1
|
Luo YH, Zhang YY, Li MQ, Zhang XY, Zheng ZM. Emerging Roles of IL-27 in Trophoblast Cells and Pregnancy Complications. Am J Reprod Immunol 2024; 92:e13942. [PMID: 39422056 DOI: 10.1111/aji.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
PROBLEM Pregnancy complications such as spontaneous abortion, preeclampsia, and preterm birth persist, despite current interventions aimed at their prevention and treatment largely proving unsuccessful. Interleukin-27 (IL-27), composed of p28 and EBI3 subunits, binds to IL-27R, which consists of gp130 and IL-27Rα (also known as WSX-1 or TCCR), and plays a pivotal role in tumor development and inflammation regulation. At the maternal-fetal interface, IL-27 expression has been detected in trophoblasts, endometrial stromal cells, and decidual cells. Abnormal levels of IL-27/IL-27R have been linked to adverse pregnancy outcomes, including spontaneous miscarriage, preeclampsia, and preterm birth. This review aims to explore the expression of IL-27 at the maternal-fetal interface and its signaling pathway, uncovering the complex role of IL-27 in pregnancy complications. METHOD OF STUDY A comprehensive literature review was conducted using PubMed/Medline, Scopus, and Embase databases, analyzing studies on IL-27 expression and its signaling pathways at the maternal-fetal interface. The review focused on identifying the presence of IL-27 in various cell types and linking abnormal IL-27/IL-27R expression to pregnancy complications such as spontaneous miscarriage, preeclampsia, and preterm birth. DISCUSSION AND CONCLUSION IL-27 plays a complex role at the maternal-fetal interface, with abnormal expression linked to several pregnancy complications. These findings highlight the need for further research to elucidate IL-27's mechanisms and develop targeted interventions. Future studies should aim to develop targeted interventions and improve therapeutic strategies for managing pregnancy complications.
Collapse
Affiliation(s)
- Yi-Hua Luo
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yang-Yang Zhang
- Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, People's Republic of China
| | - Xin-Yan Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Zi-Meng Zheng
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Zhao SJ, Hu XH, Lin XX, Zhang YJ, Wang J, Wang H, Gong GS, Mor G, Liao AH. IL-27/Blimp-1 axis regulates the differentiation and function of Tim-3+ Tregs during early pregnancy. JCI Insight 2024; 9:e179233. [PMID: 39171524 PMCID: PMC11343602 DOI: 10.1172/jci.insight.179233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
Decidual regulatory T cells (Tregs) are essential for successful pregnancy outcome. A subset of Tregs, T cell immunoglobulin and mucin domain-containing protein 3-positive regulatory T cells (TregsTim-3+), plays a central role in the acceptance of the fetus during early stages of normal pregnancy. The molecular mechanism regulating the differentiation and function of TregsTim-3+ is unknown. Here, we investigated the role of the transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) on decidual TregTim-3+ differentiation. We demonstrated that Blimp-1 enhanced the coexpression of negative costimulatory molecules (Tim-3, T cell immunoreceptor with Ig and ITIM domains, and programmed cell death protein 1) on Tregs and improved their immunosuppressive functions, including increased IL-10 secretion, suppression of effector T cell proliferation, and promotion of macrophage polarization toward the M2 phenotype. Furthermore, we showed that IL-27 regulated the expression of Tim-3 and Blimp-1 through the STAT1 signaling pathway and that transfer of TregsBlimp-1+ into an abortion-prone mouse model effectively reduced embryo absorption rate. We postulated that abnormalities in the IL-27/Blimp-1 axis might be associated with recurrent pregnancy loss (RPL). These findings provided insights for developing more efficient immunotherapies for women with RPL.
Collapse
Affiliation(s)
- Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Hui Hu
- Department of Obstetrics and Gynecology, First Clinical College Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Mei J, Wu B, Li M, Ma L, Yang X, Ma Y, Huang Y. Effect of Cyclosporine A on Th1/Th2 Cytokine Production by Decidual Stromal Cells Mediated by Trophoblast-derived Galectin-9. Reprod Sci 2024; 31:1903-1914. [PMID: 38273122 DOI: 10.1007/s43032-023-01431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
This study aimed to investigate the effect of cyclosporine A (CsA) on secretion of Th1 and Th2 cytokines by decidual stromal cells (DSCs) mediated by galectin (Gal)-9.HTR8/SVneo cells and primary trophoblasts were used for in vitro studies. Gal-9 expression was measured using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, CsA was used to regulate Gal-9 expression in trophoblasts. DSCs were treated with trophoblast supernatant and changes in Th1 and Th2 cytokine levels were analyzed. Changes in DSC levels of the T-cell immunoglobulin mucin receptor 3 (TIM-3) levels in DSCs after treatment with Gal-9 were assessed. Western blotting and ERK and AKT inhibitors were used to assess the involvement of the corresponding signaling pathways. Gal-9 was expressed by both primary trophoblasts and HTR8/SVneo cells. CsA treatment increased Gal-9 secretion by trophoblasts, which in turn increased IL-6 (Th2 cytokine) and decreased TNF-α and IFN-γ (Th1 cytokines) secretion in DSCs. Upon downregulation of trophoblast Gal-9 secretion, DSCs secreted lower levels of Th2 cytokines and higher levels of Th1 cytokines, and the effect was reversed by addition of CsA. TIM-3 expression changed in parallel with Gal-9 secretion. CsA treatment upregulated expression of Gal-9 in trophoblasts, promoted secretion of Th2 cytokines, and inhibited secretion of Th1 cytokines via ERK signaling.
Collapse
Affiliation(s)
- Jiaoqi Mei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University) , Ministry of EducationThe First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, Haikou, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Bangyong Wu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University) , Ministry of EducationThe First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, Haikou, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Mengyongwei Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University) , Ministry of EducationThe First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, Haikou, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Lina Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University) , Ministry of EducationThe First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, Haikou, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Xiaohui Yang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University) , Ministry of EducationThe First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, Haikou, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University) , Ministry of EducationThe First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, Haikou, China.
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
| | - Yuanhua Huang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University) , Ministry of EducationThe First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, Haikou, China.
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
4
|
Li Y, Sang Y, Chang Y, Xu C, Lin Y, Zhang Y, Chiu PCN, Yeung WSB, Zhou H, Dong N, Xu L, Chen J, Zhao W, Liu L, Yu D, Zang X, Ye J, Yang J, Wu Q, Li D, Wu L, Du M. A Galectin-9-Driven CD11c high Decidual Macrophage Subset Suppresses Uterine Vascular Remodeling in Preeclampsia. Circulation 2024; 149:1670-1688. [PMID: 38314577 DOI: 10.1161/circulationaha.123.064391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.
