1
|
Xiong W, Shu XL, Huang L, He SQ, Liu LH, Li S, Shao ZC, Wang J, Cheng L. Bioinformatics Analysis and Experimental Validation of Differential Genes and Pathways in Bone Nonunions. Biochem Genet 2024; 62:4494-4517. [PMID: 38324134 DOI: 10.1007/s10528-023-10633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/12/2023] [Indexed: 02/08/2024]
Abstract
Non-union fractures pose a significant clinical challenge, often leading to prolonged pain and disability. Understanding the molecular mechanisms underlying non-union fractures is crucial for developing effective therapeutic interventions. This study integrates bioinformatics analysis and experimental validation to unravel key genes and pathways associated with non-union fractures. We identified differentially expressed genes (DEGs) between non-union and fracture healing tissues using bioinformatics techniques. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to elucidate the biological processes and pathways involved. Common DEGs were identified, and a protein-protein interaction (PPI) network was constructed. Fibronectin-1 (FN1), Thrombospondin-1 (THBS1), and Biglycan (BGN) were pinpointed as critical target genes for non-union fracture treatment. Experimental validation involved alkaline phosphatase (ALP) and Alizarin Red staining to confirm osteogenic differentiation. Our analysis revealed significant alterations in pathways related to cell behavior, tissue regeneration, wound healing, infection, and immune responses in non-union fracture tissues. FN1, THBS1, and BGN were identified as key genes, with their upregulation indicating potential disruptions in the bone remodeling process. Experimental validation confirmed the induction of osteogenic differentiation. The study provides comprehensive insights into the molecular mechanisms of non-union fractures, emphasizing the pivotal roles of FN1, THBS1, and BGN in extracellular matrix dynamics and bone regeneration. The findings highlight potential therapeutic targets and pathways for further investigation. Future research should explore interactions between these genes, validate results using in vivo fracture models, and develop tailored treatment strategies for non-union fractures, promising significant advances in clinical management.
Collapse
Affiliation(s)
- Wei Xiong
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No. 264, Minde Road, Donghu District, Nanchang City, 330008, Jiangxi, China
| | - Xing-Li Shu
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No. 264, Minde Road, Donghu District, Nanchang City, 330008, Jiangxi, China
| | - Lv Huang
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No. 264, Minde Road, Donghu District, Nanchang City, 330008, Jiangxi, China
| | - Su-Qi He
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang City, 330004, Jiangxi, China
| | - Lang-Hui Liu
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No. 264, Minde Road, Donghu District, Nanchang City, 330008, Jiangxi, China
| | - Song Li
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No. 264, Minde Road, Donghu District, Nanchang City, 330008, Jiangxi, China
| | - Zi-Chen Shao
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang City, 330004, Jiangxi, China.
| | - Jun Wang
- General Surgery Department of Trauma Center, The First Hospital of Nanchang, Nanchang City, 330008, Jiangxi, China.
| | - Ling Cheng
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No. 264, Minde Road, Donghu District, Nanchang City, 330008, Jiangxi, China.
| |
Collapse
|
2
|
Hou S, Xu H, Lei S, Zhao D. Overexpressed nicotinamide N‑methyltransferase in endometrial stromal cells induced by macrophages and estradiol contributes to cell proliferation in endometriosis. Cell Death Discov 2024; 10:463. [PMID: 39489776 PMCID: PMC11532478 DOI: 10.1038/s41420-024-02229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Endometriosis, an estrogen-dependent chronic inflammatory condition, afflicts reproductive-aged women. However, the underlying pathological mechanisms remain to be elucidated. Nicotinamide N-methyltransferase (NNMT) is a critical enzyme involved in cellular metabolism and methylation regulation. This study investigated the role of NNMT in endometriosis. By analyzing datasets GSE5108, GSE7305, GSE141549, GSE23339, and GSE25628, we identified a significant overexpression of NNMT in the eutopic endometrium and ectopic lesions of endometriosis patients compared to normal endometrium. Furthermore, NNMT was upregulated in collected endometrioma specimens and isolated primary endometrial stromal cells (ESCs) compared to their respective controls. Inhibition of NNMT using JBSNF-000088 attenuated the proliferation, migration, and invasion of ESCs. In vivo, treatment of mouse models of endometriosis with JBSNF-000088 resulted in a marked reduction in lesion weight and quantity. NNMT expression in ESCs was dose-dependently upregulated by 17β-estradiol at concentrations of 1 nM, 10 nM, and 100 nM, an effect that was attenuated by 10 nM progesterone. Additionally, treating HESCs with macrophage-conditioned medium elevated NNMT expression at both mRNA and protein levels. Knockdown of NNMT impeded the proliferation, migration, and invasion of ESCs, which was paralleled by decreased phosphorylation levels of Erb-b2 receptor tyrosine kinase 4 (ERBB4), PI3K, and AKT. Conversely, overexpressing ERBB4 mitigated the NNMT knockdown-induced decline in phosphorylated PI3K and AKT and rescued the proliferation of ESCs. Altogether, these results indicate that the overexpression of NNMT induced by estrogen and macrophage interaction modulates ESC proliferation via the NNMT-ERBB4-PI3K/AKT signaling pathway, as well as promotes cellular migration and invasion, contributing to the development of endometriosis.
Collapse
Affiliation(s)
- Shuhui Hou
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shating Lei
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Dong Zhao
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Chatterjee M, Gupta S, Nag S, Rehman I, Parashar D, Maitra A, Das K. Circulating Extracellular Vesicles: An Effective Biomarker for Cancer Progression. FRONT BIOSCI-LANDMRK 2024; 29:375. [PMID: 39614441 DOI: 10.31083/j.fbl2911375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
Extracellular vesicles (EVs), the ubiquitous part of human biology, represent a small heterogenous, membrane-enclosed body that contains a diverse payload including genetic materials in the form of DNA, RNAs, small non-coding RNAs, etc. mostly mirroring their source of origin. Since, a vast majority of research has been conducted on how nucleic acids, proteins, lipids, and metabolites, associated with EVs can be effectively utilized to identify disease progression and therapeutic responses in cancer patients, EVs are increasingly being touted as valuable and reliable identifiers of cancer biomarkers in liquid biopsies. However, the lack of comprehensive clinical validation and effective standardization protocols severely limits its applications beyond the laboratories. The present review focuses on understanding the role of circulating EVs in different cancers and how they could potentially be treated as cancer biomarkers, typically due to the presence of bioactive molecules such as small non-coding RNAs, RNAs, DNA, proteins, etc., and their utilization for fine-tuning therapies. Here, we provide a brief general biology of EVs including their classification and subsequently discuss the source of circulatory EVs, the role of their associated payload as biomarkers, and how different cancers affect the level of circulatory EVs population.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, 281406 Mathura, India
| | - Sayoni Nag
- Department of Biotechnology, Brainware University, 700125 Barasat, India
| | - Ishita Rehman
- Department of Biotechnology, The Neotia University, 743368 Parganas, India
| | - Deepak Parashar
- Department of Medicine, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arindam Maitra
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| |
Collapse
|
4
|
Yunyun Z, Guihu W, An J. Explore the expression of mitochondria-related genes to construct prognostic risk model for ovarian cancer and validate it, so as to provide optimized treatment for ovarian cancer. Front Immunol 2024; 15:1458264. [PMID: 39478854 PMCID: PMC11521951 DOI: 10.3389/fimmu.2024.1458264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024] Open
Abstract
Background The use of gene development data from public database has become a new starting point to explore mitochondrial related gene expression and construct a prognostic prediction model of ovarian cancer. Methods Data were obtained from the TCGA and ICGC databases, and the intersection with mitochondrial genes was used to obtain the differentially expressed genes. q-PCR, Cox proportional risk regression, minimal absolute contraction and selection operator regression analysis were performed to construct the prognostic risk model, and ROC curve was used to evaluate the model for centralized verification. The association between risk scores and clinical features, tumor mutation load, immune cell infiltration, macrophage activation analysis, immunotherapy, and chemosensitivity was further evaluated. Results A prognostic risk score model for ovarian cancer patients was constructed based on 12 differentially expressed genes. The score was highly correlated with ovarian cancer macrophage infiltration and was a good predictor of the response to immunotherapy. M1 and M2 macrophages in the ovarian tissue in the OV group were significantly activated, providing a reference for the study of the polarity change of tumor-related macrophages for the prognosis and treatment of ovarian cancer. In terms of drug sensitivity, the high-risk group was more sensitive to vinblastine, Acetalax, VX-11e, and PD-0325901, while the low-risk group was more sensitive to Sabutoclax, SB-505124, cisplatin, and erlotinib. Conclusion The prognostic risk model of ovarian cancer associated to mitochondrial genes built on the basis of public database better evaluated the prognosis of ovarian cancer patients and guided individual treatment.
