1
|
Jiang X, Zhu W, Sun Y, Wang S, Sun M, Tang R, Tang Z, Ma T. Tandem mass tag-based quantitative proteomics analyses of the spermatogenesis-ameliorating effect of Youjing granule on rats. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9679. [PMID: 38211349 DOI: 10.1002/rcm.9679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/15/2023] [Accepted: 11/11/2023] [Indexed: 01/13/2024]
Abstract
RATIONALE Male infertility is a common reproductive system disease manifested as aberrant spermatogenesis and identified as "kidney deficiency and dampness" in Chinese traditional medicine. Youjing granule (YG) is a Chinese material medica based on tonifying kidneys and removing dampness. It has proven to be able to regulate semen quality in clinical application, but the underlying mechanism has not been clarified. METHODS Using serum containing YG to treat primarily cultured spermatogonial stem cells (SSCs), the apoptotic rate and mitosis phase ratio of SSCs were measured. The liquid chromatography-tandem mass spectrometry with tandem mass tags method was applied for analyzing the serum of rats treated with YG/distilled water, and proteomic analyses were performed to clarify the mechanisms of YG. RESULTS Totally, 111 proteins in YG-treated serum samples were differentially expressed compared with control groups, and 43 of them were identified as potential target proteins, which were further annotated based on their enrichment in Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. Proteomic analyses showed that the mechanisms of YG may involve regulation of glycolysis, gluconeogenesis and nucleotide-binding and oligomerization domain-like receptor signaling pathway. In addition, RhoA and Lamp2 were found to be possible responders of YG through reviewing the literature. CONCLUSIONS The results demonstrate that our serum proteomics platform is clinically useful in understanding the mechanisms of YG.
Collapse
Affiliation(s)
- Xuping Jiang
- Department of Traditional Chinese Medicine, Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Department of Urology, Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Wenjiao Zhu
- Central Laboratory, Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Yaoxiang Sun
- Central Laboratory, Affiliated Yixing Hospital of Jiangsu University, Yixing, China
- Department of Clinical Laboratory, Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Sijia Wang
- Department of Traditional Chinese Medicine, Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Central Laboratory, Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Miaomiao Sun
- Department of Traditional Chinese Medicine, Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
| | - Ruijie Tang
- School of Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhian Tang
- Department of Traditional Chinese Medicine, Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Central Laboratory, Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Tieliang Ma
- Department of Traditional Chinese Medicine, Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
- Central Laboratory, Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| |
Collapse
|
2
|
Zhao B, Ding X, Wang X, Sun Y, Gao S, Song X, Zhang B, Zhang Y, Wang Y. Supplementation with kaempferol relieves oxidative stress and enhances development of early bovine embryos in vitro. Reprod Domest Anim 2022; 57:1007-1015. [PMID: 35615974 DOI: 10.1111/rda.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
Oxidative stress (OS) has been considered the principle cause of developmental failure of early embryos cultured in vitro; therefore, the addition of antioxidants is very important for improving in vitro culture (IVC) systems. Various antioxidants have been tested for IVC systems, but most have exhibited some side effects. Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4h-1-benzopyran-4-one, KAE) is a flavonoid with strong antioxidant activity and no obvious side effects. This study explored the effect of KAE on antioxidant capacity and developmental competence of bovine embryos after fertilization. KAE was added to bovine IVC medium and significantly reduced reactive oxygen species (ROS) in 2-, 4- and 8-cell stage embryos and increased blastocyst formation. In addition, the level of H3K9ac was increased, the apoptotic index was reduced, and total cell numbers and trophectoderm cell numbers in day 7 blastocysts were increased significantly in KAE-treated embryos compared to control. Expression of the apoptotic gene, Bcl-2, was higher in blastocysts after KAE treatment, while expression of the endoplasmic reticulum (ER) stress genes, Bip and HDAC1, and the pro-apoptotic gene, Bax, were significantly lower in the KAE group. Thus, KAE significantly reduced ROS damage and improved development of IVC bovine embryos.
Collapse
Affiliation(s)
- Baobao Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Xinyi Ding
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Yu Sun
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Song Gao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Xuexiao Song
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Bihan Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| |
Collapse
|
3
|
Sharma A, Minhas S, Dhillo WS, Jayasena CN. Male infertility due to testicular disorders. J Clin Endocrinol Metab 2021; 106:e442-e459. [PMID: 33295608 PMCID: PMC7823320 DOI: 10.1210/clinem/dgaa781] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Male infertility is defined as the inability to conceive following 1 year of regular unprotected intercourse. It is the causative factor in 50% of couples and a leading indication for assisted reproductive techniques (ART). Testicular failure is the most common cause of male infertility, yet the least studied to date. EVIDENCE ACQUISITION The review is an evidence-based summary of male infertility due to testicular failure with a focus on etiology, clinical assessment, and current management approaches. PubMed-searched articles and relevant clinical guidelines were reviewed in detail. EVIDENCE SYNTHESIS/RESULTS Spermatogenesis is under multiple levels of regulation and novel molecular diagnostic tests of sperm function (reactive oxidative species and DNA fragmentation) have since been developed, and albeit currently remain as research tools. Several genetic, environmental, and lifestyle factors provoking testicular failure have been elucidated during the last decade; nevertheless, 40% of cases are idiopathic, with novel monogenic genes linked in the etiopathogenesis. Microsurgical testicular sperm extraction (micro-TESE) and hormonal stimulation with gonadotropins, selective estrogen receptor modulators, and aromatase inhibitors are recently developed therapeutic approaches for men with the most severe form of testicular failure, nonobstructive azoospermia. However, high-quality clinical trials data is currently lacking. CONCLUSIONS Male infertility due to testicular failure has traditionally been viewed as unmodifiable. In the absence of effective pharmacological therapies, delivery of lifestyle advice is a potentially important treatment option. Future research efforts are needed to determine unidentified factors causative in "idiopathic" male infertility and long-term follow-up studies of babies conceived through ART.
Collapse
Affiliation(s)
- Aditi Sharma
- Section of Endocrinology and Investigative Medicine, Imperial College London, UK
| | - Suks Minhas
- Department of Urology, Charing Cross Hospital, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, UK
| | - Channa N Jayasena
- Section of Endocrinology and Investigative Medicine, Imperial College London, UK
| |
Collapse
|
4
|
Abstract
Seminal fluid is often assumed to have just one function in mammalian reproduction, delivering sperm to fertilize oocytes. But seminal fluid also transmits signaling agents that interact with female reproductive tissues to facilitate conception and .pregnancy. Upon seminal fluid contact, female tissues initiate a controlled inflammatory response that affects several aspects of reproductive function to ultimately maximize the chances of a male producing healthy offspring. This effect is best characterized in mice, where the female response involves several steps. Initially, seminal fluid factors cause leukocytes to infiltrate the female reproductive tract, and to selectively target and eliminate excess sperm. Other signals stimulate ovulation, induce an altered transcriptional program in female tract tissues that modulates embryo developmental programming, and initiate immune adaptations to promote receptivity to implantation and placental development. A key result is expansion of the pool of regulatory T cells that assist implantation by suppressing inflammation, mediating tolerance to male transplantation antigens, and promoting uterine vascular adaptation and placental development. Principal signaling agents in seminal fluid include prostaglandins and transforming growth factor-β. The balance of male signals affects the nature of the female response, providing a mechanism of ‟cryptic female choiceˮ that influences female reproductive investment. Male-female seminal fluid signaling is evident in all mammalian species investigated including human, and effects of seminal fluid in invertebrates indicate evolutionarily conserved mechanisms. Understanding the female response to seminal fluid will shed new light on infertility and pregnancy disorders and is critical to defining how events at conception influence offspring health.
Collapse
Affiliation(s)
- John E Schjenken
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
5
|
Colucci F, McKeegan P, Picton HM, Pensabene V. Mouse embryo assay to evaluate polydimethylsiloxane (PDMS) embryo-toxicity .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:4484-4487. [PMID: 30441347 DOI: 10.1109/embc.2018.8513167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In vitro embryo culture to support In Vitro Fertilization (IVF) procedures is a well-established but still critical technique. In the last decade first attempts to use microfluidic devices in IVF have shown positive results, enabling to control the culture conditions and to preserve the quality of the embryos during their development. In this study we completed an industry standard mouse embryo assay (MEA) to exclude potential toxic effects of PDMS.
