1
|
Van de Hoek M, Rickard JP, de Graaf SP. Manipulation of metabolism to improve liquid preservation of mammalian spermatozoa. Anim Reprod Sci 2024; 271:107631. [PMID: 39515267 DOI: 10.1016/j.anireprosci.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Reproductive success in mammals hinges on the ability of sperm to generate sufficient energy through cellular metabolism to perform the energy-intensive processes required for fertilisation, including motility, maturation, and oocyte interactions. It is now widely accepted that sperm exhibit metabolic flexibility, utilising a combination of glycolysis and oxidative phosphorylation (supported by the Krebs cycle and other complementary pathways) to meet their energy demands. However, the preferred pathway for energy production varies significantly among species, making it challenging to map species-specific metabolic strategies, particularly in species with high metabolic flexibility, like the ram. Additionally, differences in methodologies used to measure metabolism have led to biased interpretations of species' metabolic strategies, complicating the development of liquid storage methods aimed at preserving spermatozoa by manipulating energy generation based on species-specific requirements. This review examines sperm energy requirements, current methods for assessing metabolic capacity, and the current research on species-specific metabolism. Future research should focus on establishing a standardised approach for determining metabolic preferences to accurately map species-specific strategies, a critical step before developing effective liquid preservation methods. By identifying species-specific regulatory points, strategies can be designed to temporarily inhibit metabolic pathways, conserving resources and reducing the accumulation of metabolic by-products. Alternatively, supplementation with depleted metabolites can be guided by understanding areas of excessive consumption during prolonged metabolism. Applying this knowledge to develop tailored preservation techniques will help minimise sperm damage and improve survival during in vitro processing and liquid storage, ultimately enhancing the success of artificial breeding programs.
Collapse
Affiliation(s)
| | | | - Simon P de Graaf
- The University of Sydney, Faculty of Science, NSW 2006, Australia
| |
Collapse
|
2
|
Wu JY, Kang HY, Guo Y, Sheng XH, Wang XG, Xing K, Xiao LF, Lv XZ, Long C, Qi XL. Effect of natural astaxanthin on sperm quality and mitochondrial function of breeder rooster semen cryopreservation. Cryobiology 2024; 117:104979. [PMID: 39395582 DOI: 10.1016/j.cryobiol.2024.104979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Cryopreservation causes higher reactive oxygen species (ROS) concentrations, leading to oxidative stress and lipid peroxidation damaging sperm, and using antioxidants can improve semen quality after freeze-thaw. Natural astaxanthin (ASTA) can be inserted into cell membranes and its antioxidant properties are stronger than other antioxidants. We aimed to investigate the effects of ASTA supplementation in the Beltsville Poultry Semen Extender (BPSE) on post-thaw rooster semen quality and to explore the potential mechanism of rooster semen quality change. The qualifying semen ejaculates collected from 30 adult male Jinghong No. 1 laying hen breeder roosters (65 wk old) were pooled, divided into four aliquots, and diluted with BPSE having different levels of ASTA (0, 0.5, 1, or 2 μg/mL). Treated semen was cryopreserved and kept in liquid nitrogen. The entire experiment was replicated three times independently. Sperm viability, motility, curvilinear velocity, amplitude of lateral head displacement, straightness, plasma membrane integrity, and acrosome integrity were observed to be highest (P < 0.05) with 1 μg/mL ASTA at freeze-thawing. Higher (P < 0.05) antioxidant enzyme (CAT-like, SOD) activities and free radical (·OH, O2.-) scavenging ability, less ROS and malondialdehyde (MDA) concentrations were recorded with the addition of appropriate concentrations of ASTA compared to control. In addition, the levels of mitochondrial membrane potential (MMP), adenosine triphosphate (ATP), and lactate dehydrogenase (LDH) in the 1 μg/mL ASTA group improved compared to the control group, and decreased the amount of AIF protein level but increased the Bcl-2 protein level (P < 0:05). Collectively, these results demonstrate that adding ASTA in the BPSE promoted rooster freeze-thaw sperm quality, which may be related to reducing ROS levels, protecting the antioxidant defense system, preventing lipid peroxidation, improving mitochondrial structural and functional integrity, and inhibiting sperm apoptosis.
Collapse
Affiliation(s)
- Jia-Yu Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Huan-Yu Kang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xi-Hui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiang-Guo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Long-Fei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xue-Ze Lv
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
3
|
Castellano S, Tondo F, Bulbul O, Aprea S, Monti E, Carnesi E, Levi Setti PE, Albani E. Rate of testicular histology failure in predicting successful testicular sperm extraction. Front Endocrinol (Lausanne) 2024; 15:1466675. [PMID: 39449747 PMCID: PMC11499163 DOI: 10.3389/fendo.2024.1466675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024] Open
Abstract
Background The management of Non-Obstructive (NOA) Azoospermia or Obstructive Azoospermia (OA) patients relies on testicular sperm extraction (TESE) followed by intracytoplasmic sperm injection (ICSI). In NOA patients the sperm recovery is successful in only 50% of cases and therefore the ability to predict those patients with a high probability of achieving a successful sperm retrieval would be a great value in counselling the patient and his partner. Several studies tried to suggest predictors of a positive TESE (e.g. FSH concentration), but most concluded that diagnostic testicular biopsy (histology) is best. Methods This is a retrospective analysis of 526 TESE patients. After the extraction of the testis, the resulting sample was immediately given to the embryologist, who examined the tubules for sperm cryopreservation. During the same procedure, a different specimen was destined to the histological analysis. The comparison between the two methodological approaches was carried out through a score. Results Concordance between TESE and testicular histology outcomes was found in 70,7% of patients; discordance was found in 29,3% of patients. Among the discordance outcomes, in approximately 95% we found at least 1 sperm in the TESE retrieval, while the histology report did not find any spermatozoa or found not enough compared to our evaluation; in only 5% of cases we did not find any spermatozoa or found not enough compared to what was detected in the testicular histology. Conclusion Based on our experience, to increase diagnostic accuracy, a larger biopsy should be sent to the histopathology laboratory; another option may be to use TESE cell suspension (the same embryologists employ for cryopreservation) for cytological evaluation of spermatogenesis.
Collapse
Affiliation(s)
- Stefano Castellano
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Francesca Tondo
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Ozgur Bulbul
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Sabrina Aprea
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Emanuela Monti
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Edoardo Carnesi
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Paolo Emanuele Levi Setti
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Albani
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
4
|
Raj G, Nitin K, Abhishek S, Dey S, Rajakumara E. Computational and in vitro binding studies of theophylline against phosphodiesterases functioning in sperm in presence and absence of pentoxifylline. Biophys Chem 2024; 313:107294. [PMID: 39029164 DOI: 10.1016/j.bpc.2024.107294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Fertility is a result of a synergy among the sperm's various functions including capacitation, motility, chemotaxis, acrosome reaction, and, finally, the fertilization of the oocyte. Subpar motility is the most common cause of infertility in males. Cyclic adenosine monophosphate (cAMP) signalling underlies motility and is depleted by the phosphodiesterases (PDEs) in sperm, such as PDE10A, PDE1, and PDE4. Therefore, the PDE inhibitor (PDEI) category of fertility drugs aim to enhance motility in assisted reproduction technologies (ARTs) through inhibition of PDEs, though they might have adverse effects on other physiological variables. For example, the popular drug pentoxifylline (PTX), widely used in ARTs, improves motility but causes premature acrosome reaction and exerts toxicity on the fertilized oocyte. Another xanthine-derived drug, theophylline (TP), has been repurposed for treating infertility, but its mechanism of PDE inhibition remains unexplored. Here, using biophysical and computational approaches, we identified that TP binds to the same binding pocket as PTX with higher affinity than PTX. We also found that PTX and TP co-bind to the same binding pocket, but at different sites.
Collapse
Affiliation(s)
- Gupta Raj
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Kulhar Nitin
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Suman Abhishek
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| | - Sreenath Dey
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| |
Collapse
|
5
|
Sharan O, Stefanyk V, Bartlewski PM, Sharan M. The effect of supplementing freezing extender with Mn 2+-, Zn 2+- or Cu 2+-nanosuccinate on select post-thaw characteristics of ram semen. Reprod Biol 2024; 24:100932. [PMID: 39153341 DOI: 10.1016/j.repbio.2024.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
The effects of Mn2+-, Zn2+- or Cu2+-nanosuccinate added to freezing extender on select post-thaw semen characteristics were determined in six Texel rams (aged 2-4 years) during seasonal anestrus (April-May). Ejaculates (n = 6 per ram) collected into an artificial vagina were divided into ten isovolumetric fractions each. Semen was diluted in lactose-yolk-tris-citrate-glycerin medium and nanosuccinates (Mn2+- and Zn2+-nanosuccinate: 0.0 (control), 2.5, 5.0 and 7.5 μg/l; Cu2+-nanosuccinate: 0.0 (control), 1.25, 2.5 and 3.75 μg/l) were added to semen extender. Extended semen was loaded into 0.25-ml straws and frozen in liquid nitrogen. After thawing, sperm motility parameters were determined with computer assisted semen analysis (CASA), and the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) was measured with a spectrophotometric technique. The addition of 5.0 μg/l of Mn2+- and Zn2+-nanosuccinate significantly increased the sperm progressive motility and both 2.5 and 5.0 μg/l improved sperm motion kinetics. Further, both nanosuccinates at a dose of 5.0 μg/l significantly decreased SOD activity and stimulated an increase in GPx and CAT activity in semen samples. Alternatively, the addition of Cu2+-nanosuccinate (highest dose) significantly reduced the progressive motility and velocity of ram spermatozoa, increased the percentage of sperm with acrosomal/head defects and seminal SOD activity, and depressed CAT (highest dose) and GPx (all doses) activity. In summary, the addition of Mn2+- and Zn2+-nanosuccinate to semen extender had beneficial effects on sperm motility/motion kinetics and structural integrity, whereas Cu2+-nanosuccinate generally had debilitating effects on the post-thaw semen characteristics in rams.
Collapse
Affiliation(s)
- Olha Sharan
- Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies in Lviv, 50 Pekarska St., Lviv 79010, Ukraine.
| | - Vasyl Stefanyk
- Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies in Lviv, 50 Pekarska St., Lviv 79010, Ukraine
| | - Pawel M Bartlewski
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd., Guelph, ON N1G 2W1, Canada
| | - Mykola Sharan
- Institute of Animal Biology NAAS, 38 Stus St., Lviv 79034, Ukraine
| |
Collapse
|
6
|
Barbas JP, Baptista MC, Carolino N, Simões J, Margatho G, Pimenta J, Claudino F, Ferreira FC, Grilo F, Pereira RMLN. Effect of Breed and Season in Buck Semen Cryopreservation: The Portuguese Animal Germplasm Bank. Vet Sci 2024; 11:326. [PMID: 39058010 PMCID: PMC11281507 DOI: 10.3390/vetsci11070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The aims of this study were to characterize the semen as well as the influence of breed, season, and semen processing on spermatozoa (SPZ) traits of four native Portuguese goat breeds used for the bank of Portuguese animal germplasm (BPAG). A total of 1017 ejaculates from Serrana (n = 30), Bravia (n = 15), Charnequeira (n = 11), and Preta de Montezinho (n = 3) bucks were collected between 2004 and 2020 at (EZN-INIAV; 39° N) during the whole year under natural conditions. All the fresh and cryopreserved (-196 °C) semen was evaluated and stored in the BPAG. Bravia bucks (the smallest breed) produced less (p < 0.05) volume of ejaculate than all the other breeds, which was higher during the full breeding season (September-January; p < 0.05), regarding all the other breeds. Contrarily, in general, SPZ concentration was lower during September-January, but total SPZ per ejaculate remained similar (p > 0.05) during May-August and September-January in Serrana bucks. The SPZ viability and SPZ midpiece defects were slightly influenced by breed and SPZ head defects by season (lowest % in February-April; p < 0.05). On the contrary, the freezing-thawing cycle strongly influenced (p < 0.01) all SPZ traits. The correlation coefficients of these traits between fresh and thawed SPZ were low (up to 0.33; p < 0.01), highlighting the importance of semen processing in semen cryopreservation. We conclude that breed and season had a relevant effect on ejaculate traits, but it was much less evident for the studied SPZ traits. These native goats can serve as semen donors throughout the year, under natural conditions.
Collapse
Affiliation(s)
- João Pedro Barbas
- Department of Biotechnology and Genetic Resources, Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-424 Vale de Santarém, Portugal; (J.P.B.); (M.C.B.); (N.C.); (J.P.); (F.C.F.); (R.M.L.N.P.)
- CIISA-AL4AnimalS-Faculty of Veterinary Medicina, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Maria Conceição Baptista
- Department of Biotechnology and Genetic Resources, Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-424 Vale de Santarém, Portugal; (J.P.B.); (M.C.B.); (N.C.); (J.P.); (F.C.F.); (R.M.L.N.P.)
| | - Nuno Carolino
- Department of Biotechnology and Genetic Resources, Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-424 Vale de Santarém, Portugal; (J.P.B.); (M.C.B.); (N.C.); (J.P.); (F.C.F.); (R.M.L.N.P.)
- CIISA-AL4AnimalS-Faculty of Veterinary Medicina, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - João Simões
- Department of Veterinary Sciences, Veterinary and Animal Research Centre (CECAV), AL4AnimalS, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Gisele Margatho
- Department of Veterinary Sciences, Veterinary and Animal Research Centre (CECAV), AL4AnimalS, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Jorge Pimenta
- Department of Biotechnology and Genetic Resources, Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-424 Vale de Santarém, Portugal; (J.P.B.); (M.C.B.); (N.C.); (J.P.); (F.C.F.); (R.M.L.N.P.)
- CIISA-AL4AnimalS-Faculty of Veterinary Medicina, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Francisca Claudino
- Instituto Nacional de Investigação Agrária e Veterinária, Innovation and Experimentation Hub, Quinta da Fonte Boa, 2005-424 Vale de Santarém, Portugal; (F.C.); (F.G.)
| | - Filipa Costa Ferreira
- Department of Biotechnology and Genetic Resources, Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-424 Vale de Santarém, Portugal; (J.P.B.); (M.C.B.); (N.C.); (J.P.); (F.C.F.); (R.M.L.N.P.)
| | - Francisco Grilo
- Instituto Nacional de Investigação Agrária e Veterinária, Innovation and Experimentation Hub, Quinta da Fonte Boa, 2005-424 Vale de Santarém, Portugal; (F.C.); (F.G.)
| | - Rosa Maria Lino Neto Pereira
- Department of Biotechnology and Genetic Resources, Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-424 Vale de Santarém, Portugal; (J.P.B.); (M.C.B.); (N.C.); (J.P.); (F.C.F.); (R.M.L.N.P.)
- CIISA-AL4AnimalS-Faculty of Veterinary Medicina, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
7
|
Robertson MJ, Chambers C, Spanner EA, de Graaf SP, Rickard JP. The Assessment of Sperm DNA Integrity: Implications for Assisted Reproductive Technology Fertility Outcomes across Livestock Species. BIOLOGY 2024; 13:539. [PMID: 39056730 PMCID: PMC11273975 DOI: 10.3390/biology13070539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Sperm DNA integrity is increasingly considered a useful measure of semen quality in mammalian reproduction. However, the definition of DNA integrity, the ideal means by which it should be measured, and its predictive value for fertility remain a topic of much discussion. With an emphasis on livestock species, this review discusses the assays that have been developed to measure DNA integrity as well as their correlation with in vitro and in vivo fertility.