Collapse
Affiliation(s)
- Zheng Yunyun
- Department of Hepatobiliary Pancreas Surgery and Liver Transplantation, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of AFM (Air Force Medical University), Xi’an, Shaanxi, China
| | - Wang Guihu
- Department of Hepatobiliary Pancreas Surgery and Liver Transplantation, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Jiang An
- Department of Hepatobiliary Pancreas Surgery and Liver Transplantation, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Xu D, Bi S, Li J, Ma S, Yu ZA, Wang Y, Chen H, Zhan J, Song X, Cai Y. Legumain-Guided Ferulate-Peptide Self-Assembly Enhances Macrophage-Endotheliocyte Partnership to Promote Therapeutic Angiogenesis After Myocardial Infarction. Adv Healthc Mater 2024:e2402056. [PMID: 39252665 DOI: 10.1002/adhm.202402056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Promoting angiogenesis and modulating the inflammatory microenvironment are promising strategies for treating acute myocardial infarction (MI). Macrophages are crucial in regulating inflammation and influencing angiogenesis through interactions with endothelial cells. However, current therapies lack a comprehensive assessment of pathological and physiological subtleties, resulting in limited myocardial recovery. In this study, legumain-guided ferulate-peptide nanofibers (LFPN) are developed to facilitate the interaction between macrophages and endothelial cells in the MI lesion and modulate their functions. LFPN exhibits enhanced ferulic acid (FA) aggregation and release, promoting angiogenesis and alleviating inflammation. The multifunctional role of LFPN is validated in cells and an MI mouse model, where it modulated macrophage polarization, attenuated inflammatory responses, and induces endothelial cell neovascularization compare to FA alone. LFPN supports the preservation of border zone cardiomyocytes by regulating inflammatory infiltration in the ischemic core, leading to significant functional recovery of the left ventricle. These findings suggest that synergistic therapy exploiting multicellular interaction and enzyme guidance may enhance the clinical translation potential of smart-responsive drug delivery systems to treat MI. This work emphasizes macrophage-endothelial cell partnerships as a novel paradigm to enhance cell interactions, control inflammation, and promote therapeutic angiogenesis.
Collapse
Affiliation(s)
- Delong Xu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shenghui Bi
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jiejing Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shaodan Ma
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Ze-An Yu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yenan Wang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Huiming Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xudong Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
6
|
Duval C, Wyse BA, Tsang BK, Librach CL. Extracellular vesicles and their content in the context of polycystic ovarian syndrome and endometriosis: a review. J Ovarian Res 2024; 17:160. [PMID: 39103867 DOI: 10.1186/s13048-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Extracellular vesicles (EVs), particles enriched in bioactive molecules like proteins, nucleic acids, and lipids, are crucial mediators of intercellular communication and play key roles in various physiological and pathological processes. EVs have been shown to be involved in ovarian follicular function and to be altered in two prevalent gynecological disorders; polycystic ovarian syndrome (PCOS) and endometriosis.Ovarian follicles are complex microenvironments where folliculogenesis takes place with well-orchestrated interactions between granulosa cells, oocytes, and their surrounding stromal cells. Recent research unveiled the presence of EVs, including exosomes and microvesicles, in the follicular fluid (FFEVs), which constitutes part of the developing oocyte's microenvironment. In the context of PCOS, a multifaceted endocrine, reproductive, and metabolic disorder, studies have explored the dysregulation of these FFEVs and their cargo. Nine PCOS studies were included in this review and two miRNAs were commonly reported in two different studies, miR-379 and miR-200, both known to play a role in female reproduction. Studies have also demonstrated the potential use of EVs as diagnostic tools and treatment options.Endometriosis, another prevalent gynecological disorder characterized by ectopic growth of endometrial-like tissue, has also been linked to aberrant EV signaling. EVs in the peritoneal fluid of women with endometriosis carry molecules that modulate the immune response and promote the establishment and maintenance of endometriosis lesions. EVs derived from endometriosis lesions, serum and peritoneal fluid obtained from patients with endometriosis showed no commonly reported biomolecules between the eleven reviewed studies. Importantly, circulating EVs have been shown to be potential biomarkers, also reflecting the severity of the pathology.Understanding the interplay of EVs within human ovarian follicles may provide valuable insights into the pathophysiology of both PCOS and endometriosis. Targeting EV-mediated communication may open avenues for novel diagnostic and therapeutic approaches for these common gynecological disorders. More research is essential to unravel the mechanisms underlying EV involvement in folliculogenesis and its dysregulation in PCOS and endometriosis, ultimately leading to more effective and personalized interventions.
