1
|
Hansen PJ. Pressing needs and recent advances to enhance production of embryos in vitro in cattle. Anim Reprod 2024; 21:e20240036. [PMID: 39286365 PMCID: PMC11404885 DOI: 10.1590/1984-3143-ar2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/07/2024] [Indexed: 09/19/2024] Open
Abstract
Embryo transfer in cattle is an increasingly important technique for cattle production. Full attainment of the benefits of the technology will depend on overcoming hurdles to optimal performance using embryos produced in vitro. Given its importance, embryo technology research should become a global research priority for animal reproduction science. Among the goals of that research should be developing methods to increase the proportion of oocytes becoming embryos through optimization of in vitro oocyte maturation and in vitro fertilization, producing an embryo competent to establish and maintain pregnancy after transfer, and increasing recipient fertility through selection, management and pharmacological manipulation. The embryo produced in vitro is susceptible to epigenetic reprogramming and methods should be found to minimize deleterious epigenetic change while altering the developmental program of the resultant calf to increase its health and productivity. There are widening opportunities to rethink the technological basis for much of the current practices for production and transfer of embryos because of explosive advances in fields of bioengineering such as microfluidics, three-dimensional printing of cell culture materials, organoid culture, live-cell imaging, and cryopreservation.
Collapse
Affiliation(s)
- Peter James Hansen
- D.H. Barron Reproductive and Perinatal Biology Research Program, Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Ma J, Xie Q, Zhang Y, Xiao Q, Liu X, Qiao C, Tian Y. Advances in microfluidic technology for sperm screening and in vitro fertilization. Anal Bioanal Chem 2024; 416:3717-3735. [PMID: 38189916 DOI: 10.1007/s00216-023-05120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
About 18% of reproductive-age adults worldwide are affected by infertility. In vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are widely used assisted reproductive technologies (ARTs) aimed at improving clinical outcomes. Efficient and noninvasive selection and isolation of highly motile sperm with intact DNA are essential for the success of IVF and ICSI and can potentially impact the therapeutic efficacy and the health of the offspring. Compared to traditional methods, microfluidic technology offers significant advantages such as low sample consumption, high efficiency, minimal damage, high integration, similar microenvironment, and high automation, providing a new platform for ARTs. Here, we review the current situation of microfluidic technology in the field of sperm motility screening and evaluation and IVF research. First, we focus on the working principle, structural design, and screening results of sperm selection microfluidic platforms. We then highlight how the multiple steps of the IVF process can be facilitated and integrated into a microfluidic chip, including oocyte capture, sperm collection and isolation, sperm sorting, fertilization, and embryo culture. Ultimately, we summarize how microfluidics can complement and optimize current sperm sorting and IVF protocols, and challenges and possible solutions are discussed.
Collapse
Affiliation(s)
- Jingtong Ma
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Qianlin Xie
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Yusongjia Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Qirui Xiao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynaecology, General Hospital of Northern Theater Command, Shenyang, 110003, China.
| | - Chong Qiao
- Department of Obstetrics and Gynecology of Shengjing Hospital of China Medical University, Shenyang, 110022, China.
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, 110022, China.
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, China.
| |
Collapse
|
3
|
Ďuračka M, Benko F, Chňapek M, Tvrdá E. Strategies for Bacterial Eradication from Human and Animal Semen Samples: Current Options and Future Alternatives. SENSORS (BASEL, SWITZERLAND) 2023; 23:6978. [PMID: 37571761 PMCID: PMC10422635 DOI: 10.3390/s23156978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
The primary role of semen processing and preservation is to maintain a high proportion of structurally and functionally competent and mature spermatozoa, that may be used for the purposes of artificial reproduction when needed, whilst minimizing any potential causes of sperm deterioration during ex vivo semen handling. Out of a multitude of variables determining the success of sperm preservation, bacterial contamination has been acknowledged with an increased interest because of its often unpredictable and complex effects on semen quality. Whilst antibiotics are usually the most straight-forward option to prevent the bacterial contamination of semen, antimicrobial resistance has become a serious threat requiring widespread attention. As such, besides discussing the consequences of bacteriospermia on the sperm vitality and the risks of antibiotic overuse in andrology, this paper summarizes the currently available evidence on alternative strategies to prevent bacterial contamination of semen prior to, during, and following sperm processing, selection, and preservation. Alternative antibacterial supplements are reviewed, and emphasis is given to modern methods of sperm selection that may be combined by the physical removal of bacteria prior to sperm preservation or by use in assisted reproductive technologies.
