1
|
Aten S, Ramirez-Plascencia O, Blake C, Holder G, Fishbein E, Vieth A, Zarghani-Shiraz A, Keister E, Howe S, Appo A, Palmer B, Mahoney CE. A time for sex: circadian regulation of mammalian sexual and reproductive function. Front Neurosci 2025; 18:1516767. [PMID: 39834701 PMCID: PMC11743455 DOI: 10.3389/fnins.2024.1516767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The circadian clock regulates physiological and biochemical processes in nearly every species. Sexual and reproductive behaviors are two processes controlled by the circadian timing system. Evidence supporting the importance of proper clock function on fertility comes from several lines of work demonstrating that misalignment of biological rhythms or disrupted function of the body's master clock, such as occurs from repeated shift work or chronic jet lag, negatively impacts reproduction by interfering with both male and female fertility. Along these lines, dysregulation of clock genes leads to impairments in fertility within mammals, and disruption of circadian clock timing negatively impacts sex hormone levels and semen quality in males, and it leads to ovulatory deficiencies in females. Here, we review the current understanding of the circadian modulation of both male and female reproductive hormones-from animal models to humans. Further, we discuss neural circuits within the hypothalamus that may regulate circadian changes in mammalian sexual behavior and reproduction, and we explore how knowledge of such circuits in animal models may help to improve human sexual function, fertility, and reproduction.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Oscar Ramirez-Plascencia
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chiara Blake
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Gabriel Holder
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Emma Fishbein
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, United States
| | - Adam Vieth
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Arman Zarghani-Shiraz
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Boston University, Boston, MA, United States
| | - Evan Keister
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Shivani Howe
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Ashley Appo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Beatrice Palmer
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Carrie E. Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Luo B, Song J, Zhang J, Han J, Zhou X, Chen L. The contribution of circadian clock to the biological processes. Front Mol Biosci 2024; 11:1387576. [PMID: 38903177 PMCID: PMC11187296 DOI: 10.3389/fmolb.2024.1387576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
All organisms have various circadian, behavioral, and physiological 24-h periodic rhythms, which are controlled by the circadian clock. The circadian clock controls various behavioral and physiological rhythms. In mammals, the primary circadian clock is present in the suprachiasmatic nucleus of the hypothalamus. The rhythm of the circadian clock is controlled by the interaction between negative and positive feedback loops, consisting of crucial clock regulators (including Bmal1 and Clock), three cycles (mPer1, mPer2, and mPer3), and two cryptochromes (Cry1 and Cry2). The development of early mammalian embryos is an ordered and complex biological process that includes stages from fertilized eggs to blastocysts and undergoes important morphological changes, such as blastocyst formation, cell multiplication, and compaction. The circadian clock affects the onset and timing of embryonic development. The circadian clock affects many biological processes, including eating time, immune function, sleep, energy metabolism, and endocrinology, therefore, it is also crucial for overall health, growth and development after birth. This review summarized the effects of the circadian clock in the body's physiological activities. A new strategy is proposed for the prevention of malformations or diseases by regulating the circadian clock or changing circadian rhythms.
Collapse
Affiliation(s)
- Beibei Luo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiangyuan Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiaqi Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jun Han
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xin Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
3
|
Van Loh BM, Yaw AM, Breuer JA, Jackson B, Nguyen D, Jang K, Ramos F, Ho EV, Cui LJ, Gillette DLM, Sempere LF, Gorman MR, Tonsfeldt KJ, Mellon PL, Hoffmann HM. The transcription factor VAX1 in VIP neurons of the suprachiasmatic nucleus impacts circadian rhythm generation, depressive-like behavior, and the reproductive axis in a sex-specific manner in mice. Front Endocrinol (Lausanne) 2023; 14:1269672. [PMID: 38205198 PMCID: PMC10777845 DOI: 10.3389/fendo.2023.1269672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Background The suprachiasmatic nucleus (SCN) within the hypothalamus is a key brain structure required to relay light information to the body and synchronize cell and tissue level rhythms and hormone release. Specific subpopulations of SCN neurons, defined by their peptide expression, regulate defined SCN output. Here we focus on the vasoactive intestinal peptide (VIP) expressing neurons of the SCN. SCN VIP neurons are known to regulate circadian rhythms and reproductive function. Methods To specifically study SCN VIP neurons, we generated a novel knock out mouse line by conditionally deleting the SCN enriched transcription factor, Ventral Anterior Homeobox 1 (Vax1), in VIP neurons (Vax1Vip; Vax1fl/fl:VipCre). Results We found that Vax1Vip females presented with lengthened estrous cycles, reduced circulating estrogen, and increased depressive-like behavior. Further, Vax1Vip males and females presented with a shortened circadian period in locomotor activity and ex vivo SCN circadian period. On a molecular level, the shortening of the SCN period was driven, at least partially, by a direct regulatory role of VAX1 on the circadian clock genes Bmal1 and Per2. Interestingly, Vax1Vip females presented with increased expression of arginine vasopressin (Avp) in the paraventricular nucleus, which resulted in increased circulating corticosterone. SCN VIP and AVP neurons regulate the reproductive gonadotropin-releasing hormone (GnRH) and kisspeptin neurons. To determine how the reproductive neuroendocrine network was impacted in Vax1Vip mice, we assessed GnRH sensitivity to a kisspeptin challenge in vivo. We found that GnRH neurons in Vax1Vip females, but not males, had an increased sensitivity to kisspeptin, leading to increased luteinizing hormone release. Interestingly, Vax1Vip males showed a small, but significant increase in total sperm and a modest delay in pubertal onset. Both male and female Vax1Vip mice were fertile and generated litters comparable in size and frequency to controls. Conclusion Together, these data identify VAX1 in SCN VIP neurons as a neurological overlap between circadian timekeeping, female reproduction, and depressive-like symptoms in mice, and provide novel insight into the role of SCN VIP neurons.
Collapse
Affiliation(s)
- Brooke M. Van Loh
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Alexandra M. Yaw
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Joseph A. Breuer
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Brooke Jackson
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Duong Nguyen
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Krystal Jang
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Fabiola Ramos
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Emily V. Ho
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Laura J. Cui
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Dominique L. M. Gillette
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Lorenzo F. Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Michael R. Gorman
- Department of Psychology, University of California, San Diego, La Jolla, CA, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Karen J. Tonsfeldt
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Pamela L. Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Hanne M. Hoffmann
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
4
|
Abstract
Organismal development requires the reproducible unfolding of an ordered sequence of discrete steps (cell fate determination, migration, tissue folding, etc.) in both time and space. Here, we review the mechanisms that grant temporal specificity to developmental steps, including molecular clocks and timers. Individual timing mechanisms must be coordinated with each other to maintain the overall developmental sequence. However, phenotypic novelties can also arise through the modification of temporal patterns over the course of evolution. Two main types of variation in temporal patterning characterize interspecies differences in developmental time: allochrony, where the overall developmental sequence is either accelerated or slowed down while maintaining the relative duration of individual steps, and heterochrony, where the duration of specific developmental steps is altered relative to the rest. New advances in in vitro modeling of mammalian development using stem cells have recently enabled the revival of mechanistic studies of allochrony and heterochrony. In both cases, differences in the rate of basic cellular functions such as splicing, translation, protein degradation, and metabolism seem to underlie differences in developmental time. In the coming years, these studies should identify the genetic differences that drive divergence in developmental time between species.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA;
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Piet R. Circadian and kisspeptin regulation of the preovulatory surge. Peptides 2023; 163:170981. [PMID: 36842628 DOI: 10.1016/j.peptides.2023.170981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
Fertility in mammals is ultimately controlled by a small population of neurons - the gonadotropin-releasing hormone (GnRH) neurons - located in the ventral forebrain. GnRH neurons control gonadal function through the release of GnRH, which in turn stimulates the secretion of the anterior pituitary gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In spontaneous ovulators, ovarian follicle maturation eventually stimulates, via sex steroid feedback, the mid-cycle surge in GnRH and LH secretion that causes ovulation. The GnRH/LH surge is initiated in many species just before the onset of activity through processes controlled by the central circadian clock, ensuring that the neuroendocrine control of ovulation and sex behavior are coordinated. This review aims to give an overview of anatomical and functional studies that collectively reveal some of the mechanisms through which the central circadian clock regulates GnRH neurons and their afferent circuits to drive the preovulatory surge.
Collapse
Affiliation(s)
- Richard Piet
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States.
| |
Collapse
|
6
|
Li Y, Zhang H, Wang Y, Li D, Chen H. Advances in circadian clock regulation of reproduction. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:83-133. [PMID: 37709382 DOI: 10.1016/bs.apcsb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The mammalian circadian clock is an endogenously regulated oscillator that is synchronized with solar time and cycle within a 24-h period. The circadian clock exists not only in the suprachiasmatic nucleus (SCN) of the hypothalamus, a central pacemaker of the circadian clock system, but also in numerous peripheral tissues known as peripheral circadian oscillators. The SCN and peripheral circadian oscillators mutually orchestrate the diurnal rhythms of various physiological and behavioral processes in a hierarchical manner. In the past two decades, peripheral circadian oscillators have been identified and their function has been determined in the mammalian reproductive system and its related endocrine glands, including the hypothalamus, pituitary gland, ovaries, testes, uterus, mammary glands, and prostate gland. Increasing evidence indicates that both the SCN and peripheral circadian oscillators play discrete roles in coordinating reproductive processes and optimizing fertility in mammals. The present study reviews recent evidence on circadian clock regulation of reproductive function in the hypothalamic-pituitary-gonadal axis and reproductive system. Additionally, we elucidate the effects of chronodisruption (as a result of, for example, shift work, jet lag, disrupted eating patterns, and sleep disorders) on mammalian reproductive performance from multiple aspects. Finally, we propose potential behavioral changes or pharmaceutical strategies for the prevention and treatment of reproductive disorders from the perspective of chronomedicine. Conclusively, this review will outline recent evidence on circadian clock regulation of reproduction, providing novel perspectives on the role of the circadian clock in maintaining normal reproductive functions and in diseases that negatively affect fertility.