Collapse
Affiliation(s)
- Cyntia Duval
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Benjamin K Tsang
- Inflammation and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L Librach
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
7
|
Khashchenko EP, Krechetova LV, Vishnyakova PA, Fatkhudinov TK, Inviyaeva EV, Vtorushina VV, Gantsova EA, Kiseleva VV, Poltavets AS, Elchaninov AV, Uvarova EV, Chuprynin VD, Sukhikh GT. Altered Monocyte and Lymphocyte Phenotypes Associated with Pathogenesis and Clinical Efficacy of Progestogen Therapy for Peritoneal Endometriosis in Adolescents. Cells 2024; 13:1187. [PMID: 39056769 PMCID: PMC11274988 DOI: 10.3390/cells13141187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Immunological imbalances characteristic of endometriosis may develop as early as the primary manifestations of the disease in adolescence. Objective: To evaluate subpopulation dynamics of monocytes and lymphocytes in peripheral blood and peritoneal fluid of adolescents with peritoneal endometriosis at diagnosis and after 1-year progestogen therapy. Methods: This study included 70 girls, 13-17 years old, diagnosed laparoscopically with peritoneal endometriosis (n = 50, main group) or paramesonephric cysts (n = 20, comparison group). Phenotypes of monocytes and lymphocytes of the blood and macrophages of the peritoneal fluid were analyzed by flow cytometry at diagnosis and during progestogen therapy. Results: Differential blood counts of CD16+ (p < 0.001) and CD86+ (p = 0.017) monocytes were identified as independent risk factors for peritoneal endometriosis in adolescents. During the treatment, cytotoxic lymphocytes CD56dimCD16bright (p = 0.049) and CD206+ monocytes (p < 0.001) significantly increased while CD163+ monocytes decreased in number (p = 0.017). The CD56dimCD16bright blood counts before (p < 0.001) and during progestogen therapy (p = 0.006), as well as CD206+ blood counts during the treatment (p = 0.038), were associated with the efficacy of pain relief after 1-year progestogen therapy. Conclusions: Adolescents with peritoneal endometriosis have altered counts of pro- and anti-inflammatory monocytes and lymphocytes both before and after 1-year progestogen therapy, correlating with treatment efficacy and justifying long-term hormonal therapy.
Collapse
Affiliation(s)
- Elena P. Khashchenko
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (L.V.K.); (P.A.V.); (T.K.F.); (E.V.I.); (V.V.V.); (V.V.K.); (A.S.P.); (A.V.E.); (E.V.U.); (V.D.C.)
| | - Lyubov V. Krechetova
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (L.V.K.); (P.A.V.); (T.K.F.); (E.V.I.); (V.V.V.); (V.V.K.); (A.S.P.); (A.V.E.); (E.V.U.); (V.D.C.)
| | - Polina A. Vishnyakova
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (L.V.K.); (P.A.V.); (T.K.F.); (E.V.I.); (V.V.V.); (V.V.K.); (A.S.P.); (A.V.E.); (E.V.U.); (V.D.C.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117997 Moscow, Russia;
| | - Timur Kh. Fatkhudinov
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (L.V.K.); (P.A.V.); (T.K.F.); (E.V.I.); (V.V.V.); (V.V.K.); (A.S.P.); (A.V.E.); (E.V.U.); (V.D.C.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117997 Moscow, Russia;
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Eugeniya V. Inviyaeva
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (L.V.K.); (P.A.V.); (T.K.F.); (E.V.I.); (V.V.V.); (V.V.K.); (A.S.P.); (A.V.E.); (E.V.U.); (V.D.C.)
| | - Valentina V. Vtorushina
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (L.V.K.); (P.A.V.); (T.K.F.); (E.V.I.); (V.V.V.); (V.V.K.); (A.S.P.); (A.V.E.); (E.V.U.); (V.D.C.)
| | - Elena A. Gantsova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117997 Moscow, Russia;
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Viktoriia V. Kiseleva
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (L.V.K.); (P.A.V.); (T.K.F.); (E.V.I.); (V.V.V.); (V.V.K.); (A.S.P.); (A.V.E.); (E.V.U.); (V.D.C.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117997 Moscow, Russia;
| | - Anastasiya S. Poltavets
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (L.V.K.); (P.A.V.); (T.K.F.); (E.V.I.); (V.V.V.); (V.V.K.); (A.S.P.); (A.V.E.); (E.V.U.); (V.D.C.)
| | - Andrey V. Elchaninov
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (L.V.K.); (P.A.V.); (T.K.F.); (E.V.I.); (V.V.V.); (V.V.K.); (A.S.P.); (A.V.E.); (E.V.U.); (V.D.C.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117997 Moscow, Russia;
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Department of Histology, Embryology and Cytology, Pirogov Russian National Research Medical University (Pirogov Medical University), 117997 Moscow, Russia
| | - Elena V. Uvarova
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (L.V.K.); (P.A.V.); (T.K.F.); (E.V.I.); (V.V.V.); (V.V.K.); (A.S.P.); (A.V.E.); (E.V.U.); (V.D.C.)
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia
| | - Vladimir D. Chuprynin
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (L.V.K.); (P.A.V.); (T.K.F.); (E.V.I.); (V.V.V.); (V.V.K.); (A.S.P.); (A.V.E.); (E.V.U.); (V.D.C.)
| | - Gennady T. Sukhikh
- FSBI “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (L.V.K.); (P.A.V.); (T.K.F.); (E.V.I.); (V.V.V.); (V.V.K.); (A.S.P.); (A.V.E.); (E.V.U.); (V.D.C.)
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia
| |
Collapse
|
8
|
Zhang F, Liu W, Mao Y, Yang Y, Ling C, Liu Y, Yao F, Zhen Y, Wang X, Zou M. Migrasome, a migration-dependent organelle. Front Cell Dev Biol 2024; 12:1417242. [PMID: 38903534 PMCID: PMC11187097 DOI: 10.3389/fcell.2024.1417242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Migrasomes are organelles produced by migrating cells that form on retraction fibers and are released during cell migration. Migrasomes are involved in physiological and pathological processes such as intercellular communication, cell homeostasis maintenance, signal transduction, disease occurrence and development, and cancer metastasis. In addition, methods and techniques for studying migrasomes are constantly evolving. Here, we review the discovery, formation process, regulation, and known functions of migrasomes, summarize the commonly used specific markers of migrasomes, and the methods for observing migrasomes. Meanwhile, this review also discusses the potential applications of migrasomes in physiological processes, disease diagnosis, treatment, and prognosis, and looks forward to their wider application in biomedicine. In addition, the study of migrasomes will also reveal a new perspective on the mechanism of intercellular communication and promote the further development of life science.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mincheng Zou
- Department of Orthopaedics, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Samare-Najaf M, Razavinasab SA, Samareh A, Jamali N. Omics-based novel strategies in the diagnosis of endometriosis. Crit Rev Clin Lab Sci 2024; 61:205-225. [PMID: 37878077 DOI: 10.1080/10408363.2023.2270736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Endometriosis, an enigmatic and chronic disorder, is considered a debilitating condition despite being benign. Globally, this gynecologic disorder affects up to 10% of females of reproductive age, impacting almost 190 million individuals. A variety of genetic and environmental factors are involved in endometriosis development, hence the pathophysiology and etiology of endometriosis remain unclear. The uncertainty of the etiology of the disease and its complexity along with nonspecific symptoms have led to misdiagnosis or lack of diagnosis of affected people. Biopsy and laparoscopy are referred to as the gold standard for endometriosis diagnosis. However, the invasiveness of the procedure, the unnecessary operation in disease-free women, and the dependence of the reliability of diagnosis on experience in this area are considered the most significant limitations. Therefore, continuous studies have attempted to offer a noninvasive and reliable approach. The recent advances in modern technologies have led to the generation of large-scale biological data sets, known as -omics data, resulting in the proceeding of the -omics century in biomedical sciences. Thereby, the present study critically reviews novel and noninvasive biomarkers that are based on -omics approaches from 2020 onward. The findings reveal that biomarkers identified based on genomics, epigenomics, transcriptomics, proteomics, and metabolomics are potentially able to diagnose endometriosis, predict prognosis, and stage patients, and potentially, in the near future, a multi-panel of these biomarkers will generate clinical benefits.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