Collapse
|
6
|
Kim KH, Kim J, Han JY, Moon Y. In vitro estimation of metal-induced disturbance in chicken gut-oviduct chemokine circuit. Mol Cell Toxicol 2019; 15:443-452. [PMID: 32226460 PMCID: PMC7097086 DOI: 10.1007/s13273-019-0048-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/03/2019] [Indexed: 12/04/2022]
Abstract
Backgrounds Heavy metals affect various processes in the embryonic development. Embryonic fibroblasts (EFs) play key roles in the innate recognition and wound healing in reproductive tissues. Methods Based on the relative toxicities of different inorganic metals and inorganic nonmetallic compounds against murine and chicken EF cells, mechanistic estimations were performed based on transcriptomic analyses. Results Lead (II) acetate induced preferential injuries in the chicken EF and mechanistic analyses using transcriptome revealed that chemokine receptor-associated events are potently involved in metal-induced adverse actions. As an early sentinel of metal exposure, the precision-cut intestine slices (PCIS) induced the expression of chemokines including CXCLi1 or CXCLi2, which were potent gut-derived factors that activate chemokine receptors in reproductive organs after circulation. Conclusion EF-selective metals can be estimated to trigger the chemokine circuit in the gut-reproductive axis of chickens. This in vitro methodology using PCIS-EF culture could be used as a promising alternate platform for the reproductive immunotoxicological assessment.
Collapse
Affiliation(s)
- Ki Hyung Kim
- 1Department of Biomedical Sciences, Biomedical Research Institute, Pusan National University, Yangsan, 50612 Republic of Korea.,2Biomedical Research Institute and Pusan Cancer Center, Busan National University Hospital, Busan, Republic of Korea.,3Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Juil Kim
- 1Department of Biomedical Sciences, Biomedical Research Institute, Pusan National University, Yangsan, 50612 Republic of Korea
| | - Jae Yong Han
- 4Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yuseok Moon
- 1Department of Biomedical Sciences, Biomedical Research Institute, Pusan National University, Yangsan, 50612 Republic of Korea.,2Biomedical Research Institute and Pusan Cancer Center, Busan National University Hospital, Busan, Republic of Korea.,College of Information and Biomedical Engineering, Yangsan, 50612 Republic of Korea
| |
Collapse
|
7
|
Impact of male factor infertility on offspring health and development. Fertil Steril 2019; 111:1047-1053. [DOI: 10.1016/j.fertnstert.2019.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 11/24/2022]
|
8
|
Verheijen M, Lienhard M, Schrooders Y, Clayton O, Nudischer R, Boerno S, Timmermann B, Selevsek N, Schlapbach R, Gmuender H, Gotta S, Geraedts J, Herwig R, Kleinjans J, Caiment F. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci Rep 2019; 9:4641. [PMID: 30874586 PMCID: PMC6420634 DOI: 10.1038/s41598-019-40660-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
Though clinical trials for medical applications of dimethyl sulfoxide (DMSO) reported toxicity in the 1960s, later, the FDA classified DMSO in the safest solvent category. DMSO became widely used in many biomedical fields and biological effects were overlooked. Meanwhile, biomedical science has evolved towards sensitive high-throughput techniques and new research areas, including epigenomics and microRNAs. Considering its wide use, especially for cryopreservation and in vitro assays, we evaluated biological effect of DMSO using these technological innovations. We exposed 3D cardiac and hepatic microtissues to medium with or without 0.1% DMSO and analyzed the transcriptome, proteome and DNA methylation profiles. In both tissue types, transcriptome analysis detected >2000 differentially expressed genes affecting similar biological processes, thereby indicating consistent cross-organ actions of DMSO. Furthermore, microRNA analysis revealed large-scale deregulations of cardiac microRNAs and smaller, though still massive, effects in hepatic microtissues. Genome-wide methylation patterns also revealed tissue-specificity. While hepatic microtissues demonstrated non-significant changes, findings from cardiac microtissues suggested disruption of DNA methylation mechanisms leading to genome-wide changes. The extreme changes in microRNAs and alterations in the epigenetic landscape indicate that DMSO is not inert. Its use should be reconsidered, especially for cryopreservation of embryos and oocytes, since it may impact embryonic development.
Collapse
Affiliation(s)
- M Verheijen
- Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - M Lienhard
- Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Y Schrooders
- Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - O Clayton
- F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | - S Boerno
- Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - B Timmermann
- Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - N Selevsek
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - R Schlapbach
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | | | - S Gotta
- Genedata AG, Basel, Switzerland
| | - J Geraedts
- Genetics and Cell Biology, Maastricht University, Medical Center, Maastricht, Netherlands
| | - R Herwig
- Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - J Kleinjans
- Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - F Caiment
- Toxicogenomics, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
9
|
An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming. Nat Commun 2018; 9:4934. [PMID: 30467383 PMCID: PMC6250703 DOI: 10.1038/s41467-018-07119-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 10/11/2018] [Indexed: 01/01/2023] Open
Abstract
Worldwide over 5 million children have been conceived using assisted reproductive technology, and research has concentrated on increasing the likelihood of ongoing pregnancy. However, studies using animal models have indicated undesirable effects of in vitro embryo culture on offspring development and health. In vivo, the oviduct hosts a period in which the early embryo undergoes complete reprogramming of its (epi)genome in preparation for the reacquisition of (epi)genetic marks. We designed an oviduct-on-a-chip platform to better investigate the mechanisms related to (epi)genetic reprogramming and the degree to which they differ between in vitro and in vivo embryos. The device supports more physiological (in vivo-like) zygote genetic reprogramming than conventional IVF. This approach will be instrumental in identifying and investigating factors critical to fertilization and pre-implantation development, which could improve the quality and (epi)genetic integrity of IVF zygotes with likely relevance for early embryonic and later fetal development.
Collapse
|
10
|
Simopoulou M, Sfakianoudis K, Rapani A, Giannelou P, Anifandis G, Bolaris S, Pantou A, Lambropoulou M, Pappas A, Deligeoroglou E, Pantos K, Koutsilieris M. Considerations Regarding Embryo Culture Conditions: From Media to Epigenetics. ACTA ACUST UNITED AC 2018; 32:451-460. [PMID: 29695546 DOI: 10.21873/invivo.11261] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 02/05/2023]
Abstract
There are numerous reports on embryo culture media and conditions in the laboratory, as the subject is multifaceted and complex, reflecting the variation in practice. In this scoping review, we attempt to approach the topic of culture media and conditions from the practitioners' perspective aiming to highlight, in a comprehensive fashion, important aspects regarding the options available, introduce points of debate and controversy, while maintaining the viewpoint of the practicing embryologist's concerns.
Collapse
Affiliation(s)
- Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece .,Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Anna Rapani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Polina Giannelou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - George Anifandis
- Department of Histology and Embryology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Stamatis Bolaris
- Assisted Conception Unit, Elena Venizelou General-Maternity District Hospital, Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Maria Lambropoulou
- Department of Histology and Embryology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Athanasios Pappas
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Efthimios Deligeoroglou
- Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Embryotoxic cytokines—Potential roles in embryo loss and fetal programming. J Reprod Immunol 2018; 125:80-88. [DOI: 10.1016/j.jri.2017.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
|
12
|
Karimi H, Mahdavi P, Fakhari S, Faryabi MR, Esmaeili P, Banafshi O, Mohammadi E, Fathi F, Mokarizadeh A. Altered helper T cell-mediated immune responses in male mice conceived through in vitro fertilization. Reprod Toxicol 2017; 69:196-203. [DOI: 10.1016/j.reprotox.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 01/28/2023]
|
13
|
Wen Z, Pan Y, Cui Y, Peng X, Chen P, Fan J, Li G, Zhao T, Zhang J, Qin S, Yu S. Colony-stimulating factor 2 enhances the developmental competence of yak (Poephagus grunniens) preimplantation embryos by modulating the expression of heat shock protein 70 kDa 1A. Theriogenology 2017; 93:16-23. [PMID: 28257862 DOI: 10.1016/j.theriogenology.2017.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/25/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022]
Abstract
Colony-stimulating factor 2 (CSF2) is known to promote the development and survival of rodents and ruminants preimplantation embryos; however, the effect of CSF2 on yak embryos has not been reported. The objective of this study was to investigate the effects of CSF2 on the developmental competence of yak embryos cultured in vitro in modified synthetic oviduct fluid (mSOF) medium and on the expression pattern of heat shock protein 70 kDa 1A (HSPA1A). In each experiment, cumulus-oocyte complexes (COCs) were matured in vitro and fertilized with frozen-thawed semen. Zygotes were treated with varying concentrations of CSF2 (0, 10, 50, 100 ng/mL) until day 8 after fertilization. Embryo development was calculated as the percentage of oocytes that formed embryos at the 2-cell, 4-cell, 8-cell, 16-cell, morula and blastocyst stages. The total cell numbers (TCN) per blastocyst and their allocation to the inner cell mass (ICM) and trophectoderm (TE) lineages were determined using differential CDX2 staining. The expression of HSPA1A was examined by quantitative real-time PCR (qRT-PCR) and immunochemistry to determine the mRNA and protein levels. The results showed that treatment with 50 ng/mL CSF2 significantly (P < 0.05) increased the rate of blastocyst formation (19.01% versus 9.93%) and the TCN per blastocyst (96.94 versus 81.41) compared to the control group. However, no significant differences were observed in the other stages of development. qRT-PCR analysis confirmed that treatment with 50 ng/mL CSF2 significantly (P < 0.05) inhibited the expression of HSPA1A mRNA in blastocysts cultured in vitro relative to the control group, but there were no significant differences between the other treatment groups. Immunocytochemical analysis confirmed that HSPA1A protein accumulation was gradually reduced in yak blastocysts cultured in 0, 10, 100 or 50 ng/mL CSF2, however, no significant differences were observed between the 10 and 100 ng/mL treatments (P > 0.05). In conclusion, these findings demonstrate that CSF2 inhibits the expression of HSPA1A to facilitate yak blastocyst formation and increase cell numbers.