Collapse
Affiliation(s)
| | | | | | | | - Jessica P. Rickard
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (M.J.R.); (S.P.d.G.)
| |
Collapse
|
8
|
Gül M, Russo GI, Kandil H, Boitrelle F, Saleh R, Chung E, Kavoussi P, Mostafa T, Shah R, Agarwal A. Male Infertility: New Developments, Current Challenges, and Future Directions. World J Mens Health 2024; 42:502-517. [PMID: 38164030 PMCID: PMC11216957 DOI: 10.5534/wjmh.230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 01/03/2024] Open
Abstract
There have been many significant scientific advances in the diagnostics and treatment modalities in the field of male infertility in recent decades. Examples of these include assisted reproductive technologies, sperm selection techniques for intracytoplasmic sperm injection, surgical procedures for sperm retrieval, and novel tests of sperm function. However, there is certainly a need for new developments in this field. In this review, we discuss advances in the management of male infertility, such as seminal oxidative stress testing, sperm DNA fragmentation testing, genetic and epigenetic tests, genetic manipulations, artificial intelligence, personalized medicine, and telemedicine. The role of the reproductive urologist will continue to expand in future years to address different topzics related to diverse questions and controversies of pathophysiology, diagnosis, and therapy of male infertility, training researchers and physicians in medical and scientific research in reproductive urology/andrology, and further development of andrology as an independent specialty.
Collapse
Affiliation(s)
- Murat Gül
- Department of Urology, Selcuk University School of Medicine, Konya, Turkey
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Giorgio Ivan Russo
- Urology Section, University of Catania, Catania, Italy
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Hussein Kandil
- Fakih IVF Fertility Center, Abu Dhabi, UAE
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Parviz Kavoussi
- Department of Reproductive Urology, Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Taymour Mostafa
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
- Well Women's Centre, Sir HN Reliance Foundation Hospital, Mumbai, India
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA
- Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
9
|
Aramli MS, Sarvi Moghanlou K, Pourahad Anzabi M. A brief review of the methodology and cryoprotectants in selected fish and mammalian species. Reprod Domest Anim 2024; 59:e14575. [PMID: 38715442 DOI: 10.1111/rda.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/24/2024] [Accepted: 04/18/2024] [Indexed: 05/23/2024]
Abstract
Cryopreservation is a valuable technique used to assist in the genetic improvement of cultured stocks and provide a continuous supply of good-quality semen for artificial insemination. Conserving semen by cryopreservation serves several purposes (e.g. artificial reproductive technologies and species conservation) and is also used in the clinical treatment of human infertility. However, the lifespan of cryopreserved semen is influenced by a range of factors, including storage temperature, cooling rate, chemical composition of the extender, the concentration of cryoprotectant, reactive oxygen species, seminal plasma composition and hygienic control. The choice of cryoprotectant is a vital factor underlying the success of animal semen cryopreservation. In this regard, extensive research has been carried out on various cryoprotectants, such as egg yolk, dimethyl sulfoxide, methanol, ethylene glycol and dimethylacetamide. Recent studies have also described the use of a range of new cryoprotectants for cryopreservation, including compounds of plant origin (soy), amino acids, antifreeze proteins, carbohydrates and cyclodextrins. Moreover, semen cryopreservation and storage require the use of liquid nitrogen or ultralow refrigeration methods for both long- and short-term storage. This review summarizes the general methods used for freezing semen and discusses the use of traditional and newly emerging cryoprotectants (permeable and non-permeable) for the cryopreservation of semen in selected fish and mammalian species.
Collapse
|
10
|
Spanner EA, de Graaf SP, Rickard JP. Factors affecting the success of laparoscopic artificial insemination in sheep. Anim Reprod Sci 2024; 264:107453. [PMID: 38547814 DOI: 10.1016/j.anireprosci.2024.107453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 03/10/2024] [Indexed: 05/01/2024]
Abstract
Successful artificial breeding underpins rapid genetic and production gains in animal agriculture. In sheep, artificial insemination with frozen semen is performed via intrauterine laparoscopy as frozen-thawed spermatozoa do not traverse the cervix in sufficient numbers for high fertility and transcervical insemination is anatomically impossible in most ewes. Historically, laparoscopic artificial insemination has always been considered reasonably successful, but recent anecdotal reports of poor fertility place it at risk of warning adoption. Understanding the male, female and environmental factors that influence the fertility of sheep is warranted if the success of artificial insemination is to be improved and genetic progress maximised for the sheep industry. This review details the current practice of laparoscopic AI in sheep. It explores the effects of semen quantity and quality, the ewe, her preparation, and environmental conditions, on the fertility obtained following laparoscopic artificial insemination.
Collapse
Affiliation(s)
- E A Spanner
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW 2006, Australia.
| | - S P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW 2006, Australia
| | - J P Rickard
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW 2006, Australia
| |
Collapse
|
11
|
Podgrajsek R, Bolha L, Pungert T, Pizem J, Jazbec K, Malicev E, Stimpfel M. Effects of Slow Freezing and Vitrification of Human Semen on Post-Thaw Semen Quality and miRNA Expression. Int J Mol Sci 2024; 25:4157. [PMID: 38673743 PMCID: PMC11050687 DOI: 10.3390/ijms25084157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Semen cryopreservation has played an important role in medically assisted reproduction for decades. In addition to preserving male fertility, it is sometimes used for overcoming logistical issues. Despite its proven clinical usability and safety, there is a lack of knowledge of how it affects spermatozoa at the molecular level, especially in terms of non-coding RNAs. Therefore, we conducted this study, where we compared slow freezing and vitrification of good- and poor-quality human semen samples by analyzing conventional sperm quality parameters, performing functional tests and analyzing the expression of miRNAs. The results revealed that cryopreservation of normozoospermic samples does not alter the maturity of spermatozoa (protamine staining, hyaluronan binding), although cryopreservation can increase sperm DNA fragmentation and lower motility. On a molecular level, we revealed that in both types of cryopreservation, miRNAs from spermatozoa are significantly overexpressed compared to those in the native semen of normozoospermic patients, but in oligozoospermic samples, this effect is observed only after vitrification. Moreover, we show that expression of selected miRNAs is mostly overexpressed in native oligozoospermic samples compared to normozoospermic samples. Conversely, when vitrified normozoospermic and oligozoospermic samples were compared, we determined that only miR-99b-5p was significantly overexpressed in oligozoospermic sperm samples, and when comparing slow freezing, only miR-15b-5p and miR-34b-3p were significantly under-expressed in oligozoospermic sperm samples. Therefore, our results imply that cryopreservation of normozoospermic sperm samples can modulate miRNA expression profiles in spermatozoa to become comparable to those in oligozoospermic samples.
Collapse
Affiliation(s)
- Rebeka Podgrajsek
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
| | - Luka Bolha
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.B.); (J.P.)
| | - Tjasa Pungert
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
| | - Joze Pizem
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.B.); (J.P.)
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000 Ljubljana, Slovenia; (K.J.); (E.M.)
| | - Elvira Malicev
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000 Ljubljana, Slovenia; (K.J.); (E.M.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Fan Y, Li X, Li J, Xiong X, Yin S, Fu W, Wang P, Liu J, Xiong Y. Differential metabolites screening in yak (Bos grunniens) seminal plasma after cryopreservation and the evaluation of the effect of galactose on post-thaw sperm motility. Theriogenology 2024; 215:249-258. [PMID: 38103402 DOI: 10.1016/j.theriogenology.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Sperm survival and activity depend on the provision of energy and nutrients from seminal plasma (SP). This study aimed to investigate the variations of metabolites within SP before and after freezing and subsequently explore the potential regulatory mechanisms affecting yak sperm cryodamage due to changes in metabolites in the SP. Untargeted metabolomics analysis was performed to screen for differential metabolites, followed by KEGG analysis to identify enriched signaling pathways. The combinatorial analysis of metabolomics and sperm proteomics revealed the influence of key SP metabolites on sperm proteins. Subsequently, the relevant differentially expressed proteins were verified by Western blot analysis. Finally, the mechanism underlying the positive effect of galactose on sperm motility was determined by assessing the change in ATP content in sperm before and after freezing and thawing. The data showed that a total of 425 and 269 metabolites were identified in the positive and negative ion modes, respectively. Freezing and thawing resulted in the up-regulation of 70 metabolites and the down-regulation of 29 metabolites in SP. The primary impact of freezing and thawing was observed in carbohydrate metabolism, including pyruvate metabolism, pentose phosphate pathway, galactose metabolism, the TCA cycle, and butanoate metabolism. In the combined analysis and Western blot results, a significant positive correlation was observed between galactose and Aldo-keto reductase family 1 member B1 (AKR1B1) (P < 0.05), which has the ability to convert galactose into galactol. Furthermore, the addition of galactose to thawed semen improved sperm motility by increasing AKR1B1 protein in sperm and was associated with the content of ATP. These data identify differential metabolites between fresh and frozen-thawed SP and suggest that galactose is a valuable additive for cryopreserved sperm, providing a theoretical basis for further exploration of the refrigerant formula for yak sperm cryopreservation.
Collapse
Affiliation(s)
- Yilin Fan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Xiaowei Li
- Longri Breeding Stock Farm of Sichuan Province, Dujiangyan, 611800, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Peng Wang
- Sichuan Ganzi Tibetan Autonomous Prefecture, Institute of Animal Husbandry Science, Kangding, 626000, China
| | - Jun Liu
- Sichuan Ganzi Tibetan Autonomous Prefecture, Institute of Animal Husbandry Science, Kangding, 626000, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Güngör İH, Türk G, Dayan Cinkara S, Acisu TC, Tektemur A, Yeni D, Avdatek F, Arkali G, Koca RH, Özer Kaya Ş, Sagiroglu M, Etem Önalan E, Sönmez M, Gür S, Yüce A. Reduction of cryopreservation-induced structural, functional and molecular damages in ram sperm by hydrated C 60 fullerene. Reprod Domest Anim 2024; 59:e14513. [PMID: 38038214 DOI: 10.1111/rda.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
This study aimed to investigate the morphological, functional and molecular changes in frozen-thawed ram sperm using an extender containing different concentrations of hydrated carbon 60 fullerene (C60 HyFn), a nanotechnological product. Semen taken from each of the seven Akkaraman rams were pooled. Semen collection was done twice a week and it continued for 3 weeks. Each pooled semen sample was divided into six equal groups and diluted with tris + egg yolk extender including 0 (control), 200, 400, 800 nM, 1 and 5 μM concentrations of C60 HyFn at 37°C. They were then frozen in liquid nitrogen vapour at -140°C, stored in liquid nitrogen container (-196°C) and thawed at 37°C for 25 s before analysis. In comparison with control, C60 HyFn addition prior to freezing procedure provided significant increases in total and progressive motility rates, glutathione peroxidase, catalase activities and percentage of highly active mitochondria, and significant decreases in dead and abnormal sperm rates, lipid peroxidation, caspase-3 and DNA fragmentation levels in frozen-thawed ram semen. When compared to control, C60 HyFn supplementation significantly down-regulated the expression levels of miR-200a and KCNJ11, and significantly up-regulated the expression levels of miR-3958-3p (at the concentrations of 200, 400, 800 nM and 1 μM), CatSper1 (at the concentrations of 200, 400 nM and 5 μM), CatSper2 (at the concentrations of 1 and 5 μM), CatSper3 (at the concentrations of 200, 400 nM, 1 and 5 μM), CatSper4 (at all concentrations), ANO1 (at the concentrations of 800 nM, 1 and 5 μM) and TRPV5 (at the concentrations of 200, 400 and 800 nM). The addition of C60 HyFn had no effect on global DNA methylation rates. As a result, C60 HyFn supplementation to ram semen extenders may be beneficial in reducing some of the functional, structural and molecular damages in sperm induced by the freeze-thawing procedure.
Collapse
Affiliation(s)
- İbrahim Halil Güngör
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Gaffari Türk
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Serap Dayan Cinkara
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Tutku Can Acisu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Fırat University, Elazığ, Türkiye
| | - Deniz Yeni
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Fatih Avdatek
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Gözde Arkali
- Department of Physiology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Recep Hakkı Koca
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Bingöl University, Bingöl, Türkiye
| | - Şeyma Özer Kaya
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Meltem Sagiroglu
- Department of Physiology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Ebru Etem Önalan
- Department of Medical Biology, Faculty of Medicine, Fırat University, Elazığ, Türkiye
| | - Mustafa Sönmez
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Seyfettin Gür
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Abdurrauf Yüce
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| |
Collapse
|
14
|
Khan MT, Khan MIUR, Ahmad E, Yousaf MR, Oneeb M. Synergistic effect of extracellular adenosine triphosphate and quercetin on post-thaw quality and fertilization potential of Lohi ram sperm. Cryobiology 2023; 113:104593. [PMID: 37844752 DOI: 10.1016/j.cryobiol.2023.104593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
This study determined the individual and combined effects of extracellular adenosine triphosphate (ATP) and quercetin (QUE) on the quality of post-thawed sperm and the fertilization potential of Lohi rams. In experiment 1, semen samples from four Lohi rams were pooled and extended with different concentrations of ATP or QUE (control; no ATP or QUE, 1 or 2 mM ATP and 10 or 20 μM QUE). In experiment 2, pooled semen samples were extended with various combinations of ATP and QUE (control; no ATP and QUE, 1 mM ATP + 10 μM QUE, 1 mM ATP + 20 μM QUE, 2 mM ATP + 10 μM QUE and 2 mM ATP + 20 μM QUE). All samples in both experiments were cryopreserved and analyzed for post-thawed sperm quality. In experiment 3, the best combination of ATP and QUE from experiment 2 was to extend semen, which was then used for laparoscopic insemination in estrus-synchronized ewes (n = 83). The results of experiment 1 showed that 1 mM ATP and 20 μM QUE treatments resulted in higher total motility, progressive motility, viability, plasma membrane intactness (PMI), and motion kinetics (VCL, VSL, VAP, LIN, and STR) compared to other treatments (p < 0.05). In experiment 2, the 1 mM ATP +10 μM QUE-treated group exhibited significantly higher total and progressive motility, PMI, and motion kinetics (VSL, VCL, VAP, STR, and BCF) compared to the control group (p < 0.05). In experiment 3, the fertilizing potential of sperms treated with 1 mM ATP +10 μM QUE was greater than that of untreated controls (58.1% vs. 27.5%, respectively, p-value = 0.012). In conclusion, the quality of post-thawed ram semen is enhanced when the extender is supplemented with extracellular 1 mM ATP and 20 μM QUE, whether used separately or in combination with 1 mM ATP and 10 μM QUE. Furthermore, the inclusion of 1 mM ATP and 10 μM QUE together in the extender significantly improves in vivo fertility in Lohi ram.