10
|
Chu X, Hou M, Li Y, Zhang Q, Wang S, Ma J. Extracellular vesicles in endometriosis: role and potential. Front Endocrinol (Lausanne) 2024; 15:1365327. [PMID: 38737555 PMCID: PMC11082332 DOI: 10.3389/fendo.2024.1365327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Endometriosis is a chronic inflammatory gynecological disease, which profoundly jeopardizes women's quality of life and places a significant medical burden on society. The pathogenesis of endometriosis remains unclear, posing major clinical challenges in diagnosis and treatment. There is an urgent demand for the development of innovative non-invasive diagnostic techniques and the identification of therapeutic targets. Extracellular vesicles, recognized for transporting a diverse array of signaling molecules, have garnered extensive attention as a novel mode of intercellular communication. A burgeoning body of research indicates that extracellular vesicles play a pivotal role in the pathogenesis of endometriosis, which may provide possibility and prospect for both diagnosis and treatment. In light of this context, this article focuses on the involvement of extracellular vesicles in the pathogenesis of endometriosis, which deliver information among endometrial stromal cells, macrophages, mesenchymal stem cells, and other cells, and explores their potential applications in the diagnosis and treatment, conducing to the emergence of new strategies for clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
11
|
Zhang Z, Xiong Y, Jiang H, Wang Q, Hu X, Wei X, Chen Q, Chen T. Vaginal extracellular vesicles impair fertility in endometriosis by favoring Th17/Treg imbalance and inhibiting sperm activity. J Cell Physiol 2024; 239:e31188. [PMID: 38192157 DOI: 10.1002/jcp.31188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Extracellular vesicles (EVs) play a key role in various diseases. However, their effect on endometriosis (EMs)-associated infertility is poorly understood. We co-cultured EVs from the female vaginal secretions with human sperm and also generated a mouse model of EMs by allogenic transplant to explore the effect of EVs on fertility. EVs from individuals with EMs-associated infertility (E-EVs) significantly inhibited the total motility (26.46% vs. 47.1%), progressive motility (18.78% vs. 41.06%), linear velocity (21.98 vs. 41.91 µm/s) and the acrosome reaction (AR) rate (5% vs. 22.3%) of human sperm in contrast to the control group (PBS). Furthermore, E-EVs dose-dependently decreased the intracellular Ca2+ ([Ca2+]i), a pivotal regulator of sperm function. Conversely, healthy women (H-EVs) increased human sperm motion parameters, the AR rate, and sperm [Ca2+]i. Importantly, the mouse model of EMs confirmed that E-EVs further decreased the conception rate and the mean number of embryo implantations (7.6 ± 3.06 vs. 4.5 ± 3.21) compared with the control mice by inducing the production of inflammatory cytokines leading to a Th17/Treg imbalance. H-EVs could restore impaired fertility by restoring the Th17/Treg balance. We determined the impact of EVs derived from the female genital tract on human sperm function and studied the possible mechanisms by which it affects fertility. Our findings provide a novel rationale to ameliorate EMs-associated infertility.
Collapse
Affiliation(s)
- Zuo Zhang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yangbai Xiong
- International Tourism and Convention Management, Hong Kong Polytechnic University, Hong Kong, China
| | - Huifu Jiang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qian Wang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinyue Hu
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Wei
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Gibbons T, Rahmioglu N, Zondervan KT, Becker CM. Crimson clues: advancing endometriosis detection and management with novel blood biomarkers. Fertil Steril 2024; 121:145-163. [PMID: 38309818 DOI: 10.1016/j.fertnstert.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/05/2024]
Abstract
Endometriosis is an inflammatory condition affecting approximately 10% of the female-born population. Despite its prevalence, the lack of noninvasive biomarkers has contributed to an established global diagnostic delay. The intricate pathophysiology of this enigmatic disease may leave signatures in the blood, which, when detected, can be used as noninvasive biomarkers. This review provides an update on how investigators are utilizing the established disease pathways and innovative methodologies, including genome-wide association studies, next-generation sequencing, and machine learning, to unravel the clues left in the blood to develop blood biomarkers. Many blood biomarkers show promise in the discovery phase, but because of a lack of standardized and robust methodologies, they rarely progress to the development stages. However, we are now seeing biomarkers being validated with high diagnostic accuracy and improvements in standardization protocols, providing promise for the future of endometriosis blood biomarkers.
Collapse
Affiliation(s)
- Tatjana Gibbons
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom.
| | - Nilufer Rahmioglu
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Krina T Zondervan
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christian M Becker
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Kurkalang S, Roy S, Acharya A, Mazumder P, Mazumder S, Patra S, Ghosh S, Sarkar S, Kundu S, Biswas NK, Ghose S, Majumder PP, Maitra A. Single-cell transcriptomic analysis of gingivo-buccal oral cancer reveals two dominant cellular programs. Cancer Sci 2023; 114:4732-4746. [PMID: 37792582 PMCID: PMC10728019 DOI: 10.1111/cas.15979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023] Open
Abstract
Oral squamous cell carcinoma of the gingivo-buccal region (OSCC-GB) is the most common cancer among men in India, and is associated with poor prognosis and frequent recurrence. Cellular heterogeneity in OSCC-GB was investigated by single-cell RNA sequencing of tumors derived from the oral cavity of 12 OSCC-GB patients, 3 of whom had concomitant presence of a precancerous lesion (oral submucous fibrosis [OSMF]). Unique malignant cell types, features, and phenotypic shifts in the stromal cell population were identified in oral tumors with associated submucous fibrosis. Expression levels of FOS, ATP1A, and DUSP1 provided robust discrimination between tumors with or without the concomitant presence of OSMF. Malignant cell populations shared between tumors with and without OSMF were enriched with the expression of partial epithelial-mesenchymal transition (pEMT) or fetal cell type signatures indicative of two dominant cellular programs in OSCC-GB-pEMT and fetal cellular reprogramming. Malignant cells exhibiting fetal cellular and pEMT programs were enriched with the expression of immune-related pathway genes known to be involved in antitumor immune response. In the tumor microenvironment, higher infiltration of immune cells than the stromal cells was observed. The T cell population was large in tumors and diverse subtypes of T cells with varying levels of infiltration were found. We also detected double-negative PLCG2+ T cells and cells with intermediate M1-M2 macrophage polarization. Our findings shed light on unique aspects of cellular heterogeneity and cell states in OSCC-GB.
