1
|
Chudakova D, Kuzenkova L, Fisenko A, Savostyanov K. In Search of Spinal Muscular Atrophy Disease Modifiers. Int J Mol Sci 2024; 25:11210. [PMID: 39456991 PMCID: PMC11508272 DOI: 10.3390/ijms252011210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The 5q Spinal Muscular Atrophy (SMA) is a hereditary autosomal recessive disease caused by defects in the survival motor neuron (SMN1) gene encoding survival motor neuron (SMN) protein. Currently, it is the leading cause of infantile mortality worldwide. SMA is a progressive neurodegenerative disease with "continuum of clinical severity", which can be modulated by genetic and epigenetic factors known as disease modifiers (DMs). Individuals (even siblings) with the same defects in SMN1 gene might have strikingly different types of SMA, supposedly due to the impact of DMs. There are several therapeutic options for SMA, all of them focusing on the restoration of the SMN protein levels to normal. Determining DMs and the pathways in which they are involved might aid in enhancing existing curative approaches. Furthermore, DMs might become novel therapeutic targets or prognostic biomarkers of the disease. This narrative review provides a brief overview of the genetics and pathobiology of SMA, and its bona fide modifiers. We describe novel, emerging DMs, approaches and tools used to identify them, as well as their potential mechanisms of action and impact on disease severity. We also propose several disease-modifying molecular mechanisms which could provide a partial explanation of the staggering variability of SMA phenotypes.
Collapse
Affiliation(s)
| | | | | | - Kirill Savostyanov
- National Medical Research Center of Children’s Health of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| |
Collapse
|
2
|
Brown SM, Ajjarapu AS, Ramachandra D, Blasco-Pérez L, Costa-Roger M, Tizzano EF, Sumner CJ, Mathews KD. Onasemnogene-abeparvovec administration to premature infants with spinal muscular atrophy. Ann Clin Transl Neurol 2024. [PMID: 39342433 DOI: 10.1002/acn3.52213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Twin girls born at 30 weeks' gestation with spinal muscular atrophy (SMA) received onsasemnogene-abeparvovec (OA) at 3.5 weeks of life. They had no treatment-related adverse events, normal acquisition of motor milestones, and normal neurological examination at 19 months. Genotyping revealed 0 copies of SMN1 and a single, hybrid SMN2 gene containing the positive genetic modifier c.835-44A>G. This was associated with full-length SMN2 blood mRNA expression levels similar to a 2 copy SMA infant. The observed favorable outcomes are likely due to the genetic modifier combined with early drug administration enabled by prematurity.
Collapse
Affiliation(s)
- Stephen M Brown
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aparna S Ajjarapu
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Divya Ramachandra
- Department of Genetics, Advocate Children's Hospital, Oak Lawn, Illinois, USA
| | - Laura Blasco-Pérez
- Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, Hospital Vall d'Hebron, Barcelona, Spain
| | - Mar Costa-Roger
- Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, Hospital Vall d'Hebron, Barcelona, Spain
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, Hospital Vall d'Hebron, Barcelona, Spain
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine D Mathews
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Costa-Roger M, Blasco-Pérez L, Gerin L, Codina-Solà M, Leno-Colorado J, Gómez-García De la Banda M, Garcia-Uzquiano R, Saugier-Veber P, Drunat S, Quijano-Roy S, Tizzano EF. Complex SMN Hybrids Detected in a Cohort of 31 Patients With Spinal Muscular Atrophy. Neurol Genet 2024; 10:e200175. [PMID: 39035824 PMCID: PMC11259531 DOI: 10.1212/nxg.0000000000200175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/06/2024] [Indexed: 07/23/2024]
Abstract
Background and Objectives Spinal muscular atrophy (SMA) is a recessive neuromuscular disorder caused by the loss or presence of point pathogenic variants in the SMN1 gene. The main positive modifier of the SMA phenotype is the number of copies of the SMN2 gene, a paralog of SMN1, which only produces around 10%-15% of functional SMN protein. The SMN2 copy number is inversely correlated with phenotype severity; however, discrepancies between the SMA type and the SMN2 copy number have been reported. The presence of SMN2-SMN1 hybrids has been proposed as a possible modifier of SMA disease. Methods We studied 31 patients with SMA, followed at a single center and molecularly diagnosed by Multiplex Ligand-Dependent Probe Amplification (MLPA), with a specific next-generation sequencing protocol to investigate their SMN2 genes in depth. Hybrid characterization also included bioinformatics haplotype phasing and specific PCRs to resolve each SMN2-SMN1 hybrid structure. Results We detected SMN2-SMN1 hybrid genes in 45.2% of the patients (14/31), the highest rate reported to date. This represents a total of 25 hybrid alleles, with 9 different structures, of which only 4 are detectable by MLPA. Of particular interest were 2 patients who presented 4 SMN2-SMN1 hybrid copies each and no pure SMN2 copies, an event reported here for the first time. No clear trend between the presence of hybrids and a milder phenotype was observed, although 5 of the patients with hybrid copies showed a better-than-expected phenotype. The higher hybrid detection rate in our cohort may be due to both the methodology applied, which allows an in-depth characterization of the SMN genes and the ethnicity of the patients, mainly of African origin. Discussion Although hybrid genes have been proposed to be beneficial for patients with SMA, our work revealed great complexity and variability between hybrid structures; therefore, each hybrid structure should be studied independently to determine its contribution to the SMA phenotype. Large-scale studies are needed to gain a better understanding of the function and implications of SMN2-SMN1 hybrid copies, improving genotype-phenotype correlations and prediction of the evolution of patients with SMA.
Collapse
Affiliation(s)
- Mar Costa-Roger
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Laura Blasco-Pérez
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Lorene Gerin
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Marta Codina-Solà
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Jordi Leno-Colorado
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Marta Gómez-García De la Banda
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Rocio Garcia-Uzquiano
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Pascale Saugier-Veber
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Séverine Drunat
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Susana Quijano-Roy
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Eduardo F Tizzano
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| |
Collapse
|
4
|
Waldrop MA. Clinical decision making around commercial use of gene and genetic therapies for spinal muscular atrophy. Neurotherapeutics 2024; 21:e00437. [PMID: 39241317 PMCID: PMC11405791 DOI: 10.1016/j.neurot.2024.e00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024] Open
Abstract
Spinal muscular atrophy is no longer a leading cause of inherited infant death in the United States. Since 2016, three genetic therapies have been approved for the treatment of spinal muscular atrophy. Each therapy has been well studied with robust data for both safety and efficacy. However, there are no head-to-head comparator studies to inform clinical decision making. Thus, treatment selection, timing, and combination therapy is largely up to clinician preference and insurance policies. As the natural history of spinal muscular atrophy continues to change, more data is needed to assist in evidence-based and cost-effective clinical decision making.
Collapse
Affiliation(s)
- Megan A Waldrop
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus OH, 43205, USA; Departments of Pediatrics and Neurology, Wexner Medical Center, Ohio State University, Columbus OH 43205, USA.
| |
Collapse
|
5
|
Vill K, Tacke M, König A, Baumann M, Baumgartner M, Steinbach M, Bernert G, Blaschek A, Deschauer M, Flotats-Bastardas M, Friese J, Goldbach S, Gross M, Günther R, Hahn A, Hagenacker T, Hauser E, Horber V, Illsinger S, Johannsen J, Kamm C, Koch JC, Koelbel H, Koehler C, Kolzter K, Lochmüller H, Ludolph A, Mensch A, Meyer Zu Hoerste G, Mueller M, Mueller-Felber W, Neuwirth C, Petri S, Probst-Schendzielorz K, Pühringer M, Steinbach R, Schara-Schmidt U, Schimmel M, Schrank B, Schwartz O, Schlachter K, Schwerin-Nagel A, Schreiber G, Smitka M, Topakian R, Trollmann R, Tuerk M, Theophil M, Rauscher C, Vorgerd M, Walter MC, Weiler M, Weiss C, Wilichowski E, Wurster CD, Wunderlich G, Zeller D, Ziegler A, Kirschner J, Pechmann A. 5qSMA: standardised retrospective natural history assessment in 268 patients with four copies of SMN2. J Neurol 2024; 271:2787-2797. [PMID: 38409538 PMCID: PMC11055798 DOI: 10.1007/s00415-024-12188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
Newborn screening for 5qSMA offers the potential for early, ideally pre-symptomatic, therapeutic intervention. However, limited data exist on the outcomes of individuals with 4 copies of SMN2, and there is no consensus within the SMA treatment community regarding early treatment initiation in this subgroup. To provide evidence-based insights into disease progression, we performed a retrospective analysis of 268 patients with 4 copies of SMN2 from the SMArtCARE registry in Germany, Austria and Switzerland. Inclusion criteria required comprehensive baseline data and diagnosis outside of newborn screening. Only data prior to initiation of disease-modifying treatment were included. The median age at disease onset was 3.0 years, with a mean of 6.4 years. Significantly, 55% of patients experienced symptoms before the age of 36 months. 3% never learned to sit unaided, a further 13% never gained the ability to walk independently and 33% of ambulatory patients lost this ability during the course of the disease. 43% developed scoliosis, 6.3% required non-invasive ventilation and 1.1% required tube feeding. In conclusion, our study, in line with previous observations, highlights the substantial phenotypic heterogeneity in SMA. Importantly, this study provides novel insights: the median age of disease onset in patients with 4 SMN2 copies typically occurs before school age, and in half of the patients even before the age of three years. These findings support a proactive approach, particularly early treatment initiation, in this subset of SMA patients diagnosed pre-symptomatically. However, it is important to recognize that the register will not include asymptomatic individuals.
Collapse
Affiliation(s)
- Katharina Vill
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. Von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, 80337, Munich, Germany.
- School of Medicine, Klinikum Rechts Der Isar, Department of Human Genetics, Technical University of Munich, Munich, Germany.
| | - Moritz Tacke
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. Von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, 80337, Munich, Germany
| | - Anna König
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. Von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, 80337, Munich, Germany
| | - Matthias Baumann
- Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuela Baumgartner
- Department of Children and Adolescents, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| | - Meike Steinbach
- Department of Neurology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Astrid Blaschek
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. Von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, 80337, Munich, Germany
| | - Marcus Deschauer
- School of Medicine, Klinikum Rechts Der Isar, Department of Neurology, Technical University of Munich, Munich, Germany
| | | | - Johannes Friese
- Department of Neuropediatrics, University Hospital Bonn, Center for Pediatrics, Bonn, Germany
| | | | - Martin Gross
- Department of Neurological Intensive Care and Rehabilitation, Evangelisches Krankenhaus Oldenburg, Oldenburg, Germany
| | - René Günther
- University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Tim Hagenacker
- Department of Neurology, and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, Essen, Germany
| | - Erwin Hauser
- Department for Neuropädiatrie, Landeskrankenhaus Mödling, Mödling, Austria
| | - Veronka Horber
- Department of Paediatric Neurology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Sabine Illsinger
- Hannover Medical School, Clinic for Pediatric Kidney-, Liver- and Metabolic Diseases, Hannover, Germany
| | - Jessika Johannsen
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Kamm
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Jan C Koch
- Klinik Für Neurologie Universitätsmedizin Göttingen, Göttingen, Germany
| | - Heike Koelbel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Cornelia Koehler
- Klinik Für Kinder-Und Jugendmedizin der Ruhr-Universität Bochum Im St. Josef-Hospital, Bochum, Germany
| | - Kirsten Kolzter
- Kliniken Köln, Sozialpädiatrisches Zentrum, Cologne, Germany
| | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Albert Ludolph
- Department for Neurology, University of Ulm, Ulm, Germany
- Department of Neurology, Ulm University, Ulm, Germany
| | - Alexander Mensch
- Department of Neurology, University Medicine Halle, Halle, Saale, Germany
| | | | - Monika Mueller
- Department for Neuropediatrics, University of Wuerzburg, Würzburg, Germany
| | - Wolfgang Mueller-Felber
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. Von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, 80337, Munich, Germany
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Manuel Pühringer
- Department of Pediatrics and Adolescent Medicine, Kepler University Hospital Linz, Linz, Austria
| | - Robert Steinbach
- Department of Neurology, University Hospital Jena, Jena, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Mareike Schimmel
- Pediatric Neurology, Pediatrics and Adolescent Medicine, University Medical Center Augsburg, Augsburg, Germany
| | - Bertold Schrank
- Department of Neurology, DKD Helios Klinik Wiesbaden, Wiesbaden, Germany
| | - Oliver Schwartz
- Universitätsklinikum Münster Klinik Für Kinder- Und Jugendpädiatrie- Neuropädiatrie, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Kurt Schlachter
- Department of Neuropediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | | | | | - Martin Smitka
- Department of Neuropediatrics, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Raffi Topakian
- Department of Neurology, Academic Teaching Hospital Wels-Grieskirchen, Wels, Austria
| | - Regina Trollmann
- Department of Pediatrics, Friedrich-Alexander Universität Erlangen-Nürnberg Pediatric Neurology, Erlangen, Germany
| | - Matthias Tuerk
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | - Christian Rauscher
- Department for Neuropediatrics, University of Salzburg, Salzburg, Austria
| | - Mathias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Heimer Institute for Muscle Research, Ruhr-University Bochum, Bochum, Germany
| | - Maggie C Walter
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Markus Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudia Weiss
- Charité - University Medicine Berlin, Center for Chronically Sick Children, Berlin, Germany
| | | | | | - Gilbert Wunderlich
- German Center for Neurodegenerative Diseases, DZNE, Site Ulm, Ulm, Germany
- Faculty of Medicine and University Hospital, Department of Neurology and Center for Rare Diseases, University of Cologne, Cologne, Germany
| | - Daniel Zeller
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Ziegler
- Center for Childhood and Adolescent Medicine, Department of Metabolic Medicine and Pediatric Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Janbernd Kirschner
- Klinik Für Kinder-Und Jugendmedizin der Ruhr-Universität Bochum Im St. Josef-Hospital, Bochum, Germany
| | - Astrid Pechmann
- Klinik Für Kinder-Und Jugendmedizin der Ruhr-Universität Bochum Im St. Josef-Hospital, Bochum, Germany
| |
Collapse
|
6
|
Qu Y, Bai J, Jiao H, Qi H, Huang W, OuYang S, Peng X, Jin Y, Wang H, Song F. Variants located in intron 6 of SMN1 lead to misdiagnosis in genetic detection and screening for SMA. Heliyon 2024; 10:e28015. [PMID: 38515714 PMCID: PMC10955315 DOI: 10.1016/j.heliyon.2024.e28015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Accurate genetic diagnosis is necessary for guiding the treatment of spinal muscular atrophy (SMA). An updated consensus for the diagnosis and management of SMA was published in 2018. However, clinicians should remain alert to some pitfalls of genetic testing that can occur when following a routine diagnosis. In this study, we report the diagnosis of three unrelated individuals who were initially misdiagnosed as carrying a homozygous deletion of SMN1 exon 7. MLPA (P060 and P021) and qPCR were used to detect the copy number of SMN. SMN1 variants were identified by SMN1 clone and next-generation sequencing (NGS). Transcription of SMN1 variants was detected using qRT-PCR and ex vivo splicing analysis. Among the three individuals, one was identified as a patient with SMA carrying a heterozygous deletion and a pathogenic variant (c.835-17_835-14delCTTT) of SMN1, one was a healthy carrier only carrying a heterozygous deletion of SMN1 exon 7, and the third was a patient with nemaline myopathy 2 carrying a heterozygous deletion of SMN1 exon 7. The misdiagnosis of these individuals was attributed to the presence of the c.835-17_835-14delCTTT or c.835-17C > G variants in SMN1 intron 6, which affect the amplification of SMN1 exon 7 during MLPA-P060 and qPCR testing. However, MLPA-P021 and NGS analyses were unaffected by these variants. These results support that additional detection methods should be employed in cases where the SMN1 copy number is ambiguous to minimize the misdiagnosis of SMA.