Collapse
Affiliation(s)
- Muhammad Tayyab Khan
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | | | - Ejaz Ahmad
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakriya University Multan, Pakistan.
| | - Muhammad Rizwan Yousaf
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Oneeb
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
15
|
Cheredath A, Uppangala S, Jijo A, Lakshmi RV, Gowda GAN, Kalthur G, Adiga SK. Use of sensitivity-enhanced nuclear magnetic resonance spectroscopy equipped with a 1.7-mm cryogenically cooled micro-coil probe in identifying human sperm intracellular metabolites. Reprod Fertil Dev 2023; 35:661-668. [PMID: 37643634 DOI: 10.1071/rd22246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
CONTEXT The clinical value of human sperm metabolites has not been established due to the technical complexity in detecting these metabolites when sperm numbers are low. AIMS To detect endogenous intracellular metabolites in fresh and post-thaw human spermatozoa using 800MHz nuclear magnetic resonance (NMR) spectroscopy equipped with a 1.7-mm cryo-probe. METHODS Processed spermatozoa from 25 normozoospermic ejaculates were subjected to extraction of intracellular metabolites and then profiled by sensitivity-enhanced NMR spectroscopy equipped with a 1.7-mm cryogenically cooled micro-coil probe. In parallel, some of the processed sperm fractions were subjected to freeze-thawing and were then analysed for intracellular metabolites. KEY RESULTS Twenty-three metabolites were profiled from only 1.25million sperm cells. Comparison of the metabolomic signature of pre-freeze and post-thaw sperm cells did not show significant changes in the levels of metabolites. CONCLUSIONS Sensitivity-enhanced NMR spectroscopy equipped with a 1.7-mm cryogenically cooled micro-coil probe is a potential tool for identifying intracellular metabolites when sperm number is low. IMPLICATIONS Use of sensitivity-enhanced NMR spectroscopy opens up the opportunity to test for endogenous metabolites in samples with a limited number of spermatozoa, to understand the patho-physiology of infertility.
Collapse
Affiliation(s)
- Aswathi Cheredath
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Shubhashree Uppangala
- Division of Reproductive Genetics, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Ameya Jijo
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - R Vani Lakshmi
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576 104, India
| | - G A Nagana Gowda
- Northwest Metabolomics Research Centre, Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Satish Kumar Adiga
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| |
Collapse
|
16
|
Makris A, Alevra AI, Exadactylos A, Papadopoulos S. The Role of Melatonin to Ameliorate Oxidative Stress in Sperm Cells. Int J Mol Sci 2023; 24:15056. [PMID: 37894737 PMCID: PMC10606652 DOI: 10.3390/ijms242015056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
It is widely accepted that oxidative stress (OS) coming from a wide variety of causes has detrimental effects on male fertility. Antioxidants could have a significant role in the treatment of male infertility, and the current systematic review on the role of melatonin to ameliorate OS clearly shows that improvement of semen parameters follows melatonin supplementation. Although melatonin has considerable promise, further studies are needed to clarify its ability to preserve or restore semen quality under stress conditions in varied species. The present review examines the actions of melatonin via receptor subtypes and its function in the context of OS across male vertebrates.
Collapse
Affiliation(s)
| | | | | | - Serafeim Papadopoulos
- Hydrobiology-Ichthyology Laboratory, Department of Ichthyology and Aquatic Environment, University of Thessaly, Fytokou Str., 38446 Volos, Greece; (A.M.); (A.I.A.); (A.E.)
| |
Collapse
|
17
|
Raad G, Fakih F, Bazzi M, Massaad V, Nasrallah E, Yarkiner Z, Mourad Y, Khater DA, Balech R, Saliba C, Serdarogullari M, Fakih C. Lactobacillus plantarum secretions may exert a cryoprotective effect on human sperm motility: A prospective in vitro study. Andrology 2023; 11:1437-1450. [PMID: 36960890 DOI: 10.1111/andr.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Semen cryopreservation is a widely used procedure for fertility preservation, despite some level of cryodamage that may occur in spermatozoa after thawing. However, there is some evidence that lactobacilli, one of the bacteria found in semen, might benefit sperm quality. OBJECTIVES This study aims to determine whether the addition of Lactobacillus plantarum secretions to sperm freezing medium has an impact on sperm motility, morphology, and DNA fragmentation. MATERIALS AND METHODS This is a prospective auto-controlled study. It was conducted on 30 raw semen samples from 30 infertile men attending a fertility center for semen analysis. Before freezing, all the samples were analyzed for motility, morphology, and DNA fragmentation percentages. Each sample was then divided equally into three aliquots. Cryopreservation was performed on each aliquot using one of the following three media: without Lactobacillus plantarum secretions (control group) or with 107 or 108 colony-forming units/mL Lactobacillus plantarum secretions. Sperm motility, morphology, and DNA integrity were evaluated after the cryopreservation media were added and after semen thawing. RESULTS The results of this study indicated that after thawing, no statistically significant decrease in progressive motility and non-progressive percentages were detected in the sperm freezing medium supplemented with 108 colony-forming units/mL Lactobacillus plantarum secretions than the fresh raw semen. Moreover, multivariate linear regression model analyses showed that the progressive motility (p = 0.02), non-progressive motility (p = 0.016), and non-motile spermatozoa (p = 0.012) percentages were significantly decreased in the freezing medium (without Lactobacillus plantarum secretions) compared to the fresh raw semen. DISCUSSION AND CONCLUSION To the best of our knowledge, this is the first study showing that Lactobacillus plantarum secretions had a cryoprotective effect on sperm motility when added to the sperm freezing medium. Furthermore, Lactobacillus plantarum secretions were found to protect sperm DNA integrity more effectively than the freezing medium without Lactobacillus plantarum secretions in non-normozoospermia group. Cryopreservation procedures must therefore be optimized to minimize any iatrogenically induced sperm DNA damage, given the correlation between sperm DNA damage and increased mutation loads in progeny.
Collapse
Affiliation(s)
- Georges Raad
- Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Fadi Fakih
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Marwa Bazzi
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Vinal Massaad
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | | | - Zalihe Yarkiner
- Department of Basic Sciences and Humanities, Faculty of Arts and Sciences, Northern Cyprus via Mersin, Cyprus International University, Turkey
| | - Youmna Mourad
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | | | - Rita Balech
- Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | | | - Munevver Serdarogullari
- Department of Histology and Embryology, Northern Cyprus via Mersin, Faculty of Medicine, Cyprus International University, Turkey
| | - Chadi Fakih
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
- Faculty of Medicine, Lebanese University, Beirut, Lebanon
| |
Collapse
|
18
|
Rodrigues Pessoa E, Roger Vasconcelos F, de Oliveira Paula-Marinho S, de Menezes Daloso D, Damasceno Guerreiro D, Matias Martins JA, Gomes-Filho E, Alencar Moura A. Metabolomic profile of seminal plasma from Guzerá bulls (Bos indicus) with contrasting sperm freezability phenotypes. Reprod Domest Anim 2023; 58:1379-1392. [PMID: 37592767 DOI: 10.1111/rda.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
The present study evaluated the seminal plasma metabolome of Bos indicus Guzerá bulls with good (n = 4) and poor (n = 5) sperm freezability. Animals were raised in natural pasture of a 'Caatinga' ecosystem, in the semi-arid region of Brazil. Seminal plasma samples were subjected to gas chromatography coupled to mass spectrometry and data, analysed using bioinformatics tools (Cytoscape with the MetScape plug-in). Sixty-two metabolites were identified in the bovine seminal plasma. Fatty acids and conjugates and organic compounds were the predominant seminal fluid metabolites, followed by carboxylic acids and derivatives, amino acids, benzenes and steroids and derivatives, carbohydrates and carbohydrate conjugates and prenol lipids. Multivariate analysis indicated a distinct separation of seminal plasma metabolomes from bulls with contrasting sperm freezability. Abundances of propanoic acid, d-ribose and glycine were greater in the seminal plasma of bulls with good sperm freezability. Heptadecanoic acid and undecanoic acid were the predominant in bulls of poor sperm freezability. Propanoic acid is an energy source for spermatozoa and may act as an antimicrobial component in semen. Glycine acts against oxidizing and denaturing reactions. d-ribose is also an energy source and reduces apoptosis and oxidative stress. Undecanoic acid may protect sperm against fungal damage. This study provides fundamental information approximately the seminal plasma metabolome of tropically adapted bulls and its association with sperm freezability. However, further studies with larger groups of animals are needed to validate those metabolites as markers of sperm freezability. This strategy could support the selection of sires with superior sperm cryoresistance.
Collapse
Affiliation(s)
| | | | | | - Danilo de Menezes Daloso
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | | | - Jorge André Matias Martins
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
- Center for Agricultural Sciences and Biodiversity, Federal University of Cariri, Crato, Brazil
| | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | | |
Collapse
|
19
|
Li R, Zhao H, Li B, Wang S, Hua S. Soybean lecithin and cholesterol-loaded cyclodextrin in combination to enhances the cryosurvival of dairy goat semen. Cryobiology 2023; 112:104557. [PMID: 37451667 DOI: 10.1016/j.cryobiol.2023.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The objective of the study was to examine the effect of soy lecithin (SL) and cholesterol loaded cryclodestrin (CLC) on cryo-survival of sperm cryopreserved in the presence or absence of seminal plasma in Saanen dairy goats. Tris-based dilutions containing various concentrations of SL (0, 0.5%, 1.0% or 2.0%) and CLC (0, 2.0 g/L, 4.0 g/L or 6.0 g/L CLC) were used to cryopreserve Saanen dairy goat sperm. The quality of frozen-thawed sperm, including progressive motility, viability, acrosome and plasma membrane integrity, as well as fertility were detected. Results found that the optimal combination of the two cryoprotectants was 1.0% SL+4.0 g/L CLC, which significantly increased progressive motility, viability, acrosome and plasma membrane integrity of frozen thawed sperm. The impact of the two cryoprotectants in combination was not affected by the presence of seminal plasma. The conception rates obtained after artificial insemination using sperm cryopreserved with and without seminal plasma were 88.89% and 91.67% (P > 0.05), respectively. The respective values for average number of litter sizes were 1.55 ± 0.17 and 1.56 ± 0.21 (P > 0.05). Therefore, this study improved the cryopreservation efficiency of goat semen, enhanced the sperm cryosurvival, and layed a foundation for the wide application of frozen goat semen.
Collapse
Affiliation(s)
- Rong Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Hubei Zhao
- Shaanxi Sanyuan Xinghuo Dairy Goat Raising Cooperative, Xianyang, Shaanxi, 713800, China.
| | - Bowen Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Siqi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Song Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
20
|
Qin W, Chu M, Ma X, Pei J, Xiong L, Bao P, La Y, Liang C, Guo X, Wu X, Yan P. Comparative iTRAQ proteomics identified proteins in fresh and frozen thawed yak spermatozoa. Int J Biol Macromol 2023; 246:125728. [PMID: 37422242 DOI: 10.1016/j.ijbiomac.2023.125728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
The changes in semen and cryodamage after the cryopreservation process negatively affect sperm function and motility. However, possible proteomic alterations of yak semen during cryopreservation have not yet been achieved. In this study, we compared proteomes of fresh and frozen thawed yak sperm using iTRAQ combined with LC-MS/MS proteome approach. Totally, 2064 proteins were quantitatively identified, including 161 in fresh sperm that showed significant differences compared to frozen thawed sperm. According to the Gene ontology (GO) enrichment analysis, differentially expressed proteins (DEPs) are predominantly associated with spermatogenesis, tricarboxylic acid cycle, ATP synthesis, and differentiation biological process. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEPs were mainly involved in metabolic pathways related to pyruvate metabolism, carbon metabolism, glycolysis/gluconeogenesis, together with the citrate (TCA) cycle. In the analysis of the protein-protein interaction (PPI) network, 15 potential proteins (PDHB, DLAT, PDHA2, PGK1, TP5C1, etc.) that could be related to the sperm quality of the yaks were obtained. Furthermore, 6 DEPs were validated by parallel reaction monitoring (PRM), confirming that the iTRAQ data were reliable. These results indicate that cryopreservation alters the proteome of yak sperm, which is possibly related to cryodamage and fertilization ability.
Collapse
Affiliation(s)
- Wen Qin
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| |
Collapse
|
21
|
Agarwal A, Farkouh A, Saleh R, Abdel-Meguid Hamoda TAA, Harraz AM, Kavoussi P, Arafa M, Salvio G, Rambhatla A, Toprak T, Gül M, Phuoc NHV, Boitrelle F, Birowo P, Ghayda RA, Cannarella R, Kuroda S, Durairajanayagam D, Zini A, Wyns C, Sarikaya S, Tremellen K, Mostafa T, Sokolakis I, Evenson DP, Henkel R, Zohdy W, Chung E, Ziouziou I, Falcone M, Russo GI, Al-Hashimi M, Calogero AE, Ko E, Colpi G, Lewis S, Serefoglu EC, Bahar F, Martinez M, Nguyen Q, Ambar RF, Bakircioglu ME, Kandil H, Mogharabian N, Sabbaghian M, Taniguchi H, Tsujimura A, Sajadi H, Ibrahim W, Atmoko W, Vogiatzi P, Gunes S, Gilani MAS, Roychoudhury S, Güngör ND, Hakim L, Adriansjah R, Kothari P, Jindal S, Amar E, Park HJ, Long TQT, Homa S, Karthikeyan VS, Zilaitiene B, Rosas IM, Marino A, Pescatori E, Ozer C, Akhavizadegan H, Garrido N, Busetto GM, Adamyan A, Al-Marhoon M, Elbardisi H, Dolati P, Darbandi M, Darbandi S, Balercia G, Pinggera GM, Micic S, Ho CCK, Moussa M, Preto M, Zenoaga-Barbăroşie C, Smith RP, Kosgi R, de la Rosette J, El-Sakka AI, Abumelha SM, Mierzwa TC, Ong TA, Banihani SA, Bowa K, Fukuhara S, Boeri L, Danacıoğlu YO, Gokalp F, Selim OM, Cho CL, Tadros NN, Ugur MR, Ozkent MS, Chiu P, Kalkanli A, Khalafalla K, Vishwakarma RB, Finocchi F, Andreadakis S, Giulioni C, Çeker G, Ceyhan E, Malhotra V, Yilmaz M, Timpano M, Barrett TL, Kim SHK, Ahn ST, Giacone F, Palani A, Duarsa GWK, Kadioglu A, Gadda F, Zylbersztejn DS, Aydos K, Kulaksız D, Gupte D, Calik G, Karna KK, Drakopoulos P, Baser A, Kumar V, Molina JMC, Rajmil O, Ferreira RH, Leonardi S, Avoyan A, Sogutdelen E, Franco G, Ramsay J, Ramirez L, Shah R. Controversy and Consensus on Indications for Sperm DNA Fragmentation Testing in Male Infertility: A Global Survey, Current Guidelines, and Expert Recommendations. World J Mens Health 2023; 41:575-602. [PMID: 37118960 PMCID: PMC10307662 DOI: 10.5534/wjmh.220282] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 04/30/2023] Open
Abstract
PURPOSE Sperm DNA fragmentation (SDF) testing was recently added to the sixth edition of the World Health Organization laboratory manual for the examination and processing of human semen. Many conditions and risk factors have been associated with elevated SDF; therefore, it is important to identify the population of infertile men who might benefit from this test. The purpose of this study was to investigate global practices related to indications for SDF testing, compare the relevant professional society guideline recommendations, and provide expert recommendations. MATERIALS AND METHODS Clinicians managing male infertility were invited to take part in a global online survey on SDF clinical practices. This was conducted following the CHERRIES checklist criteria. The responses were compared to professional society guideline recommendations related to SDF and the appropriate available evidence. Expert recommendations on indications for SDF testing were then formulated, and the Delphi method was used to reach consensus. RESULTS The survey was completed by 436 experts from 55 countries. Almost 75% of respondents test for SDF in all or some men with unexplained or idiopathic infertility, 39% order it routinely in the work-up of recurrent pregnancy loss (RPL), and 62.2% investigate SDF in smokers. While 47% of reproductive urologists test SDF to support the decision for varicocele repair surgery when conventional semen parameters are normal, significantly fewer general urologists (23%; p=0.008) do the same. Nearly 70% would assess SDF before assisted reproductive technologies (ART), either always or for certain conditions. Recurrent ART failure is a common indication for SDF testing. Very few society recommendations were found regarding SDF testing. CONCLUSIONS This article presents the largest global survey on the indications for SDF testing in infertile men, and demonstrates diverse practices. Furthermore, it highlights the paucity of professional society guideline recommendations. Expert recommendations are proposed to help guide clinicians.