Collapse
Affiliation(s)
| | - Sumitava Roy
- National Institute of Biomedical GenomicsKalyaniIndia
- Regional Centre for BiotechnologyFaridabadIndia
| | - Arunima Acharya
- National Institute of Biomedical GenomicsKalyaniIndia
- Regional Centre for BiotechnologyFaridabadIndia
| | - Paramita Mazumder
- Department of Oral PathologyDr. R. Ahmed Dental College and HospitalKolkataIndia
| | | | - Subrata Patra
- National Institute of Biomedical GenomicsKalyaniIndia
| | - Shekhar Ghosh
- National Institute of Biomedical GenomicsKalyaniIndia
| | | | - Sudip Kundu
- National Institute of Biomedical GenomicsKalyaniIndia
| | | | - Sandip Ghose
- Department of Oral PathologyDr. R. Ahmed Dental College and HospitalKolkataIndia
| | | | | |
Collapse
|
14
|
Wei XJ, Huang YL, Chen TQ, Yang XJ. Inhibitory effect of telocyte-induced M1 macrophages on endometriosis: Targeting angiogenesis and invasion. Acta Histochem 2023; 125:152099. [PMID: 37813067 DOI: 10.1016/j.acthis.2023.152099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Telocytes (TCs), a novel type of stromal cells found in tissues, induce macrophage differentiation into classically activated macrophages (M1) types and enhance their phagocytic function. The purpose of this study was to investigate the inhibitory effects of TC-induced M1 macrophages on endometriosis (EMs). METHODS mouse uterine primary TCs and endometrial stromal cells (ESCs) were isolated and identified using double immunofluorescence staining. For the in vitro study, ESCs were treated with TC-induced M1 macrophages, and the vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and nuclear factor kappa B (NF-κb) genes were identified by quantitative real-time PCR (qRT-PCR) or western blotting (WB). For the in vivo study, an EMs mouse model received TC-conditioned medium (TCM) via abdominal administration, and characterized the inhibitory effects on growth (lesion weight, volume, and pathology), tissue-resident macrophages differentiation by immunostaining, angiogenic capacity (CD31 and VEGF), invasive capacity (MMP9), and NF-κb expression within EMs lesions. RESULTS immunofluorescent staining showed that uterine TCs expressed CD34+ and vimentin+, whereas ESCs expressed vimentin+ and cytokeratin-. At the cellular level, TC-induced M1 macrophages can significantly inhibit the expression of VEGF and MMP9 in ESCs through WB or qRT-PCR, possibly by suppressing the NF-κb pathway. The in vivo study showed that macrophages switch from the alternatively activated macrophages (M2) in untreated EMs lesions to the M1 subtype after TCM exposure. Thereby, TC-induced M1 macrophages contributed to the inhibition of EMs lesions. More importantly, this effect may be achieved by suppressing the expression of NF-κb to inhibit angiogenesis (CD31 and VEGF) and invasion (MMP9) in the tissue. CONCLUSION TC-induced M1 macrophages play a prevailing role in suppressing EMs by inhibiting angiogenic and invasive capacity through the NF-κb pathway, which provides a promising therapeutic approach for EMs.
Collapse
Affiliation(s)
- Xiao-Jiao Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215006, PR China
| | - Yue-Lin Huang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province 550000, PR China
| | - Tian-Quan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215006, PR China; Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province 225000, PR China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215006, PR China.
| |
Collapse
|
15
|
Zhang M, Xing J, Zhao S, Chen H, Yin X, Zhu X. Engineered extracellular vesicles in female reproductive disorders. Biomed Pharmacother 2023; 166:115284. [PMID: 37572637 DOI: 10.1016/j.biopha.2023.115284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Biologically active and nanoscale extracellular vesicles (EVs) participate in a variety of cellular physiological and pathological processes in a cell-free manner. Unlike cells, EVs not only do not cause acute immune rejection, but are much smaller and have a low risk of tumorigenicity or embolization. Because of their unique advantages, EVs show promise in applications in the diagnosis and treatment of reproductive disorders. As research broadens, engineering strategies for EVs have been developed, and engineering strategies for EVs have substantially improved their application potential while circumventing the defects of natural EVs, driving EVs toward clinical applications. In this paper, we will review the engineering strategies of EVs, as well as their regulatory effects and mechanisms on reproductive disorders (including premature ovarian insufficiency (POI), polycystic ovarian syndrome (PCOS), recurrent spontaneous abortion (RSA), intrauterine adhesion (IUA), and endometriosis (EMS)) and their application prospects. This work provides new ideas for the treatment of female reproductive disorders by engineering EVs.
Collapse
Affiliation(s)
- Mengxue Zhang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Jie Xing
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Shijie Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Hui Chen
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xinming Yin
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China.
| |
Collapse
|
16
|
Yang X, Fu Q, Zhang W, An Q, Zhang Z, Li H, Chen X, Chen Z, Cheng Y, Chen S, Man C, Du L, Chen Q, Wang F. Overexpression of Pasteurella multocida OmpA induces transcriptional changes and its possible implications for the macrophage polarization. Microb Pathog 2023; 183:106212. [PMID: 37353176 DOI: 10.1016/j.micpath.2023.106212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Pasteurella multocida (P. multocida) is a highly infectious, zoonotic pathogen. Outer membrane protein A (OmpA) is an important virulence component of the outer membrane of P. multocida. OmpA mediates bacterial biofilm formation, eukaryotic cell infection, and immunomodulation. It is unclear how OmpA affects the host immune response. We estimated the role of OmpA in the pathogenesis of P. multocida by investigating the effect of OmpA on the immune cell transcriptome. Changes in the transcriptome of rat alveolar macrophages (NR8383) upon overexpression of P. multocida OmpA were demonstrated. A model cell line for stable transcription of OmpA was constructed by infecting NR8383 cells with OmpA-expressing lentivirus. RNA was extracted from cells and sequenced on an Illumina HiSeq platform. Key gene analysis of genes in the RNA-seq dataset were performed using various bioinformatics methods, such as gene ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, Gene Set Enrichment Analysis, and Protein-Protein Interaction Analysis. Our findings revealed 1340 differentially expressed genes. Immune-related pathways that were significantly altered in rat alveolar macrophages under the effect of OmpA included focal adhesion, extracellular matrix and vascular endothelial growth factor signaling pathways, antigen processing and presentation, nucleotide oligomerization domain-like receptor and Toll-like receptor signaling pathways, and cytokine-cytokine receptor interaction. The key genes screened were Vegfa, Igf2r, Fabp5, P2rx1, C5ar1, Nedd4l, Gas6, Cxcl1, Pf4, Pdgfb, Thbs1, Col7a1, Vwf, Ccl9, and Arg1. Data of associated pathways and altered gene expression indicated that OmpA might cause the conversion of rat alveolar macrophages to M2-like. The related pathways and key genes can serve as a reference for OmpA of P. multitocida and host interaction mechanism studies.