Collapse
Affiliation(s)
- Zexing Wen
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiumei Peng
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ping Chen
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Guyue Li
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tian Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jian Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shujian Qin
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
14
|
Enhanced or Reduced Fetal Growth Induced by Embryo Transfer Into Smaller or Larger Breeds Alters Postnatal Growth and Metabolism in Weaned Horses. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2016.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Ferraz MAMM, Henning HHW, Stout TAE, Vos PLAM, Gadella BM. Designing 3-Dimensional In Vitro Oviduct Culture Systems to Study Mammalian Fertilization and Embryo Production. Ann Biomed Eng 2016; 45:1731-1744. [PMID: 27844174 PMCID: PMC5489612 DOI: 10.1007/s10439-016-1760-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/04/2016] [Indexed: 12/17/2022]
Abstract
The oviduct was long considered a largely passive conduit for gametes and embryos. However, an increasing number of studies into oviduct physiology have demonstrated that it specifically and significantly influences gamete interaction, fertilization and early embryo development. While oviduct epithelial cell (OEC) function has been examined during maintenance in conventional tissue culture dishes, cells seeded into these two-dimensional (2-D) conditions suffer a rapid loss of differentiated OEC characteristics, such as ciliation and secretory activity. Recently, three-dimensional (3-D) cell culture systems have been developed that make use of cell inserts to create basolateral and apical medium compartments with a confluent epithelial cell layer at the interface. Using such 3-D culture systems, OECs can be triggered to redevelop typical differentiated cell properties and levels of tissue organization can be developed that are not possible in a 2-D culture. 3-D culture systems can be further refined using new micro-engineering techniques (including microfluidics and 3-D printing) which can be used to produce ‘organs-on-chips’, i.e. live 3-D cultures that bio-mimic the oviduct. In this review, concepts for designing bio-mimic 3-D oviduct cultures are presented. The increased possibilities and concomitant challenges when trying to more closely investigate oviduct physiology, gamete activation, fertilization and embryo production are discussed.
Collapse
Affiliation(s)
- Marcia A M M Ferraz
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands
| | - Heiko H W Henning
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584CM,, Utrecht, The Netherlands
| | - Tom A E Stout
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands.,Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584CM,, Utrecht, The Netherlands
| | - Peter L A M Vos
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands
| | - Bart M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands. .,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 79, 3584CM, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Koustas G, Sjoblom C. Minute changes to the culture environment of mouse pre-implantation embryos affect the health of the conceptus. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Peugnet P, Robles M, Wimel L, Tarrade A, Chavatte-Palmer P. Management of the pregnant mare and long-term consequences on the offspring. Theriogenology 2016; 86:99-109. [PMID: 26954944 DOI: 10.1016/j.theriogenology.2016.01.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 01/21/2023]
Abstract
The study of early developmental conditioning of health and disease in adulthood is particularly relevant in the horse, which is bred mainly to perform in demanding sport challenges. On the basis of this concept, the management of the broodmare could be considered an effective means to produce animals with the desired features. Knowledge on the Developmental Origins of Health and Disease in the equine species remains relatively scarce, with some experimental studies and one single epidemiologic study. Data highlight the determinant role of the maternal environment for postnatal body conformation, immune response, energy homeostasis, osteoarticular status and thyroidal, adrenocortical, and cardiovascular functions of the foal. Most research, however, focuses on the first months/years after birth. Long-term effects on the adult horse phenotype have not been investigated so far.
Collapse
Affiliation(s)
- Pauline Peugnet
- UMR 1198 Developmental Biology and Reproduction, French Institute for Agricultural Research (INRA), Jouy-en-Josas, France.
| | - Morgane Robles
- UMR 1198 Developmental Biology and Reproduction, French Institute for Agricultural Research (INRA), Jouy-en-Josas, France
| | - Laurence Wimel
- Experimental farm, French Horse and Riding Institute (IFCE), Chamberet, France
| | - Anne Tarrade
- UMR 1198 Developmental Biology and Reproduction, French Institute for Agricultural Research (INRA), Jouy-en-Josas, France
| | - Pascale Chavatte-Palmer
- UMR 1198 Developmental Biology and Reproduction, French Institute for Agricultural Research (INRA), Jouy-en-Josas, France
| |
Collapse
|
18
|
Peugnet P, Mendoza L, Wimel L, Duchamp G, Dubois C, Reigner F, Caudron I, Deliège B, Toquet MP, Richard E, Chaffaux S, Tarrade A, Lejeune JP, Serteyn D, Chavatte-Palmer P. Longitudinal Study of Growth and Osteoarticular Status in Foals Born to Between-Breed Embryo Transfers. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2015.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Bolton VN, Leary C, Harbottle S, Cutting R, Harper JC. How should we choose the ‘best’ embryo? A commentary on behalf of the British Fertility Society and the Association of Clinical Embryologists. HUM FERTIL 2015; 18:156-64. [DOI: 10.3109/14647273.2015.1072646] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Puscheck EE, Awonuga AO, Yang Y, Jiang Z, Rappolee DA. Molecular biology of the stress response in the early embryo and its stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:77-128. [PMID: 25956296 DOI: 10.1007/978-1-4939-2480-6_4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stress is normal during early embryogenesis and transient, elevated stress is commonplace. Stress in the milieu of the peri-implantation embryo is a summation of maternal hormones, and other elements of the maternal milieu, that signal preparedness for development and implantation. Examples discussed here are leptin, adrenaline, cortisol, and progesterone. These hormones signal maternal nutritional status and provide energy, but also signal stress that diverts maternal and embryonic energy from an optimal embryonic developmental trajectory. These hormones communicate endocrine maternal effects and local embryonic effects although signaling mechanisms are not well understood. Other in vivo stresses affect the embryo such as local infection and inflammation, hypoxia, environmental toxins such as benzopyrene, dioxin, or metals, heat shock, and hyperosmotic stress due to dehydration or diabetes. In vitro, stresses include shear during handling, improper culture media and oxygen levels, cryopreservation, and manipulations of the embryo to introduce sperm or mitochondria. We define stress as any stimulus that slows stem cell accumulation or diminishes the ability of cells to produce normal and sufficient parenchymal products upon differentiation. Thus stress deflects downwards the normal trajectories of development, growth and differentiation. Typically stress is inversely proportional to embryonic developmental and proliferative rates, but can be proportional to induction of differentiation of stem cells in the peri-implantation embryo. When modeling stress it is most interesting to produce a 'runting model' where stress exposures slow accumulation but do not create excessive apoptosis or morbidity. Windows of stress sensitivity may occur when major new embryonic developmental programs require large amounts of energy and are exacerbated if nutritional flow decreases and removes energy from the normal developmental programs and stress responses. These windows correspond to zygotic genome activation, the large mRNA program initiated at compaction, ion pumping required for cavitation, the differentiation of the first lineages, integration with the uterine environment at implantation, rapid proliferation of stem cells, and production of certain lineages which require the highest energy and are most sensitive to mitochondrial inhibition. Stress response mechanisms insure that stem cells for the early embryo and placenta survive at lower stress exposures, and that the organism survives through compensatory and prioritized stem cell differentiation, at higher stress exposures. These servomechanisms include a small set of stress enzymes from the 500 protein kinases in the kinome; the part of the genome coding for protein kinases that hierarchically regulate the activity of other proteins and enzymes. Important protein kinases that mediate the stress response of embryos and their stem cells are SAPK, p38MAPK, AMPK, PI3K, Akt, MEK1/2, MEKK4, PKA, IRE1 and PERK. These stress enzymes have cytosolic function in cell survival at low stress exposures and nuclear function in modifying transcription factor activity at higher stress exposures. Some of the transcription factors (TFs) that are most important in the stress response are JunC, JunB, MAPKAPs, ATF4, XBP1, Oct1, Oct4, HIFs, Nrf2/KEAP, NFKB, MT1, Nfat5, HSF1/2 and potency-maintaining factors Id2, Cdx2, Eomes, Sox2, Nanog, Rex1, and Oct4. Clearly the stress enzymes have a large number of cytosolic and nuclear substrates and the TFs regulate large numbers of genes. The interaction of stress enzymes and TFs in the early embryo and its stem cells are a continuing central focus of research. In vitro regulation of TFs by stress enzymes leads to reprogramming of the stem cell when stress diminishes stem cell accumulation. Since more differentiated product is produced by fewer cells, the process compensates for fewer cells. Coupled with stress-induced compensatory differentiation of stem cells is a tendency to prioritize differentiation by increasing the first essential lineage and decreasing later lineages. These mechanisms include stress enzymes that regulate TFs and provide stress-specific, shared homeostatic cellular and organismal responses of prioritized differentiation.