Collapse
Affiliation(s)
- Yanhong Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, China (Y. Li, M.D.)
| | - Yifei Sang
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yunjian Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Chunfang Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yikong Lin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Philip C N Chiu
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, China (P.C.N.C., W.S.B.Y.)
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China (P.C.N.C., W.S.B.Y.)
| | - William S B Yeung
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, China (P.C.N.C., W.S.B.Y.)
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China (P.C.N.C., W.S.B.Y.)
| | - Haisheng Zhou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China (N.D., Q.W.)
| | - Ling Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Jiajia Chen
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Weijie Zhao
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
| | - Lu Liu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Di Yu
- The University of Queensland Diamantina Institute (D.Y.), Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre (D.Y.), Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY (X.Z.)
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore City, Singapore (J. Ye)
| | - Jinying Yang
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
| | - Qingyu Wu
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China (N.D., Q.W.)
| | - Dajin Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Meirong Du
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, China (Y. Li, M.D.)
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China (M.D.)
| |
Collapse
|
5
|
Li QH, Zhao QY, Yang WJ, Jiang AF, Ren CE, Meng YH. Beyond Immune Balance: The Pivotal Role of Decidual Regulatory T Cells in Unexplained Recurrent Spontaneous Abortion. J Inflamm Res 2024; 17:2697-2710. [PMID: 38707955 PMCID: PMC11070170 DOI: 10.2147/jir.s459263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Recurrent spontaneous abortion (RSA) is defined as two or more consecutive pregnancy failures, which brings tremendous stress to women of childbearing age and seriously affects family well-being. However, the reason in about 50% of cases remains unknown and is defined as unexplained recurrent spontaneous abortion (URSA). The immunological perspective in URSA has attracted widespread attention in recent years. The embryo is regarded as a semi-allogeneic graft to the mother. A successful pregnancy requires transition to an immune environment conducive to embryo survival at the maternal-fetal interface. As an important member of regulatory immunity, regulatory T (Treg) cells play a key role in regulating immune tolerance at the maternal-fetal interface. This review will focus on the phenotypic plasticity and lineage stability of Treg cells to illustrate its relationship with URSA.
Collapse
Affiliation(s)
- Qing-Hui Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Qiu-Yan Zhao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
| | - Wei-Jing Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
| | - Ai-Fang Jiang
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Chun-E Ren
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Yu-Han Meng
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| |
Collapse
|
6
|
Büyükbayrak EE, Gündoğdu NEÖ, Gürkan N, Kahraman FR, Akalın M, Akkoç T. Immunological effects of human decidual mesenchymal stem cells in spontaneous and recurrent abortions. J Reprod Immunol 2024; 162:104193. [PMID: 38281405 DOI: 10.1016/j.jri.2024.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/02/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
The aim of this study was to evaluate the immunological activities of human decidual mesenchymal stem cells (MSCs) on proliferation, apoptosis and percentage of regulatory T cells (Treg) in abortions and to investigate whether these activities differ in spontaneous abortions (SA) and recurrent abortions (RA). This prospective cohort study included women who had a first-trimester abortion between 2019 and 2022. Women with uterine anomaly, endocrinological disease, known autoimmune or thrombophilic disease, and fetal chromosomal abnormality in abortion material were excluded. Decidual MSCs isolated from abortion materials were classified as spontaneous abortion-MSCs (SA-MSCs) and recurrent abortion-MSCs (RA-MSCs). Peripheral blood mononuclear cells were isolated from venous blood and co-cultured with SA-MSCs and RA-MSCs. The effects of MSCs on proliferation and apoptosis of lymphocytes, and Tregs levels were compared between SA-MSCs and RA-MSCs groups. Thirty cases (15 SA-MSCs and 15 RA-MSCs) were included in the study. The presence of MSC in co-cultures increased percentage of Treg cells while reducing proliferation and apoptosis compared to those without MSCs (p < 0.0001, p < 0.0001 and p < 0.0001). The increase in percentage of Treg cells and the reduction in apoptosis were significantly lower in the RA-MSCs group compared to the SA-MSCs group (p < 0.0001 and p < 0.001, respectively). Although the proliferation reducing effect of the presence of MSCs was lower in the RA-MSCs group compared to the SA-MSCs group, the difference was not significant (p = 0.07). MSCs contribute to maternal immunotolerance to semi-allogeneic fetus by suppressing proliferation and apoptosis, and increasing percentage of Treg cells. However, the immunoregulatory effects of MSCs are lower in RA compared to SA.
Collapse
Affiliation(s)
- Esra Esim Büyükbayrak
- Department of Perinatology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | | | - Nihan Gürkan
- Department of Obstetrics and Gynaecology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Fatma Rabia Kahraman
- Department of Immunology, Marmara University Pendik Research Hospital, Istanbul, Turkey
| | - Münip Akalın
- Department of Perinatology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey.
| | - Tunç Akkoç
- Department of Immunology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Wiley KS, Kwon D, Knorr DA, Fox MM. Regulatory T-cell phenotypes in prenatal psychological distress. Brain Behav Immun 2024; 116:62-69. [PMID: 38016492 PMCID: PMC11402516 DOI: 10.1016/j.bbi.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Experiencing symptoms of psychological distress during pregnancy is common and has been linked to dysregulated immune functioning. In this context, immunoregulatory function is especially relevant because of its crucial role in establishment and maintenance of healthy pregnancy. However, little research has examined associations between women's prenatal psychological distress and immunoregulatory biomarkers. We investigated how symptoms of depression, anxiety, and stress relate to circulating levels of regulatory T-cells (Tregs). MATERIALS AND METHODS Pregnant Latina women were assessed at around 12 weeks of pregnancy (N = 82). These assessments included blood draws and self-report questionnaires assessing symptoms of depression, state anxiety, pregnancy-related anxiety, and perceived stress. Flow cytometry on PBMCs was used to quantify circulating Tregs, defined as CD3+CD4+CD25hiCD127loFoxP3+, and subpopulations positive for one of the following intra- or extracellular markers, CD45RA, CTLA-4, Helios, PD-1, TIM-3, and TIGIT. We collected 82 samples at 12 weeks. Multivariable linear regressions tested for associations between symptoms of psychological distress and Treg concentrations, adjusted for gestational age. RESULTS State anxiety symptoms at 12 weeks were negatively associated with parent Treg cell levels (b = -4.02, p = 0.023) and subpopulations Helios+ (b = -3.29, p = 0.019) and TIM3+ (b = -3.17, p = 0.008). Perceived stress was negatively associated with the PD-1+ subpopulation at 12 weeks (b = -4.02, p = 0.023). Depression was not related to Tregs or the subpopulations. CONCLUSION Our observation that symptoms of anxiety and stress are related to tolerogenic immunology suggests a possible biomechanism explaining correlations of maternal mood disorders with adverse outcomes for mothers and offspring.
