteins. Methods Mol Biol 2019; 1950:263-270. [PMID: 30783979 DOI: 10.1007/978-1-4939-9139-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
AAV9 drives gene expression in a highly selective manner within the corneal endothelium of mice following intracameral inoculation into the anterior chamber of the eye. In principle, this allows genes encoding protein constituents of the secretome (representing up to 20% of the human proteome) to be delivered directly into the aqueous humor. From here the secreted protein moves with the natural flow of the aqueous humor via a pressure gradient and is directed toward the outflow tissues. Such a delivery can be employed to modulate outflow facility and intraocular pressure through interactions at the trabecular meshwork and Schlemm's canal. We provide a protocol for the delivery of AAV to the corneal endothelium, using a CMV-driven eGFP reporter gene as a marker.
Collapse
Affiliation(s)
- Jeffrey O'Callaghan
- Ocular Genetics Unit, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland.
| | - Matthew Campbell
- Neurovascular Genetics Laboratory, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Peter Humphries
- Ocular Genetics Unit, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| |
Collapse
|
43
|
Jiang Y, Zhang C, Ma J, Wang L, Gao J, Ren J, He W, Wang S, Sheng S, Huang X. Expression of matrix Metalloproteinases-2 and aquaporin-1 in corneoscleral junction after angle-closure in rabbits. BMC Ophthalmol 2019; 19:43. [PMID: 30717683 PMCID: PMC6360660 DOI: 10.1186/s12886-019-1058-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/29/2019] [Indexed: 11/24/2022] Open
Abstract
Background To investigate the expression of Matrix Metalloproteinases 2 and aquaporin-1 in corneoscleral junction and explore the mechanism of trabecular damageafter angle-closure. Methods Thirty New Zealand white rabbits were randomly assigned into 2 groups, theexperimental group (Group 1) including twenty five rabbits and the control group (Group 2) including 5 rabbits. The rabbits in the experimental group were used to establish angle-closure models, and the rabbits in the control group were not subjected to any operation. All the rabbits were followed by slit lamp microscopy, Tonopen tonometer, and anterior segment optical coherent tomography (AS-OCT). The expressions of metalloproteinase MMP-2, aquaporin-1, and tissue inhibitors of metalloproteinase-2 in corneoscleral junctionwere evaluatedin both groups byimmunofluorescence, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA). Results Slit-lamp examination showed that angle-closure model was successfully established in twenty rabbits. The extent of angle-closure was about 2 to 4 clock hours in all the rabbit models, but the intraocular pressure (IOP) of the rabbits distributed from 8.57 to 15.25 mmHg and no significant high IOP was found in the follow-up period. The AQP-1-positive cells mainly located in Schlemm’s canal, the inner surface of trabecular meshwork (TM), and the surface of iris, which began to decline on 1 month after angle-closure. MMP2 staining was diffuse in trabecular meshwork and iris. Immunofluorescence signal of MMP2 was strong within 1 month after angle-closure, and subsequently became weak. qRT-PCR and ELISA showed that the expression of MMP-2 and TIMP-2 increased within 1 month after angle-closure and then declined gradually. The AQP-1 levels showed slightly declined on 1 month after angle-closure. Conclusions Altered levels of MMPs, TIMPs, and AQP-1 were found in the area of angle-closure, which may be involved in the damage of TM and Schlemm’s canal after angle-closure.
Collapse
Affiliation(s)
- Yaqin Jiang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, People's Republic of China
| | - Canwei Zhang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, People's Republic of China
| | - Jianli Ma
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, People's Republic of China
| | - Luping Wang
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Jing Gao
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, People's Republic of China
| | - Jiantao Ren
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, People's Republic of China
| | - Wei He
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, People's Republic of China
| | - Sheng Wang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, People's Republic of China
| | - Shuai Sheng
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, People's Republic of China
| | - Xudong Huang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, People's Republic of China.
| |
Collapse
|
44
|
Serotype survey of AAV gene delivery via subconjunctival injection in mice. Gene Ther 2018; 25:402-414. [PMID: 30072815 DOI: 10.1038/s41434-018-0035-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
AAV gene therapy approaches in the posterior eye resulted in the first FDA-approved gene therapy-based drug. However, application of AAV vectorology to the anterior eye has yet to enter even a Phase I trial. Furthermore, the simple and safe subconjunctival injection has been relatively unexplored in regard to AAV vector transduction. To determine the utility of this route for the treatment of various ocular disorders, a survey of gene delivery via natural AAV serotypes was performed and correlated to reported cellular attachment factors. AAV serotypes packaged with a self-complementary reporter were administered via subconjunctival injection to WT mice. Subconjunctival injection of AAV vectors was without incidence; however, vector shedding in tears was noted weeks following administration. AAV transduction was serotype dependent in anterior segment tissues including the eye lid, conjunctiva, and cornea, as well as the periocular tissues including muscle. Transgene product in the cornea was highest for AAV6 and AAV8, however, their corneal restriction was remarkably different; AAV6 appeared restricted to the endothelium layer while AAV8 efficiently transduced the stromal layer. Reported AAV cellular receptors were not well correlated to vector transduction; although, in some cases they were conserved among mouse and human ocular tissues. Subconjunctival administration of particular AAV serotypes may be a simple and safe targeted gene delivery route for ocular surface, muscular, corneal, and optic nerve diseases.