Collapse
Affiliation(s)
- Elizabeth E Puscheck
- Department of Ob/Gyn, REI Division, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
21
|
Female tract cytokines and developmental programming in embryos. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:173-213. [PMID: 25956299 DOI: 10.1007/978-1-4939-2480-6_7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the physiological situation, cytokines are pivotal mediators of communication between the maternal tract and the embryo. Compelling evidence shows that cytokines emanating from the oviduct and uterus confer a sophisticated mechanism for 'fine-tuning' of embryo development, influencing a range of cellular events from cell survival and metabolism, through division and differentiation, and potentially exerting long-term impact through epigenetic remodelling. The balance between survival agents, including GM-CSF, CSF1, LIF, HB-EGF and IGFII, against apoptosis-inducing factors such as TNFα, TRAIL and IFNg, influence the course of preimplantation development, causing embryos to develop normally, adapt to varying maternal environments, or in some cases to arrest and undergo demise. Maternal cytokine-mediated pathways help mediate the biological effects of embryo programming, embryo plasticity and adaptation, and maternal tract quality control. Thus maternal cytokines exert influence not only on fertility and pregnancy progression but on the developmental trajectory and health of offspring. Defining a clear understanding of the biology of cytokine networks influencing the embryo is essential to support optimal outcomes in natural and assisted conception.
Collapse
|
22
|
Seminal Fluid Signalling in the Female Reproductive Tract: Implications for Reproductive Success and Offspring Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:127-58. [PMID: 26178848 DOI: 10.1007/978-3-319-18881-2_6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carriage of sperm is not the only function of seminal fluid in mammals. Studies in mice show that at conception, seminal fluid interacts with the female reproductive tract to induce responses which influence whether or not pregnancy will occur, and to set in train effects that help shape subsequent fetal development. In particular, seminal fluid initiates female immune adaptation processes required to tolerate male transplantation antigens present in seminal fluid and inherited by the conceptus. A tolerogenic immune environment to facilitate pregnancy depends on regulatory T cells (Treg cells), which recognise male antigens and function to suppress inflammation and immune rejection responses. The female response to seminal fluid stimulates the generation of Treg cells that protect the conceptus from inflammatory damage, to support implantation and placental development. Seminal fluid also elicits molecular and cellular changes in the oviduct and endometrium that directly promote embryo development and implantation competence. The plasma fraction of seminal fluid plays a key role in this process with soluble factors, including TGFB, prostaglandin-E, and TLR4 ligands, demonstrated to contribute to the peri-conception immune environment. Recent studies show that conception in the absence of seminal plasma in mice impairs embryo development and alters fetal development to impact the phenotype of offspring, with adverse effects on adult metabolic function particularly in males. This review summarises our current understanding of the molecular responses to seminal fluid and how this contributes to the establishment of pregnancy, generation of an immune-regulatory environment and programming long-term offspring health.
Collapse
|
23
|
Abstract
BACKGROUND The advances in the world of IVF during the last decades have been rapid and impressive and culture media play a major role in this success. Until the 1980s fertility centers made their media in house. Nowadays, there are numerous commercially available culture media that contain various components including nutrients, vitamins and growth factors. This review goes through the past, present and future of IVF culture media and explores their composition and quality assessment. METHODS A computerized search was performed in PubMed regarding IVF culture media including results from 1929 until March 2014. Information was gathered from the websites of companies who market culture media, advertising material, instructions for use and certificates of analysis. The regulation regarding IVF media mainly in the European Union (EU) but also in non-European countries was explored. RESULTS The keyword 'IVF culture media' gave 923 results in PubMed and 'embryo culture media' 12 068 results dating from 1912 until March 2014, depicting the increased scientific activity in this field. The commercialization of IVF culture media has increased the standards bringing a great variety of options into clinical practice. However, it has led to reduced transparency and comparisons of brand names that do not facilitate the scientific dialogue. Furthermore, there is some evidence suggesting that suboptimal culture conditions could cause long-term reprogramming in the embryo as the periconception period is particularly susceptible to epigenetic alterations. IVF media are now classified as class III medical devices and only CE (Conformité Européene)-marked media should be used in the EU. CONCLUSION The CE marking of IVF culture media is a significant development in the field. However, the quality and efficiency of culture media should be monitored closely. Well-designed randomized controlled trials, large epidemiological studies and full transparency should be the next steps. Reliable, standardized models assessing multiple end-points and post-implantation development should replace the mouse embryo assay. Structured long-term follow-up of children conceived by assisted reproduction technologies and traceability are of paramount importance.
Collapse
Affiliation(s)
- Elpiniki Chronopoulou
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Joyce C Harper
- UCL Centre for PG and D, Institute for Women's Health, University College London, London, UK The Centre for Reproductive and Genetic Health, UCLH, London, UK
| |
Collapse
|
24
|
Bromfield JJ. Seminal fluid and reproduction: much more than previously thought. J Assist Reprod Genet 2014; 31:627-36. [PMID: 24830788 DOI: 10.1007/s10815-014-0243-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/22/2014] [Indexed: 11/26/2022] Open
Abstract
The influence of seminal plasma on the cytokine and immune uterine environment is well characterised in mice and humans, while the effects of disruption to uterine seminal plasma exposure on pregnancy and offspring health is becoming more clearly understood. The cellular and molecular environment of the uterus during the pre- and peri-implantation period of early pregnancy is critical for implantation success and optimal foetal and placental development. Perturbations to this environment not only have consequences for the success of pregnancy and neonatal health and viability, but can also drive adverse health outcomes in the offspring after birth, particularly the development of metabolic disorders such as obesity, hypertension and insulin resistance. It is now reported that an absence of seminal plasma at conception in mice promotes increased fat accumulation, altered metabolism and hypertension in offspring. The evidence reviewed here demonstrates that seminal plasma is not simply a transport medium for sperm, but acts also as a key regulator of the female tract environment providing optimal support for the developing embryo and benefiting future health of offspring.
Collapse
Affiliation(s)
- John J Bromfield
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA,
| |
Collapse
|
25
|
Brusentsev EY, Igonina TN, Amstislavsky SY. Traditional and modern approaches to culture of preimplantation mammalian embryos in vitro. Russ J Dev Biol 2014; 45:53-65. [DOI: 10.1134/s1062360414020039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
|
26
|
Abstract
Accumulating evidence suggest that the concept of programming can also be applied to reproductive development and function, representing an ever expanding research area. Recently issues such as peri- or even preconceptional nutrition, transgenerational effects and underlying mechanisms have received considerable attention. The present chapter presents the existed evidence and reviews the available data from numerous animal and human studies on the effects of early life nutritional environment on adult reproductive function. Specific outcomes depend on the severity, duration and stage of development when nutritional perturbations are imposed, while sex-specific effects are also manifested. Apart from undernutrition, effects of relative overnutrition as well as the complex interactions between pre- and postnatal nutrition is of high importance, especially in the context of our days obesity epidemic. Mechanisms underlying reproductive programming are yet unclear, but may include a role for epigenetic modifications. Epigenetic modulation of critical genes involved in the control of reproductive function and potential intergenerational effects represent an exciting area of interdisciplinary research toward the development of new nutritional approaches during pre- and postnatal periods to ensure reproductive health in later life.
Collapse
|
27
|
Guerif F, McKeegan P, Leese HJ, Sturmey RG. A simple approach for COnsumption and RElease (CORE) analysis of metabolic activity in single mammalian embryos. PLoS One 2013; 8:e67834. [PMID: 23967049 PMCID: PMC3744531 DOI: 10.1371/journal.pone.0067834] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/22/2013] [Indexed: 11/18/2022] Open
Abstract
Non-invasive assay of the consumption and release of metabolites by individual human embryos could allow selection at the cleavage stage of development and facilitate Single Embryo Transfer in clinical IVF but will require simple, high throughput, sensitive methods applicable to small volume samples. A rapid, simple, non-invasive method has therefore been devised using a standard fluorescence plate reader, and used to measure the consumption of pyruvate and glucose, and release of lactate by single bovine embryos at all stages of preimplantation development in culture; amino acid profiles have been determined using HPLC. Early embryos with an 'intermediate' level (6.14±0.27 pmol/embryo/h) of pyruvate uptake were associated with the highest rate (68.3%) of blastocyst development indicating that a mid "optimum" range of pyruvate consumption correlates with high viability in this bovine model.