Collapse
Affiliation(s)
- Kyle S Wiley
- Department of Anthropology, University of California, Los Angeles, United States; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States.
| | - Dayoon Kwon
- Department of Epidemiology, UCLA Fielding School of Public Health, University of California, Los Angeles, United States
| | - Delaney A Knorr
- Department of Anthropology, University of California, Los Angeles, United States
| | - Molly M Fox
- Department of Anthropology, University of California, Los Angeles, United States; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States
| |
Collapse
|
8
|
Zhong J, Li J, Burton GJ, Koistinen H, Cheung KW, Ng EHY, Yao Y, Yeung WSB, Lee CL, Chiu PCN. The functional roles of protein glycosylation in human maternal-fetal crosstalk. Hum Reprod Update 2024; 30:81-108. [PMID: 37699855 DOI: 10.1093/humupd/dmad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The establishment of maternal-fetal crosstalk is vital to a successful pregnancy. Glycosylation is a post-translational modification in which glycans (monosaccharide chains) are attached to an organic molecule. Glycans are involved in many physiological and pathological processes. Human endometrial epithelium, endometrial gland secretions, decidual immune cells, and trophoblasts are highly enriched with glycoconjugates and glycan-binding molecules important for a healthy pregnancy. Aberrant glycosylation in the placenta and uterus has been linked to repeated implantation failure and various pregnancy complications, but there is no recent review summarizing the functional roles of glycosylation at the maternal-fetal interface and their associations with pathological processes. OBJECTIVE AND RATIONALE This review aims to summarize recent findings on glycosylation, glycosyltransferases, and glycan-binding receptors at the maternal-fetal interface, and their involvement in regulating the biology and pathological conditions associated with endometrial receptivity, placentation and maternal-fetal immunotolerance. Current knowledge limitations and future insights into the study of glycobiology in reproduction are discussed. SEARCH METHODS A comprehensive PubMed search was conducted using the following keywords: glycosylation, glycosyltransferases, glycan-binding proteins, endometrium, trophoblasts, maternal-fetal immunotolerance, siglec, selectin, galectin, repeated implantation failure, early pregnancy loss, recurrent pregnancy loss, preeclampsia, and fetal growth restriction. Relevant reports published between 1980 and 2023 and studies related to these reports were retrieved and reviewed. Only publications written in English were included. OUTCOMES The application of ultrasensitive mass spectrometry tools and lectin-based glycan profiling has enabled characterization of glycans present at the maternal-fetal interface and in maternal serum. The endometrial luminal epithelium is covered with highly glycosylated mucin that regulates blastocyst adhesion during implantation. In the placenta, fucose and sialic acid residues are abundantly presented on the villous membrane and are essential for proper placentation and establishment of maternal-fetal immunotolerance. Glycan-binding receptors, including selectins, sialic-acid-binding immunoglobulin-like lectins (siglecs) and galectins, also modulate implantation, trophoblast functions and maternal-fetal immunotolerance. Aberrant glycosylation is associated with repeated implantation failure, early pregnancy loss and various pregnancy complications. The current limitation in the field is that most glycobiological research relies on association studies, with few studies revealing the specific functions of glycans. Technological advancements in analytic, synthetic and functional glycobiology have laid the groundwork for further exploration of glycans in reproductive biology under both physiological and pathological conditions. WIDER IMPLICATIONS A deep understanding of the functions of glycan structures would provide insights into the molecular mechanisms underlying their involvement in the physiological and pathological regulation of early pregnancy. Glycans may also potentially serve as novel early predictive markers and therapeutic targets for repeated implantation failure, pregnancy loss, and other pregnancy complications.
Collapse
Affiliation(s)
- Jiangming Zhong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
9
|
Dai W, Zhang J, Wang Y, Zhou J, Dai Q, Lv J. The balance between CD4+ T helper 17 and T-cell immunoglobulin and mucin domain 3 is involved in the pathogenesis and development of atrial fibrillation. Afr Health Sci 2023; 23:607-615. [PMID: 38357157 PMCID: PMC10862566 DOI: 10.4314/ahs.v23i3.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background To investigate the expression of Th17, T lymphocyte immunoglobulin mucin 3 (TIM-3+) cells and their related cytokines in atrial fibrillation (AF) and their clinical significance. Methodology A total of 90 patients with AF were divided into paroxysmal group (n=45) and chronic group (n=45), and 45 healthy volunteers were selected as the control group. The proportion of Th17 cells and Tim-3 + cells in the peripheral blood were detected. The concentrations of related cytokines in peripheral blood serum were determined. The correlation between Th17 / Tim-3+ cells and related cytokines was analysed. Results Compared with the control group, the proportion of Th17 cells and the concentration of related cytokines (IL-17, IL-6 and Matrix metalloproteinase (MMP9)) in peripheral blood of patients with paroxysmal and chronic AF increased significantly, while the proportion of tim3 + cells and the concentration of related cytokines decreased significantly. Compared with the paroxysmal group, the proportion of Th17 cells and the concentration of related cytokines in the peripheral blood of patients in the chronic group increased significantly, while the proportion of tim3 + cells and the concentration of related cytokines decreased significantly. Conclusion Th17 / Tim-3 + cell balance is involved in AF, and can be used as a target for AF treatment.
Collapse
Affiliation(s)
- Wenjing Dai
- Department of Cardiovasology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Jun Zhang
- Department of Critical Care Medicine, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Yang Wang
- Department of Cardiovasology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Jingqun Zhou
- Department of Medicine, China Three Gorges University, Yichang, China
| | - Qiuting Dai
- Department of Cardiovasology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Jianfeng Lv
- Department of Cardiovasology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| |
Collapse
|
10
|
Greenbaum S, Averbukh I, Soon E, Rizzuto G, Baranski A, Greenwald NF, Kagel A, Bosse M, Jaswa EG, Khair Z, Kwok S, Warshawsky S, Piyadasa H, Goldston M, Spence A, Miller G, Schwartz M, Graf W, Van Valen D, Winn VD, Hollmann T, Keren L, van de Rijn M, Angelo M. A spatially resolved timeline of the human maternal-fetal interface. Nature 2023; 619:595-605. [PMID: 37468587 PMCID: PMC10356615 DOI: 10.1038/s41586-023-06298-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/08/2023] [Indexed: 07/21/2023]
Abstract
Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodelling (SAR)1-3. However, it remains a matter of debate regarding which immune and stromal cells participate in these interactions and how this evolves with respect to gestational age. Here we used a multiomics approach, combining the strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse around 500,000 cells and 588 arteries within intact decidua from 66 individuals between 6 and 20 weeks of gestation, integrating this dataset with co-registered transcriptomics profiles. Gestational age substantially influenced the frequency of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized at later time points. By contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting distinct monotonic and biphasic trends. Last, we developed an integrated model of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, immunoregulatory EVT programmes that promote interactions with the vascular endothelium while avoiding the activation of maternal immune cells.