Collapse
Affiliation(s)
- Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Filip Benko
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Milan Chňapek
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
4
|
Ferraz MDAMM, Ferronato GDA. Opportunities involving microfluidics and 3D culture systems to the in vitro embryo production. Anim Reprod 2023; 20:e20230058. [PMID: 37638255 PMCID: PMC10449241 DOI: 10.1590/1984-3143-ar2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/29/2023] [Indexed: 08/29/2023] Open
Abstract
Traditional methods of gamete handling, fertilization, and embryo culture often face limitations in efficiency, consistency, and the ability to closely mimic in vivo conditions. This review explores the opportunities presented by microfluidic and 3D culture systems in overcoming these challenges and enhancing in vitro embryo production. We discuss the basic principles of microfluidics, emphasizing their inherent advantages such as precise control of fluid flow, reduced reagent consumption, and high-throughput capabilities. Furthermore, we delve into microfluidic devices designed for gamete manipulation, in vitro fertilization, and embryo culture, highlighting innovations such as droplet-based microfluidics and on-chip monitoring. Next, we explore the integration of 3D culture systems, including the use of biomimetic scaffolds and organ-on-a-chip platforms, with a particular focus on the oviduct-on-a-chip. Finally, we discuss the potential of these advanced systems to improve embryo production outcomes and advance our understanding of early embryo development. By leveraging the unique capabilities of microfluidics and 3D culture systems, we foresee significant advancements in the efficiency, effectiveness, and clinical success of in vitro embryo production.
Collapse
Affiliation(s)
- Marcia de Almeida Monteiro Melo Ferraz
- Faculty of Veterinary Medicine, Ludwig-Maximilians University of Munich, Oberschleißheim, Germany
- Gene Center, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Giuliana de Avila Ferronato
- Faculty of Veterinary Medicine, Ludwig-Maximilians University of Munich, Oberschleißheim, Germany
- Gene Center, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
5
|
Fang Y, Wu R, Lee JM, Chan LHM, Chan KYJ. Microfluidic in-vitro fertilization technologies: Transforming the future of human reproduction. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Singh K, Dewani D. Recent Advancements in In Vitro Fertilisation. Cureus 2022; 14:e30116. [DOI: 10.7759/cureus.30116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
|
7
|
Olatunji O, More A. A Review of the Impact of Microfluidics Technology on Sperm Selection Technique. Cureus 2022; 14:e27369. [PMID: 36046322 PMCID: PMC9419845 DOI: 10.7759/cureus.27369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Sperm sorting procedures depend on centrifugation processes. These processes produce oxidative stress and cell damage that are undesirable for in-vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) outcomes because they affect fertilization and implantation chances. The microfluidic sperm selection technique has shown promise in this area. It can create a platform for isolating and manipulating good-quality sperm cells using diverse triggers such as mechanical factors, chemical agents, and temperature gradients. Furthermore, microfluidic platforms can direct sperm cells for IVF or sperm sorting by utilizing an approach that is passive or active. In this review, we explain the use of microfluidics technologies for sorting and arranging sperm cells for different purposes. We also discuss the use of microfluidics technology in selecting and assessing sperm parameters and how it affects male infertility.
Collapse
|
8
|
Abstract
Increased demand for in vitro fertilization (IVF) due to socio-demographic trends, and supply facilitated by new technologies, converged to transform the way a substantial proportion of humans reproduce. The purpose of this article is to describe the societal and demographic trends driving increased worldwide demand for IVF, as well as to provide an overview of emerging technologies that promise to greatly expand IVF utilization and lower its cost.
Collapse
|
9
|
Rahi A, Kazemi M, Pishbin E, Karimi S, Nazarian H. Cross flow coupled with inertial focusing for separation of human sperm cells from semen and simulated TESE samples. Analyst 2021; 146:7230-7239. [PMID: 34724697 DOI: 10.1039/d1an01525g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A triplet spiral channel coupled with cross-flow filtration has been designed and fabricated in an effort to separate sperm cells from either semen or simulated testicular sperm extraction (TESE) samples. This device separates a fraction of cells from the sample by taking advantage of inertial focusing combined with hydrodynamic filtration in multiple micro-slits. Compared to the conventional swim-up technique, the proposed microfluidic device is capable of efficiently separating sperm cells without any tedious semen sample processing and centrifugation steps with a lower level of reactive oxygen species and DNA fragmentation. The device processing capability on the simulated TESE samples confirmed its proficiency in retrieving sperm cells from the samples with an approximate yield of 76%. Conclusively, the introduced microfluidic device can pave the path to proficiently separate sperm cells in assisted reproductive treatment cycles.