Collapse
Affiliation(s)
- Yating Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yiqun Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Dan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China.
| |
Collapse
|
7
|
Circle(s) of Life: The Circadian Clock from Birth to Death. BIOLOGY 2023; 12:biology12030383. [PMID: 36979075 PMCID: PMC10045474 DOI: 10.3390/biology12030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Most lifeforms on earth use endogenous, so-called circadian clocks to adapt to 24-h cycles in environmental demands driven by the planet’s rotation around its axis. Interactions with the environment change over the course of a lifetime, and so does regulation of the circadian clock system. In this review, we summarize how circadian clocks develop in humans and experimental rodents during embryonic development, how they mature after birth and what changes occur during puberty, adolescence and with increasing age. Special emphasis is laid on the circadian regulation of reproductive systems as major organizers of life segments and life span. We discuss differences in sexes and outline potential areas for future research. Finally, potential options for medical applications of lifespan chronobiology are discussed.
Collapse
|
8
|
Ono M, Ando H, Daikoku T, Fujiwara T, Mieda M, Mizumoto Y, Iizuka T, Kagami K, Hosono T, Nomura S, Toyoda N, Sekizuka-Kagami N, Maida Y, Kuji N, Nishi H, Fujiwara H. The Circadian Clock, Nutritional Signals and Reproduction: A Close Relationship. Int J Mol Sci 2023; 24:ijms24021545. [PMID: 36675058 PMCID: PMC9865912 DOI: 10.3390/ijms24021545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The circadian rhythm, which is necessary for reproduction, is controlled by clock genes. In the mouse uterus, the oscillation of the circadian clock gene has been observed. The transcription of the core clock gene period (Per) and cryptochrome (Cry) is activated by the heterodimer of the transcription factor circadian locomotor output cycles kaput (Clock) and brain and muscle Arnt-like protein-1 (Bmal1). By binding to E-box sequences in the promoters of Per1/2 and Cry1/2 genes, the CLOCK-BMAL1 heterodimer promotes the transcription of these genes. Per1/2 and Cry1/2 form a complex with the Clock/Bmal1 heterodimer and inactivate its transcriptional activities. Endometrial BMAL1 expression levels are lower in human recurrent-miscarriage sufferers. Additionally, it was shown that the presence of BMAL1-depleted decidual cells prevents trophoblast invasion, highlighting the importance of the endometrial clock throughout pregnancy. It is widely known that hormone synthesis is disturbed and sterility develops in Bmal1-deficient mice. Recently, we discovered that animals with uterus-specific Bmal1 loss also had poor placental development, and these mice also had intrauterine fetal death. Furthermore, it was shown that time-restricted feeding controlled the uterine clock's circadian rhythm. The uterine clock system may be a possibility for pregnancy complications, according to these results. We summarize the most recent research on the close connection between the circadian clock and reproduction in this review.
Collapse
Affiliation(s)
- Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Correspondence: ; Tel.: +81-3-3342-6111
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takiko Daikoku
- Institute for Experimental Animals, Advanced Science Research Center, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Tomoko Fujiwara
- Department of Social Work and Life Design, Kyoto Notre Dame University, Kyoto 606-0848, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yasunari Mizumoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takashi Hosono
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Satoshi Nomura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Natsumi Toyoda
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Institute for Experimental Animals, Advanced Science Research Center, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Naomi Sekizuka-Kagami
- Department of Nursing, College of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yoshiko Maida
- Department of Nursing, College of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Naoaki Kuji
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Hirotaka Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| |
Collapse
|
9
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
10
|
Fragmented day-night cycle induces reduced light avoidance, excessive weight gain during early development, and binge-like eating during adulthood in mice. Physiol Behav 2022; 253:113851. [PMID: 35609722 DOI: 10.1016/j.physbeh.2022.113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Fragmented day-night (FDN) cycles are environments in which multiple periods of light and dark alternate across a 24 h period. Exposure to FDN cycles disrupts circadian rhythms, resulting in period lengthening and alterations to mood in mice. A constant light environment, which also induces period lengthening, is linked to mood and metabolic disturbances and disruption to the development of the circadian clock. This study aims to determine how exposure to the FDN cycle impacts development in mice, with the hypothesis that there would be similar and adverse effects as observed in constant light conditions. Our study used CD-1 mice reared under the FDN cycle compared to the commonly used 12 h light: 12 h dark consolidated day-night cycle. During the first week of development, mouse pups reared under the FDN cycle gained bodyweight at a faster rate and did not avoid aberrant light exposure in comparison to 12:12 LD reared mouse pups. Developmental exposure to the FDN cycle lasted two weeks, and then mice were transferred to the 12:12 LD cycle, where after 2 weeks, bodyweight was similar between FDN reared and 12:12 LD reared mice at 1-month and 2-months old. When re-exposed to the FDN cycle during adulthood, FDN reared pups exhibited binge-like eating behaviors and reduced light avoidance. This study shows that the unnatural distribution of light and dark across the 24 h day can cause disruptions during early development that can reappear during adulthood when placed in the same stressful light-dark environment as adults.
Collapse
|
11
|
Tonsfeldt KJ, Cui LJ, Lee J, Walbeek TJ, Brusman LE, Jin Y, Mieda M, Gorman MR, Mellon PL. Female fertility does not require Bmal1 in suprachiasmatic nucleus neurons expressing arginine vasopressin, vasoactive intestinal peptide, or neuromedin-S. Front Endocrinol (Lausanne) 2022; 13:956169. [PMID: 35992114 PMCID: PMC9389073 DOI: 10.3389/fendo.2022.956169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Disruptions to the circadian system alter reproductive capacity, particularly in females. Mice lacking the core circadian clock gene, Bmal1, are infertile and have evidence of neuroendocrine disruption including the absence of the preovulatory luteinizing hormone (LH) surge and enhanced responsiveness to exogenous kisspeptin. Here, we explore the role of Bmal1 in suprachiasmatic nucleus (SCN) neuron populations known to project to the neuroendocrine axis. We generated four mouse lines using Cre/Lox technology to create conditional deletion of Bmal1 in arginine vasopressin (Bmal1fl/fl:Avpcre ), vasoactive intestinal peptide (Bmal1fl/fl:Vipcre ), both (Bmal1fl/fl:Avpcre+Vipcre ), and neuromedin-s (Bmal1fl/fl:Nmscre ) neurons. We demonstrate that the loss of Bmal1 in these populations has substantial effects on home-cage circadian activity and temperature rhythms. Despite this, we found that female mice from these lines demonstrated normal estrus cycles, fecundity, kisspeptin responsiveness, and inducible LH surge. We found no evidence of reproductive disruption in constant darkness. Overall, our results indicate that while conditional Bmal1 knockout in AVP, VIP, or NMS neurons is sufficient to disrupted locomotor activity, this disruption is insufficient to recapitulate the neuroendocrine reproductive effects of the whole-body Bmal1 knockout.
Collapse
Affiliation(s)
- Karen J. Tonsfeldt
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Laura J. Cui
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jinkwon Lee
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Thijs J. Walbeek
- Department of Psychology, University of California, San Diego, La Jolla, CA, United States
| | - Liza E. Brusman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ye Jin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Michael R. Gorman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
- Department of Psychology, University of California, San Diego, La Jolla, CA, United States
| | - Pamela L. Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
12
|
Spaggiari G, Romeo M, Casarini L, Granata ARM, Simoni M, Santi D. Human fertility and sleep disturbances: A narrative review. Sleep Med 2022; 98:13-25. [PMID: 35772248 DOI: 10.1016/j.sleep.2022.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Many factors may be hidden behind the global fertility decline observed in Western countries. Alongside the progressively increased age of infertile couples, environmental and behavioural factors, including non-optimal lifestyle habits, should be considered. Among these, sleep disorders have been suggested to be linked to human fertility. METHODS This is a narrative review, describing first sleep physiology, its disturbances, and the tools able to quantify sleep dysfunction. Then, we consider all available studies aimed at investigating the connection between sleep disorders and human fertility, providing a comprehensive view on this topic. RESULTS Forty-two studies investigating the relationship between sleep habits and human reproduction were included. All the published evidence was grouped according to the aspect of human fertility considered, i.e. i) female reproductive functions, ii) male reproductive functions, iii) natural conception and iv) assisted reproduction. For each of the sub-groups considered, the connection between sleep dysregulation and human fertility was classified according to specific sleep characteristics, such as sleep duration, quality, and habits. In addition, possible physio-pathological mechanisms proposed to support the link between sleep and fertility were summarized. CONCLUSION This review summarizes the most relevant findings about the intricate and still largely unknown network of molecular pathways involved in the regulation of circadian homeostasis, to which sleep contributes, essential for reproductive physiology. Thus, many mechanisms seem correlate sleep disorders to reproductive health, such as adrenal activation, circadian dysregulation, and genetic influences. This review highlights the need to properly designed trials on the topic.
Collapse
Affiliation(s)
- Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Marilina Romeo
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Livio Casarini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio R M Granata
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
13
|
Continuous artificial light potentially disrupts central and peripheral reproductive clocks leading to altered uterine physiology and reduced pregnancy success in albino mice. Photochem Photobiol Sci 2022; 21:1217-1232. [PMID: 35399124 DOI: 10.1007/s43630-022-00210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
AIMS The mechanism behind clock coordination in female reproductive disorders is poorly understood despite the known importance of coordinated and synchronized timing of central and clocks in reproductive organs. We investigated the effect of continuous artificial light (LL) on the central and peripheral reproductive clock gene (Bmal1, Clock, Per1, Per2 and Cry1) and its downstream regulators (Hgf, PR-A and HOXA10) during non-pregnancy and pregnancy phases of female mice. MAIN METHODS Mice (n = 60) in two sets, were maintained under continuous light (LL) and natural day cycle (LD;12L: 12D) for both non-pregnant and pregnant study. Tissues from hypothalamus-containing SCN, ovary, uterus and serum were collected at different zeitgeber time points (ZT; at 4-h intervals across 24-h periods). KEY FINDINGS LL exposure desynchronized the expressions of the clock mRNAs (Bmal1, Clock, Per1, Per2 and Cry1) in SCN, ovary, and uterus along with Hgf mRNA rhythm. LL significantly increased the thickness of endometrial tissues. Furthermore, the pregnant study revealed lower serum progesterone level during peri- and post-implantation under LL along with downregulated expression of progesterone receptor (PR) as well as progesterone dependent uterine Homeobox A-10 (Hoxa10) proteins with lowered pregnancy outcomes. SIGNIFICANCE Our result suggests that LL disrupted the circadian coordination between central and clock genes in reproductive tissue leading to interrupted uterine physiology and altered pregnancy in mice. This led us to propose that duration of light exposure at work-places or home for females is very important in prevention of pregnancy anomalies.