Collapse
Affiliation(s)
- Shirley Greenbaum
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Inna Averbukh
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Erin Soon
- Department of Pathology, Stanford University, Stanford, CA, USA
- Immunology Program, Stanford University, Stanford, CA, USA
| | - Gabrielle Rizzuto
- Department of Pathology, University of Californica San Francisco, San Francisco, CA, USA
| | - Alex Baranski
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Noah F Greenwald
- Department of Pathology, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Adam Kagel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marc Bosse
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Eleni G Jaswa
- Department of Obstetrics Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Zumana Khair
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shirley Kwok
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | | | - Mako Goldston
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Angie Spence
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Geneva Miller
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Morgan Schwartz
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Will Graf
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - David Van Valen
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Travis Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leeat Keren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Zhang Y, Liu Z, Sun H. Fetal-maternal interactions during pregnancy: a 'three-in-one' perspective. Front Immunol 2023; 14:1198430. [PMID: 37350956 PMCID: PMC10282753 DOI: 10.3389/fimmu.2023.1198430] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
A successful human pregnancy requires the maternal immune system to recognize and tolerate the semi-allogeneic fetus, allowing for appropriate trophoblasts invasion and protecting the fetus from invading pathogens. Therefore, maternal immunity is critical for the establishment and maintenance of pregnancy, especially at the maternal-fetal interface. Anatomically, the maternal-fetal interface has both maternally- and fetally- derived cells, including fetal originated trophoblasts and maternal derived immune cells and stromal cells. Besides, a commensal microbiota in the uterus was supposed to aid the unique immunity in pregnancy. The appropriate crosstalk between fetal derived and maternal originated cells and uterine microbiota are critical for normal pregnancy. Dysfunctional maternal-fetal interactions might be associated with the development of pregnancy complications. This review elaborates the latest knowledge on the interactions between trophoblasts and decidual immune cells, highlighting their critical roles in maternal-fetal tolerance and pregnancy development. We also characterize the role of commensal bacteria in promoting pregnancy progression. Furthermore, this review may provide new thought on future basic research and the development of clinical applications for pregnancy complications.
Collapse
Affiliation(s)
- Yonghong Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhaozhao Liu
- Reproduction Center, The Third Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
12
|
Roles of N-linked glycosylation and glycan-binding proteins in placentation: trophoblast infiltration, immunomodulation, angiogenesis, and pathophysiology. Biochem Soc Trans 2023; 51:639-653. [PMID: 36929183 DOI: 10.1042/bst20221406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
Protein N-linked glycosylation is a structurally diverse post-translational modification that stores biological information in a larger order of magnitude than other post-translational modifications such as phosphorylation, ubiquitination and acetylation. This gives N-glycosylated proteins a diverse range of properties and allows glyco-codes (glycan-related information) to be deciphered by glycan-binding proteins (GBPs). The intervillous space of the placenta is richly populated with membrane-bound and secreted glycoproteins. Evidence exists to suggest that altering the structural nature of their N-glycans can impact several trophoblast functions, which include those related to interactions with decidual cells. This review summarizes trophoblast-related activities influenced by N-glycan-GBP recognition, exploring how different subtypes of trophoblasts actively adapt to characteristics of the decidualized endometrium through cell-specific expression of N-glycosylated proteins, and how these cells receive decidua-derived signals via N-glycan-GBP interactions. We highlight work on how changes in N-glycosylation relates to the success of trophoblast infiltration, interactions of immunomodulators, and uterine angiogenesis. We also discuss studies that suggest aberrant N-glycosylation of trophoblasts may contribute to the pathogenesis of pregnancy complications (e.g. pre-eclampsia, early spontaneous miscarriages and hydatidiform mole). We propose that a more in-depth understanding of how N-glycosylation shapes trophoblast phenotype during early pregnancy has the potential to improve our approach to predicting, diagnosing and alleviating poor maternal/fetal outcomes associated with placental dysfunction.
Collapse
|
13
|
Tim-3 blockade enhances the clearance of Chlamydia psittaci in the lung by promoting a cell-mediated immune response. Int Immunopharmacol 2023; 116:109780. [PMID: 36720194 DOI: 10.1016/j.intimp.2023.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023]
Abstract
Chlamydia psittaci is remarkable at disrupting immunity and thus poses a great risk to the animal industry and public health. Immune inhibitory molecule upregulation and the accumulation of specialized cells play key roles in chlamydial clearance. It is clear that the T-cell immunoglobulin and mucin domain protein 3 receptor (Tim-3) can regulate effector T cells in infectious disease. However, the immunomodulatory effect of Tim-3 in C. psittaci infection remains unknown. Thus, the expression of Tim-3 in effector T cells and its immune regulatory function during C. psittaci infection were investigated. The level of Tim-3 on CD4+ and CD8+ T cells was meaningfully higher in C. psittaci-infected mice. Blockade of Tim-3 signaling by anti-Tim-3 antibody showed accelerated C. psittaci clearance and less pathological changes in the lung than isotype immunoglobulin treatment. Furthermore, treatment with anti-Tim-3 antibody greatly enhanced the levels of IFN-γ and interleukin (IL)-22/IL-17, which were correlated with an improved Th1- and Th17-mediated immune response, and decreased IL-10, which were related with a decreased Treg immune response. In conclusion, Tim-3 expression in effector T cells negatively regulates Th1 and Th17 immune responses against C. psittaci respiratory infection.