Collapse
Affiliation(s)
- Yujin Qu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Jinli Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Hui Jiao
- Department of Neurology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Hong Qi
- Prenatal Diagnosis Center, Beijing Haidian District Maternal and Child Health Care Hospital, Beijing, China
| | - Wenchen Huang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Shijia OuYang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoyin Peng
- Department of Neurology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Yuwei Jin
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Hong Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Fang Song
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
7
|
Ishigami Y, Wong MS, Martí-Gómez C, Ayaz A, Kooshkbaghi M, Hanson SM, McCandlish DM, Krainer AR, Kinney JB. Specificity, synergy, and mechanisms of splice-modifying drugs. Nat Commun 2024; 15:1880. [PMID: 38424098 PMCID: PMC10904865 DOI: 10.1038/s41467-024-46090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
Drugs that target pre-mRNA splicing hold great therapeutic potential, but the quantitative understanding of how these drugs work is limited. Here we introduce mechanistically interpretable quantitative models for the sequence-specific and concentration-dependent behavior of splice-modifying drugs. Using massively parallel splicing assays, RNA-seq experiments, and precision dose-response curves, we obtain quantitative models for two small-molecule drugs, risdiplam and branaplam, developed for treating spinal muscular atrophy. The results quantitatively characterize the specificities of risdiplam and branaplam for 5' splice site sequences, suggest that branaplam recognizes 5' splice sites via two distinct interaction modes, and contradict the prevailing two-site hypothesis for risdiplam activity at SMN2 exon 7. The results also show that anomalous single-drug cooperativity, as well as multi-drug synergy, are widespread among small-molecule drugs and antisense-oligonucleotide drugs that promote exon inclusion. Our quantitative models thus clarify the mechanisms of existing treatments and provide a basis for the rational development of new therapies.
Collapse
Affiliation(s)
- Yuma Ishigami
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Mandy S Wong
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Beam Therapeutics, Cambridge, MA, 02142, USA
| | | | - Andalus Ayaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Mahdi Kooshkbaghi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- The Estée Lauder Companies, New York, NY, 10153, USA
| | | | | | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| | - Justin B Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
8
|
Yeo CJJ, Tizzano EF, Darras BT. Challenges and opportunities in spinal muscular atrophy therapeutics. Lancet Neurol 2024; 23:205-218. [PMID: 38267192 DOI: 10.1016/s1474-4422(23)00419-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/12/2023] [Accepted: 10/26/2023] [Indexed: 01/26/2024]
Abstract
Spinal muscular atrophy was the most common inherited cause of infant death until 2016, when three therapies became available: the antisense oligonucleotide nusinersen, gene replacement therapy with onasemnogene abeparvovec, and the small-molecule splicing modifier risdiplam. These drugs compensate for deficient survival motor neuron protein and have improved lifespan and quality of life in infants and children with spinal muscular atrophy. Given the lifelong implications of these innovative therapies, ways to detect and manage treatment-modified disease characteristics are needed. All three drugs are more effective when given before development of symptoms, or as early as possible in individuals who have already developed symptoms. Early subtle symptoms might be missed, and disease onset might occur in utero in severe spinal muscular atrophy subtypes; in some countries, newborn screening is allowing diagnosis soon after birth and early treatment. Adults with spinal muscular atrophy report stabilisation of disease and less fatigue with treatment. These subjective benefits need to be weighed against the high costs of the drugs to patients and health-care systems. Clinical consensus is required on therapeutic windows and on outcome measures and biomarkers that can be used to monitor drug benefit, toxicity, and treatment-modified disease characteristics.
Collapse
Affiliation(s)
- Crystal J J Yeo
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Agency for Science, Technology and Research, Singapore; National Neuroscience Institute, Tan Tock Seng and Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain; Genetics Medicine, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Basil T Darras
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Bai J, Qu Y, Huang W, Meng W, Zhan J, Wang H, Hou W, Jin Y, Mao A, Song F. A high-fidelity long-read sequencing-based approach enables accurate and effective genetic diagnosis of spinal muscular atrophy. Clin Chim Acta 2024; 553:117743. [PMID: 38158006 DOI: 10.1016/j.cca.2023.117743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND We aimed to develop a high-fidelity long-read sequencing (LRS)-based approach to detect SMN gene variants in one step. It is challenging for conventional step-wise methods to simultaneously detect all kinds of variations between homologous SMN1 and SMN2. METHODS In this study, LRS was developed to analyze copy numbers (CNs), full sequences, and structure of SMN1 and SMN2. The results were compared with those from the step-wise methods in 202 samples from 67 families. RESULTS LRS achieved 100% (202/202) and 99.5% (201/202) accuracy for SMN1 and SMN2 CNs, respectively. It corrected SMN1 CNs from MLPA, which was caused by SNVs/indels that located in probe-binding region. LRS identified 23 SNVs/indels distributing throughout SMN1, including c.22dup and c.884A > T in trans-configuration, and a de novo variant c.41_42delinsC for the first time. LRS also identified a SMN2 variant c.346A > G. Moreover, it successfully determined Alu-mediated 8978-bp deletion encompassing exon 2a-5 and 1415-bp deletion disrupting exon 1, and the exact breakpoints of large deletions. Through haplotype-based pedigree trio analysis, LRS identified SMN1 2 + 0 carriers, and determined the distribution of SMN1 and SMN2 on two chromosomes. CONCLUSIONS LRS represents a more comprehensive and accurate diagnosis approach that is beneficial to early treatment and effective management of SMA.
Collapse
Affiliation(s)
- Jinli Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yujin Qu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Wenchen Huang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Wanli Meng
- Berry Genomics Corporation, Beijing 102200, China
| | - Jiahan Zhan
- Berry Genomics Corporation, Beijing 102200, China
| | - Hong Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Wenqi Hou
- Berry Genomics Corporation, Beijing 102200, China
| | - Yuwei Jin
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing 102200, China.
| | - Fang Song
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
10
|
Abiusi E, Costa-Roger M, Bertini ES, Tiziano FD, Tizzano EF, Abiusi E, Baranello G, Bertini E, Boemer F, Burghes A, Codina-Solà M, Costa-Roger M, Dangouloff T, Groen E, Gos M, Jędrzejowska M, Kirschner J, Lemmink HH, Müller-Felber W, Ouillade MC, Quijano-Roy S, Rucinski K, Saugier-Veber P, Tiziano FD, Tizzano EF, Wirth B. 270th ENMC International Workshop: Consensus for SMN2 genetic analysis in SMA patients 10-12 March, 2023, Hoofddorp, the Netherlands. Neuromuscul Disord 2024; 34:114-122. [PMID: 38183850 DOI: 10.1016/j.nmd.2023.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
The 270th ENMC workshop aimed to develop a common procedure to optimize the reliability of SMN2 gene copy number determination and to reinforce collaborative networks between molecular scientists and clinicians. The workshop involved neuromuscular and clinical experts and representatives of patient advocacy groups and industry. SMN2 copy number is currently one of the main determinants for therapeutic decision in SMA patients: participants discussed the issues that laboratories may encounter in this molecular test and the cruciality of the accurate determination, due the implications as prognostic factor in symptomatic patients and in individuals identified through newborn screening programmes. At the end of the workshop, the attendees defined a set of recommendations divided into four topics: SMA molecular prognosis assessment, newborn screening for SMA, SMN2 copies and treatments, and modifiers and biomarkers. Moreover, the group draw up a series of recommendations for the companies manufacturing laboratory kits, that will help to minimize the risk of errors, regardless of the laboratories' expertise.
Collapse
Affiliation(s)
- Emanuela Abiusi
- Section of Genomic Medicine, Department of Public Health and Life Sciences, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Mar Costa-Roger
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Enrico Silvio Bertini
- Research Unit of Neuromuscular Disease, Bambino Gesu’ Children's Hospital, IRCCS, Roma, Italy
| | - Francesco Danilo Tiziano
- Section of Genomic Medicine, Department of Public Health and Life Sciences, Università Cattolica del Sacro Cuore, Roma, Italy
- Complex Unit of Medical Genetics, Fondazione Policlinico Universitario IRCCS “A. Gemelli”, Roma, Italy
| | - Eduardo F Tizzano
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Emanuela Abiusi
- Section of Genomic Medicine, Dept. of Life Sciences and Public Health, Catholic University of the Sacred Heart, Roma, Italy
| | - Giovanni Baranello
- The Dubowitz Neuromuscular Centre, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre & Great Ormond Street Hospital NHS Foundation Trust, 30 Guilford Street, London WC1N 1EH, UK
| | - Enrico Bertini
- Italy, Research Unit of Neuromuscular Disease, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - François Boemer
- Biochemical Genetics Lab, Department of Human Genetics, University Hospital, University of Liège, 4000 Liège, Belgium
| | - Arthur Burghes
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Marta Codina-Solà
- Neuromuscular Reference Center, Department of Paediatrics, University Hospital Liege & University of Liege, Belgium
| | - Mar Costa-Roger
- Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tamara Dangouloff
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Ewout Groen
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Gos
- Department of Neuropediatrics and Muscle Disorders, Medical Center University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Maria Jędrzejowska
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Janbernd Kirschner
- Centre for Neuromuscular Disorders, Center for Translational Neuro and Behavioral Sciences, Department of Pediatric Neurology, University Duisburg-Essen, 45147 Essen, Germany
| | - Henny H Lemmink
- AFM Téléthon, Évry, France; SMA Europe; European Alliance for Newborn Screening in Spinal Muscular Atrophy
| | - Wolfgang Müller-Felber
- Pediatric Neuromuscular Unit (NEIDF Reference Center at FILNEMUS & Euro-NMD), Child Neurology Department, Raymond Poincaré Hospital (UVSQ), APHP Université Paris Saclay, Garches France
| | - Marie-Christine Ouillade
- Fundacja SMA, Warsaw, Poland; SMA Europe; European Alliance for Newborn Screening in Spinal Muscular Atrophy
| | - Susana Quijano-Roy
- Univ Rouen Normandie, Inserm U1245, Normandie Univ and CHU Rouen, Department of Genetics and Nord/Est/Ile de France Neuromuscular Reference Center, F-76000 Rouen, France
| | - Kacper Rucinski
- Institute of Medical Genomics, Dept. of Life Sciences and Public Health, Catholic University of the Sacred Heart, and Complex Unit of Medical Genetics, Fondazione Policlinico Universitario IRCCS “A. Gemelli”, Roma, Italy
| | - Pascale Saugier-Veber
- Institute of Human Genetics, University Hospital of Cologne, Center for Molecular Medicine, University of Cologne and Center for Rare Diseases Cologne, University Hopsital of Cologne, Cologne, Germany
| | - Francesco Danilo Tiziano
- Institute of Medical Genomics, Dept. of Life Sciences and Public Health, Catholic University of the Sacred Heart, and Complex Unit of Medical Genetics, Fondazione Policlinico Universitario IRCCS “A. Gemelli”, Roma, Italy
| | - Eduardo Fidel Tizzano
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, Center for Molecular Medicine, University of Cologne and Center for Rare Diseases Cologne, University Hopsital of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Maretina M, Il’ina A, Egorova A, Glotov A, Kiselev A. Development of 2'-O-Methyl and LNA Antisense Oligonucleotides for SMN2 Splicing Correction in SMA Cells. Biomedicines 2023; 11:3071. [PMID: 38002071 PMCID: PMC10669464 DOI: 10.3390/biomedicines11113071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease caused by mutations in the SMN1 gene. Existing therapies demonstrate positive results on SMA patients but still might be ameliorated in efficacy and price. In the presented study we designed antisense oligonucleotides (AONs), targeting intronic splicing silencer sites, some were modified with 2'-O-methyl, others with LNA. The AONs have been extensively tested in different concentrations, both individually and combined, in order to effectively target the ISS-N1 and A+100G splicing silencer regions in intron 7 of the SMN2 gene. By treating SMA-cultured fibroblasts with certain AONs, we discovered a remarkable increase in the levels of full-length SMN transcripts and the number of nuclear gems. This increase was observed to be dose-dependent and reached levels comparable to those found in healthy cells. When added to cells together, most of the tested molecules showed a remarkable synergistic effect in correcting splicing. Through our research, we have discovered that the impact of oligonucleotides is greatly influenced by their length, sequence, and pattern of modification.