Collapse
|
14
|
Tonsfeldt KJ, Mellon PL, Hoffmann HM. Circadian Rhythms in the Neuronal Network Timing the Luteinizing Hormone Surge. Endocrinology 2022; 163:6490154. [PMID: 34967900 PMCID: PMC8782605 DOI: 10.1210/endocr/bqab268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 01/01/2023]
Abstract
For billions of years before electric light was invented, life on Earth evolved under the pattern of light during the day and darkness during the night. Through evolution, nearly all organisms internalized the temporal rhythm of Earth's 24-hour rotation and evolved self-sustaining biological clocks with a ~24-hour rhythm. These internal rhythms are called circadian rhythms, and the molecular constituents that generate them are called molecular circadian clocks. Alignment of molecular clocks with the environmental light-dark rhythms optimizes physiology and behavior. This phenomenon is particularly true for reproductive function, in which seasonal breeders use day length information to time yearly changes in fertility. However, it is becoming increasingly clear that light-induced disruption of circadian rhythms can negatively impact fertility in nonseasonal breeders as well. In particular, the luteinizing hormone surge promoting ovulation is sensitive to circadian disruption. In this review, we will summarize our current understanding of the neuronal networks that underlie circadian rhythms and the luteinizing hormone surge.
Collapse
Affiliation(s)
- Karen J Tonsfeldt
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Correspondence: Pamela L. Mellon, Ph.D., University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA 92093-0674.
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
| |
Collapse
|
15
|
Tanaka S, Zmora N, Levavi-Sivan B, Zohar Y. Vasoactive Intestinal Peptide Indirectly Elicits Pituitary LH Secretion Independent of GnRH in Female Zebrafish. Endocrinology 2022; 163:6492622. [PMID: 34978328 DOI: 10.1210/endocr/bqab264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Vasoactive intestinal peptide (Vip) regulates luteinizing hormone (LH) release through the direct regulation of gonadotropin-releasing hormone (GnRH) neurons at the level of the brain in female rodents. However, little is known regarding the roles of Vip in teleost reproduction. Although GnRH is critical for fertility through the regulation of LH secretion in vertebrates, the exact role of the hypophysiotropic GnRH (GnRH3) in zebrafish is unclear since GnRH3 null fish are reproductively fertile. This phenomenon raises the possibility of a redundant regulatory pathway(s) for LH secretion in zebrafish. Here, we demonstrate that VipA (homologues of mammalian Vip) both inhibits and induces LH secretion in zebrafish. Despite the observation that VipA axons may reach the pituitary proximal pars distalis including LH cells, pituitary incubation with VipA in vitro, and intraperitoneal injection of VipA, did not induce LH secretion and lhβ mRNA expression in sexually mature females, respectively. On the other hand, intracerebroventricular administration of VipA augmented plasma LH levels in both wild-type and gnrh3-/- females at 1 hour posttreatment, with no observed changes in pituitary GnRH2 and GnRH3 contents and gnrh3 mRNA levels in the brains. While VipA's manner of inhibition of LH secretion has yet to be explored, the stimulation seems to occur via a different pathway than GnRH3, dopamine, and 17β-estradiol in regulating LH secretion. The results indicate that VipA induces LH release possibly by acting with or through a non-GnRH factor(s), providing proof for the existence of functional redundancy of LH release in sexually mature female zebrafish.
Collapse
Affiliation(s)
- Sakura Tanaka
- Institute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Nilli Zmora
- Institute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Yonathan Zohar
- Institute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| |
Collapse
|
16
|
Beroukhim G, Esencan E, Seifer DB. Impact of sleep patterns upon female neuroendocrinology and reproductive outcomes: a comprehensive review. Reprod Biol Endocrinol 2022; 20:16. [PMID: 35042515 PMCID: PMC8764829 DOI: 10.1186/s12958-022-00889-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022] Open
Abstract
Sleep is vital to human bodily function. Growing evidence indicates that sleep deprivation, disruption, dysrhythmia, and disorders are associated with impaired reproductive function and poor clinical outcomes in women. These associations are largely mediated by molecular-genetic and hormonal pathways, which are crucial for the complex and time sensitive processes of hormone synthesis/secretion, folliculogenesis, ovulation, fertilization, implantation, and menstruation. Pathologic sleep patterns are closely linked to menstrual irregularity, polycystic ovarian syndrome, premature ovarian insufficiency, sub/infertility, and early pregnancy loss. Measures of success with assisted reproductive technology are also lower among women who engage in shift work, or experience sleep disruption or short sleep duration. Extremes of sleep duration, poor sleep quality, sleep disordered breathing, and shift work are also associated with several harmful conditions in pregnancy, including gestational diabetes and hypertensive disorders. While accumulating evidence implicates pathologic sleep patterns in impaired reproductive function and poor reproductive outcomes, additional research is needed to determine causality and propose therapeutic interventions.
Collapse
Affiliation(s)
- Gabriela Beroukhim
- Department of Obstetrics, Gynecology, and Reproductive Sciences at Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.
| | - Ecem Esencan
- Department of Obstetrics, Gynecology, and Reproductive Sciences at Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - David B Seifer
- Department of Obstetrics, Gynecology, and Reproductive Sciences at Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| |
Collapse
|
17
|
Liang Z, Liu J. Sleep Behavior and Self-Reported Infertility: A Cross-Sectional Analysis Among U.S. Women. Front Endocrinol (Lausanne) 2022; 13:818567. [PMID: 35620388 PMCID: PMC9127231 DOI: 10.3389/fendo.2022.818567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the associations between sleep behaviors and female infertility. METHODS We conducted a cross-sectional study composed of 2175 U.S. women 18-44 years of age from the National Health and Nutrition Examination Survey (NHANES) (2015-2018). Bedtime/waketime and sleep duration were extracted from the sleep disorder questionnaire. Self-reported infertility was defined as a binary variable based on the participants' response to the question, "Have you ever attempted to become pregnant over a period of at least a year without becoming pregnant?". Multivariate logistic regression analyses were done to explore the relationship between sleep behaviors and female infertility. RESULTS Bedtime (OR=1.24; 95% CI, 1.10-1.40, P = 0.001) and waketime (OR=1.14; 95% CI, 1.01-1.28, P = 0.037) were associated with infertility. Waketime of 08:00 was the inflection point, above which the probability of infertility increased rapidly (OR=1.41; 95% CI, 1.11-1.79, P = 0.004). Sleep-wake behavior was significantly associated with infertility (OR=1.34; 95% CI, 1.16-1.53, P < 0.001) and participants with early-bed/early-rise behavior had the lowest risk. CONCLUSIONS Among U.S. women 18-44 years of age, bedtime and waketime were significantly linearly and non-linearly correlated with infertility, respectively. Early-bed/early-rise behavior was associated with the lowest infertility rate. Further study is needed because the timing of sleep behaviors are modifiable factors and could be a novel strategy to cope with infertility.
Collapse
Affiliation(s)
- Zhu Liang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jianqiao Liu,
| |
Collapse
|
18
|
Ogawa S, Parhar IS. Heterogeneity in GnRH and kisspeptin neurons and their significance in vertebrate reproductive biology. Front Neuroendocrinol 2022; 64:100963. [PMID: 34798082 DOI: 10.1016/j.yfrne.2021.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023]
Abstract
Vertebrate reproduction is essentially controlled by the hypothalamus-pituitary-gonadal (HPG) axis, which is a central dogma of reproductive biology. Two major hypothalamic neuroendocrine cell groups containing gonadotropin-releasing hormone (GnRH) and kisspeptin are crucial for control of the HPG axis in vertebrates. GnRH and kisspeptin neurons exhibit high levels of heterogeneity including their cellular morphology, biochemistry, neurophysiology and functions. However, the molecular foundation underlying heterogeneities in GnRH and kisspeptin neurons remains unknown. More importantly, the biological and physiological significance of their heterogeneity in reproductive biology is poorly understood. In this review, we first describe the recent advances in the neuroendocrine functions of kisspeptin-GnRH pathways. We then view the recent emerging progress in the heterogeneity of GnRH and kisspeptin neurons using morphological and single-cell transcriptomic analyses. Finally, we discuss our views on the significance of functional heterogeneity of reproductive endocrine cells and their potential relevance to reproductive health.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
19
|
Casey TM, Plaut K, Boerman J. Circadian clocks and their role in lactation competence. Domest Anim Endocrinol 2022; 78:106680. [PMID: 34607219 DOI: 10.1016/j.domaniend.2021.106680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Circadian rhythms are 24 h cycles of behavior, physiology and gene expression that function to synchronize processes across the body and coordinate physiology with the external environment. Circadian clocks are central to maintaining homeostasis and regulating coordinated changes in physiology in response to internal and external cues. Orchestrated changes occur in maternal physiology during the periparturient period to support the growth of the fetus and the energetic and nutritional demands of lactation. Discoveries in our lab made over a decade ago led us to hypothesize that the circadian timing system functions to regulate metabolic and mammary specific changes that occur to support a successful lactation. Findings of studies that ensued are summarized, and point to the importance of circadian clocks in the regulation of lactation competence. Disruption of the circadian timing system can negatively affect mammary gland development and differentiation, alter maternal metabolism and impair milk production.