Collapse
|
14
|
Araishi K, Shima T, Yasuda I, Tsuda S, Morita K, Yamaki-Ushijima A, Nakashima A, Saito S. Dynamics of neuropilin1 (Nrp1)-positive thymus-derived and Nrp1-negative peripherally induced paternal antigen specific regulatory T cells in the uterus and spleen during pregnancy in mice. J Reprod Immunol 2023; 155:103792. [PMID: 36587463 DOI: 10.1016/j.jri.2022.103792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Paternal antigen-specific regulatory T (PA-Treg) cells suppress the immune response against the fetus. Naturally occurring Treg (nTreg) cells derived from the thymus and peripherally induced Treg (iTreg) cells are functional for sustaining pregnancy. This study aimed to compare the variation in PA-Treg cells between the feto-maternal interface and the spleen and to elucidate the dynamics of nTreg and iTreg cells during the gestational period. PA-Treg cells, defined as Treg cells with paternally derived Mls-1a antigen-specific T cell receptors Vβ6, from allogeneic pregnant mice on days 3.5, 5.5, 11.5, and 18.5 post-coitum (pc) were evaluated by flow cytometry. The percentage of Vβ6+ Ki67+ PA-Treg cells activated by the paternal antigen increased on day 11.5 pc in the decidua (p < 0.05) compared to non-pregnant mice. On day 18.5 pc, this percentage in the decidua parietalis decreased to the level of the non-pregnant state but was significantly higher (p < 0.05) in the decidua basalis. No changes were observed in the spleens. We used two nTreg cell markers, neuropilin1 (Nrp1) and Helios, to distinguish between nTreg cells and iTreg cells. Nrp1+ PA-Treg cell levels decreased in late pregnancy compared to those observed in early pregnancy (day 3.5 pc: 57.14 ± 6.16% vs. day 18.5 pc: 30.43 ± 3.09%; p < 0.05), whereas Helios+ cell levels did not change. In conclusion, PA immune tolerance is induced by Nrp1+ nTreg cells in early pregnancy and Nrp1-negative Treg cells in late pregnancy.
Collapse
Affiliation(s)
- Kohei Araishi
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Ippei Yasuda
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Sayaka Tsuda
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Keiko Morita
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | | | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | | |
Collapse
|
15
|
Tim-3: An inhibitory immune checkpoint is associated with maternal-fetal tolerance and recurrent spontaneous abortion. Clin Immunol 2022; 245:109185. [DOI: 10.1016/j.clim.2022.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
16
|
Chen M, Shi JL, Zheng ZM, Lin Z, Li MQ, Shao J. Galectins: Important Regulators in Normal and Pathologic Pregnancies. Int J Mol Sci 2022; 23:ijms231710110. [PMID: 36077508 PMCID: PMC9456357 DOI: 10.3390/ijms231710110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Galectins (Gal) are characterized by their affinity for galactoside structures on glycoconjugates. This relationship is mediated by carbohydrate recognition domains, which are multifunctional regulators of basic cellular biological processes with high structural similarity among family members. They participate in both innate and adaptive immune responses, as well as in reproductive immunology. Recently, the discovery that galectins are highly expressed at the maternal–fetal interface has garnerd the interest of experts in human reproduction. Galectins are involved in a variety of functions such as maternal–fetal immune tolerance, angiogenesis, trophoblast invasion and placental development and are considered to be important mediators of successful embryo implantation and during pregnancy. Dysregulation of these galectins is associated with abnormal and pathological pregnancies (e.g., preeclampsia, gestational diabetes mellitus, fetal growth restriction, preterm birth). Our work reviews the regulatory mechanisms of galectins in normal and pathological pregnancies and has implications for clinicians in the prevention, diagnosis and treatment of pregnancy-related diseases.
Collapse
Affiliation(s)
- Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Jia-Lu Shi
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zi-Meng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Correspondence: (M.-Q.L.); (J.S.)
| | - Jun Shao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
- Correspondence: (M.-Q.L.); (J.S.)
| |
Collapse
|
17
|
Aslanian-Kalkhoran L, Esparvarinha M, Nickho H, Aghebati-Maleki L, Heris JA, Danaii S, Yousefi M. Understanding main pregnancy complications through animal models. J Reprod Immunol 2022; 153:103676. [PMID: 35914401 DOI: 10.1016/j.jri.2022.103676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Since human pregnancy is an inefficient process, achieving desired and pleasant outcome of pregnancy - the birth of a healthy and fit baby - is the main goal in any pregnancy. Spontaneous pregnancy failure is actually the most common complication of pregnancy and Most of these pregnancy losses are not known. Animal models have been utilized widely to investigate the system of natural biological adaptation to pregnancy along with increasing our comprehension of the most important hereditary and non-hereditary factors that contribute to pregnancy disorders. We use model organisms because their complexity better reproduces the human condition. A useful animal model for the disease should be pathologically similar to the disease conditions in humans. Animal models deserve a place in research because of the ethical limitations that apply to pregnant women's experiments. The present review provides insights into the overall risk factors involved in recurrent miscarriage, recurrent implant failure and preeclampsia and animal models developed to help researchers identify the source of miscarriage and the best research and treatment strategy for women with Repeated miscarriage and implant failure.
Collapse
Affiliation(s)
- Lida Aslanian-Kalkhoran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Mojgan Esparvarinha
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamid Nickho
- Department of Immuunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan Branch of ACECR, Tabriz, Islamic Republic of Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
18
|
Zha Y, Liu H, Lin X, Yu L, Gao P, Li Y, Wu M, Gong X, Bian X, Kang Q, Zhi P, Dang X, Wang J, Feng L, Qiao F, Huang Y, Zeng W. Immune Deviation in the Decidua During Term and Preterm Labor. Front Immunol 2022; 13:877314. [PMID: 35757768 PMCID: PMC9226582 DOI: 10.3389/fimmu.2022.877314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The maternal-fetal immune disorder is considered to be an important factor of preterm birth (PTB); however, the underlying mechanism is still not fully understood. This study was designed to explore the innate and adaptive immune features in the decidua during term and preterm labor. Women delivered at term or preterm were classified into four groups: term not in labor (TNL, N=19), term in labor (TL, N=17), preterm not in labor (PNL, N=10), and preterm in labor (PIL, N=10). Decidua basalis and parietalis were collected and analyzed for macrophage subtypes (M1 and M2) as well as T helper 1 (Th1), Th2, Th17 and regulatory T (Treg) cells by flow cytometry and immunohistochemistry. Our results demonstrated significantly decreased frequencies of M2 cells and elevated M1/M2 ratio in the PIL group compared to that in the PNL group in both decidua basalis and parietalis, whereas no significant differences were found between the above two groups in both sites in terms of the polarization status of Th cells. On the contrary, macrophage subsets were comparable in the TL and TNL groups, whereas elevated Th1 percentages and Th1/Th2 ratio were observed in TL women compared to that in TNL women in the decidua. Interestingly, although the frequencies and ratios of Th17 and Treg were comparable among the four groups, the Th17/Treg ratios of these groups were significantly increased in decidua basalis than that in decidua parietalis. Collectively, the M1/M2 imbalance is associated with the breakdown of maternal-fetal immune tolerance during PTB, whereas the aberrant Th1/Th2 profile plays an important role in immune disorder during term labor. Moreover, Th17/Treg deviation is more remarkable in decidua basalis than in decidua parietalis.