Collapse
Affiliation(s)
- Marianna Maretina
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| | - Arina Il’ina
- Faculty of Biology, Saint Petersburg State University, Universitetskaya Embankment 7–9, 199034 Saint Petersburg, Russia;
| | - Anna Egorova
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| | - Andrey Glotov
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| | - Anton Kiselev
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| |
Collapse
|
12
|
Jiang T, Qu R, Liu X, Hou Y, Wang L, Hua Y. HnRNPR strongly represses splicing of a critical exon associated with spinal muscular atrophy through binding to an exonic AU-rich element. J Med Genet 2023; 60:1105-1115. [PMID: 37225410 DOI: 10.1136/jmg-2023-109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a motor neuron disease caused by mutations of survival of motor neuron 1 (SMN1) gene, which encodes the SMN protein. SMN2, a nearly identical copy of SMN1, with several single-nucleotide substitutions leading to predominant skipping of its exon 7, is insufficient to compensate for loss of SMN1. Heterogeneous nuclear ribonucleoprotein R (hnRNPR) has been previously shown to interact with SMN in the 7SK complex in motoneuron axons and is implicated in the pathogenesis of SMA. Here, we show that hnRNPR also interacts with SMN1/2 pre-mRNAs and potently inhibits exon 7 inclusion. METHODS In this study, to examine the mechanism that hnRNPR regulates SMN1/2 splicing, deletion analysis in an SMN2 minigene system, RNA-affinity chromatography, co-overexpression analysis and tethering assay were performed. We screened antisense oligonucleotides (ASOs) in a minigene system and identified a few that markedly promoted SMN2 exon 7 splicing. RESULTS We pinpointed an AU-rich element located towards the 3' end of the exon that mediates splicing repression by hnRNPR. We uncovered that both hnRNPR and Sam68 bind to the element in a competitive manner, and the inhibitory effect of hnRNPR is much stronger than Sam68. Moreover, we found that, among the four hnRNPR splicing isoforms, the exon 5-skipped one has the minimal inhibitory effect, and ASOs inducing hnRNPR exon 5 skipping also promote SMN2 exon 7 inclusion. CONCLUSION We identified a novel mechanism that contributes to mis-splicing of SMN2 exon 7.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Ruobing Qu
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, China
| | - Xuan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| | - Yanjun Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| | - Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| | - Yimin Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Jiang T, Wang L, Tang L, Zeb A, Hou Y. Identification of two short peptide motifs from serine/arginine-rich protein ribonucleic acid recognition motif-1 domain acting as splicing regulators. PeerJ 2023; 11:e16103. [PMID: 37744237 PMCID: PMC10512959 DOI: 10.7717/peerj.16103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background Serine/arginine-rich (SR) proteins regulate pre-mRNA splicing. However, structurally similar proteins often behave differently in splicing regulation and the underlying mechanisms are largely unknown. Here, using SMN1/2 minigenes we extensively analyzed four SR proteins, SRSF1/5/6/9. Methods In this study, the effects of these proteins on SMN1/2 exon 7 splicing when tethered at either intron 6 or 7 were evaluated using an MS2-tethering assay. Deletion analysis in four SR proteins and co-overexpression analysis were performed. Results Splicing outcomes varied among all four SR proteins, SRSF1 and SRSF5 function the same at the two sites, acting as repressor and stimulator, respectively; while SRSF6 and SRSF9 promote exon 7 inclusion at only one site. Further, the key domains of each SR proteins were investigated, which identified a potent inhibitory nonapeptide in the C-terminus of SRSF1/9 ribonucleic acid recognition motif-1 (RRM1) and a potent stimulatory heptapeptide at the N-terminus of SRSF5/6 RRM1. Conclusion The insight of the four SR proteins and their domains in affecting SMN gene splicing brings a new perspective on the modes of action of SR proteins; and the functional peptides obtained here offers new ideas for developing splice switching-related therapies.
Collapse
Affiliation(s)
- Tao Jiang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, NanJing, China
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University Army Medical University, Chongqing, China
| | - Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, NanJing, China
| | - Liang Tang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, NanJing, China
| | - Azhar Zeb
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, NanJing, China
| | - Yanjun Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, NanJing, China
| |
Collapse
|
14
|
De Siqueira Carvalho AA, Tychon C, Servais L. Newborn screening for spinal muscular atrophy - what have we learned? Expert Rev Neurother 2023; 23:1005-1012. [PMID: 37635694 DOI: 10.1080/14737175.2023.2252179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Over the last decade, the treatment of spinal muscular atrophy (SMA) has become a paradigm of the importance of early and accurate diagnosis and prompt treatment. Three different therapeutic approaches that aims to increase SMN protein are approved now by Food and Drug Administration (FDA) and European Medicines Agency (EMA) for treatment of SMA; their efficacies have been demonstrated in pivotal trials. AREAS COVERED The authors report on the two controlled studies and real-world evidence that have demonstrated that the treatment of patients pre-symptomatically ensures normal or only slightly sub-normal motor development in children who would otherwise develop a severe form of the disease. Furthermore, the authors highlight the several newborn screening (NBS) methods that are now available, all of which are based on real-time PCR, that reliably and robustly diagnose SMA except in subjects with disease caused by a point mutation. EXPERT OPINION Pre-symptomatic treatment of SMA has been clearly demonstrated to prevent the most severe forms of the disease. NBS constitutes more than a simple test and should be considered as a global process to accelerate treatment access and provide global management of patients and parents. Even though the cost of NBS is low and health economics studies have clearly demonstrated its value, the fear of identifying more patients than the system can treat is often reported in large middle-income countries.
Collapse
Affiliation(s)
| | - Cyril Tychon
- Neuromuscular Reference Center, Department of Paediatrics, University and University Hospital of Liege, Liege, Belgium
| | - Laurent Servais
- Neuromuscular Reference Center, Department of Paediatrics, University and University Hospital of Liege, Liege, Belgium
- MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Nadal M, Anton R, Dorca‐Arévalo J, Estébanez‐Perpiñá E, Tizzano EF, Fuentes‐Prior P. Structure and function analysis of Sam68 and hnRNP A1 synergy in the exclusion of exon 7 from SMN2 transcripts. Protein Sci 2023; 32:e4553. [PMID: 36560896 PMCID: PMC10031812 DOI: 10.1002/pro.4553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by the absence of a functional copy of the Survival of Motor Neuron 1 gene (SMN1). The nearly identical paralog, SMN2, cannot compensate for the loss of SMN1 because exon 7 is aberrantly skipped from most SMN2 transcripts, a process mediated by synergistic activities of Src-associated during mitosis, 68 kDa (Sam68/KHDRBS1) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1. This results in the production of a truncated, nonfunctional protein that is rapidly degraded. Here, we present several crystal structures of Sam68 RNA-binding domain (RBD). Sam68-RBD forms stable symmetric homodimers by antiparallel association of helices α3 from two monomers. However, the details of domain organization and the dimerization interface differ significantly from previously characterized homologs. We demonstrate that Sam68 and hnRNP A1 can simultaneously bind proximal motifs within the central region of SMN2 (ex7). Furthermore, we show that the RNA-binding pockets of the two proteins are close to each other in their heterodimeric complex and identify contact residues using crosslinking-mass spectrometry. We present a model of the ternary Sam68·SMN2 (ex7)·hnRNP A1 complex that reconciles all available information on SMN1/2 splicing. Our findings have important implications for the etiology of SMA and open new avenues for the design of novel therapeutics to treat splicing diseases.
Collapse
Affiliation(s)
- Marta Nadal
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Rosa Anton
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Jonatan Dorca‐Arévalo
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau (IIB Sant Pau)BarcelonaSpain
- Present address:
Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of BellvitgeHospitalet de Llobregat, University of BarcelonaBarcelonaSpain
| | - Eva Estébanez‐Perpiñá
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of BiologyInstitute of Biomedicine (IBUB) of the University of Barcelona (UB)BarcelonaSpain
| | - Eduardo F. Tizzano
- Medicine Genetics GroupVall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Department of Clinical and Molecular GeneticsHospital Vall d'HebronBarcelonaSpain
| | - Pablo Fuentes‐Prior
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau (IIB Sant Pau)BarcelonaSpain
| |
Collapse
|
16
|
Wang L, Ji Y, Chen Y, Bai J, Gao P, Feng P. A splicing silencer in SMN2 intron 6 is critical in spinal muscular atrophy. Hum Mol Genet 2023; 32:971-983. [PMID: 36255739 DOI: 10.1093/hmg/ddac260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a fatal neuromuscular disease caused by homozygous deletions or mutations of the SMN1 gene. SMN2 is a paralogous gene of SMN1 and a modifying gene of SMA. A better understanding of how SMN2 exon 7 splicing is regulated helps discover new therapeutic targets for SMA therapy. Based on an antisense walk method to map exonic and intronic splicing silencers (ESSs and ISSs) in SMN2 exon 7 and the proximal regions of its flanking introns, we identified one ISS (ISS6-KH) at upstream of the branch point site in intron 6. By using mutagenesis-coupled RT-PCR with SMN1/2 minigenes, immunochromatography, overexpression and siRNA-knockdown, we found this ISS consists of a bipartite hnRNP A1 binding cis-element and a poly-U sequence located between the proximal hnRNP A1 binding site (UAGCUA) and the branch site. Both HuR and hnRNP C1 proteins promote exon 7 skipping through the poly-U stretch. Mutations or deletions of these motifs lead to efficient SMN2 exon 7 inclusion comparable to SMN1 gene. Furthermore, we identified an optimal antisense oligonucleotide that binds the intron six ISS and causes striking exon 7 inclusion in the SMN2 gene in patient fibroblasts and SMA mouse model. Our findings demonstrate that this novel ISS plays an important role in SMN2 exon 7 skipping and highlight a new therapeutic target for SMA therapy.