Collapse
Affiliation(s)
- Fabrice Guerif
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | | | | |
Collapse
|
28
|
Sakka SD, Margeli A, Loutradis D, Chrousos GP, Papassotiriou I, Kanaka-Gantenbein C. Gender dimorphic increase in RBP-4 and NGAL in children born after IVF: an epigenetic phenomenon? Eur J Clin Invest 2013; 43:439-48. [PMID: 23496280 DOI: 10.1111/eci.12066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/10/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND In vitro fertilisation (IVF) has been widely used during the last decades. Recent studies demonstrated some alterations in IVF children's metabolic profile compared with controls. The recently reported lipocalins retinol-binding protein 4 (RBP-4) and neutrophil gelatinase-associated lipocalin (NGAL), as well as visfatin, which are associated with glucose intolerance and could help in the early detection of metabolic abnormalities, have not been studied in IVF children as yet. We studied the lipocalins RBP-4 and NGAL as well as visfatin in children born after IVF. SUBJECTS AND METHODS A total of 100 children born after IVF (47 boys) and 60 controls born after normal conception (30 boys), aged 4-14 year, were studied cross-sectionally. All children had a physical examination, their fasting glucose, insulin, lipid profile, RBP-4, NGAL, and visfatin were determined and their homoeostasis model assessment (HOMA) index was calculated. RESULTS Children born after IVF had significantly higher RBP-4 (P = 0·009) and NGAL (P = 0·028) levels than controls. When divided by gender, RBP-4 remained higher in IVF girls (P = 0·002), whereas NGAL was higher in IVF boys (P = 0·021). Linear regression analysis had revealed that the differences are attributed to the IVF procedure per se. CONCLUSIONS In our study, IVF children had significantly higher RBP-4 and NGAL levels than controls, suggesting early metabolic derangements that could be attributed to an epigenetic phenomenon. These results are in accordance with our earlier findings of higher blood pressure and triglycerides in IVF children than controls. Further prospective studies in IVF children will determine the natural course of their metabolic profile.
Collapse
Affiliation(s)
- Sophia D Sakka
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, Athens University Medical School, Aghia Sophia Children's Hospital, Athens, Greece
| | | | | | | | | | | |
Collapse
|
29
|
Laguna-Barraza R, Bermejo-Álvarez P, Ramos-Ibeas P, de Frutos C, López-Cardona AP, Calle A, Fernandez-Gonzalez R, Pericuesta E, Ramírez MA, Gutierrez-Adan A. Sex-specific embryonic origin of postnatal phenotypic variability. Reprod Fertil Dev 2013; 25:38-47. [DOI: 10.1071/rd12262] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Preimplantation developmental plasticity has evolved in order to offer the best chances of survival under changing environments. Conversely, environmental conditions experienced in early life can dramatically influence neonatal and adult biology, which may result in detrimental long-term effects. Several studies have shown that small size at birth, which is associated with a greater risk of metabolic syndrome, is largely determined before the formation of the blastocysts because 70%–80% of variation in bodyweight at birth has neither a genetic nor environmental component. In addition, it has been reported that adult bodyweight is programmed by energy-dependent process during the pronuclear stage in the mouse. Although the early embryo has a high developmental plasticity and adapts and survives to adverse environmental conditions, this adaptation may have adverse consequences and there is strong evidence that in vitro culture can be a risk factor for abnormal fetal outcomes in animals systems, with growing data suggesting that a similar link may be apparent for humans. In this context, male and female preimplantation embryos display sex-specific transcriptional and epigenetic regulation, which, in the case of bovine blastocysts, expands to one-third of the transcripts detected through microarray analysis. This sex-specific bias may convert the otherwise buffered stochastic variability in developmental networks in a sex-determined response to the environmental hazard. It has been widely reported that environment can affect preimplantation development in a sex-specific manner, resulting in either a short-term sex ratio adjustment or in long-term sex-specific effects on adult health. The present article reviews current knowledge about the natural phenotypic variation caused by epigenetic mechanisms and the mechanisms modulating sex-specific changes in phenotype during early embryo development resulting in sex ratio adjustments or detrimental sex-specific consequences for adult health. Understanding the natural embryo sexual dimorphism for programming trajectories will help understand the early mechanisms of response to environmental insults.
Collapse
|
30
|
|
31
|
Abstract
This review considers how our understanding of preimplantation embryo metabolism has progressed since the pioneering work on this topic in the late 1960s and early 1970s. Research has been stimulated by a desire to understand how metabolic events contribute to the development of the zygote into the blastocyst, the need for biomarkers of embryo health with which to improve the success of assisted conception technologies, and latterly by the ‘Developmental Origins of Health and Disease’ (DOHaD) concept. However, arguably, progress has not been as great as it might have been due to methodological difficulties in working with tiny amounts of tissue and the low priority assigned to fundamental research on fertility and infertility, with developments driven more by technical than scientific advances. Nevertheless, considerable progress has been made in defining the roles of the traditional nutrients: pyruvate, glucose, lactate, and amino acids; originally considered as energy sources and biosynthetic precursors, but now recognized as having multiple, overlapping functions. Other nutrients; notably lipids, are beginning to attract the attention they deserve. The pivotal role of mitochondria in early embryo development and the DOHaD concept, and in providing a cellular focus for metabolic events is now recognized. Some unifying ideas are discussed; namely ‘stress–response models’ and the ‘quiet embryo hypothesis’; the latter aiming to relate the metabolism of individual preimplantation embryos to their subsequent viability. The review concludes by updating the state of knowledge of preimplantation embryo metabolism in the early 1970s and listing some future research questions.
Collapse
|
32
|
Sharma GT, Nath A, Prasad S, Singhal S, Singh N, Gade NE, Dubey PK, Saikumar G. Expression and characterization of constitutive heat shock protein 70.1 (HSPA-1A) gene in in vitro produced and in vivo-derived buffalo (Bubalus bubalis) embryos. Reprod Domest Anim 2012; 47:975-83. [PMID: 22463675 DOI: 10.1111/j.1439-0531.2012.02002.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cells are blessed with a group of stress protector molecules known as heat shock proteins (HSPs), amongst them HSP70, encoded by HSPA-1A gene, is most abundant and highly conserved protein. Variety of stresses hampers the developmental competence of embryos under in vivo and in vitro conditions. Present work was designed to study the quantitative expression of HSPA-1A mRNA in immature oocytes (IMO), matured oocytes (MO), in vitro produced (IVP) and in vivo-derived (IVD) buffalo embryos to assess the level of stress to which embryos are exposed under in vivo and in vitro culture conditions. Further, HSPA-1A gene sequence was analysed to determine its homology with other mammalian sequences. The mRNA expression analysis was carried out on 72 oocytes (40 IMO; 32 MO), 76 IVP and 55 IVD buffalo embryos. Expression of HSPA-1A was found in oocytes and throughout the developmental stages of embryos examined irrespective of the embryo source; however, higher (p < 0.05) expression was observed in 8-16 cell, morula and blastocyst stages of IVP embryos as compared to IVD embryos. Phylogenetic analysis of bubaline HSPA-1A revealed that it shares 91-98% identity with other mammalian sequences. It can be concluded that higher level of HSPA-1A mRNA in IVP embryos in comparison with in vivo-derived embryos is an indicator of cellular stress in IVP system. This study suggests need for further optimization of in vitro culture system in which HSPA-1A gene could be used as a stress biomarker during pre-implantation development.
Collapse
Affiliation(s)
- G T Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Franciosi F, Lodde V, Goudet G, Duchamp G, Deleuze S, Douet C, Tessaro I, Luciano AM. Changes in histone H4 acetylation during in vivo versus in vitro maturation of equine oocytes. Mol Hum Reprod 2011; 18:243-52. [PMID: 22155671 DOI: 10.1093/molehr/gar077] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epigenetic modifications are established during gametogenesis and preimplantation embryonic development. Any disturbance of the normal natural environment during these critical phases could cause alterations of the epigenetic signature. Histone acetylation is an important epigenetic modification involved in the regulation of chromatin organization and gene expression. The present study was aimed to determine whether the proper establishment of post-translational histone H4 acetylation at lysine 8 (AcH4K8), 12 (AcH4K12) and 16 (AcH4K16) of equine oocytes is adversely affected during in vitro maturation (IVM) when compared with in vivo matured oocytes collected from naturally cycling mares not undergoing ovarian hyperstimulation. The acetylation patterns were investigated by means of indirect immunofluorescence staining with specific antibodies directed against the acetylated lysine residues. Our results indicate that the acetylation state of H4 is dependent on the chromatin configuration in immature germinal vesicle (GV) stage oocytes and it changes in a residue-specific manner along with the increase of chromatin condensation. In particular, the levels of AcH4K8 and AcH4K12 increased significantly, while AcH4K16 decreased significantly from the fibrillar to the condensed state of chromatin configuration within the GV. Moreover, during meiosis, K8 and K12 were substantially deacetylated without any differences between in vivo and in vitro conditions, while K16 displayed a strong acetylation in oocytes matured in vivo, and in contrast, it was markedly deacetylated following IVM. Although the functional meaning of residue-specific acetylation during oocyte differentiation and meiotic resumption needs further investigation, our results support the hypothesis that IVM conditions can adversely affect oocyte ability to regulate the epigenetic reprogramming, critical for successful meiosis and subsequent embryonic development.