Collapse
Affiliation(s)
- T M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - K Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Han Q, He X, Di R, Chu M. Comparison of expression patterns of six canonical clock genes of follicular phase and luteal phase in Small-tailed Han sheep. Arch Anim Breed 2021; 64:457-466. [PMID: 34746369 PMCID: PMC8567854 DOI: 10.5194/aab-64-457-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
The circadian rhythm is a biological rhythm that is closely related to
the rhythmic expression of a series of clock genes. Results from several
studies have indicated that clock genes are associated with the estrous cycle in
female animals. Until now, the relationship between estrus cycle transition
and clock gene expression in reproductive-axis-related tissues has remained
unknown in Small-tailed Han (STH) sheep. This study was conducted to analyze
the expression patterns of six canonical clock genes (Clock, BMAL1, Per1, Per2, Cry1, and Cry2) in the follicle
phase and luteal phase of STH sheep. We found that all six genes were
expressed in the brain, cerebellum, hypothalamus, pituitary, ovary, uterus,
and oviduct in follicle and luteal phases. The results indicated that Clock expression
was significantly higher in the cerebellum, hypothalamus, and uterus of
the luteal phase than that of the follicle phase, whereas BMAL1 expression was
significantly higher in the hypothalamus of the luteal phase than that of
the follicle phase. Per1 expression was significantly higher in the brain,
cerebellum, hypothalamus, and pituitary of the luteal phase than that of the follicle
phase, and Per2 expression was significantly higher in the hypothalamus,
pituitary, and uterus of the luteal phase than that of the follicle phase. Cry1
expression was significantly higher in the brain, cerebellum, and
hypothalamus of the luteal phase than that of the follicle phase, whereas Cry2 expression
was significantly higher in the pituitary of the luteal phase than that of the
follicle phase. The clock gene expression in all tissues was different
between follicle and luteal phases, but all clock gene mRNA levels were
found to exhibit higher expression among seven tissues in the luteal
phase. Our results suggest that estrous cycles may be associated
with clock gene expression in the STH sheep. This is the first study to
systematically analyze the expression patterns of clock genes of different
estrous cycle in ewes, which could form a basis for further studies to
develop the relationship between clock genes and the estrous cycle.
Collapse
Affiliation(s)
- Qi Han
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
21
|
Qin F, Liu N, Nie J, Shen T, Xu Y, Pan S, Pei H, Zhou G. Circadian effects of ionizing radiation on reproductive function and clock genes expression in male mouse. Environ Health Prev Med 2021; 26:103. [PMID: 34635049 PMCID: PMC8507176 DOI: 10.1186/s12199-021-01021-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/24/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Exposure to the ionizing radiation (IR) encountered outside the magnetic field of the Earth poses a persistent threat to the reproductive functions of astronauts. The potential effects of space IR on the circadian rhythms of male reproductive functions have not been well characterized so far. METHODS Here, we investigated the circadian effects of IR exposure (3 Gy X-rays) on reproductive functional markers in mouse testicular tissue and epididymis at regular intervals over a 24-h day. For each animal, epididymis was tested for sperm motility, and the testis tissue was used for daily sperm production (DSP), testosterone levels, and activities of testicular enzymes (glucose-6-phosphate dehydrogenase (G6PDH), sorbitol dehydrogenase (SDH), lactic dehydrogenase (LDH), and acid phosphatase (ACP)), and the clock genes mRNA expression such as Clock, Bmal1, Ror-α, Ror-β, or Ror-γ. RESULTS Mice exposed to IR exhibited a disruption in circadian rhythms of reproductive markers, as indicated by decreased sperm motility, increased daily sperm production (DSP), and reduced activities of testis enzymes such as G6PDH, SDH, LDH, and ACP. Moreover, IR exposure also decreased mRNA expression of five clock genes (Clock, Bmal1, Ror-α, Ror-β, or Ror-γ) in testis, with alteration in the rhythm parameters. CONCLUSION These findings suggested potential health effects of IR exposure on reproductive functions of male astronauts, in terms of both the daily overall level as well as the circadian rhythmicity.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- Acid Phosphatase
- Animals
- CLOCK Proteins/genetics
- Circadian Rhythm/radiation effects
- Epididymis/radiation effects
- Gene Expression/radiation effects
- Genitalia, Male/radiation effects
- Glucosephosphate Dehydrogenase
- L-Iditol 2-Dehydrogenase
- L-Lactate Dehydrogenase
- Male
- Mice
- Mice, Inbred C57BL
- Models, Animal
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 2/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- RNA, Messenger/genetics
- Radiation Exposure
- Radiation, Ionizing
- Reproductive Physiological Phenomena/radiation effects
- Sperm Motility/radiation effects
- Spermatozoa/radiation effects
- Testis/enzymology
- Testis/radiation effects
Collapse
Affiliation(s)
- Fenju Qin
- School of Chemistry and Life science, Suzhou University of Science and Technology, Suzhou, 215009, China.
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China.
| | - Ningang Liu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China
| | - Jing Nie
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China
| | - Tao Shen
- School of Chemistry and Life science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yingjie Xu
- School of Chemistry and Life science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shuxian Pan
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China
| | - Hailong Pei
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China
| | - Guangming Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
22
|
Balieiro LCT, Gontijo CA, Marot LP, Teixeira GP, Fahmy WM, Moreno CRDC, Maia YCDP, Crispim CA. Circadian misalignment measured by social jetlag from early to late pregnancy and its association with nutritional status: a longitudinal study. Sci Rep 2021; 11:18678. [PMID: 34548528 PMCID: PMC8455574 DOI: 10.1038/s41598-021-97946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
A mismatch between circadian and social clocks leads to a circadian misalignment, which has been widely measured by social jetlag (SJL). There are several studies measuring SJL, but it has not been studied in pregnant women. Therefore, this study aimed to identify the occurrence of SJL throughout pregnancy and to verify whether there is an effect of pre-pregnancy body mass index (BMI) on SJL throughout pregnancy. The baseline of the present study was conducted with 205 1st trimester pregnant women of whom 100 were followed in their 2nd and 3rd trimester. SJL was calculated based on the absolute difference between mid-sleep time on workdays versus work-free days. The pre-pregnancy BMI and current BMI (kg/m2) were calculated. Linear regression and Generalised Estimating Equation (GEE) adjusted for confounders were used to determine the association between SJL and the gestational trimesters (time), and anthropometric variables. Most of the pregnant women (54.5%) presented SJL > 1 h in the first gestational trimester. We also found an isolated effect of the gestation trimester on the SJL mean. In this sense, pregnant women had a decrease in SJL from the second to the third trimester (1.33 ± 0.08 versus 1.12 ± 0.07, respectively; p = 0.012). GEE analyzes showed that pregnant women of a normal weight showed a decrease in SJL from the second to the third trimester (1.29 ± 0.11 and 0.93 ± 0.08, respectively, p = 0.032), but this was not found in the other groups of nutritional status (underweight, overweight and obesity). In addition, a positive association between SJL and pre-gestational BMI in the third trimester (β = 0.200, p = 0.046) was found. SJL is quite prevalent during the gestational period and excessive BMI both before and during pregnancy is associated with an increased risk of having SJL > 1 h in the third and second trimesters, respectively. In addition, pregnant women of normal weight—but not underweight or overweight—had decreased SJL from the second to the third trimester.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudia Roberta de Castro Moreno
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo, São Paulo, Brazil.,Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
23
|
Casey T, Suarez-Trujillo A, Cummings S, Huff K, Crodian J, Bhide K, Aduwari C, Teeple K, Shamay A, Mabjeesh SJ, San Miguel P, Thimmapuram J, Plaut K. Core circadian clock transcription factor BMAL1 regulates mammary epithelial cell growth, differentiation, and milk component synthesis. PLoS One 2021; 16:e0248199. [PMID: 34415905 PMCID: PMC8378744 DOI: 10.1371/journal.pone.0248199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
The role the mammary epithelial circadian clock plays in gland development and lactation is unknown. We hypothesized that mammary epithelial clocks function to regulate mammogenesis and lactogenesis, and propose the core clock transcription factor BMAL1:CLOCK regulates genes that control mammary epithelial development and milk synthesis. Our objective was to identify transcriptional targets of BMAL1 in undifferentiated (UNDIFF) and lactogen differentiated (DIFF) mammary epithelial cells (HC11) using ChIP-seq. Ensembl gene IDs with the nearest transcriptional start site to ChIP-seq peaks were explored as potential targets, and represented 846 protein coding genes common to UNDIFF and DIFF cells and 2773 unique to DIFF samples. Genes with overlapping peaks between samples (1343) enriched cell-cell adhesion, membrane transporters and lipid metabolism categories. To functionally verify targets, an HC11 line with Bmal1 gene knocked out (BMAL1-KO) using CRISPR-CAS was created. BMAL1-KO cultures had lower cell densities over an eight-day growth curve, which was associated with increased (p<0.05) levels of reactive oxygen species and lower expression of superoxide dismutase 3 (Sod3). RT-qPCR analysis also found lower expression of the putative targets, prolactin receptor (Prlr), Ppara, and beta-casein (Csn2). Findings support our hypothesis and highlight potential importance of clock in mammary development and substrate transport.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Aridany Suarez-Trujillo
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Shelby Cummings
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Katelyn Huff
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Jennifer Crodian
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Ketaki Bhide
- Bioinformatics Core, Purdue University, West Lafayette, IN, United States of America
| | - Clare Aduwari
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Kelsey Teeple
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Avi Shamay
- Animal Science Institute, Agriculture Research Origination, The Volcani Center, Rishon Letsiyon, Israel
| | - Sameer J. Mabjeesh
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Phillip San Miguel
- Genomics Core, Purdue University, West Lafayette, IN, United States of America
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, IN, United States of America
| | - Karen Plaut
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
24
|
Qin F, Cao H, Feng C, Zhu T, Zhu B, Zhang J, Tong J, Pei H. Microarray profiling of LncRNA expression in the testis of pubertal mice following morning and evening exposure to 1800 MHz radiofrequency fields. Chronobiol Int 2021; 38:1745-1760. [PMID: 34369206 DOI: 10.1080/07420528.2021.1962902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this paper, the chronotoxicity of radiofrequency fields (RF) in the pubertal testis development and the involved molecular pathways were investigated by exposing four-week-old mice to RF (1800 MHz, SAR, 0.50 W/kg) in the morning and evening of each day for three weeks. Then, pathological changes and functional indices within the testis were determined. We also used a long non-coding RNA (lncRNA) microarray and GO/KEGG pathway analyses to determine lncRNA expression profiles and predict their potential functions. The cis and trans regulation of lncRNAs were investigated, and an interaction network was constructed using Cytoscape software. RF exposure led to a range of pathological changes in the testes of adolescent mice, as testicular weights and daily sperm productions decreased, and the testosterone secretion reduced. Furthermore, RF induced dysregulation in the expression of testicular lncRNAs. We identified 615 and 183 differentially expressed lncRNAs that were associated with morning and evening exposure to RF, respectively. From 15 differential expression lncRNAs both in morning RF group and evening RF group, we selected 6 lncRNAs to be validated by quantitative reverse transcription PCR (qRT-PCR). The differentially expressed lncRNAs induced by morning RF exposure were highly correlated with many different pathways, including Fanconi syndrome, metabolic processes, cell cycle, DNA damage, and DNA replication. Trans-regulation analyses further showed that differentially expressed lncRNAs were involved in multiple transcription factor-regulated pathways, such as TCFAP4, NFkB, HINFP, TFDP2, FoxN1, and PAX5. These transcription factors have all been shown to be involved in the modulation of testis development, cell cycle progression, and spermatogenesis. These findings suggest that the extent to which 1800 MHz RF induced toxicity in the testes and changed the expression of lncRNAs showed differences between morning exposure and evening exposure. These data indicate that differentially expressed lncRNAs play crucial roles in the RF exposure damage to the developing pubertal testis. Collectively, our findings provide a better understanding of the mechanisms underlying the toxic effects of RF exposure on testicular development.