Collapse
Affiliation(s)
- Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yinfeng Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yuqing Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jialin Bai
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Pengchao Feng
- Nanjing Antisense Biopharmaceutical Co., Ltd, Nanjing 210046, China
| |
Collapse
|
17
|
Abstract
Spinal muscular atrophy (SMA) is caused by biallelic mutations in the SMN1 (survival motor neuron 1) gene on chromosome 5q13.2, which leads to a progressive degeneration of alpha motor neurons in the spinal cord and in motor nerve nuclei in the caudal brainstem. It is characterized by progressive proximally accentuated muscle weakness with loss of already acquired motor skills, areflexia and, depending on the phenotype, varying degrees of weakness of the respiratory and bulbar muscles. Over the past decade, disease-modifying therapies have become available based on splicing modulation of the SMN2 with SMN1 gene replacement, which if initiated significantly modifies the natural course of the disease. Newborn screening for SMA has been implemented in an increasing number of centers; however, available evidence for these new treatments is often limited to a small spectrum of patients concerning age and disease stage.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| | - Jerry R Mendell
- Department of Neurology and Pediatrics, Center for Gene Therapy, Abigail Wexner Research Institute, The Ohio State University, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
18
|
Hassan HA, Fahmy NA, El-Bagoury NM, Eissa NR, Sharaf-Eldin WE, Issa MY, Zaki MS, Essawi ML. MLPA analysis for molecular diagnosis of spinal muscular atrophy and correlation of 5q13.2 genes with disease phenotype in Egyptian patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease representing the most prevalent monogenic cause of infant mortality. It results from the loss of SMN1 gene, but retention of its paralog SMN2 whose copy number can modulate the disease severity and guide the therapeutic regimen.
Methods
For SMA molecular analysis, 236 unrelated Egyptian patients were enrolled at our institution. The Multiplex ligation-dependent probe amplification analysis (MLPA) was applied to investigate the main genetic defect in the enrolled patients (SMN1 loss) and to determine a possible genotype–phenotype correlation between the copy number of other genes in the SMN locus (5q13.2) and disease severity in Egyptian patients with SMA. A small cohort of healthy subjects (n = 57) was also included to investigate the possible differences in the distributions of SMN2 and NAIP genes between patients and healthy individuals.
Results
Disease diagnosis was confirmed in only 148 patients (62.7%) highlighting the clinical overlapping of the disease and emphasizing the importance of molecular diagnosis. In patients with homozygous SMN1 loss, the disease was mediated by gene deletion and conversion in 135 (91.2%) and 13 (8.8%) patients, respectively. In the study cohort, SMN2 and NAIP copy numbers were inversely correlated with disease severity. However, no significant association was detected between GTF2H2A and SERF1B copy numbers and patient phenotype. Significant differences were demonstrated in the copy numbers of SMN2 and NAIP between SMA patients and healthy subjects.
Conclusion
Molecular analysis of SMA is essential for disease diagnosis. Consistent with previous studies on other populations, there is a close relationship between SMN2 and NAIP copy numbers and clinical phenotype. Additionally, potential differences in these two genes distributions are existing between patients and healthy subjects. National program for carrier screening should be established as a preventive disease strategy. On the other hand, neonatal testing would provide accurate estimation for disease incidence.
Collapse
|
19
|
Abiusi E, Vaisfeld A, Fiori S, Novelli A, Spartano S, Faggiano MV, Giovanniello T, Angeloni A, Vento G, Santoloci R, Gigli F, D'Amico A, Costa S, Porzi A, Panella M, Ticci C, Daniotti M, Sacchini M, Boschi I, Dani C, Agostiniani R, Bertini E, Lanzone A, Lamarca G, Genuardi M, Pane M, Donati MA, Mercuri E, Tiziano FD. Experience of a 2-year spinal muscular atrophy NBS pilot study in Italy: towards specific guidelines and standard operating procedures for the molecular diagnosis. J Med Genet 2022:jmg-2022-108873. [PMID: 36414255 DOI: 10.1136/jmg-2022-108873] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/06/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is due to the homozygous absence of SMN1 in around 97% of patients, independent of the severity (classically ranked into types I-III). The high genetic homogeneity, coupled with the excellent results of presymptomatic treatments of patients with each of the three disease-modifying therapies available, makes SMA one of the golden candidates to genetic newborn screening (NBS) (SMA-NBS). The implementation of SMA in NBS national programmes occurring in some countries is an arising new issue that the scientific community has to address. We report here the results of the first Italian SMA-NBS project and provide some proposals for updating the current molecular diagnostic scenario. METHODS The screening test was performed by an in-house-developed qPCR assay, amplifying SMN1 and SMN2. Molecular prognosis was assessed on fresh blood samples. RESULTS We found 15 patients/90885 newborns (incidence 1:6059) having the following SMN2 genotypes: 1 (one patient), 2 (eight patients), 2+c.859G>C variant (one patient), 3 (three patients), 4 (one patient) or 6 copies (one patient). Six patients (40%) showed signs suggestive of SMA at birth. We also discuss some unusual cases we found. CONCLUSION The molecular diagnosis of SMA needs to adapt to the new era of the disease with specific guidelines and standard operating procedures. In detail, SMA diagnosis should be felt as a true medical urgency due to therapeutic implications; SMN2 copy assessment needs to be standardised; commercially available tests need to be improved for higher SMN2 copies determination; and the SMN2 splicing-modifier variants should be routinely tested in SMA-NBS.
Collapse
Affiliation(s)
- Emanuela Abiusi
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Roma, Italy
| | - Alessandro Vaisfeld
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Roma, Italy
| | - Stefania Fiori
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Roma, Italy
| | - Agnese Novelli
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Roma, Italy
| | - Serena Spartano
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Roma, Italy
| | - Maria Vittoria Faggiano
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Roma, Italy
| | - Teresa Giovanniello
- Department of Experimental Medicine, Newborn Screening Center-Clinical Pathology Unit, Sapienza University of Rome, University Hospital Policlinico Umberto I, Roma, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Newborn Screening Center-Clinical Pathology Unit, Sapienza University of Rome, University Hospital Policlinico Umberto I, Roma, Italy
| | - Giovanni Vento
- Section of Pediatrics, Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Roma, Italy.,Neonatology Unit, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Roma, Italy
| | - Roberta Santoloci
- Obstetrics and Gynecology operating Unit, Fondazione Policlinico Universitario IRCCS "A. Gemelli, Roma, Italy
| | - Francesca Gigli
- Neonatology Unit, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Roma, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital IRCCS, Roma, Italy
| | - Simonetta Costa
- Section of Pediatrics, Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Roma, Italy
| | - Alessia Porzi
- Section of Pediatrics, Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Roma, Italy
| | - Mara Panella
- Obstetrics and Gynecology operating Unit, Fondazione Policlinico Universitario IRCCS "A. Gemelli, Roma, Italy
| | - Chiara Ticci
- Unit of hereditary metabolic and muscular disorders, Meyer Children's University Hospital, Firenze, Italy
| | - Marta Daniotti
- Unit of hereditary metabolic and muscular disorders, Meyer Children's University Hospital, Firenze, Italy
| | - Michele Sacchini
- Unit of hereditary metabolic and muscular disorders, Meyer Children's University Hospital, Firenze, Italy
| | - Ilaria Boschi
- Forensic Medicine operating Unit, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Roma, Italy
| | - Carlo Dani
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy.,Department of Neurosciences, University of Florence, Florence, Italy
| | - Rino Agostiniani
- Department of Pediatrics and Neonatology, ASL Toscana Centro, Florence, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital IRCCS, Roma, Italy
| | - Antonio Lanzone
- Obstetrics and Gynecology operating Unit, Fondazione Policlinico Universitario IRCCS "A. Gemelli, Roma, Italy.,Section of Obstetrics and Gynecology, Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Roma, Italy
| | - Giancarlo Lamarca
- Newborn Screening, Clinical Chemistry and Pharmacology Laboratory, Meyer Children's University Hospital, Firenze, Italy
| | - Maurizio Genuardi
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Roma, Italy.,Medical Genetics operating Unit, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Roma, Italy
| | - Marika Pane
- Section of Child Psychiatry, Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Roma, Italy.,Child Psychiatry operating Unit, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Roma, Italy
| | - Maria Alice Donati
- Unit of hereditary metabolic and muscular disorders, Meyer Children's University Hospital, Firenze, Italy
| | - Eugenio Mercuri
- Section of Child Psychiatry, Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Roma, Italy.,Child Psychiatry operating Unit, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Roma, Italy
| | - Francesco Danilo Tiziano
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Roma, Italy .,Medical Genetics operating Unit, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Roma, Italy
| | | |
Collapse
|
20
|
Qiu J, Qu R, Lin M, Xu J, Zhu Q, Zhang Z, Sun J. Position-dependent effects of hnRNP A1/A2 in SMN1/2 exon7 splicing. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2022; 1865:194875. [PMID: 36208849 DOI: 10.1016/j.bbagrm.2022.194875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
|
21
|
Chiriboga CA. Pharmacotherapy for Spinal Muscular Atrophy in Babies and Children: A Review of Approved and Experimental Therapies. Paediatr Drugs 2022; 24:585-602. [PMID: 36028610 DOI: 10.1007/s40272-022-00529-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive degenerative neuromuscular disorder characterized by loss of spinal motor neurons leading to muscle weakness and atrophy that is caused by survival motor neuron (SMN) protein deficiency resulting from the biallelic loss of the SMN1 gene. The SMN2 gene modulates the SMA phenotype, as a small fraction of its transcripts are alternatively spliced to produce full-length SMN (fSMN) protein. SMN-targeted therapies increase SMN protein; mRNA therapies, nusinersen and risdiplam, increase the amount of fSMN transcripts alternatively spliced from the SMN2 gene, while gene transfer therapy, onasemnogene abeparvovec xioi, increases SMN protein by introducing the hSMN gene into various tissues, including spinal cord via an AAV9 vector. These SMN-targeted therapies have been found effective in improving outcomes and are approved for use in SMA in the US and elsewhere. This article discusses the clinical trial results for SMN-directed therapies with a focus on efficacy, side effects and treatment response predictors. It also discusses preliminary data from muscle-targeted trials, as single agents and in combination with SMN-targeted therapies, as well as other classes of SMA treatments.
Collapse
Affiliation(s)
- Claudia A Chiriboga
- Division of Child Neurology, Department of Neurology, Columbia University Medical Center, 180 Fort Washington Ave, New York, NY, 10032, USA.
| |
Collapse
|
22
|
Milligan JN, Blasco-Pérez L, Costa-Roger M, Codina-Solà M, Tizzano EF. Recommendations for Interpreting and Reporting Silent Carrier and Disease-Modifying Variants in SMA Testing Workflows. Genes (Basel) 2022; 13:1657. [PMID: 36140824 PMCID: PMC9498682 DOI: 10.3390/genes13091657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic testing for SMA diagnosis, newborn screening, and carrier screening has become a significant public health interest worldwide, driven largely by the development of novel and effective molecular therapies for the treatment of spinal muscular atrophy (SMA) and the corresponding updates to testing guidelines. Concurrently, understanding of the underlying genetics of SMA and their correlation with a broad range of phenotypes and risk factors has also advanced, particularly with respect to variants that modulate disease severity or impact residual carrier risks. While testing guidelines are beginning to emphasize the importance of these variants, there are no clear guidelines on how to utilize them in a real-world setting. Given the need for clarity in practice, this review summarizes several clinically relevant variants in the SMN1 and SMN2 genes, including how they inform outcomes for spinal muscular atrophy carrier risk and disease prognosis.
Collapse
Affiliation(s)
| | - Laura Blasco-Pérez
- Department of Clinical and Molecular Genetics, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Mar Costa-Roger
- Department of Clinical and Molecular Genetics, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Marta Codina-Solà
- Department of Clinical and Molecular Genetics, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Eduardo F. Tizzano
- Department of Clinical and Molecular Genetics, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
| |
Collapse
|
23
|
Sun J, Qiu J, Yang Q, Ju Q, Qu R, Wang X, Wu L, Xing L. Single-cell RNA sequencing reveals dysregulation of spinal cord cell types in a severe spinal muscular atrophy mouse model. PLoS Genet 2022; 18:e1010392. [PMID: 36074806 PMCID: PMC9488758 DOI: 10.1371/journal.pgen.1010392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/20/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Although spinal muscular atrophy (SMA) is a motor neuron disease caused by the loss of survival of motor neuron (SMN) proteins, there is growing evidence that non-neuronal cells play important roles in SMA pathogenesis. However, transcriptome alterations occurring at the single-cell level in SMA spinal cord remain unknown, preventing us from fully comprehending the role of specific cells. Here, we performed single-cell RNA sequencing of the spinal cord of a severe SMA mouse model, and identified ten cell types as well as their differentially expressed genes. Using CellChat, we found that cellular communication between different cell types in the spinal cord of SMA mice was significantly reduced. A dimensionality reduction analysis revealed 29 cell subtypes and their differentially expressed gene. A subpopulation of vascular fibroblasts showed the most significant change in the SMA spinal cord at the single-cell level. This subpopulation was drastically reduced, possibly causing vascular defects and resulting in widespread protein synthesis and energy metabolism reductions in SMA mice. This study reveals for the first time a single-cell atlas of the spinal cord of mice with severe SMA, and sheds new light on the pathogenesis of SMA.