Collapse
Affiliation(s)
- Federica Franciosi
- Division of Veterinary Anatomy and Histology, Department of Animal Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abraham T, Pin CL, Watson AJ. Embryo collection induces transient activation of XBP1 arm of the ER stress response while embryo vitrification does not. Mol Hum Reprod 2011; 18:229-42. [PMID: 22155729 DOI: 10.1093/molehr/gar076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Embryo cryopreservation has become a standard procedure in the practice of assisted reproduction. While routinely performed in IVF labs, the effects of embryo vitrification on the molecular mechanisms governing preimplantation development remain largely unknown. The endoplasmic reticulum stress (ER stress) response is an evolutionary conserved mechanism that cells employ to manage ER stress. ER stress can be defined as an imbalance between protein synthesis and secretion within the ER. The primary focus of this study was to investigate whether standard embryo manipulations, including embryo collection, culture and vitrification, result in activation of the ER stress pathway in vitro and to determine whether the embryo utilizes the unfolded protein response as an adaptive response. Our results indicate that the major ER stress pathway constituents are present at all stages of preimplantation development and that the activation of ER stress pathways can be induced at the 8-cell, morula and blastocyst stages. Additionally, we have demonstrated that the IRE1α arm of the ER Stress pathway is activated in freshly collected embryos but contrastingly, this ER Stress arm is not activated following embryo vitrification. It is important to understand the possible stresses that Assisted Reproductive Technologies place on the embryo and the mechanisms the embryo employs to adapt to these stresses. This study indicates that among the adaptive pathways available, cultured mammalian embryos can employ the ER stress pathway. Assisted reproduction techniques should be aware that their activities may induce the ER stress pathway in their patients' early embryos.
Collapse
Affiliation(s)
- Tamara Abraham
- Department of Obstetrics and Gynaecology, University of Western Ontario, London, ON, Canada N6C 2V5
| | | | | |
Collapse
|
35
|
Effects of porcine granulocyte-macrophage colony-stimulating factor on porcine in vitro-fertilized embryos. Theriogenology 2011; 77:1186-97. [PMID: 22153263 DOI: 10.1016/j.theriogenology.2011.10.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 08/15/2011] [Accepted: 10/15/2011] [Indexed: 11/23/2022]
Abstract
This study investigated the effects of porcine granulocyte-macrophage colony-stimulating factor (pGM-CSF) on the developmental potential of porcine in vitro-fertilized (IVF) embryos in chemically and semidefined (with BSA) medium. In experiment 1, zygotes were treated with different concentrations of pGM-CSF (0, 2, 10, 100 ng/mL). The results indicated that 10 ng/mL pGM-CSF significantly (P < 0.05) increased blastocyst development and total cell number (15.1% and 53.5, respectively) compared with the control (6.1%, and 38.8, respectively). Comparing blastocyst formation, early and expanded blastocyst formation was significantly higher in the 10 ng/mL-pGM-CSF group than in the control on Days 6 and 7 of the culture period. However, there was no significant difference in cleavage rate. Experiment 2 demonstrated that pGM-CSF influenced the percentage of blastocyst formation and total cell number when pGM-CSF was added during Days 4 to 7 (14.6% and 53.9, respectively) or Days 0 to 7 (15.2% and 54.0, respectively) compared with the control (7.8% and 43.1, respectively) and compared with Days 0 to 3 (8.7% and 42.5, respectively). Similarly, early blastocyst formation rates were significantly higher at Days 4 to 7 than in the control, and expanded blastocyst formation was significantly higher at Days 4 to 7 or Days 0 to 7. No significant difference in cleavage rates appeared among the groups. In experiment 3, in the presence of BSA, pGM-CSF also increased the percentage of embryos that developed to the blastocyst stage and the total cell number (20.3% and 59.8, respectively) compared with the control (14.9% and 51.4, respectively), whereas there was no significant difference in cleavage rate. Experiment 4 found that the total cell number and the number of cells in the inner cell mass (ICM) were significantly increased compared with the control when zygotes were cultured in either porcine zygotic medium (PZM)-3 or PZM-4 supplemented with 10 ng/mL pGM-CSF. The number of trophectoderm (TE) cells was significantly higher in PZM-3 medium supplemented with pGM-CSF than in the control, and the number tended to increase (P = 0.058) in PZM-4 medium supplemented with pGM-CSF. The ratio of inner cell mass to trophectoderm cells was significantly higher in PZM-4 supplemented with 10 ng/mL pGM-CSF, but not in PZM-3. In experiment 5, it was found that the male pronuclear formation rate, monospermic penetration and sperm/oocyte were 95.4%, 37.2%, and 2.4, respectively. Together, these results suggest that pGM-CSF may have a physiological role in promoting the development of porcine preimplantation embryos and regulating cell viability and that addition of pGM-CSF to IVC medium at Days 4 to 7 or 0 to 7 improves the developmental potential of porcine IVF embryos.
Collapse
|
36
|
Belva F, Painter R, Bonduelle M, Roelants M, Devroey P, De Schepper J. Are ICSI adolescents at risk for increased adiposity? Hum Reprod 2011; 27:257-64. [PMID: 22081314 DOI: 10.1093/humrep/der375] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Puberty is a critical period for the development of cardio-metabolic disturbances, including a more central body fat distribution. It is still unclear if IVF and more specifically ICSI, can permanently and detrimentally affect body fat accumulation in the human offspring. Therefore, adiposity and body fat distribution in 14-year-old adolescents born after ICSI were investigated. METHODS Body composition data, including anthropometry (weight, height and BMI), skinfold thicknesses (peripheral: triceps and biceps skinfolds; central: supra-iliacal and subscapular skinfolds; total: sum of the four skinfolds) and circumferences (waist, mid-upper arm) were compared between 217 ICSI singletons (116 boys, 101 girls) and 223 singletons (115 boys, 108 girls) born after spontaneous conception (SC). ICSI teenagers were part of a previously published ICSI cohort followed since birth; SC controls were recruited from schools in the surroundings. RESULTS Among all boys, no differences in body composition measurements were found between the ICSI and SC group, taking into account confounding variables. In boys with more advanced pubertal stages, a significantly higher sum of peripheral skinfolds was found in the ICSI group compared with the SC group (difference 3.5 mm, 95% confidence interval 0.3-6.6). In girls, peripheral adiposity assessed by skinfolds and mid-upper arm circumference, and central adiposity assessed by skinfolds and waist circumference as well as total adiposity assessed by BMI, the sum of four skinfold thicknesses and skinfold-derived body fat percentage were significantly higher in the ICSI group compared with the SC group, taking into account confounding variables (all P< 0.05). Neither parental nor early life factors could explain the differences. CONCLUSIONS We found that pubertal ICSI girls were more prone to central, peripheral and total adiposity compared with their SC counterparts. ICSI adolescents with advanced pubertal stages showed more peripheral adiposity. Continued monitoring of body fat patterns in adolescents born after fertility treatment is mandatory in order to assess their risk for developing obesity and its related adverse health effects in adulthood.
Collapse
Affiliation(s)
- Florence Belva
- Center for Medical Genetics, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
37
|
Díaz-García C, Estella C, Perales-Puchalt A, Simón C. Reproductive medicine and inheritance of infertility by offspring: the role of fetal programming. Fertil Steril 2011; 96:536-45. [PMID: 21794856 DOI: 10.1016/j.fertnstert.2011.06.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To summarize the molecular processes involved in fetal programming, to describe how assisted reproduction technologies (ART) may affect the epigenetic pattern of the embryo, and to highlight the current knowledge of the role of perinatal events in the subsequent development of reproductive pathology affecting infertile patients. DESIGN A literature review of fetal programming of adulthood gynecologic diseases and ART. A Medline search was performed with the following keywords: (fetal programming OR epigenetics OR methylation OR acetylation) AND (IVF OR ART) AND (gynecology). Articles up to October 2010 were selected. Articles and recent reviews were classified by human and animals studies and also according to their experimental or observational design. SETTING University hospital research center. PATIENT(S) None. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) None. RESULT(S) Data from experimental animal models and case-control studies support the potential effect of ART in changing methylation patterns in gametes and embryos. However, these findings are not supported by population studies or experimental studies performed in human gametes/embryos. Experimental and epidemiologic studies support the hypothesis that some adult gynecologic diseases causing infertility may have a fetal origin. CONCLUSION(S) Although it seems clear that some adult gynecologic diseases causing infertility may have a fetal origin, there is insufficient evidence to confirm that ART is the origin of later onset, adulthood diseases. Further research in this field must be conducted.