Collapse
Affiliation(s)
- Ying Zha
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyi Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingguang Lin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Gong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Bian
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Kang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Zhi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohe Dang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuyuan Qiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Gao YF, Lu YY, Fan XZ, Wang YH, Tian JH, Saed YA, Li RS, Zhou XS. Blockage of TIM-3 relieves lupus nephritis by expanding Treg cells and promoting their suppressive capacity in MRL/lpr mice. Int Immunopharmacol 2022; 110:108971. [PMID: 35777268 DOI: 10.1016/j.intimp.2022.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
T Cell Immunoglobulin and Mucin Containing Protein-3 (TIM-3) is an important immune checkpoint protein that is expressed in Tregs and affects their function. However, the expression and role of TIM-3 in modulating regulatory T cells (Tregs) in lupus nephritis (LN) are still unknown. In this study, we found that the percentage of TIM-3+ cells among spleen lymphocytes, CD4+ T cells and Tregs was higher in MRL/lpr mice than in MpJ mice. TIM-3high CD4+ T cells and TIM-3high Tregs were mainly responsible for the increase. The percentage of Tregs in TIM-3high CD4+ T cells was lower than that in TIM-3low CD4+ T cells, and the expression of CTLA-4 and IL-10 was lower in TIM-3high Tregs than in the TIM-3low Tregs in MRL/lpr mice. Blockade of TIM-3 in vivo significantly increased the Treg population and the expression of CTLA-4 and IL-10 in Tregs, thus relieving the LN symptoms and pathology in MRL/lpr mice. Additionally, bioinformatics analysis indicated that TIM-3 regulates Treg cells in LN mainly through cytokine-cytokine receptor interactions, the PI3K-Akt signaling pathway, the T cell receptor signaling pathway, Th17 cell differentiation and the FoxO signaling pathway. Together, our study has demonstrated that TIM-3 regulates Tregs in LN and that overexpression of TIM-3 in CD4+ T cells and Tregs leads to Treg quantity and quality deficiency in MRL/lpr mice. Blockade of TIM-3 protects against LN by expanding Tregs and enhancing their suppressive capacity. Finally, TIM-3 might be a potential therapeutic target for the treatment of LN.
Collapse
Affiliation(s)
- Yan-Fang Gao
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuan-Yue Lu
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiu-Zhao Fan
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China; Department of Nephrology, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China
| | - Yan-Hong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ji-Hua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yasin-Abdi Saed
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rong-Shan Li
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China; Department of Nephrology, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| | - Xiao-Shuang Zhou
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China; Department of Nephrology, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| |
Collapse
|
20
|
IL-27 promotes decidualization via the STAT3-ESR/PGR regulatory axis. J Reprod Immunol 2022; 151:103623. [DOI: 10.1016/j.jri.2022.103623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 01/18/2023]
|
21
|
Bahia W, Zitouni H, Kanabekova P, Bauyrzhanova Z, Shaimardanova M, Finan RR, Aimagambetova G, Almawi WY. Human forkhead box protein 3 gene variants associated with altered susceptibility to idiopathic recurrent pregnancy loss: A retrospective case-control study. Am J Reprod Immunol 2022; 88:e13551. [PMID: 35452532 DOI: 10.1111/aji.13551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The pathogenesis of recurrent pregnancy loss (RPL) is multifactorial and not completely elucidated. Dysregulated immunity was implicated with RPL, in which regulatory T cells (Tregs) are key. As Tregs development and function are regulated by forkhead box P3 (FOXP3) transcription factor, and as FOXP3 expression is genetically determined, a role for FOXP3 polymorphisms in RPL pathogenesis was suggested. AIM To investigate the association of rs2294021, rs2232365, rs3761548, and rs141704699 FOXP3 variants with idiopathic RPL in Lebanese women. METHODS This retrospective case-control study included 386 RPL cases and 398 age-matched control women. Logistic odds ratios (OR) were estimated with 95% confidence interval after adjustment; a significance value of P<.05 was set. RESULTS Significantly lower rs22944021 and rs2232365 minor allele frequency (MAF) was found in patients with idiopathic RPL in comparison with the control group. Furthermore, statistically significantly lower frequency of heterozygous and homozygous rs2294021 and rs2232365 genotypes was seen in controls, while significantly lower rs3761548 heterozygous genotype frequencies were found in the patient group. Obesity, antihypertension treatment, smoking, positive RPL family history, abortion state, and infertility treatment correlated negatively with rs2294021, while rs2232365 negatively correlated with obesity, and rs3761548 negatively correlated with infertility treatment. Marked linkage disequilibrium (LD) was noted among FOXP3 SNPs, with TGCC and CGAC haplotypes being positive, while CAAC, CACC, and TGAC haplotypes being negatively associated with RPL risk. Except for CGAC, the association of these haplotypes with RPL persisted after adjustment. CONCLUSION FOXP3 gene variants and haplotypes are associated with altered incidence of RPL, proposing the role of Treg in RPL pathogenesis.
Collapse
Affiliation(s)
- Wael Bahia
- Research Unit of Clinical and Molecular Biology, Faculty of Pharmacy of Monastir, Department of Biochemistry, University of Monastir, Monastir, Tunisia
| | - Hedia Zitouni
- Laboratory of Human Genome and Multifactorial Diseases, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Perizat Kanabekova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Zhansaya Bauyrzhanova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Moldir Shaimardanova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Ramzi R Finan
- Department of Obstetrics and Gynecology, Hôtel-Dieu de France and Université Saint-Joseph, Beirut, Lebanon
| | - Gulzhanat Aimagambetova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Wassim Y Almawi
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan.,Faculty of Sciences, El Manar University, Tunis, Tunisia
| |
Collapse
|
22
|
Liu H, Wang LL, Xu QH, Wang J, Zhang YJ, Luo J, Liao AH. UHRF1 shapes both the trophoblast invasion and decidual macrophage differentiation in early pregnancy. FASEB J 2022; 36:e22247. [PMID: 35262949 DOI: 10.1096/fj.202101647rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 11/11/2022]
Abstract
Trophoblasts play critical roles in establishment and maintenance of a normal pregnancy. Their dysfunction in early pregnancy is closely related to pregnancy-related diseases, including recurrent pregnancy loss (RPL). Epigenetic modifications dynamically change during pregnancy; however, the role of the epigenetic modifier UHRF1 in trophoblast regulation remains unknown. This is the first study to show that UHRF1 expression was localized in the cytoplasm of cytotrophoblasts, syncytiotrophoblasts, and villi columns, and decreased in the villi of patients with RPL. The invasion and cell viability in a UHRF1 knockdown trophoblast cell line were significantly decreased. In addition, the mRNA expression profiles of Swan71 cells were partially altered by UHRF1 knockdown. The altered immune-related genes were screened out and the pro-inflammatory TH1-type chemokine/cytokines CXCL2 and IL-1β were identified as the most promising targets of UHRF1 in the trophoblasts, which were significantly increased in the UHRF1 knockdown Swan71 cells, villi, and serum from patients with RPL. The macrophages treated with the supernatants of UHRF1 knockdown Swan71 cells were polarized to the M1 phenotype and secreted high levels of pro-inflammatory cytokines, which might be driven by the activated MyD88/NF-κB signaling pathway and mediated by the increased expression of CXCR2 and IL-1R1 (CXCL2 and IL-1β receptors, respectively). In addition, the supernatants of UHRF1 knockdown Swan71 cells showed stronger chemotaxis to macrophages than those from the controls. Our findings highlight the previously unknown roles of UHRF1 as one of the key regulators on the trophoblasts and their cross-talk with local immune cells, and demonstrate a potential approach for RPL intervention.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qian-Han Xu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jing Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