Collapse
Affiliation(s)
- Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- * E-mail: (JS); (LW); (LX)
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Qiongxia Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Qianqian Ju
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Xu Wang
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong, China
- * E-mail: (JS); (LW); (LX)
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- * E-mail: (JS); (LW); (LX)
| |
Collapse
|
24
|
Qiu J, Wu L, Qu R, Jiang T, Bai J, Sheng L, Feng P, Sun J. History of development of the life-saving drug “Nusinersen” in spinal muscular atrophy. Front Cell Neurosci 2022; 16:942976. [PMID: 36035257 PMCID: PMC9414009 DOI: 10.3389/fncel.2022.942976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder with an incidence of 1/6,000–1/10,000 and is the leading fatal disease among infants. Previously, there was no effective treatment for SMA. The first effective drug, nusinersen, was approved by the US FDA in December 2016, providing hope to SMA patients worldwide. The drug was introduced in the European Union in 2017 and China in 2019 and has so far saved the lives of several patients in most parts of the world. Nusinersen are fixed sequence antisense oligonucleotides with special chemical modifications. The development of nusinersen progressed through major scientific discoveries in medicine, genetics, biology, and other disciplines, wherein several scientists have made substantial contributions. In this article, we will briefly describe the pathogenesis and therapeutic strategies of SMA, summarize the timeline of important scientific findings during the development of nusinersen in a detailed, scientific, and objective manner, and finally discuss the implications of the development of nusinersen for SMA research.
Collapse
Affiliation(s)
- Jiaying Qiu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Tao Jiang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jialin Bai
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lei Sheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengchao Feng
- Nanjing Antisense Biopharmaceutical Co., Ltd, Nanjing, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Junjie Sun
| |
Collapse
|
25
|
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in SMN1 (encoding survival motor neuron protein (SMN)). Reduced expression of SMN leads to loss of α-motor neurons, severe muscle weakness and often early death. Standard-of-care recommendations for multidisciplinary supportive care of SMA were established in the past few decades. However, improved understanding of the pathogenetic mechanisms of SMA has led to the development of different therapeutic approaches. Three treatments that increase SMN expression by distinct molecular mechanisms, administration routes and tissue biodistributions have received regulatory approval with others in clinical development. The advent of the new therapies is redefining standards of care as in many countries most patients are treated with one of the new therapies, leading to the identification of emerging new phenotypes of SMA and a renewed characterization of demographics owing to improved patient survival.
Collapse
|
26
|
Deep Molecular Characterization of Milder Spinal Muscular Atrophy Patients Carrying the c.859G>C Variant in SMN2. Int J Mol Sci 2022; 23:ijms23158289. [PMID: 35955418 PMCID: PMC9368089 DOI: 10.3390/ijms23158289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder caused by biallelic loss or pathogenic variants in the SMN1 gene. Copy number and modifier intragenic variants in SMN2, an almost identical paralog gene of SMN1, are known to influence the amount of complete SMN proteins. Therefore, SMN2 is considered the main phenotypic modifier of SMA, although genotype−phenotype correlation is not absolute. We present eleven unrelated SMA patients with milder phenotypes carrying the c.859G>C-positive modifier variant in SMN2. All were studied by a specific NGS method to allow a deep characterization of the entire SMN region. Analysis of two homozygous cases for the variant allowed us to identify a specific haplotype, Smn2-859C.1, in association with c.859G>C. Two other cases with the c.859G>C variant in their two SMN2 copies showed a second haplotype, Smn2-859C.2, in cis with Smn2-859C.1, assembling a more complex allele. We also identified a previously unreported variant in intron 2a exclusively linked to the Smn2-859C.1 haplotype (c.154-1141G>A), further suggesting that this region has been ancestrally conserved. The deep molecular characterization of SMN2 in our cohort highlights the importance of testing c.859G>C, as well as accurately assessing the SMN2 region in SMA patients to gain insight into the complex genotype−phenotype correlations and improve prognostic outcomes.
Collapse
|
27
|
Kray KM, McGovern VL, Chugh D, Arnold WD, Burghes AHM. Dual SMN inducing therapies can rescue survival and motor unit function in symptomatic ∆7SMA mice. Neurobiol Dis 2021; 159:105488. [PMID: 34425216 PMCID: PMC8502210 DOI: 10.1016/j.nbd.2021.105488] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by survival motor neuron (SMN) protein deficiency which results in motor neuron loss and muscle atrophy. SMA is caused by a mutation or deletion of the survival motor neuron 1 (SMN1) gene and retention of the nearly identical SMN2 gene. SMN2 contains a C to T change in exon 7 that results in exon 7 exclusion from 90% of transcripts. SMN protein lacking exon 7 is unstable and rapidly degraded. The remaining full-length transcripts from SMN2 are insufficient for normal motor neuron function leading to the development of SMA. Three different therapeutic approaches that increase full-length SMN (FL-SMN) protein production are approved for treatment of SMA patients. Studies in both animal models and humans have demonstrated increasing SMN levels prior to onset of symptoms provides the greatest therapeutic benefit. Treatment of SMA, after some motor neuron loss has occurred, is also effective but to a lesser degree. The SMN∆7 mouse model is a well characterized model of severe or type 1 SMA, dying at 14 days of age. Here we treated three groups of ∆7SMA mice starting before, roughly during, and after symptom onset to determine if combining two mechanistically distinct SMN inducing therapies could improve the therapeutic outcome both before and after motor neuron loss. We found, compared with individual therapies, that morpholino antisense oligonucleotide (ASO) directed against ISS-N1 combined with the small molecule compound RG7800 significantly increased FL-SMN transcript and protein production resulting in improved survival and weight of ∆7SMA mice. Moreover, when give late symptomatically, motor unit function was completely rescued with no loss in function at 100 days of age in the dual treatment group. We have therefore shown that this dual therapeutic approach successfully increases SMN protein and rescues motor function in symptomatic ∆7SMA mice.
Collapse
Affiliation(s)
- Kaitlyn M Kray
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA.
| | - Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA.
| | - Deepti Chugh
- Department of Neurology, Neuromuscular Division, The Ohio State University Wexner Medical Center, 395 W. 12(th) Ave, Columbus, OH 43210, USA
| | - W David Arnold
- Department of Neurology, Neuromuscular Division, The Ohio State University Wexner Medical Center, 395 W. 12(th) Ave, Columbus, OH 43210, USA.
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA; Department of Neurology, Neuromuscular Division, The Ohio State University Wexner Medical Center, 395 W. 12(th) Ave, Columbus, OH 43210, USA.
| |
Collapse
|
28
|
Abiusi E, Infante P, Cagnoli C, Lospinoso Severini L, Pane M, Coratti G, Pera MC, D'Amico A, Diano F, Novelli A, Spartano S, Fiori S, Baranello G, Moroni I, Mora M, Pasanisi MB, Pocino K, Le Pera L, D'Amico D, Travaglini L, Ria F, Bruno C, Locatelli D, Bertini ES, Morandi LO, Mercuri E, Di Marcotullio L, Tiziano FD. SMA-miRs (miR-181a-5p, -324-5p, and -451a) are overexpressed in spinal muscular atrophy skeletal muscle and serum samples. eLife 2021; 10:68054. [PMID: 34542403 PMCID: PMC8486378 DOI: 10.7554/elife.68054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by the degeneration of the second motor neuron. The phenotype ranges from very severe to very mild forms. All patients have the homozygous loss of the SMN1 gene and a variable number of SMN2 (generally 2–4 copies), inversely related to the severity. The amazing results of the available treatments have made compelling the need of prognostic biomarkers to predict the progression trajectories of patients. Besides the SMN2 products, few other biomarkers have been evaluated so far, including some miRs. Methods: We performed whole miRNome analysis of muscle samples of patients and controls (14 biopsies and 9 cultures). The levels of muscle differentially expressed miRs were evaluated in serum samples (51 patients and 37 controls) and integrated with SMN2 copies, SMN2 full-length transcript levels in blood and age (SMA-score). Results: Over 100 miRs were differentially expressed in SMA muscle; 3 of them (hsa-miR-181a-5p, -324-5p, -451a; SMA-miRs) were significantly upregulated in the serum of patients. The severity predicted by the SMA-score was related to that of the clinical classification at a correlation coefficient of 0.87 (p<10-5). Conclusions: miRNome analyses suggest the primary involvement of skeletal muscle in SMA pathogenesis. The SMA-miRs are likely actively released in the blood flow; their function and target cells require to be elucidated. The accuracy of the SMA-score needs to be verified in replicative studies: if confirmed, its use could be crucial for the routine prognostic assessment, also in presymptomatic patients. Funding: Telethon Italia (grant #GGP12116).
Collapse
Affiliation(s)
- Emanuela Abiusi
- Department of Life Sciences and Public Health, Section of Genomic Medicine, Università cattolica del Sacro Cuore, Roma, Italy
| | - Paola Infante
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia; Department of Molecular Medicine, Università degli Studi di Roma "La Sapienza", Roma, Italy, Roma, Italy
| | - Cinzia Cagnoli
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy, Roma, Italy
| | | | - Marika Pane
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.,Centro Clinico Nemo, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giorgia Coratti
- Centro Clinico Nemo, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Roma, Italy
| | - Maria Carmela Pera
- Centro Clinico Nemo, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Roma, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Dept. Neurosciences, Bambino Gesu' Children's Hospital IRCCS, Roma, Italy
| | - Federica Diano
- Department of Life Sciences and Public Health, Section of Genomic Medicine, Università cattolica del Sacro Cuore, Roma, Italy
| | - Agnese Novelli
- Department of Life Sciences and Public Health, Section of Genomic Medicine, Università cattolica del Sacro Cuore, Roma, Italy
| | - Serena Spartano
- Department of Life Sciences and Public Health, Section of Genomic Medicine, Università cattolica del Sacro Cuore, Roma, Italy
| | - Stefania Fiori
- Department of Life Sciences and Public Health, Section of Genomic Medicine, Università cattolica del Sacro Cuore, Roma, Italy
| | - Giovanni Baranello
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Isabella Moroni
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Barbara Pasanisi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Krizia Pocino
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Loredana Le Pera
- Bioenergetics and Molecular Biotechnologies (IBIOM), CNR-Institute of Biomembranes, Bari, Italy.,CNR-Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Davide D'Amico
- Amazentis SA, EPFL Innovation Park, Losanne, Switzerland
| | - Lorena Travaglini
- Unit of Neuromuscular and Neurodegenerative Disorders, Dept. Neurosciences, Bambino Gesu' Children's Hospital IRCCS, Roma, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy.,Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Denise Locatelli
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy, Roma, Italy
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Dept. Neurosciences, Bambino Gesu' Children's Hospital IRCCS, Roma, Italy
| | - Lucia Ovidia Morandi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eugenio Mercuri
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.,Centro Clinico Nemo, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Roma, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Università degli Studi di Roma "La Sapienza", Roma, Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Francesco Danilo Tiziano
- Department of Life Sciences and Public Health, Section of Genomic Medicine, Università cattolica del Sacro Cuore, Roma, Italy.,Unit of Medical Genetics, Department of Laboratory science and Infectious Diseases, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Rome, Italy
| |
Collapse
|
29
|
Klotz J, Tesi Rocha C, Dunaway Young S, Duong T, Buu M, Sampson J, Day JW. Advances in the Therapy of Spinal Muscular Atrophy. J Pediatr 2021; 236:13-20.e1. [PMID: 34197889 DOI: 10.1016/j.jpeds.2021.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/25/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Jenna Klotz
- Stanford University School of Medicine, Palo Alto, CA.
| | | | | | - Tina Duong
- Stanford University School of Medicine, Palo Alto, CA
| | - MyMy Buu
- Stanford University School of Medicine, Palo Alto, CA
| | | | - John W Day
- Stanford University School of Medicine, Palo Alto, CA
| |
Collapse
|
30
|
Lejman J, Zieliński G, Gawda P, Lejman M. Alternative Splicing Role in New Therapies of Spinal Muscular Atrophy. Genes (Basel) 2021; 12:1346. [PMID: 34573328 PMCID: PMC8468182 DOI: 10.3390/genes12091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
It has been estimated that 80% of the pre-mRNA undergoes alternative splicing, which exponentially increases the flow of biological information in cellular processes and can be an attractive therapeutic target. It is a crucial mechanism to increase genetic diversity. Disturbed alternative splicing is observed in many disorders, including neuromuscular diseases and carcinomas. Spinal Muscular Atrophy (SMA) is an autosomal recessive neurodegenerative disease. Homozygous deletion in 5q13 (the region coding for the motor neuron survival gene (SMN1)) is responsible for 95% of SMA cases. The nearly identical SMN2 gene does not compensate for SMN loss caused by SMN1 gene mutation due to different splicing of exon 7. A pathologically low level of survival motor neuron protein (SMN) causes degeneration of the anterior horn cells in the spinal cord with associated destruction of α-motor cells and manifested by muscle weakness and loss. Understanding the regulation of the SMN2 pre-mRNA splicing process has allowed for innovative treatment and the introduction of new medicines for SMA. After describing the concept of splicing modulation, this review will cover the progress achieved in this field, by highlighting the breakthrough accomplished recently for the treatment of SMA using the mechanism of alternative splicing.