Collapse
Affiliation(s)
- César Díaz-García
- Department of Gynecology and Obstetrics, La Fe University Hospital, University of Valencia, Valencia, Spain.
| | | | | | | |
Collapse
|
38
|
Robertson SA, Chin PY, Glynn DJ, Thompson JG. Peri-Conceptual Cytokines - Setting the Trajectory for Embryo Implantation, Pregnancy and Beyond. Am J Reprod Immunol 2011; 66 Suppl 1:2-10. [DOI: 10.1111/j.1600-0897.2011.01039.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Ferreira A, Machado G, Diesel T, Carvalho J, Rumpf R, Melo E, Dode M, Franco M. Allele-specific expression of the MAOA gene and X chromosome inactivation in in vitro produced bovine embryos. Mol Reprod Dev 2010; 77:615-21. [DOI: 10.1002/mrd.21192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
O'Flynn O'Brien KL, Varghese AC, Agarwal A. The genetic causes of male factor infertility: a review. Fertil Steril 2010; 93:1-12. [PMID: 20103481 DOI: 10.1016/j.fertnstert.2009.10.045] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To illustrate the necessity for an enhanced understanding of the genetic basis of male factor infertility, to present a comprehensive synopsis of these genetic elements, and to review techniques being utilized to produce new insights in fertility research. BACKGROUND Male factor infertility is a complex disorder that affects a large sector of the population; however, many of its etiologies are unknown. By elucidating the underlying genetic basis of infertile phenotypes, it may be possible to discover the causes of infertility and determine effective treatments for patients. METHOD(S) The PubMed database was consulted for the most relevant papers published in the last 3 years pertaining to male factor infertility using the keywords "genetics" and "male infertility." RESULT(S) Advances have been made in the characterization of the roles of specific genes, but further research is necessary before these results can be used as guidelines for diagnosing and treating male factor infertility. The accurate transmission of epigenetic information also has considerable influence on fertility in males and on the fertility of their offspring. CONCLUSION(S) Analysis of the genetic factors that impact male factor infertility will provide valuable insights into the creation of targeted treatments for patients and the determination of the causes of idiopathic infertility. Novel technologies that analyze the influence of genetics from a global perspective may lead to further developments in the understanding of the etiology of male factor infertility through the identification of specific infertile phenotype signatures.
Collapse
Affiliation(s)
- Katherine L O'Flynn O'Brien
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
41
|
Kanaka-Gantenbein C, Sakka S, Chrousos GP. Assisted reproduction and its neuroendocrine impact on the offspring. PROGRESS IN BRAIN RESEARCH 2010; 182:161-74. [PMID: 20541664 DOI: 10.1016/s0079-6123(10)82006-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Assisted reproductive technologies (ARTs) have been widely used during the last three decades and progressively more children are born with the help of such methods. There is now evidence that ARTs may be associated with slight epigenetic modifications in the expression of several genes that could have a long-term impact on the health of the offspring. Also, a clear association between such techniques and genomic imprinting abnormalities has been reported. The neuroendocrine impact of ART on the offspring includes slight elevations of systolic blood pressure (SBP) and diastolic blood pressure (DBP), as well as increased circulating triglyceride concentrations, in children born after ART, especially in those with rapid catch-up growth in weight during early childhood. However, the postnatal growth of most children after ART is normal and no increased incidence of the full metabolic syndrome has been observed in these children and adolescents. Moreover, the pace and timing of puberty of such children is normal and no increased incidence of premature adrenarche could be discerned in ART children in the absence of restricted fetal growth. Finally, a slight modification of the set point of thyroid stimulating hormone sensitivity was observed in ART children, without an apparent impact on thyroid hormone secretion. This has been attributed to epigenetic changes. Questions remain to be answered regarding the future reproductive capacity of children born after ART, as well as their cardiovascular risk in later adult life. Long-term prospective studies should be performed to provide robust evidence.
Collapse
Affiliation(s)
- Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, University of Athens, Agia Sophia Children's Hospital, Goudi, Athens, Greece.
| | | | | |
Collapse
|
42
|
Tunc O, Tremellen K. Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J Assist Reprod Genet 2009; 26:537-44. [PMID: 19876730 DOI: 10.1007/s10815-009-9346-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 09/16/2009] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Methylation of sperm DNA is impaired in many infertile men potentially adversely effecting reproductive outcomes. In somatic cells oxidative damage to DNA and hyperhomocysteinaemia are linked with DNA hypomethylation. The objective of this study was to investigate if these pathologies also impair sperm DNA methylation. METHODS The relationship between sperm DNA quality, oxidative stress and serum homocysteine was analysed at study entry and after 3 months of antioxidant treatment. RESULTS Overall a significant negative correlation was observed between sperm DNA methylation and sperm DNA fragmentation, as well as seminal reactive oxygen species (ROS) production. Sperm DNA methylation was not significantly related to serum homocysteine concentrations. Administration of an antioxidant supplement produced a significant fall in seminal ROS levels and sperm DNA fragmentation, while increasing sperm DNA methylation. CONCLUSIONS These results suggest that oxidative stress related damage to sperm DNA impedes the process of methylation, while antioxidant supplementation appears to have the potential to reduce DNA damage and normalize sperm DNA methylation.
Collapse
Affiliation(s)
- Ozlem Tunc
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia
| | | |
Collapse
|
43
|
Chin PY, Macpherson AM, Thompson JG, Lane M, Robertson SA. Stress response genes are suppressed in mouse preimplantation embryos by granulocyte-macrophage colony-stimulating factor (GM-CSF). Hum Reprod 2009; 24:2997-3009. [DOI: 10.1093/humrep/dep307] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
44
|
Paiva P, Menkhorst E, Salamonsen L, Dimitriadis E. Leukemia inhibitory factor and interleukin-11: critical regulators in the establishment of pregnancy. Cytokine Growth Factor Rev 2009; 20:319-28. [PMID: 19647472 DOI: 10.1016/j.cytogfr.2009.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Blastocyst implantation into a receptive endometrium is critical to the establishment of pregnancy and is tightly regulated by factors within the blastocyst-endometrial micro-environment. Leukemia inhibitory factor (LIF) and interleukin-11 (IL11) have key roles during implantation. Female mice with a null mutation in the LIF or IL11RA gene are infertile due to a complete failure of implantation or a defective differentiation/decidualization response to the implanting blastocyst, respectively. LIF and IL11 deficiency during pregnancy is associated with infertility and miscarriage in women. Numerous cell populations at the maternal-fetal interface are regulated by LIF/IL11 including the endometrial epithelium, decidualizing stroma, placental trophoblasts and leukocytes. This review focuses on the roles of LIF/IL11 during early pregnancy and highlights their potential as contraceptive targets and therapeutic agents for infertility.
Collapse
Affiliation(s)
- Premila Paiva
- Prince Henry's Institute of Medical Research, 246, Clayton Road, Clayton, VIC 3168, Australia.
| | | | | | | |
Collapse
|
45
|
Abstract
This review argues that the question "What does an embryo need?" cannot be adequately answered in quantitative terms to allow the formulation of media for culturing early mammalian embryos. It can be shown experimentally that "needs" in terms of the nutrients an embryo chooses to consume, and their rates of consumption, vary widely, as they are determined by the concentration of the nutrients under consideration and other constituents in the culture medium. Similarly, it is impossible to define "needs" from knowledge of the kinetic properties of nutrient transport systems. Measurements of nutrient consumption, are, however, valuable in determining overall metabolic activity and the balance between oxidative and glycolytic metabolism, in demonstrating qualitative requirements for specific nutrients and in providing markers of normality or abnormality against which to devise methods for diagnosing embryo health. On the basis of these and other considerations, a strategy is proposed for the formulation of embryo culture media that promotes metabolism that is "quiet" rather than "active", reduces the concentrations of nutrients to match those in the Fallopian tube, selects the "quietest" embryos for transfer, and trusts the autonomy of the embryo.
