1
|
Muñoz-Aceituno E, Butrón-Bris B, Ovejero-Benito MC, Sahuquillo-Torralba A, Baniandrés Rodríguez O, Herrera-Acosta E, Rivera-Diaz R, Ferran M, Sánchez-Carazo JL, Riera-Monroig J, Pujol-Montcusí J, Vidal D, de la Cueva P, García-Bustinduy M, Ruiz-Villaverde R, Ballescà F, Llamas-Velasco M, Navares M, Palomar-Moreno I, Sánchez-García I, García-Martínez J, Novalbos J, Zubiaur P, Abad-Santos F, Daudén-Tello E, de la Fuente H. Pharmacogenetic biomarkers for secukinumab response in psoriasis patients in real-life clinical practice. J Eur Acad Dermatol Venereol 2024; 38:1783-1790. [PMID: 38153843 DOI: 10.1111/jdv.19782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Prediction of the response to a biological treatment in psoriasis patients would allow efficient treatment allocation. OBJECTIVE To identify polymorphisms associated with secukinumab response in psoriasis patients in a daily practice setting. METHODS We studied 180 SNPs in patients with moderate-to-severe plaque psoriasis recruited from 15 Spanish hospitals. Treatment effectiveness was evaluated by absolute PASI ≤3 and ≤1 at 6 and 12 months. Individuals were genotyped using a custom Taqman array. Multiple logistic regression models were generated. Sensitivity, specificity and area under the curve (AUC) were analysed. RESULTS A total of 173 patients were studied at 6 months, (67% achieved absolute PASI ≤ 3 and 65% PASI ≤ 1) and 162 at 12 months (75% achieved absolute PASI ≤ 3 and 64% PASI ≤ 1). Multivariable analysis showed the association of different sets of SNPs with the response to secukinumab. The model of absolute PASI≤3 at 6 months showed best values of sensitivity and specificity. Four SNPs were associated with the capability of achieving absolute PASI ≤ 3 at 6 months. rs1801274 (FCGR2A), rs2431697 (miR-146a) and rs10484554 (HLCw6) were identified as risk factors for failure to achieve absolute PASI≤3, while rs1051738 (PDE4A) was protective. AUC including these genotypes, weight of patients and history of biological therapy was 0.88 (95% CI 0.83-0.94), with a sensitivity of 48.6% and specificity of 95.7% to discriminate between both phenotypes. CONCLUSION We have identified a series of polymorphisms associated with the response to secukinumab capable of predicting the potential response/non-response to this drug in patients with plaque psoriasis.
Collapse
Affiliation(s)
- E Muñoz-Aceituno
- Department of Dermatology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - B Butrón-Bris
- Department of Dermatology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - M C Ovejero-Benito
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU, CEU Universities Madrid, Madrid, Spain
| | - A Sahuquillo-Torralba
- Department of Dermatology, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - O Baniandrés Rodríguez
- Department of Dermatology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - E Herrera-Acosta
- Department of Dermatology, Hospital Virgen de la Victoria, Málaga, Spain
| | - R Rivera-Diaz
- Department of Dermatology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - M Ferran
- Department of Dermatology, Hospital del Mar, Barcelona, Spain
| | - J L Sánchez-Carazo
- Department of Dermatology, Hospital General Universitario de Valencia, Valencia, Spain
| | - J Riera-Monroig
- Department of Dermatology, Hospital Clínic i Provincial, Barcelona, Spain
| | - J Pujol-Montcusí
- Department of Dermatology, Hospital Universitario "Joan XXIII", Tarragona, Spain
| | - D Vidal
- Department of Dermatology, Hospital de Sant Joan Despí Moisés Broggi, Barcelona, Spain
| | - P de la Cueva
- Department of Dermatology, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - M García-Bustinduy
- Department of Dermatology, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | - R Ruiz-Villaverde
- Department of Dermatology, Hospital Universitario San Cecilio, Granada, Spain
| | - F Ballescà
- Department of Dermatology, Hospital Universitario Germans Trias i Pujol, Barcelona, Spain
| | - M Llamas-Velasco
- Department of Dermatology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - M Navares
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - I Palomar-Moreno
- Unit of Molecular Biology, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - I Sánchez-García
- Department of Dermatology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - J García-Martínez
- Hospital Universitario del Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - J Novalbos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - P Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - F Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - E Daudén-Tello
- Department of Dermatology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - H de la Fuente
- Department of Dermatology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- Unit of Molecular Biology, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| |
Collapse
|
2
|
Bui A, Orcales F, Kranyak A, Chung BY, Haran K, Smith P, Johnson C, Liao W. The Role of Genetics on Psoriasis Susceptibility, Comorbidities, and Treatment Response. Dermatol Clin 2024; 42:439-469. [PMID: 38796275 DOI: 10.1016/j.det.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
This review highlights advances made in psoriasis genetics, including findings from genome-wide association studies, exome-sequencing studies, and copy number variant studies. The impact of genetic variants on various comorbidities and therapeutic responses is discussed.
Collapse
Affiliation(s)
- Audrey Bui
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA; Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Faye Orcales
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Allison Kranyak
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Bo-Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si Gyeonggi-do, 14068, Republic of Korea
| | - Kathryn Haran
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Payton Smith
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Chandler Johnson
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA.
| |
Collapse
|
3
|
Jarmoskaite I, Li JB. Multifaceted roles of RNA editing enzyme ADAR1 in innate immunity. RNA (NEW YORK, N.Y.) 2024; 30:500-511. [PMID: 38531645 PMCID: PMC11019752 DOI: 10.1261/rna.079953.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Innate immunity must be tightly regulated to enable sensitive pathogen detection while averting autoimmunity triggered by pathogen-like host molecules. A hallmark of viral infection, double-stranded RNAs (dsRNAs) are also abundantly encoded in mammalian genomes, necessitating surveillance mechanisms to distinguish "self" from "nonself." ADAR1, an RNA editing enzyme, has emerged as an essential safeguard against dsRNA-induced autoimmunity. By converting adenosines to inosines (A-to-I) in long dsRNAs, ADAR1 covalently marks endogenous dsRNAs, thereby blocking the activation of the cytoplasmic dsRNA sensor MDA5. Moreover, beyond its editing function, ADAR1 binding to dsRNA impedes the activation of innate immune sensors PKR and ZBP1. Recent landmark studies underscore the utility of silencing ADAR1 for cancer immunotherapy, by exploiting the ADAR1-dependence developed by certain tumors to unleash an antitumor immune response. In this perspective, we summarize the genetic and mechanistic evidence for ADAR1's multipronged role in suppressing dsRNA-mediated autoimmunity and explore the evolving roles of ADAR1 as an immuno-oncology target.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- AIRNA Corporation, Cambridge, Massachusetts 02142, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
4
|
Olejnik-Wojciechowska J, Boboryko D, Bratborska AW, Rusińska K, Ostrowski P, Baranowska M, Pawlik A. The Role of Epigenetic Factors in the Pathogenesis of Psoriasis. Int J Mol Sci 2024; 25:3831. [PMID: 38612637 PMCID: PMC11011681 DOI: 10.3390/ijms25073831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, the prevalence of which is increasing. Genetic, genomic, and epigenetic changes play a significant role in the pathogenesis of psoriasis. This review summarizes the impact of epigenetics on the development of psoriasis and highlights challenges for the future. The development of epigenetics provides a basis for the search for genetic markers associated with the major histocompatibility complex. Genome-wide association studies have made it possible to link psoriasis to genes and therefore to epigenetics. The acquired knowledge may in the future serve as a solid foundation for developing newer, increasingly effective methods of treating psoriasis. In this narrative review, we discuss the role of epigenetic factors in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| | | | - Klaudia Rusińska
- Department of General Pathology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Piotr Ostrowski
- Department of Nursing, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland
| | - Magdalena Baranowska
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| |
Collapse
|
5
|
Wang S, Kozai M, Hiraishi M, Rubel MZU, Ichii O, Inaba M, Matsuo K, Takada K. Roles of tumor necrosis factor-like ligand 1A in γδT-cell activation and psoriasis pathogenesis. Front Immunol 2024; 15:1340467. [PMID: 38348035 PMCID: PMC10859483 DOI: 10.3389/fimmu.2024.1340467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Background Interleukin (IL)-17-producing γδT (γδT17) cells mediate inflammatory responses in barrier tissues. Dysregulated γδT17 cell activation can lead to the overproduction of IL-17 and IL-22 and the development of inflammatory diseases, including psoriasis. IL-23 and IL-1β are known to synergistically activate γδT17 cells, but the regulatory mechanisms of γδT17 cells have not been fully elucidated. This study aimed to reveal the contribution of the inflammatory cytokine tumor necrosis factor-like ligand 1A (TL1A) to γδT17 cell activation and psoriasis development. Methods Anti-TL1A antibody was injected into an imiquimod (IMQ)-induced murine psoriasis model. TL1A receptor expression was analyzed in splenic and dermal γδT cells. γδT cells were tested for cytokine production in vitro and in vivo under stimulation with IL-23, IL-1β, and TL1A. TL1A was applied to a psoriasis model induced by intradermal IL-23 injection. Mice deficient in γδT cells were intradermally injected with IL-23 plus TL1A to verify the contribution of TL1A-dependent γδT-cell activation to psoriasis development. Results Neutralization of TL1A attenuated γδT17 cell activation in IMQ-treated skin. TL1A induced cytokine production by splenic γδT17 cells in synergy with IL-23. Dermal γδT17 cells constitutively expressed a TL1A receptor at high levels and vigorously produced IL-22 upon intradermal IL-23 and TL1A injection but not IL-23 alone. TL1A exacerbated the dermal symptoms induced by IL-23 injection in wild-type but not in γδT cell-deficient mice. Conclusion These findings suggest a novel regulatory mechanism of γδT cells through TL1A and its involvement in psoriasis pathogenesis as a possible therapeutic target.