Collapse
Affiliation(s)
- Xiaohong Yang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Qiaoyu Fu
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Wencan Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Qi An
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zhenxing Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Hong Li
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Xiangying Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zhen Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Yiwen Cheng
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
17
|
Lv SJ, Sun JN, Gan L, Sun J. Identification of molecular subtypes and immune infiltration in endometriosis: a novel bioinformatics analysis and In vitro validation. Front Immunol 2023; 14:1130738. [PMID: 37662927 PMCID: PMC10471803 DOI: 10.3389/fimmu.2023.1130738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Endometriosis is a worldwide gynacological diseases, affecting in 6-10% of women of reproductive age. The aim of this study was to investigate the gene network and potential signatures of immune infiltration in endometriosis. Methods The expression profiles of GSE51981, GSE6364, and GSE7305 were obtained from the Gene Expression Omnibus (GEO) database. Core modules and central genes related to immune characteristics were identified using a weighted gene coexpression network analysis. Bioinformatics analysis was performed to identify central genes in immune infiltration. Protein-protein interaction (PPI) network was used to identify the hub genes. We then constructed subtypes of endometriosis samples and calculated their correlation with hub genes. qRTPCR and Western blotting were used to verify our findings. Results We identified 10 candidate hub genes (GZMB, PRF1, KIR2DL1, KIR2DL3, KIR3DL1, KIR2DL4, FGB, IGFBP1, RBP4, and PROK1) that were significantly correlated with immune infiltration. Our study established a detailed immune network and systematically elucidated the molecular mechanism underlying endometriosis from the aspect of immune infiltration. Discussion Our study provides comprehensive insights into the immunology involved in endometriosis and might contribute to the development of immunotherapy for endometriosis. Furthermore, our study sheds light on the underlying molecular mechanism of endometriosis and might help improve the diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Si-ji Lv
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-ni Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Gan
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Jing Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
18
|
Wang Y, Dragovic RA, Greaves E, Becker CM, Southcombe JH. Macrophages and small extracellular vesicle mediated-intracellular communication in the peritoneal microenvironment: Impact on endometriosis development. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1130849. [PMID: 37077181 PMCID: PMC10106708 DOI: 10.3389/frph.2023.1130849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Endometriosis is an inflammatory disease that is defined as the growth of endometrium-like tissue outside the uterus, commonly on the lining of the pelvic cavity, visceral organs and in the ovaries. It affects around 190 million women of reproductive age worldwide and is associated with chronic pelvic pain and infertility, which greatly impairs health-related life quality. The symptoms of the disease are variable, this combined with a lack of diagnostic biomarkers and necessity of surgical visualisation to confirm disease, the prognosis can take an average timespan of 6-8 years. Accurate non-invasive diagnostic tests and the identification of effective therapeutic targets are essential for disease management. To achieve this, one of the priorities is to define the underlying pathophysiological mechanisms that contribute to endometriosis. Recently, immune dysregulation in the peritoneal cavity has been linked to endometriosis progression. Macrophages account for over 50% of immune cells in the peritoneal fluid and are critical for lesion growth, angiogenesis, innervation and immune regulation. Apart from the secretion of soluble factors like cytokines and chemokines, macrophages can communicate with other cells and prime disease microenvironments, such as the tumour microenvironment, via the secretion of small extracellular vesicles (sEVs). The sEV-mediated intracellular communication pathways between macrophages and other cells within the peritoneal microenvironment in endometriosis remain unclear. Here, we give an overview of peritoneal macrophage (pMΦ) phenotypes in endometriosis and discuss the role of sEVs in the intracellular communication within disease microenvironments and the impact they may have on endometriosis progression.
Collapse
Affiliation(s)
- Yifan Wang
- Nuffield Department of Women's and Reproductive Health, Oxford Endometriosis CaRe Centre, Nuffield University of Oxford, Oxford, United Kingdom
| | - Rebecca A. Dragovic
- Nuffield Department of Women's and Reproductive Health, Oxford Endometriosis CaRe Centre, Nuffield University of Oxford, Oxford, United Kingdom
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Christian M. Becker
- Nuffield Department of Women's and Reproductive Health, Oxford Endometriosis CaRe Centre, Nuffield University of Oxford, Oxford, United Kingdom
| | - Jennifer H. Southcombe
- Nuffield Department of Women's and Reproductive Health, Oxford Endometriosis CaRe Centre, Nuffield University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Identification and Characterization of an Ageing-Associated 13-lncRNA Signature That Predicts Prognosis and Immunotherapy in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:4615297. [PMID: 36844873 PMCID: PMC9957638 DOI: 10.1155/2023/4615297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 02/19/2023]
Abstract
Background In cancer pathology, cell senescence not only alters cell function but also reshapes the immune microenvironments in tumours. However, the association between cell senescence, tumour microenvironment, and disease progression of hepatocellular carcinoma (HCC) is yet to be fully understood. Therefore, the role of cell senescence-related genes and long noncoding RNAs (lncRNAs) in evaluating the clinical prognosis and immune cell infiltration (ICI) of HCC patients requires further investigation. Methods The limma R package was utilised to investigate differentially expressed genes according to the multiomics data. The CIBERSORT R package was utilised to assess ICI, and unsupervised cluster analysis was conducted using the R software's ConsensusClusterPlus package. A polygenic prognostic model of lncRNAs was constructed by conducting univariate and least absolute shrinkage and selection operator (Lasso) cox proportional-hazards regression analyses. The time-dependent receiver operating characteristic (ROC) curves were used for validation. We utilised the survminer R package to evaluate the tumour mutational burden (TMB). Moreover, the gene set enrichment analysis (GSEA) helped in pathway enrichment analysis, and the immune infiltration level of the model was evaluated using the IMvigor210 cohort. Results The identification of 36 prognosis-related genes was achieved based on their differential expression between healthy and liver cancer tissues. Liver cancer individuals were categorised into 3 independent senescence subtypes using the gene list, revealing considerable survival differences (variations). We observed that the prognosis of patients in the ARG-ST2 subtype was substantially better as compared to that in the ARG-ST3 subtype. Differences were observed in gene expression profiles among the three subtypes, with the differentially expressed genes predominantly associated with cell cycle control. The enrichment of upregulated genes in the ARG-ST3 subtype was observed in pathways related to biological processes, for instance, organelle fission, nuclear division, and chromosome recombination. ICI in the ARG-ST1 and ARG-ST2 subtypes, with relatively better prognosis, was substantially higher as compared to the ARG-ST3 subtype. Furthermore, a risk-score model, which can be employed as a reliable prognostic factor in an independent manner for individuals suffering from liver cancer, was constructed based on 13 cell senescence-related lncRNAs (MIR99AHG, LINC01224, LINC01138, SLC25A30AS1, AC006369.2, SOCS2AS1, LINC01063, AC006037.2, USP2AS1, FGF14AS2, LINC01116, KIF25AS1, and AC002511.2). The individuals with higher risk scores had noticeably poor prognoses in contrast with those having low-risk scores. Moreover, increased levels of TMB and ICI were observed in individuals with low-risk scores and gaining more benefit from immune checkpoint therapy. Conclusion Cell senescence is an essential factor in HCC onset and progression. We identified 13 senescence-related lncRNAs as HCC prognostic markers, which can help understand their function in the onset and progression of HCC and guide clinical diagnosis and treatment.