Collapse
Affiliation(s)
- Henry J Leese
- Department of Biology, University of York, PO Box 373, York YO10 5YW, UK
| |
Collapse
|
46
|
Ferreira CR, Souza GHMF, Riccio MF, Catharino RR, Pontes JHF, Basso AC, Júnior JCE, Perecin F, Eberlin MN. Mass spectrometry fingerprinting of media used for in vitro production of bovine embryos. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1313-1320. [PMID: 19338029 DOI: 10.1002/rcm.3995] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Using the bovine species as a biological model, direct infusion chip-based nano-electrospray ionization mass spectrometry (nano-ESI-MS) fingerprinting in the positive ion mode is used to obtain fast chemical profiles of media used for in vitro production of bovine embryos. Nano-ESI-MS fingerprinting is useful for characterization and routine quality control requiring no sample pre-separation, being able to differentiate four different media (IVM, IVF, SOF and HSOF) via principal component analysis (PCA). For media stored at +4 degrees C for up to 45 days, no significant (p>0.05) variation was observed in cleavage and blastocyst rate development, as well as in the nano-ESI-MS chemical profiles. For media exposed to a heat shock (60 degrees C for 3 h), no significant decrease (p>0.05) in embryo development rates was observed, but nano-ESI-MS profiles were quite distant from fresh control media in the PCA. For frozen media (-70 degrees C for 2 months), again no significant variation (p>0.05) in embryo development was noticed, but nano-ESI-MS profiles from all media were significantly affected. These results indicate that nano-ESI(+)-MS fingerprinting was able to characterize different media based on their specific chemical profile. The technique seems therefore applicable as a routine quality control assay, detecting, for example, compositional changes after temperature variations that may affect post-transfer embryo viability.
Collapse
|
47
|
Sakka SD, Malamitsi-Puchner A, Loutradis D, Chrousos GP, Kanaka-Gantenbein C. Euthyroid hyperthyrotropinemia in children born after in vitro fertilization. J Clin Endocrinol Metab 2009; 94:1338-41. [PMID: 19190111 DOI: 10.1210/jc.2008-1624] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Assisted reproduction techniques are now commonly used. Although classic in vitro fertilization (IVF) started almost 30 yr ago, few long-term systematic prospective studies of children conceived with assisted reproduction have been performed. OBJECTIVE Our objective was to investigate thyroid function in children conceived after IVF vs. naturally conceived controls. POPULATIONS AND METHODS A total of 106 children conceived after classic IVF and 68 naturally conceived controls, aged 4-14 yr, were studied. All children were thoroughly examined, and serum T(3), T(4), TSH, anti-thyroid peroxidase, and anti-thyroglobulin antibodies were measured. A second TSH determination and a thyroid ultrasound were performed for TSH higher than 5 microIU/ml, and children were considered to have persistent hyperthyrotropinemia, if the TSH elevation was confirmed. RESULTS Seven IVF children but none of the controls had persistent elevations of circulating TSH, suggesting euthyroid hyperthyrotropinemia or subclinical primary hypothyroidism (P = 0.044). TSH was significantly higher in the IVF group than in controls (P = 0.046), whereas no significant differences in the concentrations of T(3) or T(4) were observed. None of the children had detectable circulating antithyroid antibodies in either group. CONCLUSIONS A significant elevation of serum TSH compatible with a mild TSH resistance of the thyroid were found in IVF children compared with controls. This was not due to the presence of antithyroid autoantibodies. We suggest that this might represent a slight epigenetic developmental abnormality related to the preimplantation manipulation of the embryo. Further studies are needed to confirm these findings and to better determine their etiopathogenesis and clinical significance.
Collapse
Affiliation(s)
- Sophia D Sakka
- First Department of Obstetrics and Gynaecology, Division of Endocrinology, Metabolism, Athens University Medical School, Athens, Greece.
| | | | | | | | | |
Collapse
|
48
|
Robertson SA, Guerin LR, Bromfield JJ, Branson KM, Ahlström AC, Care AS. Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol Reprod 2009; 80:1036-45. [PMID: 19164169 DOI: 10.1095/biolreprod.108.074658] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
T regulatory (Treg) cells are implicated in maternal immune tolerance of the conceptus at implantation; however, the antigenic and regulatory signals controlling Treg cells in early pregnancy are undefined. To examine the role of male seminal fluid in tolerance induction, the effect of exposure to seminal fluid at mating on responsiveness to paternal alloantigens was examined using paternal tumor cell grafts and by delayed-type hypersensitivity (DTH) challenge on Day 3.5 postcoitum. Exposure to seminal fluid inhibited rejection of paternal tumor cells, independently of fertilization and embryo development, while seminal fluid from major histocompatability complex (MHC)-dissimilar males was less effective. Similarly, mating with intact males suppressed the DTH response to paternal alloantigens in an MHC-specific fashion. Excision of the seminal vesicle glands diminished the tolerance-inducing activity of seminal fluid. Mating with intact males caused an increase in CD4(+)CD25(+) cells expressing FOXP3 in the para-aortic lymph nodes draining the uterus, beyond the estrus-associated peak in cycling mice. The increase in CD4(+)CD25(+) cells was abrogated when males were vasectomized or seminal vesicles were excised. Collectively, these data provide evidence that exposure to seminal fluid at mating promotes a state of functional tolerance to paternal alloantigens that may facilitate maternal acceptance of the conceptus at implantation, and the effects of seminal fluid are likely to be mediated by expansion of the Treg cell pool. Both seminal plasma and sperm components of the seminal fluid are necessary to confer full tolerance and elicit the Treg cell response, potentially through provision of immune-deviating cytokines and antigens, respectively.
Collapse
Affiliation(s)
- Sarah A Robertson
- Research Centre for Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
49
|
Jin XL, Chandrakanthan V, Morgan HD, O'Neill C. Preimplantation embryo development in the mouse requires the latency of TRP53 expression, which is induced by a ligand-activated PI3 kinase/AKT/MDM2-mediated signaling pathway. Biol Reprod 2008; 80:286-94. [PMID: 18923161 DOI: 10.1095/biolreprod.108.070102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A universal response to cellular stress is the expression of transformation-related protein 53 (TRP53). This transcription factor reduces cell proliferation and/or survival and is classed as a tumour suppressor protein. Several stresses (including culture) cause increased TRP53 expression in blastocysts and their reduced long-term developmental potential. This study shows that culture from the zygote stage (but not the 2-cell stage) reduced the development of C57BL6 inbred (but not hybrid) strain mouse embryos. Reduced viability was TRP53 dependent, being partially reversed by a TRP53 inhibitor (Pifithrin-alpha). However, the presence of culture did not cause an increase in Trp53 mRNA levels (levels were reduced following culture, P < 0.001). Transformed mouse 3T3 cell double minute 2 (MDM2) causes the ubiquitination and degradation of TRP53. MDM2 activation is accompanied by phosphorylation of Ser-166, and this is commonly catalyzed by the phosphatidylinositol-3 kinase and RAC-alpha serine/threonine-protein kinase (AKT) signaling pathway. Paf is an autocrine embryotrophin that activates the phosphatidylinositol-3 kinase/AKT pathway. High levels of TRP53 expression occurred following the culture of zygotes lacking the Paf receptor (Ptafr(-/-)) and following inhibition of phosphatidylinositol-3 kinase or AKT. Inhibition of MDM2 caused a Trp53-dependent reduction in zygote development. Inbred strain embryos cultured from the zygote stage expressed less phosphorylated MDM2 than similar embryos collected from the uterus. The addition of Paf to the media caused increased phosphorylation of MDM2, and this was blocked by inhibitors of phosphatidylinositol-3 kinase and AKT. The study identifies trophic ligand signaling via the activation of phosphatidylinositol-3 kinase and AKT as a mechanism resulting in the activation of MDM2.
Collapse
Affiliation(s)
- X L Jin
- Human Reproduction Unit, Disciplines of Physiology and Medicine, Royal North Shore Hospital, University of Sydney, St Leonards, New South Wales 2065, Australia
| | | | | | | |
Collapse
|
50
|
Ceelen M, van Weissenbruch MM, Vermeiden JPW, van Leeuwen FE, Delemarre-van de Waal HA. Growth and development of children born after in vitro fertilization. Fertil Steril 2007; 90:1662-73. [PMID: 18163998 DOI: 10.1016/j.fertnstert.2007.09.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/03/2007] [Accepted: 09/04/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate growth and development of children born after IVF treatment. DESIGN Literature review. CONCLUSION(S) At present there is substantial evidence that children born after IVF are at increased risk for adverse perinatal outcome, congenital malformations, and rare epigenetic defects. It is still unclear whether observed health problems originate from the IVF procedure itself or the underlying subfertility problems of the parents. Current follow-up studies regarding postnatal growth and morbidity rates are scarce with conflicting results and other areas of long-term research in children born after IVF are still in its infancy. The importance of the worldwide continuing monitoring of children born after IVF to investigate potential long-term consequences including the development of cardiovascular diseases is therefore highlighted.
Collapse
Affiliation(s)
- Manon Ceelen
- Department of Paediatrics, Institute for Clinical and Experimental Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|