Collapse
Affiliation(s)
- Shangyi Wang
- Laboratory of Molecular Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mina Kozai
- Division of Vaccinology for Clinical Development, Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Masaya Hiraishi
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Md. Zahir Uddin Rubel
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Mutsumi Inaba
- Laboratory of Molecular Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Matsuo
- Division of Vaccinology for Clinical Development, Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Kensuke Takada
- Division of Vaccinology for Clinical Development, Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Rusiñol L, Puig L. Multi-Omics Approach to Improved Diagnosis and Treatment of Atopic Dermatitis and Psoriasis. Int J Mol Sci 2024; 25:1042. [PMID: 38256115 PMCID: PMC10815999 DOI: 10.3390/ijms25021042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Psoriasis and atopic dermatitis fall within the category of cutaneous immune-mediated inflammatory diseases (IMIDs). The prevalence of IMIDs is increasing in industrialized societies, influenced by both environmental changes and a genetic predisposition. However, the exact immune factors driving these chronic, progressive diseases are not fully understood. By using multi-omics techniques in cutaneous IMIDs, it is expected to advance the understanding of skin biology, uncover the underlying mechanisms of skin conditions, and potentially devise precise and personalized approaches to diagnosis and treatment. We provide a narrative review of the current knowledge in genomics, epigenomics, and proteomics of atopic dermatitis and psoriasis. A literature search was performed for articles published until 30 November 2023. Although there is still much to uncover, recent evidence has already provided valuable insights, such as proteomic profiles that permit differentiating psoriasis from mycosis fungoides and β-defensin 2 correlation to PASI and its drop due to secukinumab first injection, among others.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| |
Collapse
|
7
|
Dand N, Stuart PE, Bowes J, Ellinghaus D, Nititham J, Saklatvala JR, Teder-Laving M, Thomas LF, Traks T, Uebe S, Assmann G, Baudry D, Behrens F, Billi AC, Brown MA, Burkhardt H, Capon F, Chung R, Curtis CJ, Duckworth M, Ellinghaus E, FitzGerald O, Gerdes S, Griffiths CEM, Gulliver S, Helliwell P, Ho P, Hoffmann P, Holmen OL, Huang ZM, Hveem K, Jadon D, Köhm M, Kraus C, Lamacchia C, Lee SH, Ma F, Mahil SK, McHugh N, McManus R, Modalsli EH, Nissen MJ, Nöthen M, Oji V, Oksenberg JR, Patrick MT, Perez-White BE, Ramming A, Rech J, Rosen C, Sarkar MK, Schett G, Schmidt B, Tejasvi T, Traupe H, Voorhees JJ, Wacker EM, Warren RB, Wasikowski R, Weidinger S, Wen X, Zhang Z, Barton A, Chandran V, Esko T, Foerster J, Franke A, Gladman DD, Gudjonsson JE, Gulliver W, Hüffmeier U, Kingo K, Kõks S, Liao W, Løset M, Mägi R, Nair RP, Rahman P, Reis A, Smith CH, Di Meglio P, Barker JN, Tsoi LC, Simpson MA, Elder JT. GWAS meta-analysis of psoriasis identifies new susceptibility alleles impacting disease mechanisms and therapeutic targets. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.04.23296543. [PMID: 37873414 PMCID: PMC10593001 DOI: 10.1101/2023.10.04.23296543] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Psoriasis is a common, debilitating immune-mediated skin disease. Genetic studies have identified biological mechanisms of psoriasis risk, including those targeted by effective therapies. However, the genetic liability to psoriasis is not fully explained by variation at robustly identified risk loci. To move towards a saturation map of psoriasis susceptibility we meta-analysed 18 GWAS comprising 36,466 cases and 458,078 controls and identified 109 distinct psoriasis susceptibility loci, including 45 that have not been previously reported. These include susceptibility variants at loci in which the therapeutic targets IL17RA and AHR are encoded, and deleterious coding variants supporting potential new drug targets (including in STAP2, CPVL and POU2F3). We conducted a transcriptome-wide association study to identify regulatory effects of psoriasis susceptibility variants and cross-referenced these against single cell expression profiles in psoriasis-affected skin, highlighting roles for the transcriptional regulation of haematopoietic cell development and epigenetic modulation of interferon signalling in psoriasis pathobiology.
Collapse
Affiliation(s)
- Nick Dand
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Health Data Research UK, London, UK
| | - Philip E Stuart
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
- National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Joanne Nititham
- Deparment of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Jake R Saklatvala
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | - Laurent F Thomas
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St.Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tanel Traks
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Steffen Uebe
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Gunter Assmann
- RUB University Hospital JWK Minden, Department of Rheumatology, Minden, Germany
- Jose-Carreras Centrum for Immuno- and Gene Therapy, University of Saarland Medical School, Homburg, Germany
| | - David Baudry
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Frank Behrens
- Division of Translational Rheumatology, Immunology - Inflammation Medicine, University Hospital, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Allison C Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew A Brown
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Genomics England, Canary Wharf, London, UK
| | - Harald Burkhardt
- Division of Rheumatology, University Hospital, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Francesca Capon
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Raymond Chung
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, Camberwell, London, UK
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley Hospital, London, UK
| | - Charles J Curtis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, Camberwell, London, UK
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley Hospital, London, UK
| | - Michael Duckworth
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Oliver FitzGerald
- UCD School of Medicine and Medical Sciences and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Sascha Gerdes
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christopher E M Griffiths
- Centre for Dermatology Research, University of Manchester, NIHR Manchester Biomedical Research Centre, Manchester, UK
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Dermatology, King's College Hospital NHS Foundation Trust, London, UK
| | | | - Philip Helliwell
- National Institute for Health and Care Research (NIHR) Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, UK
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, UK
| | - Pauline Ho
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
- National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Oddgeir L Holmen
- HUNT Research Centre, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Zhi-Ming Huang
- Deparment of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Deepak Jadon
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michaela Köhm
- Division of Translational Rheumatology, Immunology - Inflammation Medicine, University Hospital, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Céline Lamacchia
- Division of Rheumatology, Geneva University Hospital, Geneva, Switzerland
| | - Sang Hyuck Lee
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, Camberwell, London, UK
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley Hospital, London, UK
| | - Feiyang Ma
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Satveer K Mahil
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- St John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, UK
| | - Neil McHugh
- Royal National Hospital for Rheumatic Diseases and Dept Pharmacy and Pharmacology, University of Bath, UK
| | - Ross McManus
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Ellen H Modalsli
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Dermatology, Clinic of Orthopedy, Rheumatology and Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Michael J Nissen
- Division of Rheumatology, Geneva University Hospital, Geneva, Switzerland
| | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Vinzenz Oji
- Department of Dermatology, University of Münster, Münster, Germany
| | - Jorge R Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew T Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jürgen Rech
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cheryl Rosen
- Division of Dermatology, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Börge Schmidt
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Heiko Traupe
- Department of Dermatology, University of Münster, Münster, Germany
| | - John J Voorhees
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eike Matthias Wacker
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Richard B Warren
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
- Centre for Dermatology Research, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M6 8HD, UK
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephan Weidinger
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Xiaoquan Wen
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Zhaolin Zhang
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
- National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Vinod Chandran
- Schroeder Arthritis Institute, Krembil Research Institute, and Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - John Foerster
- College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, UK
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Dafna D Gladman
- Schroeder Arthritis Institute, Krembil Research Institute, and Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wayne Gulliver
- Newlab Clinical Research Inc, St. John's, NL, Canada
- Department of Dermatology, Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ulrike Hüffmeier
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Külli Kingo
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - Wilson Liao
- Deparment of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Mari Løset
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Dermatology, Clinic of Orthopedy, Rheumatology and Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Rajan P Nair
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Proton Rahman
- Memorial University of Newfoundland, St. John's, NL, Canada
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Catherine H Smith
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- St John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, UK
| | - Paola Di Meglio
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Jonathan N Barker
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- St John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, UK
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael A Simpson
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Antonatos C, Grafanaki K, Georgiou S, Evangelou E, Vasilopoulos Y. Disentangling the complexity of psoriasis in the post-genome-wide association era. Genes Immun 2023; 24:236-247. [PMID: 37717118 DOI: 10.1038/s41435-023-00222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
In recent years, genome-wide association studies (GWAS) have been instrumental in unraveling the genetic architecture of complex diseases, including psoriasis. The application of large-scale GWA studies in psoriasis has illustrated several associated loci that participate in the cutaneous inflammation, however explaining a fraction of the disease heritability. With the advent of high-throughput sequencing technologies and functional genomics approaches, the post-GWAS era aims to unravel the functional mechanisms underlying the inter-individual variability in psoriasis patients. In this review, we present the key advances of psoriasis GWAS in under-represented populations, rare, non-coding and structural variants and epistatic phenomena that orchestrate the interplay between different cell types. We further review the gene-gene and gene-environment interactions contributing to the disease predisposition and development of comorbidities through Mendelian randomization studies and pleiotropic effects of psoriasis-associated loci. We finally examine the holistic approaches conducted in psoriasis through system genetics and state-of-the-art transcriptomic analyses, discussing their potential implication in the expanding field of precision medicine and characterization of comorbidities.