Collapse
Affiliation(s)
- Ashok Agarwal
- Global Andrology Forum, American Center for Reproductive Medicine, Moreland Hills, OH, USA
- Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ala’a Farkouh
- Global Andrology Forum, American Center for Reproductive Medicine, Moreland Hills, OH, USA
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Taha Abo-Almagd Abdel-Meguid Hamoda
- Department of Urology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Urology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ahmed M. Harraz
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
- Department of Surgery, Urology Unit, Farwaniya Hospital, Farwaniya, Kuwait
- Department of Urology, Sabah Al Ahmad Urology Center, Kuwait City, Kuwait
| | - Parviz Kavoussi
- Department of Reproductive Urology, Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
| | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, Weill Cornell Medical-Qatar, Doha, Qatar
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Gianmaria Salvio
- Department of Endocrinology, Polytechnic University of Marche, Ancona, Italy
| | - Amarnath Rambhatla
- Department of Urology, Henry Ford Health System, Vattikuti Urology Institute, Detroit, MI, USA
| | - Tuncay Toprak
- Department of Urology, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Murat Gül
- Department of Urology, Selçuk University School of Medicine, Konya, Turkey
| | - Nguyen Ho Vinh Phuoc
- Department of Andrology, Binh Dan Hospital, Ho Chi Minh City, Vietnam
- Department of Urology and Andrology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Department of Biology, Reproduction, Epigenetics, Environment and Development, Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Ponco Birowo
- Department of Urology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ramy Abou Ghayda
- Urology Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Damayanthi Durairajanayagam
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Armand Zini
- Department of Surgery, McGill University, Montreal, QC, Canada
| | - Christine Wyns
- Department of Gynaecology-Andrology, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Selcuk Sarikaya
- Department of Urology, Gülhane Research and Training Hospital, University of Health Sciences, Ankara, Turkey
| | - Kelton Tremellen
- Department of Obstetrics Gynaecology and Reproductive Medicine, Flinders University, Bedford Park, Australia
| | - Taymour Mostafa
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ioannis Sokolakis
- Department of Urology, Martha-Maria Hospital Nuremberg, Nuremberg, Germany
| | | | - Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
- LogixX Pharma, Theale, Berkshire, UK
| | - Wael Zohdy
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Imad Ziouziou
- Department of Urology, College of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| | - Marco Falcone
- Department of Urology, Molinette Hospital, A.O.U. Città della Salute e della Scienza, University of Turin, Torino, Italy
| | | | - Manaf Al-Hashimi
- Department of Urology, Burjeel Hospital, Abu Dhabi, UAE
- Department of Urology, Clinical Urology, Khalifa University, College of Medicine and Health Sciences, Abu Dhabi, UAE
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Giovanni Colpi
- Andrology and IVF Center, Next Fertility Procrea, Lugano, Switzerland
| | | | - Ege Can Serefoglu
- Department of Urology, Biruni University School of Medicine, Istanbul, Turkey
| | - Fahmi Bahar
- Andrology Section, Siloam Sriwijaya Hospital, Palembang, Indonesia
| | - Marlon Martinez
- Section of Urology, Department of Surgery, University of Santo Tomas Hospital, Manila, Philippines
| | - Quang Nguyen
- Center for Andrology and Sexual Medicine, Viet Duc University Hospital, Hanoi, Vietnam
- Department of Urology, Andrology and Sexual Medicine, University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Rafael F. Ambar
- Department of Urology, Centro Universitario em Saude do ABC, Santo André, Brazil
- Andrology Group at Ideia Fertil Institute of Human Reproduction, Santo André, Brazil
| | | | | | - Nasser Mogharabian
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hisanori Taniguchi
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Akira Tsujimura
- Department of Urology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Hesamoddin Sajadi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Wael Ibrahim
- Department of Obstetrics Gynaecology and Reproductive Medicine, Fertility Care Center in Cairo, Cairo, Egypt
| | - Widi Atmoko
- Department of Urology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Paraskevi Vogiatzi
- Andromed Health & Reproduction, Fertility & Reproductive Health Diagnostic Center, Athens, Greece
| | - Sezgin Gunes
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Nur Dokuzeylül Güngör
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and IVF Unit, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Lukman Hakim
- Department of Urology, Faculty of Medicine Universitas Airlangga, Universitas Airlangga Teaching Hospital, Surabaya, Indonesia
| | - Ricky Adriansjah
- Department of Urology, Faculty of Medicine Universitas Padjajaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Priyank Kothari
- Department of Urology, Topiwala National Medical College, B.Y.L Nair Ch Hospital, Mumbai, India
| | - Sunil Jindal
- Department of Andrology and Reproductive Medicine, Jindal Hospital, Meerut, India
| | - Edouard Amar
- Department of Urology, American Hospital of Paris, Paris, France
| | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Tran Quang Tien Long
- Department of Obstetrics and Gynecology, Hanoi Obstetric and Gynecology Hospital, Hanoi, Vietnam
| | - Sheryl Homa
- Department of Biosciences, University of Kent, Canterbury, UK
| | | | - Birute Zilaitiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Angelo Marino
- Reproductive Medicine Unit, ANDROS Day Surgery Clinic, Palermo, Italy
| | - Edoardo Pescatori
- Andrology and Reproductive Medicine Unit, Gynepro Medical, Bologna, Italy
| | - Cevahir Ozer
- Department of Urology, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Hamed Akhavizadegan
- Department of Urology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nicolas Garrido
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Aram Adamyan
- IVF Department, Astghik Medical Center, Yerevan, Armenia
| | - Mohamed Al-Marhoon
- Division of Urology, Department of Surgery, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Haitham Elbardisi
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, Weill Cornell Medical-Qatar, Doha, Qatar
| | - Parisa Dolati
- Department of Animal Science, Faculty of Agriculture, University of Shiraz, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
- Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
- Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Giancarlo Balercia
- Department of Endocrinology, Polytechnic University of Marche, Ancona, Italy
| | | | - Sava Micic
- Department of Andrology, Uromedica Polyclinic, Belgrade, Serbia
| | | | - Mohamad Moussa
- Department of Urology, Lebanese University, Beirut, Lebanon
- Department of Urology, Al Zahraa Hospital, UMC, Lebanon
| | - Mirko Preto
- Department of Urology, Molinette Hospital, A.O.U. Città della Salute e della Scienza, University of Turin, Torino, Italy
| | | | - Ryan P. Smith
- Department of Urology, University of Virginia School of Medicine, Virginia, USA
| | - Raghavender Kosgi
- Department of Urology, Andrology and Renal Transplant, AIG Hospitals, Hyderabad, India
| | - Jean de la Rosette
- Department of Urology, Istanbul Medipol Mega University Hospital, Istanbul, Turkey
| | | | - Saad Mohammed Abumelha
- Division of Urology, Department of Surgery, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | | | - Teng Aik Ong
- Department of Surgery, University of Malaya, Kuala Lumpur, Malaysia
| | - Saleem A. Banihani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Kasonde Bowa
- Department of Urology, University of Lusaka, Lusaka, Zambia
| | - Shinichiro Fukuhara
- Department of Urology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Luca Boeri
- Department of Urology, IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Yavuz Onur Danacıoğlu
- Department of Urology, University of Health Science Istanbul Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Fatih Gokalp
- Department of Urology, Hatay Mustafa Kemal University, Antakya, Turkey
| | - Osama Mohamed Selim
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Chak-Lam Cho
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | - Peter Chiu
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Arif Kalkanli
- Department of Urology, Taksim Education and Research Hospital, Istanbul, Turkey
| | - Kareim Khalafalla
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, University of Illinois, Chicago, IL, USA
| | | | - Federica Finocchi
- Department of Endocrinology, Polytechnic University of Marche, Ancona, Italy
- Unit of Andrology and Reproductive Medicine, University of Padua, Padua, Italy
| | | | - Carlo Giulioni
- Department of Urology, Polytechnic University of Marche Region, Ancona, Italy
| | - Gökhan Çeker
- Department of Urology, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
- Department of Embryology and Histology, Zonguldak Bülent Ecevit University Institute of Health Sciences, Zonguldak, Turkey
| | - Erman Ceyhan
- Department of Urology, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Vineet Malhotra
- Department of Urology, SCM Clinic and Hospital, New Delhi, India
| | - Mehmet Yilmaz
- Department of Urology, Faculty of Medicine, University of Freiburg-Medical Centre, Freiburg, Germany
| | - Massimiliano Timpano
- Department of Urology, Molinette Hospital, A.O.U. Città della Salute e della Scienza, University of Turin, Torino, Italy
| | | | - Shannon Hee Kyung Kim
- IVF Australia, Sydney, Australia
- Macquarie School of Medicine, Macquaire University, Sydney, Australia
| | - Sun-Tae Ahn
- Department of Urology, Korea University College of Medicine, Seoul, Korea
| | - Filippo Giacone
- Centro HERA, Unità di Medicina della Riproduzione, Sant'Agata Li Battiati, Catania, Italy
| | - Ayad Palani
- Research Centre, University of Garmian, Kalar, Iraq
| | | | - Ates Kadioglu
- Section of Andrology, Department of Urology, Istanbul University, Istanbul, Turkey
| | - Franco Gadda
- Department of Urology, IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Kaan Aydos
- Department of Urology, Ankara University, Ankara, Turkey
| | - Deniz Kulaksız
- Department of Obstetrics and Gynecology, University of Health Sciences Kanuni Training and Research Hospital, Trabzon, Turkey
| | - Deepak Gupte
- Department of Urology, Bombay Hospital and Medical Research Center, Mumbai, India
| | - Gokhan Calik
- Department of Urology, Istanbul Medipol University, Istanbul, Turkey
| | - Keshab Kumar Karna
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Panagiotis Drakopoulos
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- IVF Athens, Athens, Greece
| | - Aykut Baser
- Department of Urology, Bandirma Onyedi Eylül University, Balikesir, Turkey
| | - Vijay Kumar
- Department of Microbiology, Kurukshetra University, Kurukshetra, India
| | | | - Osvaldo Rajmil
- Department of Andrology, Fundacio Puigvert, Barcelona, Spain
| | | | - Sofia Leonardi
- Central Laboratory, Hospital Publico Materno Infantil de Salta, Salta, Argentina
| | - Armen Avoyan
- Urology Department, Astghik Medical Center, Yerevan, Armenia
| | | | - Giorgio Franco
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | | | - Liliana Ramirez
- IVF Laboratory, CITMER Reproductive Medicine, Mexico City, Mexico
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| | | |
Collapse
|
22
|
Tas DO, Ozkavukcu S, Inanc I, Kose SK, Erdemli E. The effects of coenzyme Q10 and curcumin supplementation in freezing medium for human sperm cryopreservation. Eur J Obstet Gynecol Reprod Biol 2023; 287:36-45. [PMID: 37276727 DOI: 10.1016/j.ejogrb.2023.05.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/02/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Despite its routine and frequent application, cryopreservation of human sperm is far from the desired efficacy, as freezing and thawing impair motility, viability, acrosomal unity, and DNA integrity. OBJECTIVES In this study, the authors aimed to investigate whether adding antioxidants, coenzyme Q10, and curcumin into the freezing medium provide better efficacy in the cryopreservation of human sperm. METHODS The semen samples from 40 healthy men aged 18-45 were collected in sterile containers by masturbation. Samples within normal reference values for sperm concentration (≥15 million/mL) and motility (progressive motile ≥ 32% and total motility ≥ 40%) were included in the study. Semen samples were equally divided into five groups and evaluated; i) pre-freezing sperm suspension, ii) frozen-thawed control (Ctrl) without any supplementation in freezing medium, iii) frozen-thawed with curcumin supplementation of 0.25 mM (Cur), iv) frozen-thawed coenzyme Q10 supplementation of 25 µM (CoQ10) and v) frozen-thawed curcumin (0.25 mM) plus coenzyme Q10 (25 µM) supplementation (CurCoQ10) into the freezing medium. Liquid nitrogen vapour freezing and rapid thawing were performed in each group (ii-v). Sperm motility, viability, acrosome integrity, and DNA fragmentation rates were compared and ultrastructural evaluations by transmission electron microscopy were undertaken between the groups. Additionally, the total antioxidant capacity/total oxidant capacity values were measured. RESULTS According to CASA results, progressive motility was significantly higher in the CoQ10 group (9.4 ± 7.6) when compared with the Ctrl (7.1 ± 6.3), Cur (6.4 ± 4.8) and CurCoQ10 (8.1 ± 7.7) groups (p < 0.05). Flow cytometry results showed no difference in the viability and acrosome integrity values after thawing, but DNA fragmentation was significantly increased in the curcumin-added groups (p < 0.05). Acrosomal changes and sub-acrosomal defects were seen in all groups after thawing at the ultrastructural level. Mitochondrial membrane structure was preserved in CoQ10 and CurCoQ10 groups. CONCLUSIONS Our results suggested that sperm ultrastructural morphology and motility were better preserved in the CoQ10 group during cryopreservation. In curcumin groups, DNA fragmentation and head defects were increased.
Collapse
Affiliation(s)
- Derya Ozdemir Tas
- Ankara City Hospital, Center for Assisted Reproduction, Obstetrics and Gynecology Clinics, Ankara, Turkey.
| | | | - Irem Inanc
- Ankara University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - Serdal Kenan Kose
- Ankara University Faculty of Medicine, Department of Biostatistics, Ankara, Turkey
| | - Esra Erdemli
- Ankara University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| |
Collapse
|
23
|
Ozimic S, Ban-Frangez H, Stimpfel M. Sperm Cryopreservation Today: Approaches, Efficiency, and Pitfalls. Curr Issues Mol Biol 2023; 45:4716-4734. [PMID: 37367049 DOI: 10.3390/cimb45060300] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liquid nitrogen vapors, while the use of vitrification is still not accepted as clinically relevant. Although there have been many improvements, the ideal technique for achieving better post-thaw sperm quality continues to be a mystery. A major obstacle during cryopreservation is the formation of intracellular ice crystals. Cryodamage generated by cryopreservation causes structural and molecular alterations in spermatozoa. Injuries can happen because of oxidative stress, temperature stress, and osmotic stress, which then result in changes in the plasma membrane fluidity, motility, viability, and DNA integrity of the spermatozoa. To prevent cryodamage as much as possible, cryoprotectants are added, and in some clinical trial cases, even antioxidants that may improve post-thaw sperm quality are added. This review discusses cryopreservation techniques, cryodamage on molecular and structural levels, and cryoprotectants. It provides a comparison of cryopreservation techniques and describes recent advances in those techniques.