Collapse
Affiliation(s)
- Fenju Qin
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China.,School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Honglong Cao
- School of Electronics & Information Engineering, Soochow University, Suzhou, China
| | - Chuhan Feng
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Tianyuan Zhu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Bingxu Zhu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Jie Zhang
- School of Public Health, Soochow University, Suzhou, China
| | - Jian Tong
- School of Public Health, Soochow University, Suzhou, China
| | - Hailong Pei
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
25
|
Zhou G, Duong TV, Kasten EP, Hoffmann HM. Low CLOCK and CRY2 in 2nd trimester human maternal blood and risk of preterm birth: A nested case-control study. Biol Reprod 2021; 105:827-836. [PMID: 34142702 DOI: 10.1093/biolre/ioab119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Previous studies have observed an association between maternal circadian rhythm disruption and preterm birth (PTB). However, the underlying molecular mechanisms and the potential of circadian clock genes to serve as predictors of PTB remain unexplored. We examined the association of 10 core circadian transcripts in maternal blood with spontaneous PTB (sPTB) vs term births using a nested case-control study design. We used a public gene expression dataset (GSE59491), which was nested within the All Our Babies (AOB) study cohort in Canada. Maternal blood was sampled in trimesters 2-3 from women with sPTB (n = 51) and term births (n = 106), matched for 5 demographic variables. In 2nd trimester maternal blood, only CLOCK and CRY2 transcripts were significantly lower in sPTB vs term (p = 0.02 ~ 0.03, FDR < 0.20). A change of PER3 mRNA from trimesters 2 to 3 was significantly associated with sPTB (decline in sPTB, p = 0.02, FDR < 0.20). When CLOCK and CRY2 were modeled together in 2nd trimester blood, the odds ratio of being in the low level of both circadian gene transcripts was greater in sPTB vs term (OR = 4.86, 95%CI = (1.75,13.51), p < 0.01). Using GSVA and Pearson correlation, we identified 98 common pathways that were negatively or positively correlated with CLOCK and CRY2 expression (all p < 0.05, FDR < 0.10). The top three identified pathways were amyotrophic lateral sclerosis, degradation of extracellular matrix, and inwardly rectifying potassium channels. These three processes have previously been shown to be involved in neuron death, parturition, and uterine excitability during pregnancy, respectively.
Collapse
Affiliation(s)
- Guoli Zhou
- Clinical & Translational Sciences Institute, Michigan State University, USA
| | - Thu V Duong
- Department of Animal Science, The Reproductive and Developmental Sciences Program, College of Agriculture and Natural Resources, Michigan State University, USA
| | - Eric P Kasten
- Clinical & Translational Sciences Institute, Michigan State University, USA.,Department of Radiology, Michigan State University, USA
| | - Hanne M Hoffmann
- Department of Animal Science, The Reproductive and Developmental Sciences Program, College of Agriculture and Natural Resources, Michigan State University, USA
| |
Collapse
|
26
|
Bottalico LN, Weljie AM. Cross-species physiological interactions of endocrine disrupting chemicals with the circadian clock. Gen Comp Endocrinol 2021; 301:113650. [PMID: 33166531 PMCID: PMC7993548 DOI: 10.1016/j.ygcen.2020.113650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are endocrine-active chemical pollutants that disrupt reproductive, neuroendocrine, cardiovascular and metabolic health across species. The circadian clock is a transcriptional oscillator responsible for entraining 24-hour rhythms of physiology, behavior and metabolism. Extensive bidirectional cross talk exists between circadian and endocrine systems and circadian rhythmicity is present at all levels of endocrine control, from synthesis and release of hormones, to sensitivity of target tissues to hormone action. In mammals, a range of hormones directly alter clock gene expression and circadian physiology via nuclear receptor (NR) binding and subsequent genomic action, modulating physiological processes such as nutrient and energy metabolism, stress response, reproductive physiology and circadian behavioral rhythms. The potential for EDCs to perturb circadian clocks or circadian-driven physiology is not well characterized. For this reason, we explore evidence for parallel endocrine and circadian disruption following EDC exposure across species. In the reviewed studies, EDCs dysregulated core clock and circadian rhythm network gene expression in brain and peripheral organs, and altered circadian reproductive, behavioral and metabolic rhythms. Circadian impacts occurred in parallel to endocrine and metabolic alterations such as impaired fertility and dysregulated metabolic and energetic homeostasis. Further research is warranted to understand the nature of interaction between circadian and endocrine systems in mediating physiological effects of EDC exposure at environmental levels.
Collapse
Affiliation(s)
- Lisa N Bottalico
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Yaw AM, McLane-Svoboda AK, Hoffmann HM. Shiftwork and Light at Night Negatively Impact Molecular and Endocrine Timekeeping in the Female Reproductive Axis in Humans and Rodents. Int J Mol Sci 2020; 22:E324. [PMID: 33396885 PMCID: PMC7795361 DOI: 10.3390/ijms22010324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 01/17/2023] Open
Abstract
Shiftwork, including work that takes place at night (nightshift) and/or rotates between day and nightshifts, plays an important role in our society, but is associated with decreased health, including reproductive dysfunction. One key factor in shiftwork, exposure to light at night, has been identified as a likely contributor to the underlying health risks associated with shiftwork. Light at night disrupts the behavioral and molecular circadian timekeeping system, which is important for coordinated timing of physiological processes, causing mistimed hormone release and impaired physiological functions. This review focuses on the impact of shiftwork on reproductive function and pregnancy in women and laboratory rodents and potential underlying molecular mechanisms. We summarize the negative impact of shiftwork on female fertility and compare these findings to studies in rodent models of light shifts. Light-shift rodent models recapitulate several aspects of reproductive dysfunction found in shift workers, and their comparison with human studies can enable a deeper understanding of physiological and hormonal responses to light shifts and the underlying molecular mechanisms that may lead to reproductive disruption in human shift workers. The contributions of human and rodent studies are essential to identify the origins of impaired fertility in women employed in shiftwork.
Collapse
Affiliation(s)
| | | | - Hanne M. Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
28
|
McCabe CJ, Suarez-Trujillo A, Teeple KA, Casey TM, Boerman JP. Chronic prepartum light-dark phase shifts in cattle disrupt circadian clocks, decrease insulin sensitivity and mammary development, and are associated with lower milk yield through 60 days postpartum. J Dairy Sci 2020; 104:2422-2437. [PMID: 33309361 DOI: 10.3168/jds.2020-19250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/17/2020] [Indexed: 01/04/2023]
Abstract
Circadian and metabolic systems are interlocked and reciprocally regulated. To determine if the circadian system regulates glucose homeostasis and mammary development, the function of the circadian system was disrupted by exposing cattle to chronic light-dark cycle phase shifts from 5 wk before expected calving (BEC) to parturition. Multiparous Holstein cows were exposed to 16 h of light and 8 h of dark (CON, n = 8) or phase shifting (PS, n = 8) the light cycle 6 h every 3 d beginning 35 d BEC. After calving, both treatments were exposed to CON lighting. Mammary biopsies were taken at 21 d BEC and 21 d in milk (DIM), and histological analysis indicated PS treatment decreased the ratio of lumen to alveolar area and percentage of proliferating epithelial cells in the prepartum period. Intravenous glucose tolerance test was performed at 14 d BEC and 7 DIM by administering 50% dextrose. Blood glucose, β-hydroxybutyrate, insulin, and nonesterified fatty acids were consequently measured over 3 h. At 14 d BEC no treatment differences were observed in baseline glucose or insulin. Treatment had no effect on blood glucose or glucose area under the curve at 14 d BEC and 7 DIM. Insulin area under the curve was higher in PS versus CON at 14 d BEC and 7 DIM. The PS cows produced less milk than CON cows through 60 DIM (40.3 vs. 42.6 kg/d). Exposure to chronic light-dark PS in late gestation decreased mammary development and increased insulin resistance in periparturient cows, which may have caused subsequent lower milk yield.
Collapse
Affiliation(s)
- C J McCabe
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - A Suarez-Trujillo
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - K A Teeple
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - T M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| | - J P Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
29
|
Impact of sleep on female and male reproductive functions: a systematic review. Fertil Steril 2020; 115:715-731. [PMID: 33054981 DOI: 10.1016/j.fertnstert.2020.08.1429] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To evaluate the association of sleep parameters on female and male reproductive functions. DESIGN Systematic review. SETTING Not applicable. PATIENT(S) Female and male individuals, either healthy or infertile. INTERVENTION(S) Relevant articles were identified according to the The Preferred Reporting Items for Systematic Reviews and Meta-analyses recommendations in the PubMed and EMBASE databases from January 1, 2000 to June 8, 2020. MAIN OUTCOME MEASURE(S) The association between sleep and ovary function, spermatic function, natural fertility, and in vitro fertilization (IVF) outcomes was assessed. RESULT(S) A total of 33 studies that looked at the association between sleep and either ovary function (n = 10), spermatic function (n = 12), natural fertility (n = 5), or IVF outcomes (n = 6) were included. Overall, female and male fertility, as well as IVF outcomes may be affected by short sleep duration, evening chronotype, or shift/night work schedules. However, the results were hardly comparable due to the heterogeneous study methodologies used. CONCLUSION(S) Sleep may be an original and innovative parameter to consider in the reproduction field. Further investigation is needed to elucidate how sleep and fertility are interrelated and how sleep might constitute a useful modifiable target in infertility management.