Collapse
Affiliation(s)
- Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Katerina Grafanaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504, Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504, Patras, Greece
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, 45110, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110, Ioannina, Greece
- Department of Epidemiology & Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
9
|
Patel HA, Revankar RR, Pedroza ST, Graham S, Feldman SR. The Genetic Susceptibility to Psoriasis and the Relationship of Linked Genes to Our Treatment Options. Int J Mol Sci 2023; 24:12310. [PMID: 37569685 PMCID: PMC10418823 DOI: 10.3390/ijms241512310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Understanding the factors creating genetic susceptibility in psoriasis may provide a basis for improving targeted treatment strategies. In this review, we discuss the genes linked to the pathogenesis of psoriasis and their relationship to the available treatment options. To identify the relevant genetic markers and treatments, we searched PubMed, Google Scholar, MEDLINE, and Web of Science with keywords, including genetic susceptibility to psoriasis, genetics and psoriasis, psoriasis treatments, and biologics treatments in psoriasis. The articles in English from database inception to 1/1/23 were included. Case reports and series were excluded. Gene variant forms commonly implicated in the pathogenesis of psoriasis include those encoding for interleukins, interferons, and other mediators involved in inflammatory pathways, such as JAK/STAT, and NF-κB. Several of the treatments for psoriasis (for example IL23 and TYK2 inhibitors) target the products of genes linked to psoriasis. Multiple genes are linked to the pathogenesis of psoriasis. This understanding may provide an avenue for the development of new psoriasis treatment strategies and for more effective, safer treatment outcomes.
Collapse
Affiliation(s)
- Heli A. Patel
- Center for Dermatology Research, Wake Forest School of Medicine, Winston-Salem, NC 27104, USA
| | | | | | - Shaveonte Graham
- Wright State University Boonshoft School of Medicine, Fairborn, OH 45435, USA
| | - Steven R. Feldman
- Center for Dermatology Research, Wake Forest School of Medicine, Winston-Salem, NC 27104, USA
- Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, NC 27104, USA
| |
Collapse
|
10
|
Karmon M, Kopel E, Barzilai A, Geva P, Eisenberg E, Levanon EY, Greenberger S. Altered RNA Editing in Atopic Dermatitis Highlights the Role of Double-Stranded RNA for Immune Surveillance. J Invest Dermatol 2022; 143:933-943.e8. [PMID: 36502941 DOI: 10.1016/j.jid.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/03/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
Atopic dermatitis (AD) is associated with dysregulated type 1 IFN‒mediated responses, in parallel with the dominant type 2 inflammation. However, the pathophysiology of this dysregulation is largely unknown. Adenosine-to-inosine RNA editing plays a critical role in immune regulation by preventing double-stranded RNA recognition by MDA5 and IFN activation. We studied global adenosine-to-inosine editing in AD to elucidate the role played by altered editing in the pathophysiology of this disease. Analysis of three RNA-sequencing datasets of AD skin samples revealed reduced levels of adenosine-to-inosine RNA editing in AD. This reduction was seen globally throughout Alu repeats as well as in coding genes and in specific pre-mRNA loci expected to create long double-stranded RNA, the main substrate of MDA5 leading to type I IFN activation. Consistently, IFN signature genes were upregulated. In contrast, global editing was not altered in systemic lupus erythematosus and systemic sclerosis, despite IFN activation. Our results indicate that altered editing leading to impairment of the innate immune response may be involved in the pathogenesis of AD. Possibly, it may be relevant for additional autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Miriam Karmon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Kopel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Aviv Barzilai
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Polina Geva
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel
| | - Eli Eisenberg
- Raymond & Beverly Sackler School of Physics & Astronomy, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shoshana Greenberger
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Morelli M, Galluzzo M, Scarponi C, Madonna S, Scaglione GL, Girolomoni G, Talamonti M, Bianchi L, Albanesi C. Allelic Variants of HLA-C Upstream Region, PSORS1C3, MICA, TNFA and Genes Involved in Epidermal Homeostasis and Barrier Function Influence the Clinical Response to Anti-IL-12/IL-23 Treatment of Patients with Psoriasis. Vaccines (Basel) 2022; 10:1977. [PMID: 36423071 PMCID: PMC9695538 DOI: 10.3390/vaccines10111977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 02/11/2024] Open
Abstract
Several biologic therapies have been developed to treat moderate-to-severe psoriasis, with patients exhibiting different clinical benefits, possibly due to the heterogeneity of pathogenic processes underlying their conditions. Ustekinumab targets the IL-12/IL-23-p40 subunit and inhibits type-1 and type-17 T-cell responses. Although ustekinumab is effective as both short- and long-term treatment, therapeutic response varies considerably among patients. Ustekinumab biosimilars will be commercialized in the very next future, likely broadening the use of this drug in the treatment of psoriasis patients. Our pharmacogenomic study evaluated the influence of 417 single-nucleotide polymorphisms (SNPs) in psoriasis-risk alleles on the clinical response to ustekinumab in a cohort of 152 patients affected by moderate-to-severe plaque-type psoriasis. Differences in SNP pattern characterizing HLA-Cw6+ or HLA-Cw6- patients, showing high or low responses to ustekinumab, were also analysed. We identified twelve SNPs in HLA-C upstream region (rs12189871, rs4406273, rs9348862 and rs9368670), PSORS1C3 (rs1265181), MICA (rs2523497), LCE3A-B intergenic region (rs12030223, rs6701730), CDSN (rs1042127, rs4713436), CCHCR1 (rs2073719) and in TNFA (rs1800610) genes associated with excellent response to ustekinumab. We also found that HLA-Cw6+ and HLA-Cw6- patients carried out distinct patterns of SNPs associated with different clinical responses. The assessment of HLA-C alleles, together with other genetic variants, could be helpful for defining patients who better benefit from anti-IL-12/IL-23 therapy.
Collapse
Affiliation(s)
- Martina Morelli
- Laboratory of Experimental Immunology, IDI-IRCCS, 00167 Rome, Italy
- Dermatology Unit, Fondazione Policlinico “Tor Vergata” and Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy
| | - Marco Galluzzo
- Dermatology Unit, Fondazione Policlinico “Tor Vergata” and Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy
| | - Claudia Scarponi
- Laboratory of Experimental Immunology, IDI-IRCCS, 00167 Rome, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology, IDI-IRCCS, 00167 Rome, Italy
| | | | - Giampiero Girolomoni
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Marina Talamonti
- Dermatology Unit, Fondazione Policlinico “Tor Vergata” and Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Fondazione Policlinico “Tor Vergata” and Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy
| | | |
Collapse
|
12
|
Zervou MI, Andreou AC, Eliopoulos EE, Goulielmos GN. Functional significance of the rare rs35667974 IFIH1 gene polymorphism, associated with multiple autoimmune diseases, using a structural biological approach. Autoimmunity 2022; 55:455-461. [PMID: 35918839 DOI: 10.1080/08916934.2022.2103799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Autoimmune diseases, which affect approximately 5% of human population, are a range of diseases in which the immune response to self-antigens results in damage or dysfunction of tissues. Recent genome wide association studies (GWAS) have successfully identified novel autoimmune disease-associated loci, with many of them shared by multiple disease-associated pathways but much of the genetics and pathophysiological mechanisms remain still obscure. Considering that most of the potential causal variants are still unknown, many studies showed that the missense variant rs35667974 at interferon-induced with helicase C domain 1 (IFIH1) gene is protective for type 1 diabetes (T1D), psoriasis (PS) and psoriatic arthritis (PsA). Recently, this variant was found to be also associated with ankylosing spondylitis (AS), Crohn's disease (CD) and ulcerative colitis (UC). The IFIH1 gene encodes a cytoplasmic RNA helicase otherwise known as melanoma differentiation-associated 5 (MDA5) that recognizes viral RNA and is involved in innate immunity through recognition of viral RNA. In the present study we sought to investigate the association of the rare rs35667974 variant of IFIH1 gene, which resides in exon 14 and changes a conserved isoleucine at position #923 to valine, in the development of various autoimmune diseases and give a reason for the selectivity affecting different autoimmune diseases. Evolutionary studies and three-dimensional (3 D) homology modelling were employed on the MDA5 protein product, through its association with dsRNA, recognition factor controlling cytokine and chemokine signalling, to investigate the protective role of the MDA5 variant for certain autoimmune diseases.