Collapse
Affiliation(s)
- Jan Lejman
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Grzegorz Zieliński
- Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (G.Z.); (P.G.)
| | - Piotr Gawda
- Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (G.Z.); (P.G.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
31
|
The Importance of Digging into the Genetics of SMN Genes in the Therapeutic Scenario of Spinal Muscular Atrophy. Int J Mol Sci 2021; 22:ijms22169029. [PMID: 34445733 PMCID: PMC8396600 DOI: 10.3390/ijms22169029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
After 26 years of discovery of the determinant survival motor neuron 1 and the modifier survival motor neuron 2 genes (SMN1 and SMN2, respectively), three SMN-dependent specific therapies are already approved by FDA and EMA and, as a consequence, worldwide SMA patients are currently under clinical investigation and treatment. Bi-allelic pathogenic variants (mostly deletions) in SMN1 should be detected in SMA patients to confirm the disease. Determination of SMN2 copy number has been historically employed to correlate with the phenotype, predict disease evolution, stratify patients for clinical trials and to define those eligible for treatment. In view that discordant genotype-phenotype correlations are present in SMA, besides technical issues with detection of SMN2 copy number, we have hypothesized that copy number determination is only the tip of the iceberg and that more deepen studies of variants, sequencing and structures of the SMN2 genes are necessary for a better understanding of the disease as well as to investigate possible influences in treatment responses. Here, we highlight the importance of a comprehensive approach of SMN1 and SMN2 genetics with the perspective to apply for better prediction of SMA in positive neonatal screening cases and early diagnosis to start treatments.
Collapse
|
32
|
Blatnik AJ, McGovern VL, Burghes AHM. What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. Int J Mol Sci 2021; 22:8494. [PMID: 34445199 PMCID: PMC8395208 DOI: 10.3390/ijms22168494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.
Collapse
Affiliation(s)
| | | | - Arthur H. M. Burghes
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Rightmire Hall, Room 168, 1060 Carmack Road, Columbus, OH 43210, USA; (A.J.B.III); (V.L.M.)
| |
Collapse
|
33
|
Butchbach MER. Genomic Variability in the Survival Motor Neuron Genes ( SMN1 and SMN2): Implications for Spinal Muscular Atrophy Phenotype and Therapeutics Development. Int J Mol Sci 2021; 22:ijms22157896. [PMID: 34360669 PMCID: PMC8348669 DOI: 10.3390/ijms22157896] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant death worldwide that is characterized by loss of spinal motor neurons leading to muscle weakness and atrophy. SMA results from the loss of survival motor neuron 1 (SMN1) gene but retention of its paralog SMN2. The copy numbers of SMN1 and SMN2 are variable within the human population with SMN2 copy number inversely correlating with SMA severity. Current therapeutic options for SMA focus on increasing SMN2 expression and alternative splicing so as to increase the amount of SMN protein. Recent work has demonstrated that not all SMN2, or SMN1, genes are equivalent and there is a high degree of genomic heterogeneity with respect to the SMN genes. Because SMA is now an actionable disease with SMN2 being the primary target, it is imperative to have a comprehensive understanding of this genomic heterogeneity with respect to hybrid SMN1–SMN2 genes generated by gene conversion events as well as partial deletions of the SMN genes. This review will describe this genetic heterogeneity in SMA and its impact on disease phenotype as well as therapeutic efficacy.
Collapse
Affiliation(s)
- Matthew E. R. Butchbach
- Center for Applied Clinical Genomics, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA;
- Center for Pediatric Research, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
34
|
Blasco-Pérez L, Paramonov I, Leno J, Bernal S, Alias L, Fuentes-Prior P, Cuscó I, Tizzano EF. Beyond copy number: A new, rapid, and versatile method for sequencing the entire SMN2 gene in SMA patients. Hum Mutat 2021; 42:787-795. [PMID: 33739559 PMCID: PMC8252042 DOI: 10.1002/humu.24200] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/13/2021] [Accepted: 03/11/2021] [Indexed: 01/16/2023]
Abstract
Spinal muscular atrophy (SMA) is caused by bi‐allelic loss or pathogenic variants in the SMN1 gene. SMN2, the highly homologous copy of SMN1, is considered the major phenotypic modifier of the disease. Determination of SMN2 copy number is essential to establish robust genotype–phenotype correlations and predict disease evolution, to stratify patients for clinical trials, as well as to define those eligible for treatment. Discordant genotype–phenotype correlations are not uncommon in SMA, some of which are due to intragenic SMN2 variants that may influence the amount of complete SMN transcripts and, therefore, of full‐length SMN protein. Detection of these variants is crucial to predict SMA phenotypes in the present scenario of therapeutic advances and with the perspective of SMA neonatal screening and early diagnosis to start treatments. Here, we present a novel, affordable, and versatile method for complete sequencing of the SMN2 gene based on long‐range polymerase chain reaction and next‐generation sequencing. The method was validated by analyzing samples from 53 SMA patients who lack SMN1, allowing to characterize paralogous, rare variants, and single‐nucleotide polymorphisms of SMN2 as well as SMN2–SMN1 hybrid genes. The method identifies partial deletions and can be adapted to determine rare pathogenic variants in patients with at least one SMN1 copy.
Collapse
Affiliation(s)
- Laura Blasco-Pérez
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Barcelona, Spain
| | - Ida Paramonov
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Barcelona, Spain
| | - Jordi Leno
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Barcelona, Spain
| | - Sara Bernal
- Genetics Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)
| | - Laura Alias
- Genetics Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)
| | - Pablo Fuentes-Prior
- Molecular Bases of Disease, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ivon Cuscó
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)
| | - Eduardo F Tizzano
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
35
|
Milligan JN, Larson JL, Filipovic-Sadic S, Laosinchai-Wolf W, Huang YW, Ko TM, Abbott KM, Lemmink HH, Toivonen M, Schleutker J, Gentile C, Van Deerlin VM, Zhu H, Latham GJ. Multisite Evaluation and Validation of a Sensitive Diagnostic and Screening System for Spinal Muscular Atrophy that Reports SMN1 and SMN2 Copy Number, along with Disease Modifier and Gene Duplication Variants. J Mol Diagn 2021; 23:753-764. [PMID: 33798739 DOI: 10.1016/j.jmoldx.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 11/24/2022] Open
Abstract
Spinal muscular atrophy is a severe autosomal recessive disease caused by disruptions in the SMN1 gene. The nearly identical SMN2 gene copy number is associated with disease severity. SMN1 duplication markers, such as c.∗3+80T>G and c.∗211_∗212del, can assess residual carrier risk. An SMN2 disease modifier (c.859G>C) can help inform prognostic outcomes. The emergence of multiple precision gene therapies for spinal muscular atrophy requires accurate and rapid detection of SMN1 and SMN2 copy numbers to enable early treatment and optimal patient outcomes. We developed and evaluated a single-tube PCR/capillary electrophoresis assay system that quantifies SMN1/2 copy numbers and genotypes three additional clinically relevant variants. Analytical validation was performed with human cell lines and whole blood representing varying SMN1/2 copies on four capillary electrophoresis instrument models. In addition, four independent laboratories used the assay to test 468 residual clinical genomic DNA samples. The results were ≥98.3% concordant with consensus SMN1/2 exon 7 copy numbers, determined using multiplex ligation-dependent probe amplification and droplet digital PCR, and were 100% concordant with Sanger sequencing for the three variants. Furthermore, copy number values were 98.6% (SMN1) and 97.1% (SMN2) concordant to each laboratory's own reference results.
Collapse
Affiliation(s)
| | | | | | | | - Ya-Wen Huang
- GenePhile Bioscience Laboratory, Ko's Obstetrics and Gynecology Clinic, Taipei City, Taiwan
| | - Tsang-Ming Ko
- GenePhile Bioscience Laboratory, Ko's Obstetrics and Gynecology Clinic, Taipei City, Taiwan
| | - Kristin M Abbott
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Henny H Lemmink
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Minna Toivonen
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Johanna Schleutker
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland; Institute of Biomedicine, University of Turku, Turun yliopisto, Finland
| | - Caren Gentile
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Huiping Zhu
- Research and Development, Asuragen Inc., Austin, Texas
| | - Gary J Latham
- Research and Development, Asuragen Inc., Austin, Texas
| |
Collapse
|
36
|
Lusakowska A, Jedrzejowska M, Kaminska A, Janiszewska K, Grochowski P, Zimowski J, Sierdzinski J, Kostera-Pruszczyk A. Observation of the natural course of type 3 spinal muscular atrophy: data from the polish registry of spinal muscular atrophy. Orphanet J Rare Dis 2021; 16:150. [PMID: 33761963 PMCID: PMC7992780 DOI: 10.1186/s13023-021-01771-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is one of the most frequent and severe genetic diseases leading to premature death or severe motor disability. New therapies have been developed in recent years that change the natural history of the disease. The aim of this study is to describe patients included in the Polish Registry of SMA, with a focus on the course of type 3 SMA (SMA3) before the availability of disease-modifying treatments. RESULTS 790 patients with SMA were included in the registry (173 with type 1 [SMA1], 218 with type 2 [SMA2], 393 with SMA3, and six with type 4 SMA [SMA4]), most (52%) of whom were adults. Data on SMN2 gene copy number were available for 672 (85%) patients. The mean age of onset was 5 months for SMA1, 11.5 months for SMA2, and 4.5 years for SMA3. In patients with SMA3, the first symptoms occurred earlier in those with three copies of SMN2 than in those with four copies of SMN2 (3.2 years vs. 6.7 years). The age of onset of SMA3 was younger in girls than in boys (3.1 years vs. 5.7 years), with no new cases observed in women older than 16 years. Male patients outnumbered female patients, especially among patients with SMA3b (49 female vs. 85 male patients) and among patients with SMA3 with four copies of SMN2 (30 female vs. 69 male patients). 44% of patients with SMA3 were still able to walk; in those who were not still able to walk, the mean age of immobilization was 14.0 years. Patients with SMA3a (age of onset < 3 years) and three copies of SMN2 had significantly worse prognosis for remaining ambulant than patients with SMA3b (age of onset ≥ 3 years) and four copies of SMN2. CONCLUSIONS The Registry of SMA is an effective tool for assessing the disease course in the real world setting. SMN2 copy number is an important prognostic factor for the age of onset and ambulation in SMA3. Sex and age of disease onset also strongly affect the course of SMA. Data supplied by this study can aid treatment decisions.
Collapse
Affiliation(s)
- Anna Lusakowska
- Department of Neurology, European Reference Network EURO-NMD, Medical University of Warsaw, Warsaw, Poland
| | - Maria Jedrzejowska
- Rare Diseases Research Platform, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kaminska
- Department of Neurology, European Reference Network EURO-NMD, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Janiszewska
- Department of Neurology, European Reference Network EURO-NMD, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Grochowski
- Student Research Group of Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Janusz Zimowski
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Janusz Sierdzinski
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna Kostera-Pruszczyk
- Department of Neurology, European Reference Network EURO-NMD, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
37
|
In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy. Brain Sci 2021; 11:brainsci11020194. [PMID: 33562482 PMCID: PMC7915832 DOI: 10.3390/brainsci11020194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Until the recent development of disease-modifying therapeutics, spinal muscular atrophy (SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected individuals. Symptoms generally present during early childhood and manifest as muscle weakness and progressive paralysis, severely compromising the affected individual’s quality of life, independence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates with disease severity. The recent advent and use of genetically targeted therapies have transformed SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-affected individuals receiving these therapies achieve traditionally unobtainable motor milestones and survival rates as medicines drastically alter the natural progression of this disease. This review discusses historical SMA progression and underlying disease mechanisms, highlights advances made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible second-generation and complementary medicines as well as optimal temporal intervention windows in order to optimize motor function and improve quality of life for all SMA-affected individuals.
Collapse
|
38
|
Keinath MC, Prior DE, Prior TW. Spinal Muscular Atrophy: Mutations, Testing, and Clinical Relevance. APPLICATION OF CLINICAL GENETICS 2021; 14:11-25. [PMID: 33531827 PMCID: PMC7846873 DOI: 10.2147/tacg.s239603] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) is a heritable neuromuscular disorder that causes degeneration of the alpha motor neurons from anterior horn cells in the spinal cord, which causes severe progressive hypotonia and muscular weakness. With a carrier frequency of 1 in 40–50 and an estimated incidence of 1 in 10,000 live births, SMA is the second most common autosomal recessive disorder. Affected individuals with SMA have a homozygous loss of function of the survival motor neuron gene SMN1 on 5q13 but keep the modifying SMN2 gene. The most common mutation causing SMA is a homozygous deletion of the SMN1 exon 7, which can be readily detected and used as a sensitive diagnostic test. Because SMN2 produces a reduced number of full-length transcripts, the number of SMN2 copies can modify the clinical phenotype and as such, becomes an essential predictive factor. Population-based SMA carrier screening identifies carrier couples that may pass on this genetic disorder to their offspring and allows the carriers to make informed reproductive choices or prepare for immediate treatment for an affected child. Three treatments have recently been approved by the Food and Drug Administration (FDA). Nusinersen increases the expression levels of the SMN protein using an antisense oligonucleotide to alter splicing of the SMN2 transcript. Onasemnogene abeparvovec is a gene therapy that utilizes an adeno-associated virus serotype 9 vector to increase low functional SMN protein levels. Risdiplam is a small molecule that alters SMN2 splicing in order to increase functional SMN protein. Newborn screening for SMA has been shown to be successful in allowing infants to be treated before the loss of motor neurons and has resulted in improved clinical outcomes. Several of the recommendations and guidelines in the review are based on studies performed in the United States.