Collapse
|
20
|
Scheck S, Paterson ESJ, Henry CE. A promising future for endometriosis diagnosis and therapy: extracellular vesicles - a systematic review. Reprod Biol Endocrinol 2022; 20:174. [PMID: 36544197 PMCID: PMC9768904 DOI: 10.1186/s12958-022-01040-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022] Open
Abstract
Endometriosis is a chronic, inflammatory gynaecological disease that can have severe negative impacts on quality of life and fertility, placing burden on patients and the healthcare system. Due to the heterogeneous nature of endometriosis, and the lack of correlation between symptom and surgical disease severity, diagnosis and treatment remain a significant clinical challenge. Extracellular vesicles (EVs) are biologically active particles containing molecular cargo involved in intercellular communication, that can be exploited for diagnostic and therapeutic purposes.We systematically reviewed studies exploring EVs and their role in endometriosis, specifically addressing diagnostic and therapeutic potential and current understanding of pathophysiology. Five databases (Pubmed, Embase, Medline, Web of Science, Google Scholar) were searched for keywords 'endometriosis' and either 'extracellular vesicles' or 'exosomes'.There were 28 studies included in the review. Endometrium derived EVs contribute to the development of endometriosis. EVs derived from endometriosis lesions contribute to angiogenesis, immunomodulation and fibrosis. Such EVs can be detected in blood, with early data demonstrating utility in diagnosis and recurrence detection. EV isolation techniques varied between studies and only eight of twenty-eight studies fully characterised EVs according to current recommended standards. Reporting/type of endometriosis was limited across studies. Varied patient population, type of sample and isolation techniques created bias and difficulty in comparing studies.EVs hold promise for improving care for symptomatic patients who have never had surgery, as well as those with recurrent symptoms after previous surgery. We encourage further EV research in endometriosis with the inclusion of rigorous reporting of both the patient population and technical methodology used, with the ultimate goal of achieving clinical utility for diagnosis, prognosis and eventually treatment.
Collapse
Affiliation(s)
- Simon Scheck
- Department of Obstetrics, Gynaecology and Women's Health, University of Otago, Wellington, New Zealand
- Department of Obstetrics and Gynaecology, Wellington Hospital, Capital and Coast District Health Board, Wellington, New Zealand
| | - Emily S J Paterson
- Department of Obstetrics, Gynaecology and Women's Health, University of Otago, Wellington, New Zealand
| | - Claire E Henry
- Department of Obstetrics, Gynaecology and Women's Health, University of Otago, Wellington, New Zealand.
| |
Collapse
|
21
|
Solberg R, Lunde NN, Forbord KM, Okla M, Kassem M, Jafari A. The Mammalian Cysteine Protease Legumain in Health and Disease. Int J Mol Sci 2022; 23:ijms232415983. [PMID: 36555634 PMCID: PMC9788469 DOI: 10.3390/ijms232415983] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The cysteine protease legumain (also known as asparaginyl endopeptidase or δ-secretase) is the only known mammalian asparaginyl endopeptidase and is primarily localized to the endolysosomal system, although it is also found extracellularly as a secreted protein. Legumain is involved in the regulation of diverse biological processes and tissue homeostasis, and in the pathogenesis of various malignant and nonmalignant diseases. In addition to its proteolytic activity that leads to the degradation or activation of different substrates, legumain has also been shown to have a nonproteolytic ligase function. This review summarizes the current knowledge about legumain functions in health and disease, including kidney homeostasis, hematopoietic homeostasis, bone remodeling, cardiovascular and cerebrovascular diseases, fibrosis, aging and senescence, neurodegenerative diseases and cancer. In addition, this review addresses the effects of some marketed drugs on legumain. Expanding our knowledge on legumain will delineate the importance of this enzyme in regulating physiological processes and disease conditions.
Collapse
Affiliation(s)
- Rigmor Solberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
- Correspondence: (R.S.); (A.J.); Tel.: +47-22-857-514 (R.S.); +45-35-337-423 (A.J.)
| | - Ngoc Nguyen Lunde
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Karl Martin Forbord
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Meshail Okla
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Abbas Jafari
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Correspondence: (R.S.); (A.J.); Tel.: +47-22-857-514 (R.S.); +45-35-337-423 (A.J.)
| |
Collapse
|
22
|
Jiang Y, Chai X, Chen S, Chen Z, Tian H, Liu M, Wu X. Exosomes from the Uterine Cavity Mediate Immune Dysregulation via Inhibiting the JNK Signal Pathway in Endometriosis. Biomedicines 2022; 10:biomedicines10123110. [PMID: 36551866 PMCID: PMC9775046 DOI: 10.3390/biomedicines10123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Endometriosis is a chronic inflammatory disease with an uncertain pathogenesis. Peritoneal immune dysregulation plays an important role in the pathogenesis of endometriosis. Exosomes are messengers of intercellular communication. This study mainly investigated the role of exosomes from the uterine cavity in endometriosis. Exosomes of the uterine aspirate fluid were isolated and cocultured with macrophages for 48 h. Flow cytometry was used to detect macrophage polarization. A Human MAPK Phosphorylation Antibody Array and Western blot were used to detect the phosphorylation of the MAPK pathway. A microRNA sequencing analysis was used to detect differentially expressed miRNAs. Our research found that exosomes of the uterine aspirate fluid from endometriosis could reduce the proportion of CD80+ macrophages. Additionally, it could inhibit the expression of P-JNK in macrophages. However, the JNK activator anisomycin could increase the proportion of CD80+ macrophages. In addition, exosomes of the uterine aspirate fluid from endometriosis could promote the migration and invasion of endometrial stromal cells by acting on macrophages. The expression of miR-210-3p was increased in both exosomes and the eutopic endometrium in patients with endometriosis through miRNA sequencing, which could also reduce the proportion of CD80+ macrophages. In summary, we propose that exosomes from the uterine cavity in patients with endometriosis may affect the phenotype of macrophages by inhibiting the JNK signaling pathway, thus mediating the formation of an immunological microenvironment conducive to the development of endometriosis.
Collapse
|
23
|
Shu S, Fu M, Chen X, Zhang N, Zhao R, Chang Y, Cui H, Liu Z, Wang X, Hua X, Li Y, Wang X, Wang X, Feng W, Song J. Cellular Landscapes of Nondiseased Human Cardiac Valves From End-Stage Heart Failure-Explanted Heart. Arterioscler Thromb Vasc Biol 2022; 42:1429-1446. [PMID: 36200446 DOI: 10.1161/atvbaha.122.318314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exploring the mechanisms of valvular heart disease at the cellular level may be useful to identify new therapeutic targets; however, the comprehensive cellular landscape of nondiseased human cardiac valve leaflets remains unclear. METHODS The cellular landscapes of nondiseased human cardiac valve leaflets (5 aortic valves, 5 pulmonary valves, 5 tricuspid valves, and 3 mitral valves) from end-stage heart failure patients undergoing heart transplantation were explored using single-cell RNA sequencing. Bioinformatics was used to identify the cell types, describe the cell functions, and investigate cellular developmental trajectories and interactions. Differences among the 4 types of cardiac valves at the cellular level were summarized. Pathological staining was performed to validate the key findings of single-cell RNA sequencing. An integrative analysis of our single-cell data and published genome-wide association study-based and bulk RNA sequencing-based data provided insights into the cell-specific contributions to calcific aortic valve diseases. RESULTS Six cell types were identified among 128 412 cells from nondiseased human cardiac valve leaflets. Valvular interstitial cells were the largest population, followed by myeloid cells, lymphocytes, valvular endothelial cells, mast cells, and myofibroblasts. The 4 types of cardiac valve had distinct cellular compositions. The intercellular communication analysis revealed that valvular interstitial cells were at the center of the communication network. The integrative analysis of our single-cell RNA sequencing data revealed key cellular subpopulations involved in the pathogenesis of calcific aortic valve diseases. CONCLUSIONS The cellular landscape differed among the 4 types of nondiseased cardiac valve, which might explain their differences in susceptibility to pathological remodeling and valvular heart disease.