Collapse
Affiliation(s)
- Maria I Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Athena C Andreou
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Elias E Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - George N Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece.,Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Greece
| |
Collapse
|
13
|
Douroudis K, Ramessur R, Barbosa IA, Baudry D, Duckworth M, Angit C, Capon F, Chung R, Curtis CJ, Di Meglio P, Goulding JMR, Griffiths CEM, Lee SH, Mahil SK, Parslew R, Reynolds NJ, Shipman AR, Warren RB, Yiu ZZN, Simpson MA, Barker JN, Dand N, Smith CH. Differences in Clinical Features and Comorbid Burden between HLA-C∗06:02 Carrier Groups in >9,000 People with Psoriasis. J Invest Dermatol 2022; 142:1617-1628.e10. [PMID: 34767815 DOI: 10.1016/j.jid.2021.08.446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/07/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
The identification of robust endotypes-disease subgroups of clinical relevance-is fundamental to stratified medicine. We hypothesized that HLA-C∗06:02 status, the major genetic determinant of psoriasis, defines a psoriasis endotype of clinical relevance. Using two United Kingdom-based cross-sectional datasets-an observational severe-psoriasis study (Biomarkers of Systemic Treatment Outcomes in Psoriasis; n = 3,767) and a large population-based bioresource (UK Biobank, including n = 5,519 individuals with psoriasis)-we compared demographic, environmental, and clinical variables of interest in HLA-C∗06:02-positive (one or two copies of the HLA-C∗06:02 allele) with those in HLA-C∗06:02‒negative (no copies) individuals of European ancestry. We used multivariable regression analyses to account for mediation effects established a priori. We confirm previous observations that HLA-C∗06:02-positive status is associated with earlier age of psoriasis onset and extend findings to reveal an association with disease expressivity in females (Biomarkers of Systemic Treatment Outcomes in Psoriasis: P = 2.7 × 10-14, UK Biobank: P = 1.0 × 10-8). We also show HLA-C∗06:02-negative status to be associated with characteristic clinical features (large plaque disease, OR for HLA-C∗06:02 = 0.73, P = 7.4 × 10-4; nail involvement, OR = 0.70, P = 2.4 × 10-6); higher central adiposity (Biomarkers of Systemic Treatment Outcomes in Psoriasis: waist circumference difference of 2.0 cm, P = 8.4 × 10-4; UK Biobank: waist circumference difference of 1.4 cm, P = 1.5 × 10-4), especially in women; and a higher prevalence of other cardiometabolic comorbidities. These findings extend the clinical phenotype delineated by HLA-C∗06:02 and highlight its potential as an important biomarker to consider in future multimarker stratified medicine approaches.
Collapse
Affiliation(s)
- Konstantinos Douroudis
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Ravi Ramessur
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Ines A Barbosa
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - David Baudry
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Michael Duckworth
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Caroline Angit
- Department of Dermatology, Lincoln County Hospital, United Lincolnshire Hospitals National Health Service (NHS) Trust, Lincoln, United Kingdom
| | - Francesca Capon
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Raymond Chung
- National Institute for Health Research (NIHR) BioResource Centre Maudsley, National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC) at South London and Maudsley National Health Service (NHS) Foundation Trust (SLaM), Lincoln, United Kingdom; Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, Lincoln, United Kingdom; Social, Genetic & Developmental Psychiatry Centre, School of Mental Health & Psychological Sciences, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, Lincoln, United Kingdom
| | - Charles J Curtis
- National Institute for Health Research (NIHR) BioResource Centre Maudsley, National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC) at South London and Maudsley National Health Service (NHS) Foundation Trust (SLaM), Lincoln, United Kingdom; Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, Lincoln, United Kingdom; Social, Genetic & Developmental Psychiatry Centre, School of Mental Health & Psychological Sciences, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, Lincoln, United Kingdom
| | - Paola Di Meglio
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Jonathan M R Goulding
- Dermatology Department, Solihull Hospital, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Christopher E M Griffiths
- Dermatology Centre, Salford Royal National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, National Institute for Health Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Sang Hyuck Lee
- National Institute for Health Research (NIHR) BioResource Centre Maudsley, National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC) at South London and Maudsley National Health Service (NHS) Foundation Trust (SLaM), Lincoln, United Kingdom; Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, Lincoln, United Kingdom; Social, Genetic & Developmental Psychiatry Centre, School of Mental Health & Psychological Sciences, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, Lincoln, United Kingdom
| | - Satveer K Mahil
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom; St. John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Richard Parslew
- Department of Dermatology, Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Nick J Reynolds
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Alexa R Shipman
- Department of Dermatology, Queen Alexandra Hospital, Portsmouth Hospital NHS Trust, Portsmouth, United Kingdom
| | - Richard B Warren
- Dermatology Centre, Salford Royal National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, National Institute for Health Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Zenas Z N Yiu
- Dermatology Centre, Salford Royal National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, National Institute for Health Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Michael A Simpson
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Jonathan N Barker
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom; St. John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Nick Dand
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom; Health Data Research UK, London, United Kingdom
| | - Catherine H Smith
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom; St. John's Institute of Dermatology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, United Kingdom.
| |
Collapse
|
14
|
van de Kerkhof PCM. From Empirical to Pathogenesis-Based Treatments for Psoriasis. J Invest Dermatol 2022; 142:1778-1785. [DOI: 10.1016/j.jid.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023]
|
15
|
Kurgyis Z, Vornholz L, Pechloff K, Kemény LV, Wartewig T, Muschaweckh A, Joshi A, Kranen K, Hartjes L, Möckel S, Steiger K, Hameister E, Volz T, Mellett M, French LE, Biedermann T, Korn T, Ruland J. Keratinocyte-intrinsic BCL10/MALT1 activity initiates and amplifies psoriasiform skin inflammation. Sci Immunol 2021; 6:eabi4425. [PMID: 34826258 DOI: 10.1126/sciimmunol.abi4425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zsuzsanna Kurgyis
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Konstanze Pechloff
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Lajos V Kemény
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Venereology, and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tim Wartewig
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Andreas Muschaweckh
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Abhinav Joshi
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Katja Kranen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Lara Hartjes
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Sigrid Möckel
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany.,Institute of Pathology, Universität Würzburg, Würzburg, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Erik Hameister
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Thomas Volz
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Mark Mellett
- Department of Dermatology, University Hospital of Zürich, University of Zurich (UZH), Zürich, Switzerland
| | - Lars E French
- Department of Dermatology, University Hospital of Zürich, University of Zurich (UZH), Zürich, Switzerland.,Department of Dermatology and Allergy, University Hospital, LMU Munich Munich, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Thomas Korn
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Center for Infection Research (DZIF), Munich partner site, Munich Germany
| |
Collapse
|
16
|
Li CW, Sachidanandam R, Jayaprakash A, Yi Z, Zhang W, Stefan-Lifshitz M, Concepcion E, Tomer Y. Identification of New Rare Variants Associated With Familial Autoimmune Thyroid Diseases by Deep Sequencing of Linked Loci. J Clin Endocrinol Metab 2021; 106:e4680-e4687. [PMID: 34143178 PMCID: PMC8530708 DOI: 10.1210/clinem/dgab440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Genetic risk factors play a major role in the pathoetiology of autoimmune thyroid diseases (AITD). So far, only common risk variants have been identified in AITD susceptibility genes. Recently, rare genetic variants have emerged as important contributors to complex diseases, and we hypothesized that rare variants play a key role in the genetic susceptibility to AITD. OBJECTIVE We aimed to identify new rare variants that are associated with familial AITD. METHODS We performed deep sequencing of 3 previously mapped AITD-linked loci (10q, 12q, and 14q) in a dataset of 34 families in which AITD clustered (familial AITD). RESULTS We identified 13 rare variants, located in the inositol polyphosphate multikinase (IPMK) gene, that were associated with AITD (ie, both Graves' disease [GD] and Hashimoto's thyroiditis [HT]); 2 rare variants, within the dihydrolipoamide S-succinyltransferase (DLST) and zinc-finger FYVE domain-containing protein (ZFYVE1) genes, that were associated with GD only; and 3 rare variants, within the phosphoglycerate mutase 1 pseudogene 5 (PGAM1P5), LOC105369879, and methionine aminopeptidase 2 (METAP2) genes, that were associated with HT only. CONCLUSION Our study demonstrates that, in addition to common variants, rare variants also contribute to the genetic susceptibility to AITD. We identified new rare variants in 6 AITD susceptibility genes that predispose to familial AITD. Of these, 3 genes, IPMK, ZFYVE1, and METAP2, are mechanistically involved in immune pathways and have been previously shown to be associated with autoimmunity. These genes predispose to thyroid autoimmunity and may serve as potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Cheuk Wun Li
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anitha Jayaprakash
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhengzi Yi
- Department of Medicine Bioinformatics Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weijia Zhang
- Department of Medicine Bioinformatics Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Erlinda Concepcion
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yaron Tomer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: Yaron Tomer, MD, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| |
Collapse
|
17
|
Yan D, Gudjonsson JE, Le S, Maverakis E, Plazyo O, Ritchlin C, Scher JU, Singh R, Ward NL, Bell S, Liao W. New Frontiers in Psoriatic Disease Research, Part I: Genetics, Environmental Triggers, Immunology, Pathophysiology, and Precision Medicine. J Invest Dermatol 2021; 141:2112-2122.e3. [PMID: 34303522 PMCID: PMC8384663 DOI: 10.1016/j.jid.2021.02.764] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Psoriasis is a chronic inflammatory condition characterized by systemic immune dysregulation. Over the past several years, advances in genetics, microbiology, immunology, and mouse models have revealed the complex interplay between the heritable and microenvironmental factors that drive the development of psoriatic inflammation. In the first of this two-part review series, the authors will discuss the newest insights into the pathogenesis of psoriatic disease and highlight how the evolution of these scientific fields has paved the way for a more personalized approach to psoriatic disease treatment.