Collapse
|
30
|
Disruption of Circadian Rhythms: A Crucial Factor in the Etiology of Infertility. Int J Mol Sci 2020; 21:ijms21113943. [PMID: 32486326 PMCID: PMC7312974 DOI: 10.3390/ijms21113943] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Infertility represents a growing health problem in industrialized countries. Thus, a greater understanding of the molecular networks involved in this disease could be critical for the development of new therapies. A recent finding revealed that circadian rhythmicity disruption is one of the main causes of poor reproductive outcome. The circadian clock system beats circadian rhythms and modulates several physiological functions such as the sleep-wake cycle, body temperature, heart rate, and hormones secretion, all of which enable the body to function in response to a 24 h cycle. This intricated machinery is driven by specific genes, called “clock genes” that fine-tune body homeostasis. Stress of modern lifestyle can determine changes in hormone secretion, favoring the onset of infertility-related conditions that might reflect disfunctions within the hypothalamic–pituitary–gonadal axis. Consequently, the loss of rhythmicity in the suprachiasmatic nuclei might affect pulsatile sexual hormones release. Herein, we provide an overview of the recent findings, in both animal models and humans, about how fertility is influenced by circadian rhythm. In addition, we explore the complex interaction among hormones, fertility and the circadian clock. A deeper analysis of these interactions might lead to novel insights that could ameliorate the therapeutic management of infertility and related disorders.
Collapse
|
31
|
Light and Circadian Signaling Pathway in Pregnancy: Programming of Adult Health and Disease. Int J Mol Sci 2020; 21:ijms21062232. [PMID: 32210175 PMCID: PMC7139376 DOI: 10.3390/ijms21062232] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
Light is a crucial environmental signal that affects elements of human health, including the entrainment of circadian rhythms. A suboptimal environment during pregnancy can increase the risk of offspring developing a wide range of chronic diseases in later life. Circadian rhythm disruption in pregnant women may have deleterious consequences for their progeny. In the modern world, maternal chronodisruption can be caused by shift work, jet travel across time zones, mistimed eating, and excessive artificial light exposure at night. However, the impact of maternal chronodisruption on the developmental programming of various chronic diseases remains largely unknown. In this review, we outline the impact of light, the circadian clock, and circadian signaling pathways in pregnancy and fetal development. Additionally, we show how to induce maternal chronodisruption in animal models, examine emerging research demonstrating long-term negative implications for offspring health following maternal chronodisruption, and summarize current evidence related to light and circadian signaling pathway targeted therapies in pregnancy to prevent the development of chronic diseases in offspring.
Collapse
|
32
|
Yaw AM, Duong TV, Nguyen D, Hoffmann HM. Circadian rhythms in the mouse reproductive axis during the estrous cycle and pregnancy. J Neurosci Res 2020; 99:294-308. [PMID: 32128870 DOI: 10.1002/jnr.24606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/17/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
Molecular and behavioral timekeeping is regulated by the circadian system which includes the brain's suprachiasmatic nucleus (SCN) that translates environmental light information into neuronal and endocrine signals aligning peripheral tissue rhythms to the time of day. Despite the critical role of circadian rhythms in fertility, it remains unexplored how circadian rhythms change within reproductive tissues during pregnancy. To determine how estrous cycle and pregnancy impact phase relationships of reproductive tissues, we used PER2::Luciferase (PER2::LUC) circadian reporter mice and determined the time of day of PER2::LUC peak (phase) in the SCN, pituitary, uterus, and ovary. The relationships between reproductive tissue PER2::LUC phases changed throughout the estrous cycle and late pregnancy and were accompanied by changes to PER2::LUC period in the SCN, uterus, and ovary. To determine if the phase relationship adaptations were driven by sex steroids, we asked if progesterone, a hormone involved in estrous cyclicity and pregnancy, could regulate Per2-luciferase expression. Using an in vitro transfection assay, we found that progesterone increased Per2-luciferase expression in immortalized SCN (SCN2.2) and arcuate nucleus (KTAR) cells. In addition, progesterone shortened PER2::LUC period in ex vivo uterine tissue recordings collected during pregnancy. As progesterone dramatically increases during pregnancy, we evaluated wheel-running patterns in PER2::LUC mice. We confirmed that activity levels decrease during pregnancy and found that activity onset was delayed. Although SCN, but not arcuate nucleus, PER2::LUC period changed during late pregnancy, onset of locomotor activity did not correlate with SCN or arcuate nucleus PER2::LUC period.
Collapse
Affiliation(s)
- Alexandra M Yaw
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Thu V Duong
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Duong Nguyen
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
33
|
Sen A, Hoffmann HM. Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis. Mol Cell Endocrinol 2020; 501:110655. [PMID: 31756424 PMCID: PMC6962569 DOI: 10.1016/j.mce.2019.110655] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/17/2022]
Abstract
Precise timing in hormone release from the hypothalamus, the pituitary and ovary is critical for fertility. Hormonal release patterns of the reproductive axis are regulated by a feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. The timing and rhythmicity of hormone release and tissue sensitivity in the HPG axis is regulated by circadian clocks located in the hypothalamus (suprachiasmatic nucleus, kisspeptin and GnRH neurons), the pituitary (gonadotrophs), the ovary (theca and granulosa cells), the testis (Leydig cells), as well as the uterus (endometrium and myometrium). The circadian clocks integrate environmental and physiological signals to produce cell endogenous rhythms generated by a transcriptional-translational feedback loop of transcription factors that are collectively called the "molecular clock". This review specifically focuses on the contribution of molecular clock transcription factors in regulating hormone release patterns in the reproductive axis, with an emphasis on the female reproductive system. Specifically, we discuss the contributions of circadian rhythms in distinct neuronal populations of the female hypothalamus, the molecular clock in the pituitary and its overall impact on female and male fertility.
Collapse
Affiliation(s)
- Aritro Sen
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
34
|
Coyle CS, Caso F, Tolla E, Barrett P, Onishi KG, Tello JA, Stevenson TJ. Ovarian hormones induce de novo DNA methyltransferase expression in the Siberian hamster suprachiasmatic nucleus. J Neuroendocrinol 2020; 32:e12819. [PMID: 31800973 DOI: 10.1111/jne.12819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/30/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023]
Abstract
The present study investigated neuroanatomically localised changes in de novo DNA methyltransferase expression in the female Siberian hamster (Phodopus sungorus). The objectives were to identify the neuroendocrine substrates that exhibit rhythmic Dnmt3a and Dnmt3b expression across the oestrous cycle and also examine the role of ovarian steroids. Hypothalamic Dnmt3a expression was observed to significantly increase during the transition from pro-oestrous to oestrous. A single bolus injection of diethylstilbestrol and progesterone was sufficient to increase Dnmt3a cell numbers and Dnmt3b immunoreactive intensity in the suprachiasmatic nucleus. In vitro analyses using an embryonic rodent cell line revealed that diethylstilbestrol was sufficient to induce Dnmt3b expression. Up-regulating DNA methylation in vitro reduced the expression of vasoactive intestinal polypeptide, Vip, and the circadian clock gene, Bmal1. Together, these data indicate that ovarian steroids drive de novo DNA methyltransferase expression in the mammalian suprachiasmatic nucleus and increased methylation may regulate genes involved in the circadian timing of oestrous: Vip and Bmal1. Overall, epigenetically mediated neuroendocrine reproductive events may reflect an evolutionarily ancient process involved in the timing of female fertility.
Collapse
Affiliation(s)
- Chris S Coyle
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Federico Caso
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Elisabetta Tolla
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Perry Barrett
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Kenneth G Onishi
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL, USA
| | - Javier A Tello
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Tyler John Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
35
|
Suarez-Trujillo A, Wernert G, Sun H, Steckler TS, Huff K, Cummings S, Franco J, Klopp RN, Townsend JR, Grott M, Johnson JS, Plaut K, Boerman JP, Casey TM. Exposure to chronic light-dark phase shifts during the prepartum nonlactating period attenuates circadian rhythms, decreases blood glucose, and increases milk yield in the subsequent lactation. J Dairy Sci 2020; 103:2784-2799. [PMID: 31980225 DOI: 10.3168/jds.2019-16980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022]
Abstract
Maintaining metabolic balance is a key factor in the health of dairy cattle during the transition from pregnancy to lactation. Little is known regarding the role of the circadian timing system in the regulation of physiological changes during the transition period. We hypothesized that disruption of the cow's circadian timing system by exposure to chronic light-dark phase shifts during the prepartum period would negatively affect the regulation of homeostasis and cause metabolic disturbances, leading to reduced milk production in the subsequent lactation. The objective was to determine the effect of exposure to chronic light-dark phase shift during the last 5 wk prepartum of the nonlactating dry period on core body temperature, melatonin, blood glucose, β-hydroxybutyric acid (BHB) and nonesterified fatty acid (NEFA) concentrations, and milk production. Multiparous cows were moved to tiestalls at 5 wk before expected calving and assigned to control (CTR; n = 16) or phase-shifted (PS; n = 16) treatments. Control cows were exposed to 16 h of light and 8 h of dark. Phase-shifted cows were exposed to the same photoperiod; however, the light-dark cycle was shifted 6 h every 3 d until parturition. Resting behavior and feed intake were recorded daily. Core body temperature was recorded vaginally for 48 h at 23 and 9 d before expected calving using calibrated data loggers. Blood concentrations of melatonin, glucose, BHB, and NEFA were measured during the pre- and postpartum periods. Milk yield and composition were measured through 60 DIM. Treatment did not affect feed intake or body condition. Cosine fit analysis of 24-h core body temperature and circulating melatonin indicated attenuation of circadian rhythms in the PS treatment compared with the CTR treatment. Phase-shifted cows had lower rest consolidation, as indicated by more total resting time, but shorter resting period durations. Phase-shifted cows had lower blood glucose concentration compared with CTR cows (4 mg/mL decrease), but BHB and NEFA concentrations were similar between PS and CTR cows. Milk yield and milk fat yield were greater in PS compared with CTR cows (2.8 kg/d increase). Thus, exposure to chronic light-dark phase shifts during the prepartum period attenuated circadian rhythms of core body temperature, melatonin, and rest-activity behavior and was associated with increased milk fat and milk yield in the postpartum period despite decreased blood glucose pre- and postpartum. Therefore, less variation in central circadian rhythms may create a more constant milieu that supports the onset of lactogenesis.