23
|
Zhao SJ, Muyayalo KP, Luo J, Huang D, Mor G, Liao AH. Next generation of immune checkpoint molecules in maternal-fetal immunity. Immunol Rev 2022; 308:40-54. [PMID: 35234305 DOI: 10.1111/imr.13073] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Successful pregnancy is a unique situation requires the maternal immune system to recognize and tolerate a semi-identical fetus and allow normal invasion of trophoblast cells. Although efforts have been made, the deep mechanisms of the maternal-fetal crosstalk have not yet been fully deciphered. Immune checkpoint molecules (ICMs) are a group of negative modulators of the immune response that avoid immune damage. They have been extensively studied in the fields of oncology and transplantation, while the latest evidence suggests that they are closely associated with pregnancy outcomes via multiple inhibitory mechanisms. Although studies have mostly demonstrated the regulatory role of the well-known PD-1, CTLA-4 at the maternal-fetal interface, what is unique about the newly discovered multiple ICMs remains a mystery. Here, we review the latest knowledge on ICMs, focusing on the first generation of checkpoints (PD-1, CTLA-4) and the next generation (Tim-3, Tigit, Lag-3, VISTA) highlighting their immunoregulatory roles in maternal-fetal tolerance and decidual vascular remodeling, and their involvement in pathological pregnancies. The content covers three aspects: the characteristics they possess, the dynamic expression profile of their expression at the maternal-fetal interface, and their involvement in pathological pregnancy. In immunotherapy strategies for pregnancy complications, upregulation of immune checkpoints may play a role. Meanwhile, the impact on pregnancy outcomes when using ICMs in clinical cancer treatment during pregnancy is a topic worth exploring. These may serve as a guide for future basic research and clinical applications of maternal-fetal immunity.
Collapse
Affiliation(s)
- Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghui Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Geng X, Mao G, Zhao D, Xiang Y, Wang M, Yu G, Tan L. Downregulation of miR-33a/b and miR-181a contributes to recurrent pregnancy loss by upregulating S1PR1 and repressing regulatory T cell differentiation. Placenta 2022; 121:137-144. [DOI: 10.1016/j.placenta.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
25
|
Menkhorst E, Than NG, Jeschke U, Barrientos G, Szereday L, Dveksler G, Blois SM. Medawar's PostEra: Galectins Emerged as Key Players During Fetal-Maternal Glycoimmune Adaptation. Front Immunol 2022; 12:784473. [PMID: 34975875 PMCID: PMC8715898 DOI: 10.3389/fimmu.2021.784473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Lectin-glycan interactions, in particular those mediated by the galectin family, regulate many processes required for a successful pregnancy. Over the past decades, increasing evidence gathered from in vitro and in vivo experiments indicate that members of the galectin family specifically bind to both intracellular and membrane bound carbohydrate ligands regulating angiogenesis, immune-cell adaptations required to tolerate the fetal semi-allograft and mammalian embryogenesis. Therefore, galectins play important roles in fetal development and placentation contributing to maternal and fetal health. This review discusses the expression and role of galectins during the course of pregnancy, with an emphasis on maternal immune adaptions and galectin-glycan interactions uncovered in the recent years. In addition, we summarize the galectin fingerprints associated with pathological gestation with particular focus on preeclampsia.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Gynaecological Research Centre, The Women's Hospital, Melbourne, VIC, Australia
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enyzmology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán-Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laszlo Szereday
- Medical School, Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, MD, United States
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
The Role of the Immune Checkpoint Molecules PD-1/PD-L1 and TIM-3/Gal-9 in the Pathogenesis of Preeclampsia—A Narrative Review. Medicina (B Aires) 2022; 58:medicina58020157. [PMID: 35208481 PMCID: PMC8880413 DOI: 10.3390/medicina58020157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Preeclampsia is a pregnancy-specific disease which is characterized by abnormal placentation, endothelial dysfunction, and systemic inflammation. Several studies have shown that the maternal immune system, which is crucial for maintaining the pregnancy by ensuring maternal-fetal-tolerance, is disrupted in preeclamptic patients. Besides different immune cells, immune checkpoint molecules such as the programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1 system) and the T-cell immunoglobulin and mucin domain-containing protein 3/Galectin-9 (TIM-3/Gal-9 system) are key players in upholding the balance between pro-inflammatory and anti-inflammatory signals. Therefore, a clear understanding about the role of these immune checkpoint molecules in preeclampsia is essential. This review discusses the role of these two immune checkpoint systems in pregnancy and their alterations in preeclampsia.
Collapse
|
27
|
Huijbers EJM, Khan KA, Kerbel RS, Griffioen AW. Tumors resurrect an embryonic vascular program to escape immunity. Sci Immunol 2022; 7:eabm6388. [PMID: 35030032 DOI: 10.1126/sciimmunol.abm6388] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Jovanović Krivokuća M, Vilotić A, Nacka-Aleksić M, Pirković A, Ćujić D, Legner J, Dekanski D, Bojić-Trbojević Ž. Galectins in Early Pregnancy and Pregnancy-Associated Pathologies. Int J Mol Sci 2021; 23:69. [PMID: 35008499 PMCID: PMC8744741 DOI: 10.3390/ijms23010069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Galectins are a family of conserved soluble proteins defined by an affinity for β-galactoside structures present on various glycoconjugates. Over the past few decades, galectins have been recognized as important factors for successful implantation and maintenance of pregnancy. An increasing number of studies have demonstrated their involvement in trophoblast cell function and placental development. In addition, several lines of evidence suggest their important roles in feto-maternal immune tolerance regulation and angiogenesis. Changed or dysregulated galectin expression is also described in pregnancy-related disorders. Although the data regarding galectins' clinical relevance are still at an early stage, evidence suggests that some galectin family members are promising candidates for better understanding pregnancy-related pathologies, as well as predicting biomarkers. In this review, we aim to summarize current knowledge of galectins in early pregnancy as well as in pregnancy-related pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Žanka Bojić-Trbojević
- Institute for Application of Nuclear Energy Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (M.J.K.); (A.V.); (M.N.-A.); (A.P.); (D.Ć.); (J.L.); (D.D.)