Collapse
Affiliation(s)
- Di Yan
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, New York, USA
| | | | - Stephanie Le
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher Ritchlin
- Center for Musculoskeletal Research, Division of Allergy, Immunology and Rheumatology, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
| | - Jose U Scher
- Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - Roopesh Singh
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicole L Ward
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stacie Bell
- National Psoriasis Foundation, Portland, Oregon, USA
| | - Wilson Liao
- UCSF Department of Dermatology, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
18
|
Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker JNWN. Psoriasis. Lancet 2021; 397:1301-1315. [PMID: 33812489 DOI: 10.1016/s0140-6736(20)32549-6] [Citation(s) in RCA: 901] [Impact Index Per Article: 300.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
Psoriasis is a common, chronic papulosquamous skin disease occurring worldwide, presenting at any age, and leading to a substantial burden for individuals and society. It is associated with several important medical conditions, including depression, psoriatic arthritis, and cardiometabolic syndrome. Its most common form, chronic plaque or psoriasis vulgaris, is a consequence of genetic susceptibility, particularly in the presence of the HLA-C*06:02 risk allele, and of environmental triggers such as streptococcal infection, stress, smoking, obesity, and alcohol consumption. There are several phenotypes and research has separated pustular from chronic plaque forms. Immunological and genetic studies have identified IL-17 and IL-23 as key drivers of psoriasis pathogenesis. Immune targeting of these cytokines and of TNFα by biological therapies has revolutionised the care of severe chronic plaque disease. Psoriasis cannot currently be cured, but management should aim to minimise physical and psychological harm by treating patients early in the disease process, identifying and preventing associated multimorbidity, instilling lifestyle modifications, and employing a personalised approach to treatment.
Collapse
Affiliation(s)
- Christopher E M Griffiths
- Dermatology Centre, Salford Royal NHS Foundation Trust, University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester, UK.
| | - April W Armstrong
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Jonathan N W N Barker
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
19
|
Kridin K, Bieber K, Sadik CD, Schön MP, Wang G, Loser K, Ludwig RJ. Editorial: Skin Autoimmunity. Front Immunol 2021; 12:627565. [PMID: 33841410 PMCID: PMC8027228 DOI: 10.3389/fimmu.2021.627565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Khalaf Kridin
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Christian D. Sadik
- Department of Dermatology, Allergy, and Venereology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael P. Schön
- Department of Dermatology, Venereology, and Allergology, University Medical Center Göttingen, Göttingen, Germany
- Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Karin Loser
- Institute of Immunology, University of Oldenburg, Oldenburg, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
Insights into the pathogenesis of psoriatic arthritis from genetic studies. Semin Immunopathol 2021; 43:221-234. [PMID: 33712923 DOI: 10.1007/s00281-021-00843-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Psoriatic arthritis (PsA) is a relatively common inflammatory arthritis, a spondyloarthritis (SpA), that occurs most often in patients with psoriasis, a common immune-mediated inflammatory skin disease. Both psoriasis and PsA are highly heritable. Genetic and recent genomic studies have identified variants associated with psoriasis and PsA, but variants differentiating psoriasis from PsA are few. In this review, we describe recent developments in understanding the genetic burden of PsA, linkage, association and epigenetic studies. Using pathway analysis, we provide further insights into the similarities and differences between PsA and psoriasis, as well as between PsA and other immune-mediated inflammatory diseases, particularly ankylosing spondylitis, another SpA. Environmental factors that may trigger PsA in patients with psoriasis are also reviewed. To further understand the pathogenetic differences between PsA and psoriasis as well as other SpA, larger cohort studies of well-phenotyped subjects with integrated analysis of genomic, epigenomic, transcriptomic, proteomic and metabolomic data using interomic system biology approaches are required.
Collapse
|
21
|
Ghoreschi K, Balato A, Enerbäck C, Sabat R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 2021; 397:754-766. [PMID: 33515492 DOI: 10.1016/s0140-6736(21)00184-7] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 04/09/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Psoriasis is a chronic inflammatory disease characterised by sharply demarcated erythematous and scaly skin lesions accompanied by systemic manifestations. Classified by WHO as one of the most serious non-infectious diseases, psoriasis affects 2-3% of the global population. Mechanistically, psoriatic lesions result from hyperproliferation and disturbed differentiation of epidermal keratinocytes that are provoked by immune mediators of the IL-23 and IL-17 pathway. Translational immunology has had impressive success in understanding and controlling psoriasis. Psoriasis is the first disease to have been successfully treated with therapeutics that directly block the action of the cytokines of this pathway; in fact, therapeutics that specifically target IL-23, IL-17, and IL-17RA are approved for clinical use and show excellent efficacy. Furthermore, inhibitors of IL-23 and IL-17 intracellular signalling, such as TYK2 or RORγt, are in clinical development. Although therapies that target the IL-23 and IL-17 pathway also improve psoriatic arthritis symptoms, their effects on long-term disease modification and psoriasis-associated comorbidities still need to be explored.
Collapse
Affiliation(s)
- Kamran Ghoreschi
- Department of Dermatology, Venereology, and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Anna Balato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Charlotta Enerbäck
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robert Sabat
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
Morelli M, Galluzzo M, Madonna S, Scarponi C, Scaglione GL, Galluccio T, Andreani M, Pallotta S, Girolomoni G, Bianchi L, Talamonti M, Albanesi C. HLA-Cw6 and other HLA-C alleles, as well as MICB-DT, DDX58, and TYK2 genetic variants associate with optimal response to anti-IL-17A treatment in patients with psoriasis. Expert Opin Biol Ther 2021; 21:259-270. [PMID: 33297781 DOI: 10.1080/14712598.2021.1862082] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/07/2020] [Indexed: 01/12/2023]
Abstract
Objective: Our pharmacogenomic study evaluated the influence of the presence/absence of genetic variants of psoriasis-risk loci on the clinical response to secukinumab. Differences in the single-nucleotide polymorphism (SNP) pattern characterizing HLA-Cw6+ or HLA-Cw6- patient subpopulations, showing high or low responses to secukinumab, were also analyzed. Methods: 417 SNPs were analyzed by Next-Generation Sequencing technology, in a cohort of 62 psoriatic patients and undergone secukinumab treatment. Univariate regression analysis was employed to examine the association between SNP and clinical response to secukinumab. Multivariate analysis was also performed to assess multivariate differences in SNP pattern of HLA-Cw6+ or HLA-Cw6- patients showing high or low responses to secukinumab. Results: Eight SNPs in HLA-C and upstream region (rs13207315, rs6900444, rs12189871, rs12191877, rs4406273, and rs10484554), including HLA-Cw6 classical allele (rs1131118), and three in MICB-DT (rs9267325), DDX58 (rs34085293) and TYK2 (rs2304255) genes, associating with excellent response to secukinumab were identified. Importantly, rs34085293 or rs2304255 SNP status defined a subgroup of super-responder patients. We also found that HLA-Cw6+ and HLA-Cw6- patients carried out specific patterns of SNPs associating with different responses to secukinumab. Conclusion: Assessment of HLA-Cw6, together with other allelic variants of genes, could be helpful to define patients which better benefit from anti-IL-17 therapy. Abbreviations: PASI: Psoriasis Area and Severity Index; SNP: Single-Nucleotide Polymorphism Rs: Reference SNP; PASI75: 75% reduction in Psoriasis Area and Severity Index; PASI90: 90% reduction in Psoriasis Area and Severity Index; PASI100: 100% reduction in Psoriasis Area and Severity Index; NGS: Next-Generation Sequencing; OR: Odds Ratio; CAP: Canonical Analysis of Principal coordinates; BMI: Body Mass Index; LD: Linkage Disequilibrium.