Collapse
Affiliation(s)
- Sanja Ozimic
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena Ban-Frangez
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Kohzadi R, Cheraghi E, Mehranjani MS, Shariatzadeh M. Sildenafil citrate ameliorates the adverse effects of cryopreservation on sperm quality in asthenozoospermic men. Cryobiology 2023:S0011-2240(23)00037-8. [PMID: 37207974 DOI: 10.1016/j.cryobiol.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
In this study, the effects of Sildenafil Citrate on the sperm quality during cryopreservation in the asthenozoospermic patients were investigated for the first time. Thirty semen samples were collected from asthenozoospermic patients and each sample was divided into 3 groups: Control (fresh), Freeze and Freeze + Sildenafil. In each groups the sperm parameters, DNA fragmentation, acrosome integrity, protamine deficiency, mitochondrial membrane potential, plasma membrane integrity, the expression of Bcl-2 and HSP70 genes, as well as the level of Tumor necrosis factor-alpha, Malondialdehyde and antioxidants (Catalase, Glutathione, and Superoxide dismutase) in sperm were assessed. Data were analyzed statistically using Repeated Measure Analysis. The level of Malondialdehyde and Tumor necrosis factor-alpha, morphological abnormalities, DNA fragmentation, protamine deficiency and the expression of Bcl-2 and HSP70 genes increased significantly in the Freeze group compared to the Control, while the level of sperm parameters and antioxidants, plasma membrane integrity, mitochondrial membrane potential and acrosomal integrity significantly decreased. In the Freeze + Sildenafil group, compared to the Freeze group, all the mentioned parameters were significantly reversed except for the acrosomal integrity (decreased even more) and the expression of Bcl-2 (increased even more) and HSP70 genes (with no change). Although adding Sildenafil to the freezing medium decreased the adverse effects of freezing on the sperm of asthenozoospermic patients and improved sperm quality, but it also caused premature acrosome reaction. Therefore, we suggest the consumption of Sildenafil along with another antioxidant, to benefit from the favorable effects of Sildenafil as well as to maintain the integrity of the sperm acrosome.
Collapse
Affiliation(s)
- Ronak Kohzadi
- Department of Biology, Faculty of Science, Arak University, Arak, 3815688138, Iran
| | - Ebrahim Cheraghi
- Department of Biology, Faculty of Science, University of Qom, Qom, 3716146611, Iran
| | | | | |
Collapse
|
25
|
Parrales-Macias V, Michel PP, Tourville A, Raisman-Vozari R, Haïk S, Hunot S, Bizat N, Lannuzel A. The Pesticide Chlordecone Promotes Parkinsonism-like Neurodegeneration with Tau Lesions in Midbrain Cultures and C. elegans Worms. Cells 2023; 12:cells12091336. [PMID: 37174736 PMCID: PMC10177284 DOI: 10.3390/cells12091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Chlordecone (CLD) is an organochlorine pesticide (OCP) that is currently banned but still contaminates ecosystems in the French Caribbean. Because OCPs are known to increase the risk of Parkinson's disease (PD), we tested whether chronic low-level intoxication with CLD could reproduce certain key characteristics of Parkinsonism-like neurodegeneration. For that, we used culture systems of mouse midbrain dopamine (DA) neurons and glial cells, together with the nematode C. elegans as an in vivo model organism. We established that CLD kills cultured DA neurons in a concentration- and time-dependent manner while exerting no direct proinflammatory effects on glial cells. DA cell loss was not impacted by the degree of maturation of the culture. The use of fluorogenic probes revealed that CLD neurotoxicity was the consequence of oxidative stress-mediated insults and mitochondrial disturbances. In C. elegans worms, CLD exposure caused a progressive loss of DA neurons associated with locomotor deficits secondary to alterations in food perception. L-DOPA, a molecule used for PD treatment, corrected these deficits. Cholinergic and serotoninergic neuronal cells were also affected by CLD in C. elegans, although to a lesser extent than DA neurons. Noticeably, CLD also promoted the phosphorylation of the aggregation-prone protein tau (but not of α-synuclein) both in midbrain cell cultures and in a transgenic C. elegans strain expressing a human form of tau in neurons. In summary, our data suggest that CLD is more likely to promote atypical forms of Parkinsonism characterized by tau pathology than classical synucleinopathy-associated PD.
Collapse
Affiliation(s)
- Valeria Parrales-Macias
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Patrick P Michel
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Aurore Tourville
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Rita Raisman-Vozari
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stéphane Haïk
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stéphane Hunot
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Nicolas Bizat
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
- Faculté de Pharmacie de Paris, Université de Paris Cité, 75006 Paris, France
| | - Annie Lannuzel
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
- Centre Hospitalier Universitaire de la Guadeloupe, Service de Neurologie, Faculté de Médecine de l'Université des Antilles, Centre d'Investigation Clinique (CIC) 1424, 97159 Pointe-à-Pitre, France
| |
Collapse
|
26
|
Molina JCJ, de Oliveira MB, Costa PHC, Santos EWPD, Correa CB, Azevedo HC. Association between different soy lecithin-based extenders and freezing rates in ram semen cryopreservation. Anim Reprod Sci 2023; 252:107234. [PMID: 37105047 DOI: 10.1016/j.anireprosci.2023.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
The aim of the study was to evaluate the effect of the association between glycine-milk (GM) based extenders made with different concentrations of soy lecithin (SL) and freezing rates (FR) on semen quality after thawing. Pooled semen from rams (n = 12) were diluted in GM extenders with 20% egg yolk (EY-20%) or with different concentrations of SL: 0.5% (SL-0.5%), 1.0% (SL-1.0%), and 2.0% (SL-2.0%). The diluted semen (150 ×106 spermatozoa/0.25 mL) was frozen at three FR of - 10, - 20, and - 60 °C/min, and subsequently thawed and analyzed. Results revealed that EY-20% and SL-2.0% had better kinetic parameters, and showed higher proportions of viable, non-apoptotic, plasma-membrane-intact spermatozoa (A-/PI-) and non-capacitated spermatozoa (F), and had lower acrosome-reacted spermatozoa (AR) in the EY-20% and satisfactory values for SL-2.0% compared to SL-0.5% and SL-1.0% (P < 0.05). The FR at - 20 and - 60 °C/min maintained higher A-/PI- and viable spermatozoa compared to - 10 °C/min. The combination EY-20% and - 60 °C/min showed the highest A-/PI- and F (P < 0.05) and the lowest AR, and it did not differ from the combinations EY-20% at - 20 °C/min and SL-2.0% at - 20 °C/min (P > 0.05). In conclusion, the combination EY-20% and - 60 °C/min, showed the best cryoprotective effects on ram spermatozoa. Changes in spermatozoa after thawing were related to the use of the type of extender, the amounts of the same compound in the extender, and the freezing rates to which they were subjected.
Collapse
Affiliation(s)
| | | | - Paulo Henrique Conceição Costa
- Brazilian Agricultural Research Corporation, EMBRAPA, Embrapa Tabuleiros Costeiros, Embrapa Coastal Tablelands, Aracaju, Sergipe, Brazil
| | | | - Cristiane Bani Correa
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Hymerson Costa Azevedo
- Brazilian Agricultural Research Corporation, EMBRAPA, Embrapa Tabuleiros Costeiros, Embrapa Coastal Tablelands, Aracaju, Sergipe, Brazil.
| |
Collapse
|
27
|
Lewin J, Lukaszewski T, Sangster P, Williamson E, McEleny K, Al Wattar BH, Yasmin E. Reproductive outcomes after surgical sperm retrieval in couples with male factor subfertility: a 10-year retrospective national cohort. Fertil Steril 2023; 119:589-595. [PMID: 36592648 DOI: 10.1016/j.fertnstert.2022.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine any significant differences in the reproductive outcome from intracytoplasmic sperm injection (ICSI) with surgical sperm retrieval (SSR) between cycles using fresh and cryopreserved sperm and between cycles using epididymal and testicular sperm. DESIGN A retrospective national cohort study using data from the UK Human Fertilisation and Embryology Authority, including all ICSI cycles performed in the United Kingdom over a 10-year period. SETTING Hospital. PATIENT(S) All nondonor ICSI cycles from 2008 to 2017 categorized by sperm source and cryopreservation status. INTERVENTION(S) Intracytoplasmic sperm injection with SSR using fresh or cryopreserved sperm and using ejaculated, testicular, and epididymal sperm. MAIN OUTCOME MEASURE(S) Live birth rate, pregnancy rate, and implantation rate. RESULT(S) We analyzed data from 214,649 ICSI cycles, including 199,818 cycles of ejaculated sperm, 5,646 cycles of epididymal sperm, and 9,185 cycles of testicular sperm. Live births rates per ICSI cycle were 28.5%, 30.6%, and 28.7% for ejaculated, epididymal, and testicular sperm cycles, respectively. Epididymal sperm cycles had a higher live birth rate than that of testicular sperm cycles (odds ratio [OR], 1.067; 95% confidence interval [CI], 1.014-1.123). This was despite a higher mean male age (42.5 vs. 40.6 years; 95% CI of difference, 1.81-1.85 years) and female age (34.3 vs. 34.0 years; 95% CI of difference, 0.32-0.34 years) in epididymal cycles than in testicular cycles. Implantation (61.2% vs. 58.0%; OR, 1.086; 95% CI, 1.041-1.133) and clinical pregnancy rates (34.3% vs. 31.3%; OR, 1.085; 95% CI, 1.039-1.132) were also higher in epididymal cycles than in testicular cycles. There were no statistically significant differences in outcomes between cycles using fresh sperm and those using cryopreserved sperm for SSR-ICSI. CONCLUSION(S) Our study indicates that reproductive outcomes of SSR-ICSI are at least comparable with those of ICSI using ejaculated sperm and does not support the preferential use of fresh sperm over cryopreserved sperm in SSR-ICSI. Births per SSR-ICSI cycle were higher for cycles using epididymal sperm than for cycles using testicular sperm; however, the differences were small, which may provide reassurance to patients undergoing these procedures. The results must be interpreted with caution because multivariable analysis was not possible because of aggregation of data.
Collapse
Affiliation(s)
- Jonathan Lewin
- Reproductive Medicine Unit, University College London Hospitals, London, United Kingdom; UCL Institute for Women's Health, University College London, London, United Kingdom
| | - Tomasz Lukaszewski
- Reproductive Medicine Unit, University College London Hospitals, London, United Kingdom
| | - Phillippa Sangster
- Reproductive Medicine Unit, University College London Hospitals, London, United Kingdom; Department of Urology, University College London Hospitals, London, United Kingdom
| | - Elizabeth Williamson
- Reproductive Medicine Unit, University College London Hospitals, London, United Kingdom
| | - Kevin McEleny
- Newcastle Fertility Centre, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Bassel H Al Wattar
- Reproductive Medicine Unit, University College London Hospitals, London, United Kingdom; UCL Institute for Women's Health, University College London, London, United Kingdom
| | - Ephia Yasmin
- Reproductive Medicine Unit, University College London Hospitals, London, United Kingdom; UCL Institute for Women's Health, University College London, London, United Kingdom.
| |
Collapse
|
28
|
Torra-Massana M, Vassena R, Rodríguez A. Sperm cryopreservation does not affect live birth rate in normozoospermic men: analysis of 7969 oocyte donation cycles. Hum Reprod 2023; 38:400-407. [PMID: 36661036 DOI: 10.1093/humrep/dead005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/22/2022] [Indexed: 01/21/2023] Open
Abstract
STUDY QUESTION Does sperm cryopreservation influence the reproductive outcomes of normozoospermic patients in oocyte donation cycles? SUMMARY ANSWER After controlling for confounders, the use of cryopreserved semen from normozoospermic patients does not affect pregnancy and live birth rates after elective ICSI. WHAT IS KNOWN ALREADY Sperm cryopreservation by slow freezing is a common practice in ART. While frozen-thawed semen typically presents reduced motility and vitality, its use for ICSI is generally considered adequate in terms of reproductive outcomes. Nevertheless, most studies comparing reproductive outcomes between fresh and cryopreserved sperm include patients with severe male factor (testicular sperm, oligo-, and/or asthenozoospermia) or women of advanced maternal age, where the altered quality of the gametes can partially mask the full effect of freezing/thawing. STUDY DESIGN, SIZE, DURATION The study included a retrospective cohort of 7969 couples undergoing their first oocyte donation cycle between January 2013 and December 2019 in one large clinic, using normozoospermic semen from the male partner. All cycles involved elective ICSI, fresh oocytes, and a fresh embryo transfer, either at cleavage or blastocyst stage. Two study groups were established based on the sperm status: fresh (n = 2865) and cryopreserved (n = 5104). PARTICIPANTS/MATERIALS, SETTING, METHODS A slow freezing protocol was used for all sperm cryopreservation. Sperm washing, capacitation, and selection prior to ICSI were performed identically for fresh and frozen-thawed samples, using pellet swim-up. Fertilization rate (FR), pregnancy (biochemical and ongoing), and live birth rates were compared between study groups using univariate and multivariate regression analyses. MAIN RESULTS AND THE ROLE OF CHANCE Male and female age, sperm concentration and motility after ejaculation, and number of oocytes inseminated were similar between cycles using fresh or cryopreserved sperm. Analysis by Student's t-test did not indicate a significant difference in FR between fresh and cryopreserved sperm (P = 0.0591); however, after adjusting for confounders, this difference reached statistical significance: 74.65% FR for fresh (CI 95%: 73.92-75.38) versus 73.66% for cryopreserved sperm (CI 95%: 73.11-74.20), P = 0.0334. The adjusted regression analysis revealed higher odds of biochemical pregnancy when using fresh sperm (odds ratio (OR): 1.143, P = 0.0175), but no significant effects of sperm cryopreservation were observed for ongoing pregnancy (OR: 1.101, P = 0.0983) and live birth (OR: 1.082, P = 0.1805). LIMITATIONS, REASONS FOR CAUTION Caution should be exerted when extrapolating these results to different protocols for sperm cryopreservation and selection, or to IVM, advanced maternal age and classical IVF cycles, which were excluded from analysis. Owing to the retrospective nature of the study, some uncontrolled for variables may affect the results. WIDER IMPLICATIONS OF THE FINDINGS Sperm cryopreservation does not affect pregnancy and live birth rates in normozoospermic patients, and although it may lower FR s slightly, this would not be clinically relevant. In line with previous studies that included patients with an apparent male or female factor, sperm cryopreservation is a safe and convenient technique. STUDY FUNDING/COMPETING INTEREST(S) The study received no external funding and all authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
|
29
|
Kermani T, Hosseini SF, Talaei-Khozani T, Aliabadi E. Effect of Pre-Incubation of Cryopreserved Sperm with either Kisspeptin or Glutathione to Mitigate Freeze-Thaw Damage. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:198-208. [PMID: 36895454 PMCID: PMC9989238 DOI: 10.30476/ijms.2022.92300.2354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 03/11/2023]
Abstract
Background Sperm cryopreservation reduces sperm quality. Kisspeptin (KP) has beneficial effects on sperm functions. This study compares the effect of KP and Glutathione (GSH) on mitigating the detrimental effects of the freeze-thaw cycle on sperm. Methods An experimental study was conducted in Birjand (Iran) during 2018-2020. Thirty normal swim-up semen samples were treated with Ham's F10 medium (negative control), 1 mM GSH (positive control), or KP (10 µM) for 30 min before freezing. The motility, acrosome reaction, capacitation, and DNA quality of the frozen-thawed sperms were assessed according to the WHO guidelines. Statistical analysis was performed using paired t test, one-way analysis of variance, and least significant difference. Results Pre-incubation with KP significantly increased the percentage of sperm motility (34.00±6.7, P=0.003) compared to the control (20.44±7.4) and GSH-treated (31.25±12.2) aliquots. The frequency of non-capacitated spermatozoa was significantly higher in the KP-treated group (98.73%) than in the control (96.46%) and GSH-treated (96.49%) aliquots (P<0.001). The percentage of acrosome-intact spermatozoa in the KP-treated group (77.44%) was significantly higher than the control (74.3%) and GSH-treated (74.54%) groups (P<0.001). The sperm frequency with normal histone in the KP-treated group (51.86%) and with normal protamine (65.39%) was significantly higher than the controls (P=0.001 and P=0.002, respectively). The percentage of TUNEL-positive sperm was significantly lower in the KP-treated group (9.09±2.71) than both GSH-treated (11.22±2.73) and control (11.31±2.2) groups (both P=0.002). Conclusion Pre-incubation with KP protects sperm motility and DNA integrity from the detrimental effect of the freeze-thaw cycle. KP is suitable as a pre-treatment to control sperm quality during freezing-thawing.