Collapse
Affiliation(s)
| | - Grace Wernert
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Hui Sun
- Department of Statistics, Purdue University, West Lafayette, IN 47907
| | - Tabitha S Steckler
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Katelyn Huff
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Shelby Cummings
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Jackeline Franco
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| | - Rebecca N Klopp
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Jonathan R Townsend
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907
| | - Michael Grott
- Animal Sciences Research and Education Center, Purdue University, West Lafayette, IN 47906
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN 47907
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | | | - Theresa M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
36
|
Sundaram S, Johnson LK, Yan L. High-Fat Diet Alters Circadian Rhythms in Mammary Glands of Pubertal Mice. Front Endocrinol (Lausanne) 2020; 11:349. [PMID: 32625167 PMCID: PMC7314922 DOI: 10.3389/fendo.2020.00349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Childhood obesity in girls is associated with early puberty and menarche. Breast tissue exhibits circadian rhythms. These rhythms may be altered by environmental factors. We hypothesized that a high-fat diet (HFD) disrupts circadian rhythms in pubertal mammary glands. Weanling female C57BL/6 mice were fed the standard AIN93G diet or a HFD (providing 16% or 45% of energy from soybean oil) for 3 weeks. Mammary glands were harvested from 6-week-old mice every 4 h on Zeitgeber time over a 48-h period; rhythmic expressions of circadian genes and genes encoding estrogen receptor and progesterone receptor were analyzed by using the Cosinor model. HFD, compared to AIN93G diet, altered diurnal oscillations of circadian genes in pubertal mammary glands. These included changes in amplitude of Per2, Cry1 (reduced), Clock, Rev-erbα, and Per1 (elevated), a delay in acrophase (the hour at which the rhythm peaks) of Bmal1 by 2.2 h, and changes in mesor (the mean of the rhythm from peak to trough) of Bmal1, Per2, Cry1 (reduced), Rev-rebα, and Per1 (elevated). Furthermore, HFD altered diurnal expression of estrogen receptor and progesterone receptor at both mRNA and protein levels. These findings indicate that HFD alters circadian regulation in pubertal mammary glands, which may contribute to the disturbance of hormonal homeostasis and lead to early development and growth of mammary glands in pubertal mice.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW To integrate evidence on the role of circadian rhythm in male reproduction. Several studies report on various aspects of the association between the circadian system and male reproductive function in animals and humans both in physiological condition as well as in the case of subfertility. RECENT FINDINGS Epidemiological data demonstrate diurnal and seasonal changes as well as the effect of sleep/wake cycles on the quality of semen. Rare and common genetic variation in circadian clock genes in humans and animal models support the role of circadian rhythms in male fertility in humans. SUMMARY Current data support the modest effect of the circadian clock on male reproductive potential; however, the evidence available is still fragmented and inconclusive. Additional well designed and sufficiently powered studies are needed to delineate the role of the circadian clock both in cause and potential interventional and preventive approaches in male subfertility.
Collapse
Affiliation(s)
- Ana Peterlin
- Faculty of Medicine, Institute of Histology and Embryology
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
38
|
Silva CC, Cortés GD, Javier CY, Flores A, Domínguez R. A neural circadian signal essential for ovulation is generated in the suprachiasmatic nucleus during each stage of the oestrous cycle. Exp Physiol 2019; 105:258-269. [PMID: 31769118 DOI: 10.1113/ep087942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is the suprachiasmatic nucleus the structure that generates the neural circadian signals that occur during every stage of the oestrous cycle, not only pro-oestrus, and are these signals essential for proper regulation of ovulation? What is the main finding and its importance? Transient inhibition of Na+ -dependent action potentials in the suprachiasmatic nucleus by tetrodotoxin microinjection at 14.00 h inhibits ovulation irrespective of the stage of the oestrous cycle at which the procedure is performed. Microinjection of saline solution into the suprachiasmatic nucleus has a disruptive effect on ovulation that depends on the stage of the cycle at which it is administered. ABSTRACT Reproduction is a highly timed process that depends on both the reproductive and circadian systems. The core oscillator of the latter resides at the suprachiasmatic nuclei (SCN) and it is pivotal for the regulation of the pro-oestrus pre-ovulatory surge of gonadotropins in females. There is evidence to suggest that this system may be involved in the regulation of neuroendocrine events that are essential for ovulation and that occur prior to pro-oestrus. We explored this possibility by transiently inactivating the SCN. Female rats were implanted with guide cannulas aimed at the SCN. After recovery of the oestrous cycle, animals were injected with tetrodotoxin (TTX), artificial cerebrospinal fluid (ACSF) or saline solution while freely moving. Injections were performed at 14.00 h of each stage of the oestrous cycle. Animals were killed on the next predicted oestrus day, the number of ova shed was counted and intact rats at oestrus stage were used as absolute control. ACSF did not modify ovulation. Saline solution blocked ovulation in oestrus- and dioestrus-injected rats. Irrespectively of the stage of the oestrous cycle, TTX blocked ovulation. These results lead us to suggest that a neural circadian signal, pivotal for triggering the gonadotropin pre-ovulatory surge, arises from the SCN during the critical window of pro-oestrus. We also suggest that a similar signal, needed for the regulation of other events that are indispensable for proper regulation of ovulation, is also generated in this nucleus during the other stages of the cycle at a similar time.
Collapse
Affiliation(s)
- Carlos-Camilo Silva
- Chronobiology of Reproduction Research Lab, Biology of Reproduction Research Unit, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México City, México.,Developmental Biology Lab, Biology of Reproduction Research Unit, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México City, México
| | - Georgina Daniela Cortés
- Chronobiology of Reproduction Research Lab, Biology of Reproduction Research Unit, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México City, México
| | - Cintia Yolanda Javier
- Chronobiology of Reproduction Research Lab, Biology of Reproduction Research Unit, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México City, México
| | - Angélica Flores
- Chronobiology of Reproduction Research Lab, Biology of Reproduction Research Unit, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México City, México.,Developmental Biology Lab, Biology of Reproduction Research Unit, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México City, México
| | - Roberto Domínguez
- Chronobiology of Reproduction Research Lab, Biology of Reproduction Research Unit, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México City, México.,Developmental Biology Lab, Biology of Reproduction Research Unit, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
39
|
The Homeodomain Transcription Factors Vax1 and Six6 Are Required for SCN Development and Function. Mol Neurobiol 2019; 57:1217-1232. [PMID: 31705443 DOI: 10.1007/s12035-019-01781-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
The brain's primary circadian pacemaker, the suprachiasmatic nucleus (SCN), is required to translate day-length and circadian rhythms into neuronal, hormonal, and behavioral rhythms. Here, we identify the homeodomain transcription factor ventral anterior homeobox 1 (Vax1) as required for SCN development, vasoactive intestinal peptide expression, and SCN output. Previous work has shown that VAX1 is required for gonadotropin-releasing hormone (GnRH/LHRH) neuron development, a neuronal population controlling reproductive status. Surprisingly, the ectopic expression of a Gnrh-Cre allele (Gnrhcre) in the SCN confirmed the requirement of both VAX1 (Vax1flox/flox:Gnrhcre, Vax1Gnrh-cre) and sine oculis homeobox protein 6 (Six6flox/flox:Gnrhcre, Six6Gnrh-cre) in SCN function in adulthood. To dissociate the role of Vax1 and Six6 in GnRH neuron and SCN function, we used another Gnrh-cre allele that targets GnRH neurons, but not the SCN (Lhrhcre). Both Six6Lhrh-cre and Vax1Lhrh-cre were infertile, and in contrast to Vax1Gnrh-cre and Six6Gnrh-cre mice, Six6Lhrh-cre and Vax1Lhrh-cre had normal circadian behavior. Unexpectedly, ~ 1/4 of the Six6Gnrh-cre mice were unable to entrain to light, showing that ectopic expression of Gnrhcre impaired function of the retino-hypothalamic tract that relays light information to the brain. This study identifies VAX1, and confirms SIX6, as transcription factors required for SCN development and function and demonstrates the importance of understanding how ectopic CRE expression can impact the results.
Collapse
|
40
|
Cai C, Cai P, Chu G. Selection of suitable reference genes for core clock gene expression analysis by real-time qPCR in rat ovary granulosa cells. Mol Biol Rep 2019; 46:2941-2946. [PMID: 31016616 DOI: 10.1007/s11033-019-04755-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/08/2019] [Indexed: 01/19/2023]
Abstract
Selection of a suitable endogenous reference gene is essential for investigating expression of clock genes Bmal1, Clock, Pers, Crys, Rev-erbα/β, and RORα/β/γ involved in the circadian system. In this study, we treated rat ovary granulosa cells with dexamethasone to synchronize circadian oscillation in vitro and determined expression levels of Bmal1 and Per2 and six candidate reference genes (Actb, Beta actin; B2m, Beta-2-microglobulin; Ppia, Cyclophilin A; Gapdh, Glyceraldehyde-3-phosphate dehydrogenase; Hprt, Hypoxanthine guanine phosphoribosyl transferase and Tbp, TATA-box-binding protein) using quantitative real-time PCR. We then employed three software programs, GeNorm, NormFinder, and BestKeeper, to analyze the expression data for the selection of the best reference gene. According to GeNorm, Tbp and B2m were assessed as the most stable reference genes; Tbp and Hprt were best by NormFinder and BestKeeper, respectively. Thus, we recommend Tbp as the most suitable reference gene for studying clock genes expression in rat ovary granulosa cells in vitro.