Collapse
Affiliation(s)
- Songren Shu
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengxia Fu
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruojin Zhao
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zirui Liu
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Cardiovascular Surgery (Y.L., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiovascular Surgery (Y.L., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianqiang Wang
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiovascular Surgery (Y.L., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Feng
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiovascular Surgery (Y.L., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiovascular Surgery (Y.L., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen' China (J.S.)
| |
Collapse
|
24
|
Zhang D, Yu Y, Duan T, Zhou Q. The role of macrophages in reproductive-related diseases. Heliyon 2022; 8:e11686. [DOI: 10.1016/j.heliyon.2022.e11686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
|
25
|
Shen Y, You Y, Zhu K, Fang C, Chang D, Yu X. Exosomes in the f ield of reproduction: A scientometric study and visualization analysis. Front Pharmacol 2022; 13:1001652. [PMID: 36210808 PMCID: PMC9537691 DOI: 10.3389/fphar.2022.1001652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The diagnostic capabilities of exosomes in the field of reproductive biomedicine have attracted much attention. The aim of this scientometric study was to statistically and qualitatively assess the knowledge structure, hot issues, and research trends of papers about exosomes in the field of reproduction using visualization methods.Methods: The Web of Science Core Collection was searched for studies on exosomes in the field of reproduction. We performed bibliometric and visual analyses using VOSviewer, CiteSpace, and Microsoft Excel.Results: After database search, 1,011 articles were included, with number of studies being published every year continually increasing. These publications came from 61 nations or regions, with the US having the highest number. The University of Queensland was the main institution in which the research was conducted. The journal Placenta contained the highest number studies. There were 5,247 authors in total. Carlos Salomon had the highest number of papers with co-citations. Exosomes, extracellular vesicles, pregnancy, microRNAs, preeclampsia, placenta, microvesicles, gene expression, biomarkers, and first trimester were the most frequently used terms.Conclusion: Exosome research is booming in reproductive biomedicine. Future studies will likely focus on exosomes as biomarkers in gamete formation and fertilization, pregnancy, and cancers associated with reproduction. In addition to focusing on fundamental research, we should concentrate on the application of the results and the investigation of exosomes in infertile patients.
Collapse
Affiliation(s)
- Yifeng Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaodong You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunyan Fang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Degui Chang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xujun Yu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xujun Yu,
| |
Collapse
|
26
|
Kobayashi H, Imanaka S. Understanding the molecular mechanisms of macrophage polarization and metabolic reprogramming in endometriosis: A narrative review. Reprod Med Biol 2022; 21:e12488. [PMID: 36310658 PMCID: PMC9596393 DOI: 10.1002/rmb2.12488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
Background Endometriosis is an estrogen-dependent disease and causes pelvic pain and infertility. The limits of current pharmacotherapy in women who desire to become pregnant prompt the development of various targeted molecules for more effective treatment. A review article focused on the unique aspect of cellular metabolic reprogramming of endometriotic cells has been reported. The cellular metabolic pathways are reprogrammed to adapt to a variety of environmental stresses (e.g., nutrient starvation or glucose deprivation, hypoxic stress, excessive reactive oxygen species generation, and other environmental factors). This review aims to summarize macrophage polarization and metabolic reprogramming in endometriosis. Methods A literature search was performed between January 2000 and March 2022 in the PubMed and Google Scholar databases using a combination of specific terms. Results Macrophage cellular metabolism has a marked influence on its phenotype and function. Preclinical studies showed that metabolic conversion toward glycolysis or oxidative phosphorylation drives macrophage polarization to M1 or M2 phenotype, respectively. Such cellular metabolic rewiring can offer new therapeutic opportunities. Conclusion A better understanding of metabolic reprogramming biology in endometriosis-associated macrophages is essential in considering novel therapeutic approach for endometriosis. However, there are currently no detailed studies on therapeutic strategies targeting the cellular metabolic properties of endometriosis-associated macrophages.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of GynecologyMs.Clinic MayOneKashihara, NaraJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashihara, NaraJapan
| | - Shogo Imanaka
- Department of GynecologyMs.Clinic MayOneKashihara, NaraJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashihara, NaraJapan
| |
Collapse
|
27
|
Abdulkhalikova D, Sustarsic A, Vrtačnik Bokal E, Jancar N, Jensterle M, Burnik Papler T. The Lifestyle Modifications and Endometrial Proteome Changes of Women With Polycystic Ovary Syndrome and Obesity. Front Endocrinol (Lausanne) 2022; 13:888460. [PMID: 35813634 PMCID: PMC9258031 DOI: 10.3389/fendo.2022.888460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Polycystic ovary syndrome (PCOS) is a polyendocrine disorder and the most common endocrinopathy in women of reproductive age. Affected women have an elevated prevalence of being overweight and obese. Our study sought to determine how weight loss associated with lifestyle changes affects the endometrium specific proteome, endocrine-metabolic characteristics, and motor capabilities of obese women with PCOS and infertility. A group of 12 infertile women under the age of 38 with PCOS and BMI ≥30 kg/m2 were included in the study. An evaluation was performed by a gynecologist and an endocrinologist. The weight-loss program lasted 8 weeks under the guidance of a professional trainer. Endometrial sampling during a period of implantation window for proteome determination was performed before and after weight loss. In endometrial samples at the end of the study increased protein abundance was recorded for Legumain, Insulin-like growth factor-binding protein 7, Hepatocyte growth factor receptor, Keratin, type II cytoskeletal 7, and Cystatin-B, while the B-lymphocyte antigen CD20 protein abundance decreased. Our results also indicate significantly lowered fasting blood glucose level and free testosterone concentration and significant improvements in body composition and physical capacity. This study may open up the venues for investigating important biomarkers that may affect endometrial receptivity. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04989244?term=NCT04989244&draw=2&rank=1, identifier: NCT04989244.
Collapse
Affiliation(s)
- D. Abdulkhalikova
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - A. Sustarsic
- Faculty of Sports, University of Ljubljana, Ljubljana, Slovenia
| | - Eda Vrtačnik Bokal
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - N. Jancar
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - M. Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - T. Burnik Papler
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- *Correspondence: T. Burnik Papler,
| |
Collapse
|