Collapse
Affiliation(s)
- Martina Morelli
- Laboratory of Experimental Immunology, IDI-IRCCS , Rome, Italy
- Section of Dermatology, Department of Medicine, University of Verona , Verona, Italy
| | - Marco Galluzzo
- Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome, Italy
| | | | | | | | - Tiziana Galluccio
- Department of Oncohematology and Cell and Gene Therapy, IRCCS Bambin Gesù Pediatric Hospital, Laboratory of Immunogenetics and Transplant , Rome, Italy
| | - Marco Andreani
- Department of Oncohematology and Cell and Gene Therapy, IRCCS Bambin Gesù Pediatric Hospital, Laboratory of Immunogenetics and Transplant , Rome, Italy
| | | | - Giampiero Girolomoni
- Section of Dermatology, Department of Medicine, University of Verona , Verona, Italy
| | - Luca Bianchi
- Department of Systems Medicine, University of Rome "Tor Vergata" , Rome, Italy
| | - Marina Talamonti
- Department of Systems Medicine, University of Rome "Tor Vergata" , Rome, Italy
| | | |
Collapse
|
23
|
Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol 2020; 11:249-272. [PMID: 32827707 PMCID: PMC7689184 DOI: 10.1016/j.jcmgh.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS TNFSF15 genetic variants leading to increased TNF superfamily member 15 (TNFSF15) expression confer risk for inflammatory bowel disease (IBD), and TNFSF15 is being explored as a therapeutic target in IBD patients. Although the focus for TNFSF15-mediated inflammatory outcomes has been predominantly on its action on T cells, TNFSF15 also promotes inflammatory outcomes in human macrophages. Given the critical role for macrophages in bacterial clearance, we hypothesized that TNFSF15 promotes antimicrobial pathways in human macrophages and that macrophages from TNFSF15 IBD risk carriers with higher TNFSF15 expression have an advantage in these antimicrobial outcomes. METHODS We analyzed protein expression, signaling, bacterial uptake, and intracellular bacterial clearance in human monocyte-derived macrophages through flow cytometry, enzyme-linked immunosorbent assay, and gentamicin protection. RESULTS Autocrine/paracrine TNFSF15 interactions with death receptor 3 (DR3) were required for optimal levels of pattern-recognition-receptor (PRR)-induced bacterial clearance in human macrophages. TNFSF15 induced pyruvate dehydrogenase kinase 1-dependent bacterial uptake and promoted intracellular bacterial clearance through reactive oxygen species, nitric oxide synthase 2, and autophagy up-regulation. The TNFSF15-initiated TNF receptor-associated factor 2/receptor-interacting protein kinase 1/RIP3 pathway was required for mitogen-activated protein kinase and nuclear factor-κB activation, and, in turn, induction of each of the antimicrobial pathways; the TNFSF15-initiated Fas-associated protein with death domain/mucosa-associated lymphoid tissue lymphoma translocation protein 1/caspase-8 pathway played a less prominent role in antimicrobial functions, despite its key role in TNFSF15-induced cytokine secretion. Complementation of signaling pathways or antimicrobial pathways restored bacterial uptake and clearance in PRR-stimulated macrophages where TNFSF15:DR3 interactions were inhibited. Monocyte-derived macrophages from high TNFSF15-expressing rs6478108 TT IBD risk carriers in the TNFSF15 region showed increased levels of the identified antimicrobial pathways. CONCLUSIONS We identify that autocrine/paracrine TNFSF15 is required for optimal PRR-enhanced antimicrobial pathways in macrophages, define mechanisms regulating TNFSF15-dependent bacterial clearance, and determine how the TNFSF15 IBD risk genotype modulates these outcomes.
Collapse
Affiliation(s)
| | | | - Clara Abraham
- Correspondence Address correspondence to: Clara Abraham, MD, Section of Digestive Diseases, Department of Internal Medicine, Yale University, 333 Cedar Street (LMP 1080), New Haven, Connecticut 06520. fax: (203) 785-7273.
| |
Collapse
|
24
|
Hile GA, Gudjonsson JE, Kahlenberg JM. The influence of interferon on healthy and diseased skin. Cytokine 2020; 132:154605. [PMID: 30527631 PMCID: PMC6551332 DOI: 10.1016/j.cyto.2018.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023]
Abstract
Type I interferons (IFNs) are an immunomodulatory class of cytokines that serve to protect against viral and bacterial infection. In addition, mounting evidence suggests IFNs, particularly type I but also IFNγ, are important to the pathogenesis of autoimmune and inflammatory skin diseases, such as cutaneous lupus erythematosus (CLE). Understanding the role of IFNs is relevant to anti-viral responses in the skin, skin biology, and therapeutics for these IFN-related conditions. Type I IFNs (α and β) are produced by recruited inflammatory cells and by the epidermis itself (IFNκ) and have important roles in autoimmune and inflammatory skin disease. Here, we review the current literature utilizing a PubMed database search using terms [interferon/IFN/type I IFN AND lupus/ cutaneous lupus/CLE/dermatomyositis/Sjogrens/psoriasis/lichen planus/morphea/alopecia areata/vitiligo] with a focus on the role of IFNs in basic keratinocyte biology and their implications in the cutaneous autoimmune and inflammatory diseases: cutaneous lupus erythematosus, dermatomyositis, Sjogren's syndrome, psoriasis, lichen planus, alopecia areata and vitiligo. We provide information about genes and proteins induced by IFNs and how downstream mechanisms relate to clinical disease.
Collapse
Affiliation(s)
- Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Abstract
Innate lymphocyte populations are emerging as key effectors in tissue homeostasis, microbial defense, and inflammatory skin disease. The cells are evolutionarily ancient and carry conserved principles of function, which can be achieved through shared or unique specific mechanisms. Recent technological and treatment advances have provided insight into heterogeneity within and between individuals and species. Similar pathways can extend through to adaptive lymphocytes, which softens the margins with innate lymphocyte populations and allows investigation of nonredundant pathways of immunity and inflammation that might be amenable to therapeutic intervention. Here, we review advances in understanding of innate lymphocyte biology with a focus on skin disease and the roles of commensal and pathogen responses and tissue homeostasis.
Collapse
Affiliation(s)
- Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Koshika Yadava
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, Headington, Oxford OX3 7LE, United Kingdom;
| |
Collapse
|
26
|
Epigenetic factors involved in the pathophysiology of inflammatory skin diseases. J Allergy Clin Immunol 2020; 145:1049-1060. [DOI: 10.1016/j.jaci.2019.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
|
27
|
Dand N, Mahil SK, Capon F, Smith CH, Simpson MA, Barker JN. Psoriasis and Genetics. Acta Derm Venereol 2020; 100:adv00030. [PMID: 31971603 PMCID: PMC9128944 DOI: 10.2340/00015555-3384] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 11/29/2022] Open
Abstract
Psoriasis is a common inflammatory skin disease caused by the interplay between multiple genetic and environmental risk factors. This review summarises recent progress in elucidating the genetic basis of psoriasis, particularly through large genome-wide association studies. We illustrate the power of genetic analyses for disease stratification. Psoriasis can be stratified by phenotype (common plaque versus rare pustular variants), or by outcome (prognosis, comorbidities, response to treatment); recent progress has been made in delineating the genetic contribution in each of these areas. We also highlight how genetic data can directly inform the development of effective psoriasis treatments.