Collapse
Affiliation(s)
- Tayebeh Kermani
- Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Syedeh-Fatemeh Hosseini
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Aliabadi
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Chicaiza-Cabezas N, Garcia-Herreros M, Aponte PM. Germplasm cryopreservation in bulls: Effects of gonadal tissue type, cryoprotectant agent, and freezing-thawing rates on sperm quality parameters. Cryobiology 2023; 110:24-35. [PMID: 36603805 DOI: 10.1016/j.cryobiol.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Germplasm preservation is crucial for reproductive programs involving farm and endangered species. This study describes the effects of slow-uncontrolled cryopreservation protocols on bovine sperm associated with testicular or epididymal tissues. Samples from the testis or epididymis (cauda) were cut into ∼0.5 or 1 cm3 fragments and cryopreserved using Me2SO (Dimethyl Sulfoxide) or glycerol-based cryoprotectants. Sperm were collected from testicular or epididymal tissue before and after freezing-thawing (38 °C or 40 °C) and kept at room temperature (RT) or 4 °C during handling. The parameters studied were viability, membrane integrity (HOS), motility, acrosome integrity, chromatin, and morphology. Pre-freezing parameters were lower in testicular sperm than epididymal: HOS+ and DNA integrity (P < 0.05). Normal-% pre-freezing testicular sperm morphology was lower than epididymal (43.3 ± 1.8% vs. 65.3 ± 14.8%). All testicular RT-kept sperm parameters decreased post-freezing, except for acrosome integrity, which remained constant (P > 0.05). There were no differences in Me2SO-frozen tissue sizes (P > 0.05). All epididymal RT-kept sperm parameters dropped post-freezing except for the constant DNA integrity (P > 0.05). 4oC-kept sperm were fitter than those at RT (P < 0.05). 4oC-kept testicular sperm viability, DNA, and membrane integrities declined after 38 °C or 40 °C thawing (P < 0.05). Acrosome integrity and motility remained unchanged after freezing (P > 0.05). 4oC-kept epididymal sperm acrosome integrity, motility, and HOS+% severely dropped post-thawing (P < 0.05). Viability and DNA integrity were unchanged (38 °C vs. 40 °C; P > 0.05). Overall, post-freezing sperm morphology was unaffected (P > 0.05), but Dag defect was significantly lower in testicular samples (P < 0.05). Whole-epididymis parameters were maintained up to 24h at 4 °C (P > 0.05). In conclusion, testis-epididymis freezing protocols should use small tissue pieces, Me2SO-based cryoprotectants, and 4°C-kept samples to reduce sperm damage.
Collapse
Affiliation(s)
- N Chicaiza-Cabezas
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Diego de Robles y Vía Interoceánica, 170157, Quito, Ecuador
| | - M Garcia-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária, I. P. (INIAV, I.P.), Polo de Santarém, Santarém, 2005-048, Portugal
| | - P M Aponte
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Diego de Robles y Vía Interoceánica, 170157, Quito, Ecuador; Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Diego de Robles y Vía Interoceánica, 170157, Quito, Ecuador; Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Diego de Robles y Vía Interoceánica, 170157, Quito, Ecuador.
| |
Collapse
|
31
|
Shamhari A‘A, Jefferi NES, Abd Hamid Z, Budin SB, Idris MHM, Taib IS. The Role of Promyelocytic Leukemia Zinc Finger (PLZF) and Glial-Derived Neurotrophic Factor Family Receptor Alpha 1 (GFRα1) in the Cryopreservation of Spermatogonia Stem Cells. Int J Mol Sci 2023; 24:ijms24031945. [PMID: 36768269 PMCID: PMC9915902 DOI: 10.3390/ijms24031945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
The cryopreservation of spermatogonia stem cells (SSCs) has been widely used as an alternative treatment for infertility. However, cryopreservation itself induces cryoinjury due to oxidative and osmotic stress, leading to reduction in the survival rate and functionality of SSCs. Glial-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger (PLZF) are expressed during the self-renewal and differentiation of SSCs, making them key tools for identifying the functionality of SSCs. To the best of our knowledge, the involvement of GFRα1 and PLZF in determining the functionality of SSCs after cryopreservation with therapeutic intervention is limited. Therefore, the purpose of this review is to determine the role of GFRα1 and PLZF as biomarkers for evaluating the functionality of SSCs in cryopreservation with therapeutic intervention. Therapeutic intervention, such as the use of antioxidants, and enhancement in cryopreservation protocols, such as cell encapsulation, cryoprotectant agents (CPA), and equilibrium of time and temperature increase the expression of GFRα1 and PLZF, resulting in maintaining the functionality of SSCs. In conclusion, GFRα1 and PLZF have the potential as biomarkers in cryopreservation with therapeutic intervention of SSCs to ensure the functionality of the stem cells.
Collapse
Affiliation(s)
- Asma’ ‘Afifah Shamhari
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Nur Erysha Sabrina Jefferi
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Zariyantey Abd Hamid
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Siti Balkis Budin
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Muhd Hanis Md Idris
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Izatus Shima Taib
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
- Correspondence: ; Tel.: +603-928-97608
| |
Collapse
|
32
|
How does metabolic rate in plant shoot tips change after cryopreservation? Cryobiology 2022; 109:1-9. [PMID: 36356915 DOI: 10.1016/j.cryobiol.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
Cryopreservation allows the long-term storage of plant germplasm, but can cause damage to plant tissues, which must be repaired for survival to occur. This repair process is fuelled by the metabolic function of mitochondria; however, little is known about how metabolic function is affected by the cryopreservation process in plants. We compared metabolic rates of shoot tips of two Australian native species, Androcalva perlaria and Anigozanthos viridis. Overall, cryopreservation resulted in a significant reduction in the metabolic rates of shoot tips from both species, even in tissues that regenerated after cryopreservation. Metabolic rate did not increase within 48 h after of thawing, even in shoot tips which later regenerated. When examined in isolation, both pre-treatment on desiccation medium and exposure to cryoprotective agents significantly decreased metabolic rates in regenerating shoot tips of A. viridis, however both caused a significant increase in shoot tips of A. perlaria, suggesting diversity of response to cryopreservation stresses across species. Measurements of shoot tip metabolic rate during cryopreservation will inform investigations into cellular energy production and provide critical information on the state of shoot health after exposure to different cryoprotective treatments, which could play a useful role in guiding protocol optimisation for threatened species to maximise post-cryopreservation regeneration.
Collapse
|
33
|
Assessment of an open-access CASA software for bovine and buffalo sperm motility analysis. Anim Reprod Sci 2022; 247:107089. [DOI: 10.1016/j.anireprosci.2022.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022]
|
34
|
Motility Assessment of Ram Spermatozoa. BIOLOGY 2022; 11:biology11121715. [PMID: 36552225 PMCID: PMC9774426 DOI: 10.3390/biology11121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
For successful fertilisation to occur, spermatozoa need to successfully migrate through the female reproductive tract and penetrate the oocyte. Predictably, poor sperm motility has been associated with low rates of fertilisation in many mammalian species, including the ram. As such, motility is one of the most important parameters used for in vitro evaluation of ram sperm quality and function. This review aims to outline the mechanical and energetic processes which underpin sperm motility, describe changes in motility which occur as a result of differences in sperm structure and the surrounding microenvironment, and assess the effectiveness of the various methods used to assess sperm motility in rams. Methods of subjective motility estimation are convenient, inexpensive methods widely used in the livestock industries, however, the subjective nature of these methods can make them unreliable. Computer-assisted sperm analysis (CASA) technology accurately and objectively measures sperm motility via two-dimensional tracing of sperm head motion, making it a popular method for sperm quality assurance in domesticated animal production laboratories. Newly developed methods of motility assessment including flagellar tracing, three-dimensional sperm tracing, in vivo motility assessment, and molecular assays which quantify motility-associated biomarkers, enable analysis of a new range of sperm motion parameters with the potential to reveal new mechanistic insights and improve ram semen assessment. Experimental application of these technologies is required to fully understand their potential to improve semen quality assessment and prediction of reproductive success in ovine artificial breeding programs.
Collapse
|
35
|
Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep. Anim Reprod Sci 2022; 246:106904. [PMID: 34887155 DOI: 10.1016/j.anireprosci.2021.106904] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022]
Abstract
Sperm cryopreservation is one of the most important procedures in the development of biotechnologies for assisted reproduction. In some farm animals, the use of cryopreserved sperm has so many benefits for which relevance has become more evident in recent decades. Values for post-thaw sperm quality, however, are variable among species and within individuals of the same species. There is no standardized methodology for each of the stages of the cryopreservation procedure (andrological examination, semen collection, dilution, centrifugation, resuspension of the pellet with the freezing medium, packaging, freezing and post-thaw sperm evaluation), which also contributes to differences among studies. Cryotolerance markers of sperm and seminal plasma (SP) have been evaluated for prediction of ejaculate freezability. In addition, in previous research, there has been a focus on supplementing cryopreservation media with different substances, such as enzymatic and non-enzymatic antioxidants. In most studies, inclusion of these substances have led to improved post-thaw sperm quality and fertilizing capacity as a result of minimizing the adverse effects on sperm structure and function. Another approach is the use of different cryoprotectants. The aim with this review article is to provide an update on sperm cryopreservation in farm animals. The main detrimental effects of cryopreservation are described, including the negative repercussion on reproductive performance. Furthermore, the potential use of molecular biomarkers to predict sperm cryotolerance is discussed, as well as the addition of substances that can mitigate the harmful impact of freezing and thawing on sperm.
Collapse
|
36
|
Leptin and prolactin reduce cryodamage in normozoospermic human semen samples during cryopreservation. Rev Int Androl 2022; 21:100336. [PMID: 36280439 DOI: 10.1016/j.androl.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/25/2021] [Accepted: 12/29/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Cryopreservation has destructive effects on the function and structure of spermatozoa. It is known that leptin and prolactin play an active role in decreasing the rates of reactive oxygen species and DNA fragmentation, as well as enhancing sperm motility. Hence, this experiment aimed to investigate the effects of leptin and prolactin as pro-survival factors on the normozoospermic human semen samples during cryopreservation. MATERIAL AND METHODS Semen samples were collected from 15 healthy, fertile men ranging from 25 to 40 years. Cryopreservation of the samples was performed in liquid nitrogen over a period of two weeks, using five varying concentrations of leptin/prolactin, 0, 10, 100, 500, and 1000ng/ml respectively. Sperm motility, total caspase activity, and mitochondrial and cytosolic ROS were measured by flowcytometry, TUNEL, and other appropriate tests after thawing of the samples. RESULTS Both hormones were observed to have positive effects on the motility of the samples post-cryopreservation, the highest improvement being in the 100ng/ml concentration leptin and prolactin in comparison to the control group (P=0.01 and P=0.041, respectively). A significant reduction of mitochondrial ROS was also observed in 100 and 1000ng/ml of leptin (P=0.042), and there was a considerable decrease in the cytosolic ROS in the 100ng/ml of prolactin in comparison to the control group (P=0.048). Total caspase activity was also highly reduced in the 100, 500, and 1000ng/ml of leptin compared to the control group (P=0.039). Interestingly, both hormones also significantly decreased DNA fragmentation in 1000ng/ml compared to the control group (P=0.042). CONCLUSION It can be concluded that leptin and prolactin act as protective agents against cryodamage to spermatozoa during cryopreservation.
Collapse
|
37
|
Swelum AA, Ba-Awadh HA, Olarinre IO, Saadeldin IM, Alowaimer AN. Effects of adding mixed chicken and quail egg yolks to the cryodiluent on the quality of ram semen before and after cryopreservation. Front Vet Sci 2022; 9:1013533. [PMID: 36311647 PMCID: PMC9596808 DOI: 10.3389/fvets.2022.1013533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/16/2022] [Indexed: 11/04/2022] Open
Abstract
The effects of adding mixed chicken and Japanese quail egg yolks (EYs) to the cryodiluent on the quality of ram semen before freezing and post-thawing were evaluated. Additionally, the composition of chicken and quail egg EYs and their mixture were analyzed for results explanation. The semen was collected from rams (n = 5) and extended with cryodiluent containing the EY of chicken, quail or their mixture (1:1). The extended semen was chilled slowly to 5 °C within 2 h and equilibrated for 2 h, before frozen on the liquid nitrogen vapor and cryopreserved at -196 °C. The straws were evaluated before freezing and post-thawing for sperm motility, vitality and abnormality besides plasma-membrane and DNA integrities. The moisture, ash, protein, and fatty acid (FA) contents of chicken EY, quail EY and their mixture were analyzed. Sperm vitality, plasma membrane integrity and DNA integrity before freezing were significantly (P < 0.05) higher in quail EY than chicken EY and mixed EYs cryodiluent. The chicken EY extender significantly improved the vitality, plasma membrane and DNA integrities of post-thawed ram semen in comparison with quail EY or mixed EYs extenders. While, the post-thawing sperm abnormalities was lower (P ≤ 0.05) in quail EY than chicken EY and mixed EYs cryodiluent. The post-thawing sperm motion kinetics parameters were higher in quail EY than chicken EY and mixed EYs cryodiluent. The highest percentages of moisture, ash, saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) were detected in quail EY had. While, the highest percentages of fat, protein and polyunsaturated fatty acids (PUFAs) were detected in chicken EY. In conclusion, using of chicken EY can improve total motility, vitality, plasma membrane integrity and DNA integrity of cryopreserved ram semen. While, using of quail EY can improve sperm abnormalities and kinetic motion parameters of cryopreserved ram semen. Mixing chicken and quail EYs added no value for post-thawing ram semen parameters.