Collapse
Affiliation(s)
- Melissa C Keinath
- Pathology, University Hospitals Center for Human Genetics, Cleveland, OH, USA
| | - Devin E Prior
- Neurology, Mount Auburn Hospital, Cambridge, MA, USA
| | - Thomas W Prior
- Pathology, University Hospitals Center for Human Genetics, Cleveland, OH, USA
| |
Collapse
|
39
|
Detection of SMN1 to SMN2 gene conversion events and partial SMN1 gene deletions using array digital PCR. Neurogenetics 2021; 22:53-64. [PMID: 33415588 DOI: 10.1007/s10048-020-00630-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset motor neuron disease characterized by loss of α-motor neurons and associated muscle atrophy. SMA is caused by deletion or other disabling mutations of survival motor neuron 1 (SMN1) but retention of one or more copies of the paralog SMN2. Within the SMA population, there is substantial variation in SMN2 copy number (CN); in general, those individuals with SMA who have a high SMN2 CN have a milder disease. Because SMN2 functions as a disease modifier, its accurate CN determination may have clinical relevance. In this study, we describe the development of array digital PCR (dPCR) to quantify SMN1 and SMN2 CNs in DNA samples using probes that can distinguish the single nucleotide difference between SMN1 and SMN2 in exon 8. This set of dPCR assays can accurately and reliably measure the number of SMN1 and SMN2 copies in DNA samples. In a cohort of SMA patient-derived cell lines, the assay confirmed a strong inverse correlation between SMN2 CN and disease severity. We can detect SMN1-SMN2 gene conversion events in DNA samples by comparing CNs at exon 7 and exon 8. Partial deletions of SMN1 can also be detected with dPCR by comparing CNs at exon 7 or exon 8 with those at intron 1. Array dPCR is a practical technique to determine, accurately and reliably, SMN1 and SMN2 CNs from SMA samples as well as identify gene conversion events and partial deletions of SMN1.
Collapse
|
40
|
Crooke ST, Liang XH, Baker BF, Crooke RM. Antisense technology: A review. J Biol Chem 2021; 296:100416. [PMID: 33600796 PMCID: PMC8005817 DOI: 10.1016/j.jbc.2021.100416] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Antisense technology is beginning to deliver on the broad promise of the technology. Ten RNA-targeted drugs including eight single-strand antisense drugs (ASOs) and two double-strand ASOs (siRNAs) have now been approved for commercial use, and the ASOs in phase 2/3 trials are innovative, delivered by multiple routes of administration and focused on both rare and common diseases. In fact, two ASOs are used in cardiovascular outcome studies and several others in very large trials. Interest in the technology continues to grow, and the field has been subject to a significant number of reviews. In this review, we focus on the molecular events that result in the effects observed and use recent clinical results involving several different ASOs to exemplify specific molecular mechanisms and specific issues. We conclude with the prospective on the technology.
Collapse
Affiliation(s)
- Stanley T Crooke
- Core Antisense Research, Ionis Pharmaceuticals, Inc, Carlsbad, California, USA.
| | - Xue-Hai Liang
- Core Antisense Research, Ionis Pharmaceuticals, Inc, Carlsbad, California, USA
| | - Brenda F Baker
- Development Communication, Ionis Pharmaceuticals, Inc, Carlsbad, California, USA
| | - Rosanne M Crooke
- Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, California, USA
| |
Collapse
|
41
|
U2AF65-Dependent SF3B1 Function in SMN Alternative Splicing. Cells 2020; 9:cells9122647. [PMID: 33317029 PMCID: PMC7762998 DOI: 10.3390/cells9122647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Splicing factor 3b subunit 1 (SF3B1) is an essential protein in spliceosomes and mutated frequently in many cancers. While roles of SF3B1 in single intron splicing and roles of its cancer-linked mutant in aberrant splicing have been identified to some extent, regulatory functions of wild-type SF3B1 in alternative splicing (AS) are not well-understood yet. Here, we applied RNA sequencing (RNA-seq) to analyze genome-wide AS in SF3B1 knockdown (KD) cells and to identify a large number of skipped exons (SEs), with a considerable number of alternative 5′ splice-site selection, alternative 3′ splice-site selection, mutually exclusive exons (MXE), and retention of introns (RI). Among altered SEs by SF3B1 KD, survival motor neuron 2 (SMN2) pre-mRNA exon 7 splicing was a regulatory target of SF3B1. RT-PCR analysis of SMN exon 7 splicing in SF3B1 KD or overexpressed HCT116, SH-SY5Y, HEK293T, and spinal muscular atrophy (SMA) patient cells validated the results. A deletion mutation demonstrated that the U2 snRNP auxiliary factor 65 kDa (U2AF65) interaction domain of SF3B1 was required for its function in SMN exon 7 splicing. In addition, mutations to lower the score of the polypyrimidine tract (PPT) of exon 7, resulting in lower affinity for U2AF65, were not able to support SF3B1 function, suggesting the importance of U2AF65 in SF3B1 function. Furthermore, the PPT of exon 7 with higher affinity to U2AF65 than exon 8 showed significantly stronger interactions with SF3B1. Collectively, our results revealed SF3B1 function in SMN alternative splicing.
Collapse
|
42
|
Rouzier C, Chaussenot A, Paquis-Flucklinger V. Molecular diagnosis and genetic counseling for spinal muscular atrophy (SMA). Arch Pediatr 2020; 27:7S9-7S14. [DOI: 10.1016/s0929-693x(20)30270-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
Auslander N, Ramos DM, Zelaya I, Karathia H, Crawford TO, Schäffer AA, Sumner CJ, Ruppin E. The GENDULF algorithm: mining transcriptomics to uncover modifier genes for monogenic diseases. Mol Syst Biol 2020; 16:e9701. [PMID: 33438800 PMCID: PMC7754056 DOI: 10.15252/msb.20209701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Modifier genes are believed to account for the clinical variability observed in many Mendelian disorders, but their identification remains challenging due to the limited availability of genomics data from large patient cohorts. Here, we present GENDULF (GENetic moDULators identiFication), one of the first methods to facilitate prediction of disease modifiers using healthy and diseased tissue gene expression data. GENDULF is designed for monogenic diseases in which the mechanism is loss of function leading to reduced expression of the mutated gene. When applied to cystic fibrosis, GENDULF successfully identifies multiple, previously established disease modifiers, including EHF, SLC6A14, and CLCA1. It is then utilized in spinal muscular atrophy (SMA) and predicts U2AF1 as a modifier whose low expression correlates with higher SMN2 pre-mRNA exon 7 retention. Indeed, knockdown of U2AF1 in SMA patient-derived cells leads to increased full-length SMN2 transcript and SMN protein expression. Taking advantage of the increasing availability of transcriptomic data, GENDULF is a novel addition to existing strategies for prediction of genetic disease modifiers, providing insights into disease pathogenesis and uncovering novel therapeutic targets.
Collapse
Affiliation(s)
- Noam Auslander
- Cancer Data Science Laboratory (CDSL)National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
- National Center for Biotechnology InformationNational Library of MedicineNational Institutes of HealthBethesdaMDUSA
| | - Daniel M Ramos
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Ivette Zelaya
- Interdepartmental Program in BioinformaticsUniversity of California Los AngelesLos AngelesCAUSA
| | - Hiren Karathia
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer InstituteNational Institutes of HealthMDUSA
| | - Thomas O. Crawford
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory (CDSL)National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Charlotte J Sumner
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL)National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
44
|
Cuscó I, Bernal S, Blasco-Pérez L, Calucho M, Alias L, Fuentes-Prior P, Tizzano EF. Practical guidelines to manage discordant situations of SMN2 copy number in patients with spinal muscular atrophy. NEUROLOGY-GENETICS 2020; 6:e530. [PMID: 33324756 PMCID: PMC7713720 DOI: 10.1212/nxg.0000000000000530] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
Abstract
Objective Assessment of SMN2 copy number in patients with spinal muscular atrophy (SMA) is essential to establish careful genotype-phenotype correlations and predict disease evolution. This issue is becoming crucial in the present scenario of therapeutic advances with the perspective of SMA neonatal screening and early diagnosis to initiate treatment, as this value is critical to stratify patients for clinical trials and to define those eligible to receive medication. Several technical pitfalls and interindividual variations may account for reported discrepancies in the estimation of SMN2 copy number and establishment of phenotype-genotype correlations. Methods We propose a management guide based on a sequence of specified actions once SMN2 copy number is determined for a given patient. Regardless of the method used to estimate the number of SMN2 copies, our approach focuses on the manifestations of the patient to recommend how to proceed in each case. Results We defined situations according to SMN2 copy number in a presymptomatic scenario of screening, in which we predict the possible evolution, and when a symptomatic patient is genetically confirmed. Unexpected discordant cases include patients having a single SMN2 copy but noncongenital disease forms, 2 SMN2 copies compatible with type II or III SMA, and 3 or 4 copies of the gene showing more severe disease than expected. Conclusions Our proposed guideline would help to systematically identify discordant SMA cases that warrant further genetic investigation. The SMN2 gene, as the main modifier of SMA phenotype, deserves a more in-depth study to provide more accurate genotype-phenotype correlations.
Collapse
Affiliation(s)
- Ivon Cuscó
- Medicine Genetics Group (I.C., L.B.-P., M.C., E.F.T.), Vall dHebron Research Institute (VHIR), Barcelona; Department of Clinical and Molecular Genetics (I.C., L.B.-P., M.C., E.F.T.), Hospital Vall dHebron, Barcelona; Department of Genetics (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Biomedical Research Institute Sant Pau (IIB Sant Pau) (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII, U-705 Barcelona) (S.B., L.A.), Madrid; Molecular Bases of Disease (P.F.-P.), Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Sara Bernal
- Medicine Genetics Group (I.C., L.B.-P., M.C., E.F.T.), Vall dHebron Research Institute (VHIR), Barcelona; Department of Clinical and Molecular Genetics (I.C., L.B.-P., M.C., E.F.T.), Hospital Vall dHebron, Barcelona; Department of Genetics (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Biomedical Research Institute Sant Pau (IIB Sant Pau) (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII, U-705 Barcelona) (S.B., L.A.), Madrid; Molecular Bases of Disease (P.F.-P.), Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Laura Blasco-Pérez
- Medicine Genetics Group (I.C., L.B.-P., M.C., E.F.T.), Vall dHebron Research Institute (VHIR), Barcelona; Department of Clinical and Molecular Genetics (I.C., L.B.-P., M.C., E.F.T.), Hospital Vall dHebron, Barcelona; Department of Genetics (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Biomedical Research Institute Sant Pau (IIB Sant Pau) (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII, U-705 Barcelona) (S.B., L.A.), Madrid; Molecular Bases of Disease (P.F.-P.), Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Maite Calucho
- Medicine Genetics Group (I.C., L.B.-P., M.C., E.F.T.), Vall dHebron Research Institute (VHIR), Barcelona; Department of Clinical and Molecular Genetics (I.C., L.B.-P., M.C., E.F.T.), Hospital Vall dHebron, Barcelona; Department of Genetics (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Biomedical Research Institute Sant Pau (IIB Sant Pau) (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII, U-705 Barcelona) (S.B., L.A.), Madrid; Molecular Bases of Disease (P.F.-P.), Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Laura Alias
- Medicine Genetics Group (I.C., L.B.-P., M.C., E.F.T.), Vall dHebron Research Institute (VHIR), Barcelona; Department of Clinical and Molecular Genetics (I.C., L.B.-P., M.C., E.F.T.), Hospital Vall dHebron, Barcelona; Department of Genetics (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Biomedical Research Institute Sant Pau (IIB Sant Pau) (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII, U-705 Barcelona) (S.B., L.A.), Madrid; Molecular Bases of Disease (P.F.-P.), Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Pablo Fuentes-Prior
- Medicine Genetics Group (I.C., L.B.-P., M.C., E.F.T.), Vall dHebron Research Institute (VHIR), Barcelona; Department of Clinical and Molecular Genetics (I.C., L.B.-P., M.C., E.F.T.), Hospital Vall dHebron, Barcelona; Department of Genetics (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Biomedical Research Institute Sant Pau (IIB Sant Pau) (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII, U-705 Barcelona) (S.B., L.A.), Madrid; Molecular Bases of Disease (P.F.-P.), Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Eduardo F Tizzano
- Medicine Genetics Group (I.C., L.B.-P., M.C., E.F.T.), Vall dHebron Research Institute (VHIR), Barcelona; Department of Clinical and Molecular Genetics (I.C., L.B.-P., M.C., E.F.T.), Hospital Vall dHebron, Barcelona; Department of Genetics (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Biomedical Research Institute Sant Pau (IIB Sant Pau) (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII, U-705 Barcelona) (S.B., L.A.), Madrid; Molecular Bases of Disease (P.F.-P.), Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
45
|
Jiang L, Lin R, Gallagher S, Zayac A, Butchbach MER, Hung P. Development and validation of a 4-color multiplexing spinal muscular atrophy (SMA) genotyping assay on a novel integrated digital PCR instrument. Sci Rep 2020; 10:19892. [PMID: 33199817 PMCID: PMC7670453 DOI: 10.1038/s41598-020-76893-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/02/2020] [Indexed: 01/30/2023] Open
Abstract
Digital PCR (dPCR) technology has been proven to be highly sensitive and accurate in detecting copy number variations (CNV). However, a higher-order multiplexing dPCR assay for measuring SMN1 and SMN2 copy numbers in spinal muscular atrophy (SMA) samples has not been reported. Described here is a rapid multiplex SMA dPCR genotyping assay run on a fully integrated dPCR instrument with five optical channels. The hydrolysis probe-based multiplex dPCR assay quantifies SMN1, SMN2, and the total SMN (SMN1 + SMN2) while using RPPH1 gene as an internal reference control. The quadruplex assay was evaluated with characterized control DNA samples and validated with 15 blinded clinical samples from a previously published study. SMN1 and SMN2 copy numbers were completely concordant with previous results for both the control and blinded samples. The dPCR-based SMA copy number determination was accomplished in 90 min with a walk-away workflow identical to real-time quantitative PCR (qPCR). In summary, presented here is a simple higher-order multiplexing solution on a novel digital PCR platform to meet the growing demand for SMA genotyping and prognostics.