| |
Collapse
|
29
|
Li WX, Xu XH, Jin LP. Regulation of the innate immune cells during pregnancy: An immune checkpoint perspective. J Cell Mol Med 2021; 25:10362-10375. [PMID: 34708495 PMCID: PMC8581333 DOI: 10.1111/jcmm.17022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The foetus can be regarded as a half‐allograft implanted into the maternal body. In a successful pregnancy, the mother does not reject the foetus because of the immune tolerance mechanism at the maternal‐foetal interface. The innate immune cells are a large part of the decidual leukocytes contributing significantly to a successful pregnancy. Although the contributions have been recognized, their role in human pregnancy has not been completely elucidated. Additionally, the accumulated evidence demonstrates that the immune checkpoint molecules expressed on the immune cells are co‐inhibitory receptors regulating their activation and biological function. Therefore, it is critical to understand the immune microenvironment and explore the function of the innate immune cells during pregnancy. This review summarizes the classic immune checkpoints such as PD‐1, CTLA‐4 and some novel molecules recently identified, including TIM‐3, CD200, TIGIT and the Siglecs family on the decidual and peripheral innate immune cells during pregnancy. Furthermore, it emphasizes the role of the immune checkpoint molecules in pregnancy‐associated complications and reproductive immunotherapy.
Collapse
Affiliation(s)
- Wen-Xuan Li
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang-Hong Xu
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ping Jin
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
30
|
The dual role of IL-27 in CD4+T cells. Mol Immunol 2021; 138:172-180. [PMID: 34438225 DOI: 10.1016/j.molimm.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/02/2021] [Accepted: 08/01/2021] [Indexed: 12/19/2022]
Abstract
Interleukin-27 (IL-27), a member of the IL-6/IL-12 family, has diverse regulatory functions in various immune responses, and is recognised as a potent agonist and antagonist of CD4+T cells in different contexts. However, this dual role and underlying mechanisms have not been completely defined. In the present review, we summarise the dual role of IL-27 in CD4+T cells. In particular, we aimed to decipher its mechanism to better understand the context-dependent function of IL-27 in CD4+T cells. Furthermore, we propose a possible mechanism for the dual role of IL-27. This may be helpful for the development of appropriate IL-27 treatments in various clinical settings.
Collapse
|
31
|
Johnson LJ, Azari S, Webb A, Zhang X, Gavrilin MA, Marshall JM, Rood K, Seveau S. Human Placental Trophoblasts Infected by Listeria monocytogenes Undergo a Pro-Inflammatory Switch Associated With Poor Pregnancy Outcomes. Front Immunol 2021; 12:709466. [PMID: 34367171 PMCID: PMC8346206 DOI: 10.3389/fimmu.2021.709466] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
The placenta controls the growth of the fetus and ensures its immune protection. Key to these functions, the syncytiotrophoblast (SYN) is a syncytium formed by fusion of underlying mononuclear trophoblasts. The SYN covers the placental surface and is bathed in maternal blood to mediate nutritional and waste exchanges between the mother and fetus. The bacterial pathogen Listeria monocytogenes breaches the trophoblast barrier and infects the placental/fetal unit resulting in poor pregnancy outcomes. In this work, we analyzed the L. monocytogenes intracellular lifecycle in primary human trophoblasts. In accordance with previous studies, we found that the SYN is 20-fold more resistant to infection compared to mononuclear trophoblasts, forming a protective barrier to infection at the maternal interface. We show for the first time that this is due to a significant reduction in L. monocytogenes uptake by the SYN rather than inhibition of the bacterial intracellular division or motility. We here report the first transcriptomic analysis of L. monocytogenes-infected trophoblasts (RNA sequencing). Pathway analysis showed that infection upregulated TLR2, NOD-like, and cytosolic DNA sensing pathways, as well as downstream pro-inflammatory circuitry (NF-κB, AP-1, IRF4, IRF7) leading to the production of mediators known to elicit the recruitment and activation of maternal leukocytes (IL8, IL6, TNFα, MIP-1). Signature genes associated with poor pregnancy outcomes were also upregulated upon infection. Measuring the release of 54 inflammatory mediators confirmed the transcriptomic data and revealed sustained production of tolerogenic factors (IL-27, IL-10, IL-1RA, TSLP) despite infection. Both the SYN and mononuclear trophoblasts produced cytokines, but surprisingly, some cytokines were predominantly produced by the SYN (IL-8, IL-6) or by non-fused trophoblasts (TNFα). Collectively, our data support that trophoblasts act as placental gatekeepers that limit and detect L. monocytogenes infection resulting in a pro-inflammatory response, which may contribute to the poor pregnancy outcomes if the pathogen persists.
Collapse
Affiliation(s)
- Lauren J Johnson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Siavash Azari
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Xiaoli Zhang
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, United States
| | - Mikhail A Gavrilin
- Pulmonary, Critical Care and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Joanna M Marshall
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Kara Rood
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The Ohio State University, Columbus, OH, United States
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
32
|
Ran Y, Huang D, Mei Y, Liu Z, Zhou Y, He J, Zhang H, Yin N, Qi H. Identification of the correlations between interleukin-27 (IL-27) and immune-inflammatory imbalance in preterm birth. Bioengineered 2021; 12:3201-3218. [PMID: 34224308 PMCID: PMC8806804 DOI: 10.1080/21655979.2021.1945894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Preterm birth (PTB) is an immune-inflammatory disease that needs to be resolved. This study aimed to identify the role of interleukin-27 (IL-27), an immunomodulatory factor, in PTB and its associated mechanisms. Here, we analyzed the high-throughput of samples data from the maternal-fetal interface to the peripheral circulation obtained from public databases and reported that the elevated IL-27 was involved with the onset of PTB. Further bioinformatics analyses (e.g. GeneMANIA and GSEA) revealed that IL-27 overexpression in the peripheral circulation as well as maternal-fetal interface is related to the activation of the immune-inflammatory process represented by IFN-γ signaling, etc. In addition, IL-27 and immune infiltration correlation analysis demonstrated that IL-27 mediates this immune-inflammatory imbalance, plausibly mainly through monocyte-macrophage and neutrophils. This finding was further validated by analyzing additional datasets. Overall, this is the first study to elaborate on the role of IL-27-mediated immuno-inflammation in PTB from the perspective of bioinformatics, which may provide a novel strategy for the prevention and treatment of PTB.
Collapse
Affiliation(s)
- Yuxin Ran
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Dongni Huang
- Department of Obstetrics, Health Center for Women and Children, Chongqing, China
| | - Youwen Mei
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Zheng Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yunqian Zhou
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hanwen Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nanlin Yin
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|