Collapse
Affiliation(s)
- Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt,*Correspondence: Ayman A. Swelum
| | - Hani A. Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Isiaka O. Olarinre
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Islam M. Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Abdullah N. Alowaimer
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Gonzalez M, Prashar T, Connaughton H, Barry M, Robker R, Rose R. Restoring Sperm Quality Post-Cryopreservation Using Mitochondrial-Targeted Compounds. Antioxidants (Basel) 2022; 11:antiox11091808. [PMID: 36139882 PMCID: PMC9495717 DOI: 10.3390/antiox11091808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
While critical for male fertility preservation, cryopreservation damage reduces sperm quality and fertilization potential. This study investigated whether the addition of mitochondrial-targeted, antioxidant compounds, also known as Mitochondrial activators, to the cryopreservation medium could protect sperm quality during cryopreservation. For this, semen samples from men undergoing IVF/ICSI treatment, which were donated for research, underwent cryopreservation in the absence or presence of BGP-15, MitoQ and L-carnitine. Fresh semen and thawed sperm samples from the same participant were analyzed for indicators of sperm quality: sperm viability, kinetics, mitochondrial reactive oxygen species (ROS) levels, Mitochondrial Membrane Potential (MMP) and DNA damage. Cryopreservation significantly reduced sperm viability and motility and predicted mucous penetration. BGP-15, MitoQ and L-carnitine improved sperm motility, whilst the addition of L-Carnitine prevented the loss of sperm viability during cryopreservation. Both BGP-15 and L-carnitine reduced sperm DNA oxidative damage, but only BGP-15 significantly reduced DNA fragmentation. More importantly, BGP-15 increased sperm predictive mucous penetration and MMP and reduced DNA oxidation. Our results show that the addition of BGP-15 or L-carnitine to the cryopreservation medium improves sperm quality post-thawing, highlighting the potential of mitochondrial antioxidants to improve long-term fertility preservation in males.
Collapse
Affiliation(s)
- Macarena Gonzalez
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide 5000, Australia
- Correspondence:
| | - Tanisha Prashar
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide 5000, Australia
| | - Haley Connaughton
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide 5000, Australia
| | - Michael Barry
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide 5000, Australia
- Fertility SA, St. Andrew’s Hospital, Adelaide 5000, Australia
| | - Rebecca Robker
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide 5000, Australia
| | - Ryan Rose
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide 5000, Australia
- Fertility SA, St. Andrew’s Hospital, Adelaide 5000, Australia
| |
Collapse
|
39
|
Choi HW, Jang H. Application of Nanoparticles and Melatonin for Cryopreservation of Gametes and Embryos. Curr Issues Mol Biol 2022; 44:4028-4044. [PMID: 36135188 PMCID: PMC9497981 DOI: 10.3390/cimb44090276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cryopreservation of gametes and embryos, a technique widely applied in human infertility clinics and to preserve desirable genetic traits of livestock, has been developed over 30 years as a component of the artificial insemination process. A number of researchers have conducted studies to reduce cell toxicity during cryopreservation using adjuvants leading to higher gamete and embryo survival rates. Melatonin and Nanoparticles are novel cryoprotectants and recent studies have investigated their properties such as regulating oxidative stresses, lipid peroxidation, and DNA fragmentation in order to protect gametes and embryos during vitrification. This review presented the current status of cryoprotectants and highlights the novel biomaterials such as melatonin and nanoparticles that may improve the survivability of gametes and embryos during this process.
Collapse
Affiliation(s)
- Hyun-Woo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Hoon Jang
- Department of Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: ; Tel.: +82-63-270-3359
| |
Collapse
|
40
|
Khosravizadeh Z, Khodamoradi K, Rashidi Z, Jahromi M, Shiri E, Salehi E, Talebi A. Sperm cryopreservation and DNA methylation: possible implications for ART success and the health of offspring. J Assist Reprod Genet 2022; 39:1815-1824. [PMID: 35713751 PMCID: PMC9428082 DOI: 10.1007/s10815-022-02545-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/09/2022] [Indexed: 01/19/2023] Open
Abstract
Despite the beneficial effects of sperm cryopreservation, increased reactive oxygen species (ROS) production during this process can affect spermatozoon structure and function. Moreover, ROS production is associated with elevated DNA damage and alterations in DNA methylation. There is little information about the effects of cryopreservation on epigenetic modulation in sperm and the health of children born with frozen spermatozoa. Considering the potential consequences of cryopreservation in ART-conceived children, it is necessary to assure that cryopreservation does not modify sperm DNA methylation status. This review summarizes reports on epigenetic modifications of spermatozoa during cryopreservation and the probable effects of this process on offspring health. Contradictory results have reported the influence of sperm cryopreservation on DNA methylation in imprinted genes. Multiclinical studies with larger sample sizes under the same conditions of cryopreservation and DNA methylation analysis are needed to make any definitive conclusion about the effect of the cryopreservation process on sperm DNA methylation.
Collapse
Affiliation(s)
- Zahra Khosravizadeh
- grid.468130.80000 0001 1218 604XClinical Research Development Unit, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Kajal Khodamoradi
- grid.26790.3a0000 0004 1936 8606Department of Urology, University of Miami, Miller School of Medicine, Miami, FL USA
| | - Zahra Rashidi
- grid.412112.50000 0001 2012 5829Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran ,grid.412112.50000 0001 2012 5829Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Malihe Jahromi
- grid.411757.10000 0004 1755 5416Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Elham Shiri
- grid.411950.80000 0004 0611 9280Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ensieh Salehi
- grid.412237.10000 0004 0385 452XFertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Talebi
- grid.444858.10000 0004 0384 8816School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran ,grid.444858.10000 0004 0384 8816Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
41
|
Chen B, Lan Z, Sun WQ, Cui Q, Si W. Cryopreservation did not affect sperm DNA methylation levels of genes related to fertilization and embryonic development of cynomolgus macaque (Macaca fascicularis). Cryobiology 2022; 108:51-56. [PMID: 35926569 DOI: 10.1016/j.cryobiol.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
DNA methylation alters gene expression in numerous biological processes, including embryonic development. It is little known about the effect of cryopreservation on sperm DNA methylation. The present study has investigated whether cryopreservation causes abnormal DNA methylation in cynomolgus macaque sperm for five critical genes that includes the maternally imprinted gene (SNRPN), genes associated with male infertility (HSPA1L, MTHFR) and genes involved in embryonic development (TET3, LZTR1). Our results showed that sperm motility, the percentage of acrosomal integrity, DNA integrity and mitochondrial membrane potential were decreased after cryopreservation either being frozen with penetrating cryoprotectant, glycerol (Gly) or ethylene glycol (EG), compared to fresh sperm (p = 0.000), but the methylation patterns of the five target genes from cynomolgus macaque sperm samples were not affected after cryopreservation as evaluated by the Bisulfite Sequencing PCR (BSP) method. The data indicates that the current protocol for sperm cryopreservation of cynomolgus macaque is safe in terms of DNA methylation levels in these genes related to critical sperm functions.
Collapse
Affiliation(s)
- Bingbing Chen
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Zhenwei Lan
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Yunnan, 650091, China
| | - Wendell Q Sun
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qinghua Cui
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Yunnan, 650091, China.
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
42
|
Cryopreservation of Sperm from an Endangered Snake with Tests of Post-Thaw Incubation in Caffeine. Animals (Basel) 2022; 12:ani12141824. [PMID: 35883371 PMCID: PMC9311608 DOI: 10.3390/ani12141824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Cryopreservation of sperm from reptiles to aid the recovery of endangered species continues to be a challenge. In this study, we tested the cryoperformance of a cryoprotective agent (CPA) mixture to cryopreserve sperm from the endangered Louisiana pinesnake (Pituophis ruthveni). The mixture contained Lake’s buffer with 10% N,N-dimethyl formamide (DMF), 2% methanol, 5% clarified egg yolk, (v/v% final concentration) and was tested against 16 experimental mixtures containing variable concentrations and mixtures of diluents, extenders, CPAs, and additives. In addition, we investigated the effects of post-thaw incubation on sperm motility in TL HEPES supplemented with 10% fetal bovine serum (H10) alone or supplemented with caffeine. We found that the majority of our test additives did not significantly improve the post-thaw motility or viability of sperm. The best performing experimental CPA mixture contained Lake’s buffer with 10% DMF, 2% methanol, and 5% clarified egg yolk with the addition of 5 mg/mL bovine serum albumin (BSA), and post-thaw incubation in both H10 and H10 with caffeine showed improved forward motility. Cryopreservation of sperm from the Louisiana pinesnake improved with the addition of BSA to our base CPA mixture, and post-thaw incubation in H10 improved with caffeine. Abstract Cryopreservation of sperm to preserve the genetic diversity of declining populations is a promising technique to aid in the recovery of endangered species such as the Louisiana pinesnake (Pituophis ruthveni). However, this technique has been performed on only a handful of snake species and with limited success. Here, we tested a cryoprotective agent (CPA) mixture containing Lake’s buffer with 10% N,N-dimethyl formamide (DMF), 2% methanol, 5% clarified egg yolk, (v/v% final concentration) against 16 other CPA-treatment mixtures. These contained either Lake’s buffer or TEST egg yolk buffer as the base diluent with a penetrating or non-penetrating CPA on the post-thaw recovery of sperm motility and viability. We also investigated the effect of post-thaw incubation treatment in TL HEPES supplemented with 10% fetal bovine serum (H10) alone or with caffeine on post-thaw motility parameters. Sperm from 16 Louisiana pinesnakes was cryopreserved, and the effectiveness of the CPA treatment mixtures and post-thaw treatments was determined based on measurements of sperm motility and viability. Sperm cryopreservation significantly reduced initial post-thaw sperm quality for all of the extender treatments. Viability of sperm was best maintained when cryopreserved in an CPA treatment mixture containing Lake’s buffer with 10% DMF, 2% methanol, and 5% clarified egg yolk with the addition of 5 mg/mL bovine serum albumin (BSA). For several extender mixtures a similar percent of post-thaw motility was observed, but no forward motility returned in any post-thaw samples prior to incubation in dilution treatments. Following incubation in both post-thaw treatments, the percent of forward motility and the index of forward progressive movement improved significantly. Post-thaw dilution with H10 containing caffeine improved motility parameters over H10 alone, suggesting further investigation of post-thaw treatment in caffeine could be beneficial. Although, cryopreservation of sperm from the Louisiana pinesnake continues to present a challenge, post-thaw dilution and the addition of BSA to CPA mixtures provides areas for improving cryopreservation methods for this endangered species.
Collapse
|
43
|
Azizi M, Cheraghi E, Soleimani Mehranjani M. Effect of Myo-inositol on sperm quality and biochemical factors in cryopreserved semen of patients with Asthenospermia. Andrologia 2022; 54:e14528. [PMID: 35841196 DOI: 10.1111/and.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/29/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022] Open
Abstract
In this study, the influence of myoinositol (MYO) as an antioxidant on the inhibition of the negative impacts of cryopreservation on sperm quality in men with Asthenospermia was investigated. In this prospective study, each semen sample from 25 cases was separated into three groups: Fresh, Control (with freezing medium), Myoinositol (2 mg/ml). According to the World Health Organization criteria (WHO) (2010), total motility, progressive sperm motility, viability, normal morphology, and DNA integrity were assessed. In addition, the hypo-osmotic swelling (HOS) test and mitochondrial membrane potential (MMP) were used. Total antioxidant capacity (TAC), malondialdehyde (MDA), and antioxidant enzyme activity were determined by the ELISA method. In contrast to the fresh samples, lipid peroxidation, DNA integrity damage, DNA fragmentation, HOST, and MMP had significant enhancement in the control samples. Sperm quality was significantly decreased (p < 0.05). Mean percentage viability, normal morphology, total motility, progressive motility, and DNA integrity were significantly enhanced in the MYO group in comparison to the control group (p < 0.05). The MDA and TAC levels and DNA damage in the MYO group were significantly lower compared to the control group (p < 0.05). The findings confirm that sperm quality in patients with Asthenospermia is improved by the administration of 2 mg/ml of myoinositol together with the freezing medium after sperm cryopreservation.
Collapse
Affiliation(s)
- Maryam Azizi
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Ebrahim Cheraghi
- Department of Biology, Faculty of Sciences, University of Qom, Qom, Iran
| | | |
Collapse
|
44
|
Carro M, Luquez JM, Peñalva DA, Buschiazzo J, Hozbor FA, Furland NE. PUFA-rich phospholipid classes and subclasses of ram spermatozoa are unevenly affected by cryopreservation with a soybean lecithin-based extender. Theriogenology 2022; 186:122-134. [PMID: 35468546 DOI: 10.1016/j.theriogenology.2022.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 01/10/2023]
Abstract
Cryopreservation is known to affect spermatozoa structure and function. Ram sperm are among the most highly sensitive mammalian gametes to freezing, due to their lipid composition, which limit their efficiency in artificial insemination programs. The aim of this study was to investigate the effects of cryopreservation with a chemically defined soybean lecithin-based extender on ram spermatozoa functionality on the one hand, and quantifiable changes in lipid and fatty acid profile on the other. Freeze-thawing decreased sperm quality, as indicated by post-thaw parameters related to membrane integrity, mitochondrial viability and sperm motility. The most relevant lipid change after cryopreservation was a remarkable loss of all glycerophospholipids containing 22:6n-3. Species of sphingomyelin with very long chain polyunsaturated fatty acids (VLC-PUFA), that are exclusively located in the sperm head, where responsible of its reduction after cryostorage. Freezing caused a reduction in mitochondrial function, which was confirmed by significantly decreased of mitochondrial membrane potential and by the generation of 4-HNE. Mitochondria damage was accompanied by a loss in cardiolipin with 18:2n-6 and phosphatidylethanolamine with 20:4n-6, two well-known lipids that are critical components for mitochondrial membrane functionality. Loss of sterols after cryopreservation occurred along with a decrease in the order of sperm membrane lipids. Our research provides new insights on deleterious effects of cryopreservation on PUFA-rich phospholipids of ram sperm and highlight their importance as biomarkers of ultrastructural, biochemical and functional damage that ram spermatozoa undergo after freezing-thawing.
Collapse
Affiliation(s)
- M Carro
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce, Argentina
| | - J M Luquez
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Argentina
| | - D A Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Argentina
| | - J Buschiazzo
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce, Argentina
| | - F A Hozbor
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce, Argentina
| | - N E Furland
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Argentina.
| |
Collapse
|
45
|
Wang X, Li X, Liu Y, Jiang X, Wu L, Liu R, Jin R, Zhou N, Cao C, Hu X, Xu B, Tong X, Bai W, Bai S. Cyanidin-3-Ο-glucoside supplementation in cryopreservation medium improves human sperm quality. Andrologia 2022; 54:e14493. [PMID: 35671952 DOI: 10.1111/and.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/16/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Currently, the cryopreservation of human spermatozoa must overcome the adverse effects of excessive oxidation. In this study, we aimed to evaluate the effect of supplementation of cryopreservation medium with cyanidin-3-Ο-glucoside (C3G) on sperm quality. Semen samples were obtained from men with normozoospermia according to WHO criteria (n = 39). The sperm parameter values were compared after cryopreservation in medium supplemented with and without C3G.Compared with the control group (without additive), low doses (50 μM and 100 μM) of C3G improved sperm viability and motility and decreased the reactive oxygen species (ROS) of spermatozoa, while high doses (200 μM) of C3G did not obviously enhance sperm quality. The amount of DNA fragmentation index (DFI) and high DNA stainability (HDS) after freezing were higher in the control group than in the C3G supplementation groups. Low-concentration C3G supplementation (50 μM) was negatively correlated with sperm ROS levels (r = -0.2, p = 0.03). Collectively, our findings suggest that C3G could be an efficient semen cryoprotectant that ameliorates oxidative stress in human sperm during cryopreservation.