Collapse
|
45
|
Teo KYC, Lee SY, Barathi AV, Tun SBB, Tan L, Constable IJ. Surgical Removal of Internal Limiting Membrane and Layering of AAV Vector on the Retina Under Air Enhances Gene Transfection in a Nonhuman Primate. ACTA ACUST UNITED AC 2018; 59:3574-3583. [DOI: 10.1167/iovs.18-24333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Kelvin Yi Chong Teo
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Shu Yen Lee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Amutha Veluchamy Barathi
- Translational Pre-clinical Model Platform, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sai Bo Bo Tun
- Translational Pre-clinical Model Platform, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Licia Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Ian Jeffery Constable
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Western Australia
- Department of Ophthalmology, Sir Charles Gairdner Hospital, Perth, Western Australia
| |
Collapse
|
46
|
Moore CT, Christie KA, Marshall J, Nesbit MA. Personalised genome editing – The future for corneal dystrophies. Prog Retin Eye Res 2018; 65:147-165. [DOI: 10.1016/j.preteyeres.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022]
|
47
|
Raychaudhuri U, Millar JC, Clark AF. Knockout of tissue transglutaminase ameliorates TGFβ2-induced ocular hypertension: A novel therapeutic target for glaucoma? Exp Eye Res 2018. [DOI: 10.1016/j.exer.2018.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Sharif NA. iDrugs and iDevices Discovery Research: Preclinical Assays, Techniques, and Animal Model Studies for Ocular Hypotensives and Neuroprotectants. J Ocul Pharmacol Ther 2018; 34:7-39. [PMID: 29323613 DOI: 10.1089/jop.2017.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Discovery ophthalmic research is centered around delineating the molecular and cellular basis of ocular diseases and finding and exploiting molecular and genetic pathways associated with them. From such studies it is possible to determine suitable intervention points to address the disease process and hopefully to discover therapeutics to treat them. An investigational new drug (IND) filing for a new small-molecule drug, peptide, antibody, genetic treatment, or a device with global health authorities requires a number of preclinical studies to provide necessary safety and efficacy data. Specific regulatory elements needed for such IND-enabling studies are beyond the scope of this article. However, to enhance the overall data packages for such entities and permit high-quality foundation-building publications for medical affairs, additional research and development studies are always desirable. This review aims to provide examples of some target localization/verification, ocular drug discovery processes, and mechanistic and portfolio-enhancing exploratory investigations for candidate drugs and devices for the treatment of ocular hypertension and glaucomatous optic neuropathy (neurodegeneration of retinal ganglion cells and their axons). Examples of compound screening assays, use of various technologies and techniques, deployment of animal models, and data obtained from such studies are also presented.
Collapse
Affiliation(s)
- Najam A Sharif
- 1 Global Alliances & External Research , Santen Incorporated, Emeryville, California.,2 Department of Pharmaceutical Sciences, Texas Southern University , Houston, Texas.,3 Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center , Fort Worth, Texas
| |
Collapse
|
49
|
Sharif NA. Glaucomatous optic neuropathy treatment options: the promise of novel therapeutics, techniques and tools to help preserve vision. Neural Regen Res 2018; 13:1145-1150. [PMID: 30028313 PMCID: PMC6065230 DOI: 10.4103/1673-5374.235017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Peripheral vision loss followed by “tunnel vision” and eventual irreversible blindness is the fate of patients afflicted by various forms of glaucoma including primary open-angle glaucoma (POAG) and normotensive glaucoma (NTG). These complex and heterogeneous diseases are characterized by extensive death of retinal ganglion cells (RGCs) accompanied by retraction and severance of their axonal connections to the brain and thus damage to and thinning of the optic nerve. Since patients suffering from this glaucomatous optic neuropathy (GON) first notice visual impairment when they have lost > 40% of their RGCs, early diagnosis is the key to retard the progression of glaucoma. Elevated intraocular pressure (IOP), low cerebrospinal and/or low intracranial fluid pressure, advancing age, and ethnicity are major risk factors associated with POAG. However, retinal vascular abnormalities and a high sensitivity of RGCs and optic nerve head components to neurotoxic, inflammatory, oxidative and mechanical insults also contribute to vision loss in POAG/GON. Current treatment modalities for POAG and NTG involve lowering IOP using topical ocular drugs, combination drug products, and surgical interventions. Two recently approved multi-pharmacophoric drugs (e.g., rho kinase inhibitor, Netarsudil; a drug conjugate, Latanoprostene Bunod) and novel aqueous humor drainage devices (iStent and CyPass) are also gaining acceptance for treating POAG/ NTG. Neuroprotective and regenerative agents, coupled with electroceutical, mechanical support systems, stem cell transplantation and gene therapy are emerging therapeutics on the horizon to help combat GON. The latter techniques and approaches hope to rejuvenate RGCs and repair the optic nerve structures, thereby providing a gain of function of the visual system for the glaucoma patients.
Collapse
Affiliation(s)
- Najam A Sharif
- Department of Global Alliances & External Research, Global Ophthalmology Research & Development, Santen Incorporated, Emeryville, CA; Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX; Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX; Department of Pharmacy Sciences, Creighton University, Omaha, Nebraska USA; Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK
| |
Collapse
|
50
|
Igić R. Four decades of ocular renin-angiotensin and kallikrein-kinin systems (1977–2017). Exp Eye Res 2018; 166:74-83. [DOI: 10.1016/j.exer.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/09/2017] [Accepted: 05/20/2017] [Indexed: 12/31/2022]
|