Collapse
|
28
|
Li Z, Rotival M, Patin E, Michel F, Pellegrini S. Two common disease-associated TYK2 variants impact exon splicing and TYK2 dosage. PLoS One 2020; 15:e0225289. [PMID: 31961910 PMCID: PMC6974145 DOI: 10.1371/journal.pone.0225289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
TYK2 belongs to the JAK protein tyrosine kinase family and mediates signaling of numerous antiviral and immunoregulatory cytokines (type I and type III IFNs, IL-10, IL-12, IL-22, IL-23) in immune and non-immune cells. After many years of genetic association studies, TYK2 is recognized as a susceptibility gene for some inflammatory and autoimmune diseases (AID). Seven TYK2 variants have been associated with AIDs in Europeans, and establishing their causality remains challenging. Previous work showed that a protective variant (P1104A) is hypomorphic and also a risk allele for mycobacterial infection. Here, we have studied two AID-associated common TYK2 variants: rs12720270 located in intron 7 and rs2304256, a non-synonymous variant in exon 8 that causes a valine to phenylalanine substitution (c.1084 G > T, Val362Phe). We found that this amino acid substitution does not alter TYK2 expression, catalytic activity or ability to relay signaling in EBV-B cell lines or in reconstituted TYK2-null cells. Based on in silico predictions that these variants may impact splicing of exon 8, we: i) analyzed TYK2 transcripts in genotyped EBV-B cells and in CRISPR/Cas9-edited cells, ii) measured splicing using minigene assays, and iii) performed eQTL (expression quantitative trait locus) analysis of TYK2 transcripts in primary monocytes and whole blood cells. Our results reveal that the two variants promote the inclusion of exon 8, which, we demonstrate, is essential for TYK2 binding to cognate receptors. In addition and in line with GTEx (Genetic Tissue Expression) data, our eQTL results show that rs2304256 mildly enhances TYK2 expression in whole blood. In all, these findings suggest that these TYK2 variants are not neutral but instead have a potential impact in AID.
Collapse
Affiliation(s)
- Zhi Li
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
| | - Maxime Rotival
- Unit of Human Evolutionary Genetics, Institut Pasteur, CNRS UMR2000, Paris, France
| | - Etienne Patin
- Unit of Human Evolutionary Genetics, Institut Pasteur, CNRS UMR2000, Paris, France
| | - Frédérique Michel
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
| | - Sandra Pellegrini
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
- * E-mail:
| |
Collapse
|
29
|
van de Kerkhof PCM. Translational Research and Drug Development in Psoriasis by Collaborative Efforts of Academia and Industry. J Invest Dermatol 2020; 140:524-526. [PMID: 31945346 DOI: 10.1016/j.jid.2020.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Peter C M van de Kerkhof
- Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Li J, Lin H, Hou R, Shen J, Li X, Xing J, He F, Wu X, Zhao X, Sun L, Fan X, Niu X, Liu Y, Liu R, An P, Qu T, Chang W, Wang Q, Zhou L, Li J, Wang Z, Jiao J, Wang Y, Wang G, Liang N, Liang J, Liang Y, Hou H, Shi Y, Yang X, Li J, Dang E, Yin G, Yang X, Zhang G, Gao Q, Fang X, Li X, Zhang K. Multi-omics study in monozygotic twins confirm the contribution of de novo mutation to psoriasis. J Autoimmun 2019; 106:102349. [PMID: 31629629 DOI: 10.1016/j.jaut.2019.102349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Genome-wide association studies have identified over 120 risk loci for psoriasis. However, most of the variations are located in non-coding region with high frequency and small effect size. Pathogenetic variants are rarely reported except HLA-C*0602 with the odds ratio being approximately 4.0 in Chinese population. Although rare variations still account for a small proportion of phenotypic variances in complex diseases, their effect on phenotypes is large. Recently, more and more studies focus on the low-frequency functional variants and have achieved a certain amount of success. METHOD Whole genome sequencing and sanger sequencing was performed on 8 MZ twin pairs discordant for psoriasis to scan and verified the de novo mutations (DNMs). Additionally, 665 individuals with about 20 years' medical history versus 2054 healthy controls and two published large population studies which had about 8 years' medical history (including 10,727 cases versus 10,582 controls) were applied to validate the enrichment of rare damaging mutations in two DNMs genes. Besides, to verify the pathogenicity of candidate DNM in C3, RNA-sequencing for CD4+, CD8+ T cells of twins and lesion, non-lesion skin of psoriasis patients were carried out. Meanwhile, the enzyme-linked immunosorbent assay kit was used to detect the level of C3, C3b in the supernatant of peripheral blood. RESULT A total of 27 DNMs between co-twins were identified. We found six of eight twins carry HLA-C∗0602 allele which have large effects on psoriasis. And it is interesting that a missense mutation in SPRED1 and a splice region mutation in C3 are found in the psoriasis individuals in the other two MZ twin pairs without carrying HLA-C*0602 allele. In the replication stage, we found 2 loss-of-function (LOF) variants of C3 only in 665 cases with about 20 years' medical history and gene-wise analysis in 665 cases and 2054 controls showed that the rare missense mutations in C3 were enriched in cases (OR = 1.91, P = 0.0028). We further scanned the LOF mutations of C3 in two published studies (about 8 years' medical history), and found one LOF mutation in the case without carrying HLA-C*0602. In the individual with DNM in C3, RNA sequencing showed the expression level of C3 in skin was significant higher than healthy samples in public database (TPM fold change = 1.40, P = 0.000181) and ELISA showed protein C3 in peripheral blood was higher (~2.2-fold difference) than the other samples of twins without DNM in C3. CONCLUSION To the best of our knowledge, this is the first report that DNM in C3 is the likely pathological mutations, and it provided a better understanding of the genetic etiology of psoriasis and additional treatments for this disease.
Collapse
Affiliation(s)
- Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Haoxiang Lin
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Juan Shen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xiaofang Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Fusheng He
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Xueli Wu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Liangdan Sun
- Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, 230032, China.
| | - Xing Fan
- Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, 230032, China.
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Yanmin Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Ruifeng Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Peng An
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Tong Qu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Wenjuan Chang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Qiang Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Ziyuan Wang
- Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, China.
| | - Juanjuan Jiao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Ying Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 15 Changle Road West, Xi'an, 710032, China.
| | - Nannan Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Jiannan Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Yanyang Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Yu Shi
- Department of Hematology, Oncology and Tumor Immunology Charité University Medicine Berlin, Campus Virchow Hospital, Berlin, Germany.
| | - Xiaohong Yang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 15 Changle Road West, Xi'an, 710032, China.
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Xukui Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Guiping Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xiaodong Fang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| |
Collapse
|
31
|
Zhu S, Wang B, Jia Q, Duan L. Candidate single nucleotide polymorphisms of irritable bowel syndrome: a systemic review and meta-analysis. BMC Gastroenterol 2019; 19:165. [PMID: 31615448 PMCID: PMC6792237 DOI: 10.1186/s12876-019-1084-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Background Genetic factors increase the risk of irritable bowel syndrome (IBS). Analysis of single nucleotide polymorphisms (SNPs) has been used in IBS patients, but the findings are inconsistent. The goal of this review was to synthesize all the published SNPs studies of IBS through meta-analysis to objectively evaluate the relevance of SNPs to IBS risks. Methods IBS - related polymorphisms studies from 2000 to 2018 were searched. Pooled odds ratios with a 95% confidence interval for each SNP were evaluated through five genetic models. Ethnicity, ROME criteria and IBS subtypes were defined for subgroup analyze. Results Ten relevant genes were evaluated. SNPs rs4263839 and rs6478108 of TNFSF15 associated with an increased risk of IBS; IL6 rs1800795 increased the risk for Caucasian IBS patients which diagnosed by Rome III criteria; and IL23R rs11465804 increased the risk for IBS-C patients. IL10 rs1800896 GG genotype associated with a decreased risk of IBS. No evidence supported the association of GNβ3 rs5443, TNFα rs1800629, and IL10 rs1800871 to IBS in this study. Conclusions This meta-analysis presents an in-depth overview for IBS SNPs analysis. It was confirmed that polymorphisms of TNFSF15 associated with increased IBS risk, while IL10 rs1800896 associated with decreased IBS risk. It might offer some insights into polymorphisms of inflammation factors which might affect IBS susceptibility. Moreover, the analysis also emphasizes the importance of diagnostic criteria and phenotype homogeneity in IBS genetic studies.