Collapse
Affiliation(s)
- Xiaohan Wang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, People's Republic of China
| | - Yixun Liu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xiaohua Jiang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Limin Wu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Ran Liu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Rentao Jin
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Naru Zhou
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Cheng Cao
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xuechun Hu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Bo Xu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xianhong Tong
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, People's Republic of China
| | - Shun Bai
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|
46
|
Saha A, Asaduzzaman M, Bari FY. Cryopreservation Techniques for Ram Sperm. Vet Med Int 2022; 2022:7378379. [PMID: 35535035 PMCID: PMC9078814 DOI: 10.1155/2022/7378379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 12/02/2022] Open
Abstract
Germplasm storage and transportation in artificial insemination (AI) and other advanced technologies are facilitated by cryopreservation. In reproduction, the cryopreservation of sperm allows it to be transported across vast distances and used even after the sire's death. However, the technique of cryopreservation might damage sperm and limit their activity. Several cryobiological investigations have reported that the integrity of the sperm membrane is frequently involved in the physical and biological elements that affect sperm survival at low temperatures during the cryopreservation process. However, successful cryopreservation of ram sperm is still a work in progress because a considerable percentage of sperm do not survive the freezing and thawing process. Sperms are destroyed during cryopreservation of semen due to varying concentrations of cryoprotective chemicals and if semen is not cooled at optimal cooling rates. Hence, it is crucial to know the optimum cooling rates with freezing and thawing protocols for maximum recovery of viable and functional sperm cells for a successful cryo-freezing of ram spermatozoa. Therefore, the current study compiled and compared the research on the impact of different cryopreservation procedures, cooling rates, equilibration time, and thawing protocols on post-thaw ram semen quality.
Collapse
Affiliation(s)
- Amit Saha
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Asaduzzaman
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Department of Livestock Services, Farmgate, Dhaka 1215, Dhaka, Bangladesh
| | - Farida Yeasmin Bari
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
47
|
Zou S, Li C, Sun H, Xu P, Zhang J, Ma P, Yao Y, Huang X, Grzegorzek M. TOD-CNN: An effective convolutional neural network for tiny object detection in sperm videos. Comput Biol Med 2022; 146:105543. [PMID: 35483229 DOI: 10.1016/j.compbiomed.2022.105543] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 04/17/2022] [Indexed: 01/05/2023]
Abstract
The detection of tiny objects in microscopic videos is a problematic point, especially in large-scale experiments. For tiny objects (such as sperms) in microscopic videos, current detection methods face challenges in fuzzy, irregular, and precise positioning of objects. In contrast, we present a convolutional neural network for tiny object detection (TOD-CNN) with an underlying data set of high-quality sperm microscopic videos (111 videos, > 278,000 annotated objects), and a graphical user interface (GUI) is designed to employ and test the proposed model effectively. TOD-CNN is highly accurate, achieving 85.60% AP50 in the task of real-time sperm detection in microscopic videos. To demonstrate the importance of sperm detection technology in sperm quality analysis, we carry out relevant sperm quality evaluation metrics and compare them with the diagnosis results from medical doctors.
Collapse
Affiliation(s)
- Shuojia Zou
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
| | - Hongzan Sun
- Shengjing Hospital, China Medical University, Shenyang, China
| | - Peng Xu
- Jinghua Hospital, Shenyang, China
| | - Jiawei Zhang
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Pingli Ma
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, USA
| | - Xinyu Huang
- Institute of Medical Informatics, University of Luebeck, Luebeck, Germany
| | - Marcin Grzegorzek
- Institute of Medical Informatics, University of Luebeck, Luebeck, Germany
| |
Collapse
|
48
|
Freezability of Dog Semen after Collection in Field Conditions and Cooled Transport. Animals (Basel) 2022; 12:ani12070816. [PMID: 35405806 PMCID: PMC8997147 DOI: 10.3390/ani12070816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Dog semen freezing is gaining popularity, but it has to be performed in equipped facilities, which can be far from the place where the stud dog lives. To avoid animal movement, it seemed interesting to investigate whether freezing dog semen after 24 or 48 h of cooled transport to an equipped laboratory was possible when semen collection was performed in the field such as in local breeding kennels. The influence of two pre-freezing holding times (i.e., 24 or 48 h) and two holding diluents (solutions used to dilute semen before freezing) was evaluated. Post-thaw morphofunctional sperm features, such as motility, morphological integrity, and ability to bind female gametes, were assessed. No differences between times or diluents were observed, but motility tended to decrease in the samples frozen at 48 h. Since the insemination dose was based on the number of motile spermatozoa, a shorter pre-freezing time is advisable. Yet, considering that the rest of the morphofunctional parameters remained comparable between samples frozen after collection or after 24/48 h of transport, freezing after cooled transport is a good option for avoiding animal stress and for promoting a greater diffusion of semen cryopreservation. Abstract Dog semen freezing is gaining popularity, but it has to be performed in equipped facilities, which can be far from the place where the stud dog lives. The aim of this study was to evaluate whether freezing dog semen after 24 or 48 h of cooled transport to an equipped laboratory was possible when semen collection was performed in the field such as in local breeding kennels. Single ejaculates from different dogs (mixed breeds and ages) were collected. In Experiment I, 10 ejaculates were conventionally frozen using the Uppsala method or frozen after 24 or 48 h of storage in a Styrofoam transport box cooled by icepacks. In Experiment II, 10 ejaculates were used to assess the influence of two extenders (Uppsala chilling extender or freezing extender 1) used for semen dilution during the 24 or 48 h storage. Motility, morphology, membrane, and acrosome integrity were analyzed as well as spermatozoa zona-binding ability. No significant differences were observed among the frozen groups, regardless of freezing time (Experiment I) or extender (Experiment II). Motility at thawing, however, decreased in absolute value at 48 h. Freezing of freshly collected semen is the gold standard, but the results obtained in this study prompt the application of freezing after cooled transport for the long-term preservation of dog semen, especially if the transport can be organized in 24 h.
Collapse
|
49
|
Niu J, Wang X, Liu P, Liu H, Li R, Li Z, He Y, Qi J. Effects of Cryopreservation on Sperm with Cryodiluent in Viviparous Black Rockfish ( Sebastes schlegelii). Int J Mol Sci 2022; 23:3392. [PMID: 35328812 PMCID: PMC8955014 DOI: 10.3390/ijms23063392] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/07/2023] Open
Abstract
Black rockfish is an economically important fish in East Asia. Little mention has been paid to the sperm cryopreservation in black rockfish. In this study, the optimal cryodiluent was selected from 48 combinations by detecting various sperm parameters. Transcriptome and methylome analysis were further performed to explore the molecular mechanism of inevitable cryoinjuries. The results showed that cryopreservation had negative effects on the viability, DNA integrity, mitochondrial activity, total ATPase and LDH of sperm even with optimal cryodiluent (FBS + 15% Gly). Transcriptome and methylome analysis revealed that the expression of 179 genes and methylation of 1266 genes were affected by cryopreservation. These genes were enriched in GO terms of death, G-protein coupled receptor signaling pathway, response to external stimulus and KEGG pathways of phospholipase D signaling pathway and xenobiotic and carbohydrate metabolism pathways. The role of PIK3CA and CCNA2 were highlighted in the protein-protein interaction network, and the sperm quality-related imprinted gene mest was identified among the 7 overlapping genes between transcriptome and methylome. Overall, the cryodiluent for black rockfish sperm was optimized, providing a feasible method for cryopreservation. The transcriptome and methylome data further demonstrated the underlying molecular mechanisms of cryoinjuries, proving clues for improvement of cryopreservation method of black rockfish.
Collapse
Affiliation(s)
- Jingjing Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.N.); (X.W.); (P.L.); (H.L.); (R.L.); (Z.L.); (Y.H.)
| | - Xuliang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.N.); (X.W.); (P.L.); (H.L.); (R.L.); (Z.L.); (Y.H.)
| | - Pingping Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.N.); (X.W.); (P.L.); (H.L.); (R.L.); (Z.L.); (Y.H.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanog Institute, Ocean University of China, Sanya 572000, China
| | - Huaxiang Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.N.); (X.W.); (P.L.); (H.L.); (R.L.); (Z.L.); (Y.H.)
| | - Rui Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.N.); (X.W.); (P.L.); (H.L.); (R.L.); (Z.L.); (Y.H.)
| | - Ziyi Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.N.); (X.W.); (P.L.); (H.L.); (R.L.); (Z.L.); (Y.H.)
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.N.); (X.W.); (P.L.); (H.L.); (R.L.); (Z.L.); (Y.H.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanog Institute, Ocean University of China, Sanya 572000, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.N.); (X.W.); (P.L.); (H.L.); (R.L.); (Z.L.); (Y.H.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanog Institute, Ocean University of China, Sanya 572000, China
| |
Collapse
|
50
|
Yoon JW, Lee SE, Kim WJ, Kim DC, Hyun CH, Lee SJ, Park HJ, Kim SH, Oh SH, Lee DG, Pyeon DB, Kim EY, Park SP. Evaluation of Semen Quality of Jeju Black Cattle (JBC) to Select Bulls Optimal for Breeding and Establish Freezing Conditions Suitable for JBC Sperm. Animals (Basel) 2022; 12:ani12050535. [PMID: 35268103 PMCID: PMC8908855 DOI: 10.3390/ani12050535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Jeju black cattle, a type of native Korean cattle characterized by black fur covering the entire body, inhabit Jeju Special Self-Governing Province, a World Natural Heritage Site. Although this breed was state designated as a natural monument in 2013 due to its characteristics and genetic traits, it is on the verge of extinction and thus there is a need to preserve this breed and further improve its traits. Therefore, we evaluated sperm motility, vitality, and morphology, which have long been considered good predictors of fertility in the absence of female infertility factors. Our findings showed that the semen of the JBC-A bull was superior to the semen of four other JBC bulls. Due to the aging of the population of JBC breeding bulls, strategies should be devised to improve sperm production in vivo. Abstract To optimize the reproduction of Jeju black cattle (JBC), freezing conditions for sperm were established and sperm motility, vitality, morphology, and fertility were evaluated to select the optimal bull for breeding. Semen samples from five JBC bulls were individually mixed with freezing medium at a final concentration of 1 × 108 sperm/mL and frozen in liquid nitrogen vapor at a height of 3 or 7 cm (referred to as 3 cm sperm and 7 cm sperm, respectively). When the freezing conditions were compared, the motility of 7 cm sperm was significantly higher than that of 3 cm sperm for the JBC-A bull. The motility, curvilinear velocity, straight-line velocity, and average path velocity of fresh and frozen–thawed sperm were the highest for the JBC-A bull. The vitalities of fresh and frozen–thawed sperm were the highest for the JBC-A/E and JBC-A bulls, respectively. The percentage of normal cells in fresh sperm was the highest for the JBC-D bull. The rates of the normal formation of two pronuclei and total sperm penetration were the highest in zygotes fertilized with sperm from the JBC-A bull. The sperm from the JBC-A bull had superior qualities and are thus the most appropriate choice for the preservation and reproduction of these endangered cattle.
Collapse
Affiliation(s)
- Jae-Wook Yoon
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea; (J.-W.Y.); (S.-E.L.); (W.-J.K.); (H.-J.P.); (S.-H.K.); (S.-H.O.); (D.-G.L.); (D.-B.P.); (E.-Y.K.)
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea
| | - Seung-Eun Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea; (J.-W.Y.); (S.-E.L.); (W.-J.K.); (H.-J.P.); (S.-H.K.); (S.-H.O.); (D.-G.L.); (D.-B.P.); (E.-Y.K.)
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea
| | - Won-Jae Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea; (J.-W.Y.); (S.-E.L.); (W.-J.K.); (H.-J.P.); (S.-H.K.); (S.-H.O.); (D.-G.L.); (D.-B.P.); (E.-Y.K.)
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea
| | - Dae-Cheol Kim
- Jeju Special Self-Governing Province Livestock Promotion Agency, 13 Sinbimaeul, Jeju-si 63078, Korea; (D.-C.K.); (C.-H.H.); (S.-J.L.)
| | - Cheol-Ho Hyun
- Jeju Special Self-Governing Province Livestock Promotion Agency, 13 Sinbimaeul, Jeju-si 63078, Korea; (D.-C.K.); (C.-H.H.); (S.-J.L.)
| | - Shin-Ji Lee
- Jeju Special Self-Governing Province Livestock Promotion Agency, 13 Sinbimaeul, Jeju-si 63078, Korea; (D.-C.K.); (C.-H.H.); (S.-J.L.)
| | - Hyo-Jin Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea; (J.-W.Y.); (S.-E.L.); (W.-J.K.); (H.-J.P.); (S.-H.K.); (S.-H.O.); (D.-G.L.); (D.-B.P.); (E.-Y.K.)
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea
| | - So-Hee Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea; (J.-W.Y.); (S.-E.L.); (W.-J.K.); (H.-J.P.); (S.-H.K.); (S.-H.O.); (D.-G.L.); (D.-B.P.); (E.-Y.K.)
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea
| | - Seung-Hwan Oh
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea; (J.-W.Y.); (S.-E.L.); (W.-J.K.); (H.-J.P.); (S.-H.K.); (S.-H.O.); (D.-G.L.); (D.-B.P.); (E.-Y.K.)
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea
| | - Do-Geon Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea; (J.-W.Y.); (S.-E.L.); (W.-J.K.); (H.-J.P.); (S.-H.K.); (S.-H.O.); (D.-G.L.); (D.-B.P.); (E.-Y.K.)
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea
| | - Da-Bin Pyeon
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea; (J.-W.Y.); (S.-E.L.); (W.-J.K.); (H.-J.P.); (S.-H.K.); (S.-H.O.); (D.-G.L.); (D.-B.P.); (E.-Y.K.)
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea; (J.-W.Y.); (S.-E.L.); (W.-J.K.); (H.-J.P.); (S.-H.K.); (S.-H.O.); (D.-G.L.); (D.-B.P.); (E.-Y.K.)
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea
- Mirae Cell Bio, 1502 ISBIZ Tower, 147 Seongsui-ro, Seongdong-gu, Seoul 04795, Korea
| | - Se-Pill Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea; (J.-W.Y.); (S.-E.L.); (W.-J.K.); (H.-J.P.); (S.-H.K.); (S.-H.O.); (D.-G.L.); (D.-B.P.); (E.-Y.K.)
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea
- Mirae Cell Bio, 1502 ISBIZ Tower, 147 Seongsui-ro, Seongdong-gu, Seoul 04795, Korea
- Correspondence: ; Tel.: +82-64-754-4650
| |
Collapse
|