Collapse
Affiliation(s)
- Chuanjiang Cai
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Pengpeng Cai
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, People's Republic of China
| |
Collapse
|
41
|
McCarthy R, Jungheim ES, Fay JC, Bates K, Herzog ED, England SK. Riding the Rhythm of Melatonin Through Pregnancy to Deliver on Time. Front Endocrinol (Lausanne) 2019; 10:616. [PMID: 31572299 PMCID: PMC6753220 DOI: 10.3389/fendo.2019.00616] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
Pregnancy is influenced by the circadian ("circa" or approximately; diēm or day) system, which coordinates physiology and behavior with predictable daily changes in the environment such as light/dark cycles. For example, most species deliver around a particular time of day. In mammals, circadian rhythms are controlled by the master circadian pacemaker, the suprachiasmatic nucleus. One key way that the suprachiasmatic nucleus coordinates circadian rhythms throughout the body is by regulating production of the sleep-promoting hormone melatonin. Serum melatonin concentration, which peaks at night and is suppressed during the day, is one of the best biological indicators of circadian timing. Circadian misalignment causes maternal disturbances in the temporal organization of many physiological processes including melatonin synthesis, and these disturbances of the circadian system have been linked to an increased risk for pregnancy complications. Here, we review evidence that melatonin helps regulate the maternal and fetal circadian systems and the timing of birth. Finally, we discuss the potential for melatonin-based therapeutic strategies to alleviate poor pregnancy outcomes such as preeclampsia and preterm birth.
Collapse
Affiliation(s)
- Ronald McCarthy
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| | - Emily S. Jungheim
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| | - Justin C. Fay
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Keenan Bates
- Department of Biology, Washington University, St. Louis, MO, United States
| | - Erik D. Herzog
- Department of Biology, Washington University, St. Louis, MO, United States
| | - Sarah K. England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Sarah K. England
| |
Collapse
|
42
|
Simonneaux V. A Kiss to drive rhythms in reproduction. Eur J Neurosci 2018; 51:509-530. [DOI: 10.1111/ejn.14287] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/08/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Valérie Simonneaux
- Institut des Neurosciences Cellulaires et IntégrativesCNRSUniversité de Strasbourg Strasbourg France
| |
Collapse
|
43
|
Simonneaux V, Piet R. Neuroendocrine pathways driving daily rhythms in the hypothalamic pituitary gonadal axis of female rodents. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Spergel DJ. Neuropeptidergic modulation of GnRH neuronal activity and GnRH secretion controlling reproduction: insights from recent mouse studies. Cell Tissue Res 2018; 375:179-191. [DOI: 10.1007/s00441-018-2893-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022]
|
45
|
Casey TM, Plaut K, Kalyesubula M, Shamay A, Sabastian C, Wein Y, Bar-Shira E, Reicher N, Mabjeesh SJ. Mammary core clock gene expression is impacted by photoperiod exposure during the dry period in goats. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1486317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Theresa M. Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Mugagga Kalyesubula
- The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University, Rehovot, Israel
| | - Avi Shamay
- Institute of Animal Science, The Volcani Center, Bet Dagan, Israel
| | - Chris Sabastian
- The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University, Rehovot, Israel
| | - Yosi Wein
- The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University, Rehovot, Israel
| | - Enav Bar-Shira
- The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University, Rehovot, Israel
| | - Naama Reicher
- The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University, Rehovot, Israel
| | - Sameer. J. Mabjeesh
- The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University, Rehovot, Israel
| |
Collapse
|
46
|
Hu LY, Wang MZ, Ouyang JL, Li PF, Loor JJ. Rapid Communication: Period2 gene silencing increases the synthesis of αs-casein protein in bovine mammary epithelial cells. J Anim Sci 2018; 95:4510-4513. [PMID: 29108063 DOI: 10.2527/jas2017.1938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
(), a core clock gene, encodes a circadian rhythm protein which has been shown to control mammary metabolism in rodents. Whether regulates milk component synthesis such as α-casein protein in bovine mammary cells is unknown. Thus, we used gene silencing technology to determine if silencing could affect α-casein synthesis and cell growth in cultured primary bovine mammary epithelial cells (BMEC). The BMEC were established by enzymatic digestion of mammary tissue from mid-lactation cows. A transient-transfection technique was used to insert a small interfering RNA (siRNA) oligonucleotide specific for to inhibit transcription. Control and siRNA-transfected cells were cultured for 48 h. qRT-PCR and ELISA analysis showed that silencing enhanced the synthesis of 2 kinds of α-casein ( < 0.05) through upregulating the mRNA level of and ( < 0.01). Furthermore, the 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) results demonstrated that cell proliferation was not affected ( > 0.05). These data led us to hypothesize that PER2 protein may potentially play an important role in the control of milk protein synthesis and, hence, represents a target that can be used to regulate protein synthesis rate during lactation.
Collapse
|
47
|
McQueen CM, Schmitt EE, Sarkar TR, Elswood J, Metz RP, Earnest D, Rijnkels M, Porter WW. PER2 regulation of mammary gland development. Development 2018; 145:dev.157966. [PMID: 29490985 PMCID: PMC5897596 DOI: 10.1242/dev.157966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/19/2018] [Indexed: 12/24/2022]
Abstract
The molecular clock plays key roles in daily physiological functions, development and cancer. Period 2 (PER2) is a repressive element, which inhibits transcription activated by positive clock elements, resulting in diurnal cycling of genes. However, there are gaps in our understanding of the role of the clock in normal development outside of its time-keeping function. Here, we show that PER2 has a noncircadian function that is crucial to mammalian mammary gland development. Virgin Per2-deficient mice, Per2-/- , have underdeveloped glands, containing fewer bifurcations and terminal ducts than glands of wild-type mice. Using a transplantation model, we show that these changes are intrinsic to the gland and further identify changes in cell fate commitment. Per2-/- mouse mammary glands have a dual luminal/basal phenotypic character in cells of the ductal epithelium. We identified colocalization of E-cadherin and keratin 14 in luminal cells. Similar results were demonstrated using MCF10A and shPER2 MCF10A human cell lines. Collectively this study reveals a crucial noncircadian function of PER2 in mammalian mammary gland development, validates the Per2-/- model, and describes a potential role for PER2 in breast cancer.
Collapse
Affiliation(s)
- Cole M McQueen
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Emily E Schmitt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tapasree R Sarkar
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Jessica Elswood
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Richard P Metz
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - David Earnest
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Weston W Porter
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
48
|
Yang J, Zhang Z, Zhang Y, Zheng X, Lu Y, Tao D, Liu Y, Ma Y. CLOCK interacts with RANBP9 and is involved in alternative splicing in spermatogenesis. Gene 2018; 642:199-204. [DOI: 10.1016/j.gene.2017.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 01/11/2023]
|
49
|
Caba M, González-Mariscal G, Meza E. Circadian Rhythms and Clock Genes in Reproduction: Insights From Behavior and the Female Rabbit's Brain. Front Endocrinol (Lausanne) 2018; 9:106. [PMID: 29599751 PMCID: PMC5862793 DOI: 10.3389/fendo.2018.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/02/2018] [Indexed: 12/31/2022] Open
Abstract
Clock gene oscillations are necessary for a successful pregnancy and parturition, but little is known about their function during lactation, a period demanding from the mother multiple physiological and behavioral adaptations to fulfill the requirements of the offspring. First, we will focus on circadian rhythms and clock genes in reproductive tissues mainly in rodents. Disruption of circadian rhythms or proper rhythmic oscillations of clock genes provoke reproductive problems, as found in clock gene knockout mice. Then, we will focus mainly on the rabbit doe as this mammal nurses the young just once a day with circadian periodicity. This daily event synchronizes the behavior and the activity of specific brain regions critical for reproductive neuroendocrinology and maternal behavior, like the preoptic area. This region shows strong rhythms of the PER1 protein (product of the Per1 clock gene) associated with circadian nursing. Additionally, neuroendocrine cells related to milk production and ejections are also synchronized to daily nursing. A threshold of suckling is necessary to entrain once a day nursing; this process is independent of milk output as even virgin does (behaving maternally following anosmia) can display circadian nursing behavior. A timing motivational mechanism may regulate such behavior as mesolimbic dopaminergic cells are entrained by daily nursing. Finally, we will explore about the clinical importance of circadian rhythms. Indeed, women in chronic shift-work schedules show problems in their menstrual cycles and pregnancies and also have a high risk of preterm delivery, making this an important field of translational research.
Collapse
Affiliation(s)
- Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
- *Correspondence: Mario Caba,
| | - Gabriela González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Enrique Meza
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
50
|
Abitbol K, Debiesse S, Molino F, Mesirca P, Bidaud I, Minami Y, Mangoni ME, Yagita K, Mollard P, Bonnefont X. Clock-dependent and system-driven oscillators interact in the suprachiasmatic nuclei to pace mammalian circadian rhythms. PLoS One 2017; 12:e0187001. [PMID: 29059248 PMCID: PMC5653358 DOI: 10.1371/journal.pone.0187001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/11/2017] [Indexed: 12/04/2022] Open
Abstract
Circadian clocks drive biological rhythms with a period of approximately 24 hours and keep in time with the outside world through daily resetting by environmental cues. While this external entrainment has been extensively investigated in the suprachiasmatic nuclei (SCN), the role of internal systemic rhythms, including daily fluctuations in core temperature or circulating hormones remains debated. Here, we show that lactating mice, which exhibit dampened systemic rhythms, possess normal molecular clockwork but impaired rhythms in both heat shock response gene expression and electrophysiological output in their SCN. This suggests that body rhythms regulate SCN activity downstream of the clock. Mathematical modeling predicts that systemic feedback upon the SCN functions as an internal oscillator that accounts for in vivo and ex vivo observations. Thus we are able to propose a new bottom-up hierarchical organization of circadian timekeeping in mammals, based on the interaction in the SCN between clock-dependent and system-driven oscillators.
Collapse
Affiliation(s)
- Karine Abitbol
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
| | - Ségolène Debiesse
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
| | - François Molino
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS UMR 5221, Montpellier, France
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
| | - Yoichi Minami
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Matteo E. Mangoni
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Patrice Mollard
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
| | - Xavier Bonnefont
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
| |
Collapse
|