Collapse
Affiliation(s)
- Shiwei Zhu
- Department of Gastroenterology, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Ben Wang
- Department of Gastroenterology, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Qiong Jia
- Department of Gastroenterology, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing, 100191, China.
| |
Collapse
|
32
|
Yang C, Chen M, Huang H, Li X, Qian D, Hong X, Zheng L, Hong J, Hong J, Zhu Z, Zheng X, Sheng Y, Zhang X. Exome-Wide Rare Loss-of-Function Variant Enrichment Study of 21,347 Han Chinese Individuals Identifies Four Susceptibility Genes for Psoriasis. J Invest Dermatol 2019; 140:799-805.e1. [PMID: 31376382 DOI: 10.1016/j.jid.2019.07.692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/25/2019] [Accepted: 07/10/2019] [Indexed: 11/20/2022]
Abstract
Most psoriasis-related genes or loci identified by GWAS represent common clusters and are located in noncoding regions of the human genome, providing only limited evidence for the roles of rare coding variants in psoriasis. Two exome-wide case-control genotyping data sets (11,245 cases and 11,177 controls) were obtained from our previous study. Quality controls were established for each data set, and the markers remaining in each set were annotated using ANNOVAR. Gene-based analysis was performed on the annotation results. A total of 250 and 35 genes in the Exome_Fine and Exome_Asian array cohorts, respectively, exceeded the threshold (P < 4.43 × 10-6). Merged gene-based analysis was then conducted on the same set of SNPs from seven genes common to both arrays, and the chi-square test was used to confirm all gene-based results. Ultimately, four susceptibility genes were identified: BBS7 (Pcombine = 1.38 × 10-29), GSTCD (Pcombine = 8.35 × 10-47), LIPK (Pcombine = 1.02 × 10-19), and PPP4R3B (Pcombine = 1.79 × 10-33). This study identified four susceptibility genes for psoriasis via a gene-based method using rare variants, contributing to our understanding of the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Chao Yang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Mengyun Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - He Huang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Xueying Li
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Danfeng Qian
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Xiaojie Hong
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Lijun Zheng
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Jiaqi Hong
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Jiaqi Hong
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Zhengwei Zhu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Xiaodong Zheng
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.
| | - Yujun Sheng
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.
| | - Xuejun Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.
| |
Collapse
|
33
|
Ran D, Cai M, Zhang X. Genetics of psoriasis: a basis for precision medicine. PRECISION CLINICAL MEDICINE 2019; 2:120-130. [PMID: 35693758 PMCID: PMC9026189 DOI: 10.1093/pcmedi/pbz011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
Psoriasis is an inflammatory skin disease with a background of polygenic inheritance.
Both environmental and genetic factors are involved in the etiology of the disease. In the
last two decades, numerous studies have been conducted through linkage analysis,
genome-wide association study (GWAS), and direct sequencing to explore the role of genetic
variation in disease pathogenesis and progression. To date, >80 psoriasis
susceptibility genes have been identified, including HLA-Cw6,
IL12B, IL23R, and LCE3B/3C. Some
genetic markers have been applied in disease prediction, clinical diagnosis, treatment,
and new drug development, which could further explain the pathogenesis of psoriasis and
promote the development of precision medicine. This review summarizes related research on
genetic variation in psoriasis and explores implications of the findings in clinical
application and the promotion of a personalized medicine project.
Collapse
Affiliation(s)
- Delin Ran
- Institute of Dermatology and Department of Dermatology of the First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Minglong Cai
- Institute of Dermatology and Department of Dermatology of the First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology of the First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| |
Collapse
|
34
|
Abstract
GENERAL PURPOSE To provide information about the diagnosis and management of cutaneous psoriasis. TARGET AUDIENCE This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. LEARNING OBJECTIVES/OUTCOMES After completing this continuing education activity, the provider should be better able to: ABSTRACT: Psoriasis is a chronic inflammatory disease that is characterized by plaque, inverse, guttate, pustular, and erythrodermic variants. This review focuses on the epidemiology, diagnosis, and treatment of cutaneous psoriasis. Other related topics discussed include peristomal psoriasis, the Koebner phenomenon, and the relationship between biologic therapy and wound complications.
Collapse
|
35
|
Dand N, Duckworth M, Baudry D, Russell A, Curtis CJ, Lee SH, Evans I, Mason KJ, Alsharqi A, Becher G, Burden AD, Goodwin RG, McKenna K, Murphy R, Perera GK, Rotarescu R, Wahie S, Wright A, Reynolds NJ, Warren RB, Griffiths CE, Smith CH, Simpson MA, Barker JN, Benham M, Hussain S, Kirby B, Lawson L, McElhone K, Ormerod A, Owen C, Barnes MR, Di Meglio P, Emsley R, Evans A, Payne K, Stocken D. HLA-C*06:02 genotype is a predictive biomarker of biologic treatment response in psoriasis. J Allergy Clin Immunol 2019; 143:2120-2130. [DOI: 10.1016/j.jaci.2018.11.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/13/2018] [Accepted: 11/27/2018] [Indexed: 01/28/2023]
|
36
|
Valatas V, Kolios G, Bamias G. TL1A (TNFSF15) and DR3 (TNFRSF25): A Co-stimulatory System of Cytokines With Diverse Functions in Gut Mucosal Immunity. Front Immunol 2019; 10:583. [PMID: 30972074 PMCID: PMC6445966 DOI: 10.3389/fimmu.2019.00583] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
TL1A and its functional receptor DR3 are members of the TNF/TNFR superfamilies of proteins. Binding of APC-derived TL1A to lymphocytic DR3 provides co-stimulatory signals for activated lymphocytes. DR3 signaling affects the proliferative activity of and cytokine production by effector lymphocytes, but also critically influences the development and suppressive function of regulatory T-cells. DR3 was also found to be highly expressed by innate lymphoid cells (ILCS), which respond to stimulation by TL1A. Several recent studies with transgenic and knockout mice as well as neutralizing or agonistic antibodies for these two proteins, have clearly shown that TL1A/DR3 are important mediators of several chronic immunological disorders, including Inflammatory Bowel Disease (IBD). TL1A and DR3 are abundantly localized at inflamed intestinal areas of patients with IBD and mice with experimental ileitis or colitis and actively participate in the immunological pathways that underlie mucosal homeostasis and intestinal inflammation. DR3 signaling has demonstrated a dichotomous role in mucosal immunity. On the one hand, during acute mucosal injury it exerts protective functions by ameliorating the severity of acute inflammatory responses and facilitating tissue repair. On the other hand, it critically participates in the pro-inflammatory pathways that underlie chronic inflammatory responses, such as those that take place in IBD. These effects are mediated through modulation of the relative mucosal abundance and function of Th1, Th2, Th17, Th9, and Treg lymphocytes, but also of all types of ILCs. Recently, an important role was demonstrated for TL1A/DR3 as potential mediators of intestinal fibrosis that is associated with the presence of gut inflammation. These accumulating data have raised the possibility that TL1A/DR3 pathways may represent a valid therapeutic target for chronic immunological diseases. Nevertheless, applicability of such a therapeutic approach will greatly rely on the net result of TL1A/DR3 manipulation on the various cell populations that will be affected by this approach.
Collapse
Affiliation(s)
- Vassilis Valatas
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, Heraklion, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Giorgos Bamias
- GI-unit, National & Kapodistrian University of Athens, Third Department of Internal Medicine, Sotiria Hospital, Athens, Greece
| |
Collapse
|
37
|
Nititham J, Fergusson C, Palmer C, Liao W, Foerster J. Candidate long-range regulatory sites acting on the IL17 pathway genes TRAF3IP2
and IL17RA
are associated with psoriasis. Exp Dermatol 2018; 27:1294-1297. [DOI: 10.1111/exd.13761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/22/2018] [Accepted: 07/18/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Joanne Nititham
- Department of Dermatology; University of California at San Francisco; San Francisco California
| | | | | | - Wilson Liao
- Department of Dermatology; University of California at San Francisco; San Francisco California
| | | |
Collapse
|
38
|
Brück J, Dringen R, Amasuno A, Pau-Charles I, Ghoreschi K. A review of the mechanisms of action of dimethylfumarate in the treatment of psoriasis. Exp Dermatol 2018; 27:611-624. [DOI: 10.1111/exd.13548] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jürgen Brück
- Department of Dermatology; University Medical Center; Eberhard Karls University; Tübingen Germany
| | - Ralf Dringen
- Faculty 2 (Biology/Chemistry); Center for Biomolecular Interactions Bremen; University of Bremen; Bremen Germany
- Center for Environmental Research and Sustainable Technology; University of Bremen; Bremen Germany
| | | | | | - Kamran Ghoreschi
- Department of Dermatology; University Medical Center; Eberhard Karls University; Tübingen Germany
| |
Collapse
|
39
|
The Genetic Basis of Psoriasis. Int J Mol Sci 2017; 18:ijms18122526. [PMID: 29186830 PMCID: PMC5751129 DOI: 10.3390/ijms18122526] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Psoriasis is widely regarded as a multifactorial condition which is caused by the interaction between inherited susceptibility alleles and environmental triggers. In the last decade, technological advances have enabled substantial progress in the understanding of disease genetics. Genome-wide association studies have identified more than 60 disease susceptibility regions, highlighting the pathogenic involvement of genes related to Th17 cell activation. This pathway has now been targeted by a new generation of biologics that have shown great efficacy in clinical trials. At the same time, the study of rare variants of psoriasis has identified interleukin (IL)-36 cytokines as important amplifiers of Th17 signaling and promising targets for therapeutic intervention. Here, we review these exciting discoveries, which highlight the translational potential of genetic studies.
Collapse
|