Collapse
Affiliation(s)
- Lingxia Jiang
- Combinati Inc., 2450 Embarcadero Way, Palo Alto, CA, 94303, USA.
| | - Robert Lin
- Combinati Inc., 2450 Embarcadero Way, Palo Alto, CA, 94303, USA
| | - Steve Gallagher
- Combinati Inc., 2450 Embarcadero Way, Palo Alto, CA, 94303, USA
| | - Andrew Zayac
- Combinati Inc., 2450 Embarcadero Way, Palo Alto, CA, 94303, USA
| | - Matthew E R Butchbach
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Paul Hung
- Combinati Inc., 2450 Embarcadero Way, Palo Alto, CA, 94303, USA
| |
Collapse
|
46
|
Zhang R, Gu C, Pu L, Meng Y, Shu J, Cai C. High-throughput screening reveals novel mutations in spinal muscular atrophy patients. Ital J Pediatr 2020; 46:166. [PMID: 33148303 PMCID: PMC7641840 DOI: 10.1186/s13052-020-00925-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive hereditary disease associated with severe muscle atrophy and weakness in the limbs and trunk. The discovery of mutated genes is helpful in diagnosis and treatment for SMA. METHODS Eighty-three whole blood samples were collected from 28 core families of clinically suspected SMA, and multiplex ligation probe amplification (MLPA) was performed. Afterwards, the complete gene sequence of SMN1 gene was detected. Furthermore, 20 SMA patients were selected from the 28 probands, and 5 non SMA children as controls. The Life Technologies SOLiD™ technology with mate-pair chemistry was utilized to conduct the whole exome high-throughput sequencing. RESULTS Twenty-two probands were SMA patients, 3 probands carriers, and 3 probands normal individuals. Moreover, 2 parents from 2 SMA families were with 3 SMN1 exon7 copies. Six SMN1 single nucleotide variants (SNVs) were identified in the 83 samples, and c.[84C > T], c.[271C > T], c.[-39A > G] and g.[70240639G > C] were novel. Compared with control group, 9102 mutation were selected out in SMA patients. SPTA1 mutation c.[-41_-40insCTCT], FUT5 SNV c.[1001A > G], and MCCC2 SNV c.[-117A > G] were the 3 most frequent mutations in SMA group (95, 85 and 75%, respectively). CONCLUSIONS We identified some mutations in both SMN1 and other genes, and c.[271C > T], c.[-41_-40insCTCT], c.[1001A > G] and c.[-117A > G] might be associated with the onset of SMA.
Collapse
Affiliation(s)
- Ruiping Zhang
- Department of Pediatric, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Chunyu Gu
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Linjie Pu
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Yingtao Meng
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China. .,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China.
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China. .,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China. .,Department of Neurosurgery, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| |
Collapse
|
47
|
Tan CA, Westbrook MJ, Truty R, Kvitek DJ, Kennemer M, Winder TL, Shieh PB. Incorporating Spinal Muscular Atrophy Analysis by Next-Generation Sequencing into a Comprehensive Multigene Panel for Neuromuscular Disorders. Genet Test Mol Biomarkers 2020; 24:616-624. [PMID: 32721234 DOI: 10.1089/gtmb.2019.0282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Spinal muscular atrophy (SMA) is traditionally molecularly diagnosed by multiplex ligation-dependent probe amplification or quantitative polymerase chain reaction (qPCR). SMA analyses are not routinely incorporated into gene panel analyses for individuals with suspected SMA or broader neuromuscular indications. Aim: We sought to determine whether a next-generation sequencing (NGS) approach that integrates SMA analyses into a multigene neuromuscular disorders panel could detect undiagnosed SMA. Materials and Methods: Sequence and copy number variants of the SMN1/SMN2 genes were simultaneously analyzed in samples from 5304 unselected individuals referred for testing using an NGS-based 122-gene neuromuscular panel. This diagnostic approach was validated using DNA from 68 individuals who had been previously diagnosed with SMA via quantitative PCR for SMN1/SMN2. Results: Homozygous loss of SMN1 was detected in 47 unselected individuals. Heterozygous loss of SMN1 was detected in 118 individuals; 8 had an indeterminate variant in "SMN1 or SMN2" that supported an SMA diagnosis but required additional disambiguation. Of the remaining SMA carriers, 44 had pathogenic variants in other genes. Concordance rates between NGS and qPCR were 100% and 93% for SMN1 and SMN2 copy numbers, respectively. Where there was disagreement, phenotypes were more consistent with the SMN2 results from NGS. Conclusion: Integrating NGS-based SMA testing into a multigene neuromuscular panel allows a single assay to diagnose SMA while comprehensively assessing the spectrum of variants that can occur in individuals with broad differential diagnoses or nonspecific/overlapping neuromuscular features.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Perry B Shieh
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
48
|
Spinal muscular atrophy in Venezuela: quantitative analysis of SMN1 and SMN2 genes. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00070-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Spinal muscular atrophy (SMA) is mostly caused by homozygous deletions in the survival motor neuron 1 (SMN1) gene. SMN2, its paralogous gene, is a genetic modifier of the disease phenotype, and its copy number is correlated with SMA severity. The purpose of the study was to investigate the number of copies of the SMN1 and SMN2 genes in a Venezuelan population control sample and in patients with a presumptive diagnosis of SMA, besides estimating the frequency of mutation carriers in the population.
Results
SMN1 and SMN2 gene copies were assessed in 49 Venezuelan dweller unrelated normal individuals and in 94 subjects from 29 families with a SMA presumptive diagnosis, using the quantitative PCR method. A SMN1 deletion carrier frequency of 0.01 and 0.163 of homozygous absence of the SMN2 gene were found in the Venezuelan control sample. Deletion of SMN1 exon 7 was confirmed in 15 families; the remaining 14 index cases had two SMN1 copies and a heterogeneous phenotype not attributable to SMN deletions. Based on clinical features of the index cases and the SMN2 copy number, a positive phenotype-genotype correlation was demonstrated. No disease geographical aggregation was found in the country.
Conclusion
The frequency of carriers of the deletion of exon 7 in SMN1 in the Venezuelan control population was similar to that observed in populations worldwide, while the frequency of 0 copies of the SMN2 gene (16.3 %) seems to be relatively high. All these findings have pertinent implications for the diagnosis and genetic counseling on SMA in Venezuela.
Collapse
|
49
|
Wadman RI, Jansen MD, Stam M, Wijngaarde CA, Curial CAD, Medic J, Sodaar P, Schouten J, Vijzelaar R, Lemmink HH, van den Berg LH, Groen EJN, van der Pol WL. Intragenic and structural variation in the SMN locus and clinical variability in spinal muscular atrophy. Brain Commun 2020; 2:fcaa075. [PMID: 32954327 PMCID: PMC7425299 DOI: 10.1093/braincomms/fcaa075] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 11/15/2022] Open
Abstract
Clinical severity and treatment response vary significantly between patients with spinal muscular atrophy. The approval of therapies and the emergence of neonatal screening programmes urgently require a more detailed understanding of the genetic variants that underlie this clinical heterogeneity. We systematically investigated genetic variation other than SMN2 copy number in the SMN locus. Data were collected through our single-centre, population-based study on spinal muscular atrophy in the Netherlands, including 286 children and adults with spinal muscular atrophy Types 1–4, including 56 patients from 25 families with multiple siblings with spinal muscular atrophy. We combined multiplex ligation-dependent probe amplification, Sanger sequencing, multiplexed targeted resequencing and digital droplet polymerase chain reaction to determine sequence and expression variation in the SMN locus. SMN1, SMN2 and NAIP gene copy number were determined by multiplex ligation-dependent probe amplification. SMN2 gene variant analysis was performed using Sanger sequencing and RNA expression analysis of SMN by droplet digital polymerase chain reaction. We identified SMN1–SMN2 hybrid genes in 10% of spinal muscular atrophy patients, including partial gene deletions, duplications or conversions within SMN1 and SMN2 genes. This indicates that SMN2 copies can vary structurally between patients, implicating an important novel level of genetic variability in spinal muscular atrophy. Sequence analysis revealed six exonic and four intronic SMN2 variants, which were associated with disease severity in individual cases. There are no indications that NAIP1 gene copy number or sequence variants add value in addition to SMN2 copies in predicting the clinical phenotype in individual patients with spinal muscular atrophy. Importantly, 95% of spinal muscular atrophy siblings in our study had equal SMN2 copy numbers and structural changes (e.g. hybrid genes), but 60% presented with a different spinal muscular atrophy type, indicating the likely presence of further inter- and intragenic variabilities inside as well as outside the SMN locus. SMN2 gene copies can be structurally different, resulting in inter- and intra-individual differences in the composition of SMN1 and SMN2 gene copies. This adds another layer of complexity to the genetics that underlie spinal muscular atrophy and should be considered in current genetic diagnosis and counselling practices.
Collapse
Affiliation(s)
- Renske I Wadman
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marc D Jansen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marloes Stam
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Camiel A Wijngaarde
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Chantall A D Curial
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jelena Medic
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Peter Sodaar
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jan Schouten
- MRC Holland BV, 1057 DL Amsterdam, the Netherlands
| | | | - Henny H Lemmink
- Department of Genetics, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Leonard H van den Berg
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ewout J N Groen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - W Ludo van der Pol
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
50
|
Sheng L, Rigo F, Bennett CF, Krainer AR, Hua Y. Comparison of the efficacy of MOE and PMO modifications of systemic antisense oligonucleotides in a severe SMA mouse model. Nucleic Acids Res 2020; 48:2853-2865. [PMID: 32103257 PMCID: PMC7102994 DOI: 10.1093/nar/gkaa126] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease. Nusinersen, a splice-switching antisense oligonucleotide (ASO), was the first approved drug to treat SMA. Based on prior preclinical studies, both 2′-O-methoxyethyl (MOE) with a phosphorothioate backbone and morpholino with a phosphorodiamidate backbone—with the same or extended target sequence as nusinersen—displayed efficient rescue of SMA mouse models. Here, we compared the therapeutic efficacy of these two modification chemistries in rescue of a severe mouse model using ASO10-29—a 2-nt longer version of nusinersen—via subcutaneous injection. Although both chemistries efficiently corrected SMN2 splicing in various tissues, restored motor function and improved the integrity of neuromuscular junctions, MOE-modified ASO10-29 (MOE10-29) was more efficacious than morpholino-modified ASO10-29 (PMO10-29) at the same molar dose, as seen by longer survival, greater body-weight gain and better preservation of motor neurons. Time-course analysis revealed that MOE10-29 had more persistent effects than PMO10-29. On the other hand, PMO10-29 appears to more readily cross an immature blood-brain barrier following systemic administration, showing more robust initial effects on SMN2 exon 7 inclusion, but less persistence in the central nervous system. We conclude that both modifications can be effective as splice-switching ASOs in the context of SMA and potentially other diseases, and discuss the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Lei Sheng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York, NY 11724, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | | | - Adrian R Krainer
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York, NY 11724, USA
| | - Yimin Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York, NY 11724, USA.,Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|