Collapse
Affiliation(s)
- Amid Rahi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Kazemi
- IVF Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmail Pishbin
- Bio-microfluidics lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Sareh Karimi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Alias AB, Huang HY, Yao DJ. A Review on Microfluidics: An Aid to Assisted Reproductive Technology. Molecules 2021; 26:4354. [PMID: 34299629 PMCID: PMC8303723 DOI: 10.3390/molecules26144354] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Infertility is a state of the male or female reproductive system that is defined as the failure to achieve pregnancy even after 12 or more months of regular unprotected sexual intercourse. Assisted reproductive technology (ART) plays a crucial role in addressing infertility. Various ART are now available for infertile couples. Fertilization in vitro (IVF), intracytoplasmic sperm injection (ICSI) and intrauterine insemination (IUI) are the most common techniques in this regard. Various microfluidic technologies can incorporate various ART procedures such as embryo and gamete (sperm and oocyte) analysis, sorting, manipulation, culture and monitoring. Hence, this review intends to summarize the current knowledge about the application of this approach towards cell biology to enhance ART.
Collapse
Affiliation(s)
- Anand Baby Alias
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung University and College of Medicine, Taoyuan 33305, Taiwan
| | - Da-Jeng Yao
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
11
|
Sequeira RC, Criswell T, Atala A, Yoo JJ. Microfluidic Systems for Assisted Reproductive Technologies: Advantages and Potential Applications. Tissue Eng Regen Med 2020; 17:787-800. [PMID: 33237567 PMCID: PMC7710813 DOI: 10.1007/s13770-020-00311-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Microfluidic technologies have emerged as a powerful tool that can closely replicate the in-vivo physiological conditions of organ systems. Assisted reproductive technology (ART), while being able to achieve successful outcomes, still faces challenges related to technical error, efficiency, cost, and monitoring/assessment. In this review, we provide a brief overview of the uses of microfluidic devices in the culture, maintenance and study of ovarian follicle development for experimental and therapeutic applications. We discuss existing microfluidic platforms for oocyte and sperm selection and maintenance, facilitation of fertilization by in-vitro fertilization/intracytoplastimc sperm injection, and monitoring, selection and maintenance of resulting embryos. Furthermore, we discuss the possibility of future integration of these technologies onto a single platform and the limitations facing the development of these systems. In spite of these challenges, we envision that microfluidic systems will likely evolve and inevitably revolutionize both fundamental, reproductive physiology/toxicology research as well as clinically applicable ART.
Collapse
Affiliation(s)
- Russel C Sequeira
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
12
|
Yan Y, Liu H, Zhang B, Liu R. A PMMA-Based Microfluidic Device for Human Sperm Evaluation and Screening on Swimming Capability and Swimming Persistence. MICROMACHINES 2020; 11:mi11090793. [PMID: 32839382 PMCID: PMC7570091 DOI: 10.3390/mi11090793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 11/24/2022]
Abstract
The selection of high-quality sperm is essential to the success of in vitro fertilization (IVF). As human cervical mucus has a high viscosity, without enough swimming persistence, human sperm clouds cannot arrive at the ampulla to fertilize the egg. In this study, we used swimming capability and motion characteristics that are known to be associated with fertilization ability to evaluate the quality of sperm. Here, a clinically applicable polymethyl methacrylate (PMMA)-based microdevice was designed and fabricated for sperm evaluation and screening for swimming capability and persistence in a viscous environment. In this study, we applied methylcellulose (MC) to mimic the natural properties of mucus in vivo to achieve the selection of motile sperm. Sperm motion was recorded by an inverted microscope. The statistical features were extracted and analyzed. Hundreds of sperm in two treated groups with different concentrations of MC and one control group with human tubal fluid (HTF) media were video recorded. This device can achieve a one-step procedure of high-quality sperm selection and achieve the quantitative evaluation of sperm swimming capability and persistence. Sperm with good swimming capability and persistence may be more suitable for fertilization in a viscous environment. This microdevice and methods could be used to guide the evaluation of sperm motility and screening in the future.
Collapse
Affiliation(s)
- Yimo Yan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Y.Y.); (H.L.); (B.Z.)
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Haoran Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Y.Y.); (H.L.); (B.Z.)
| | - Boxuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Y.Y.); (H.L.); (B.Z.)
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ran Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
13
|
Using a Dielectrophoretic Microfluidic Biochip Enhanced Fertilization of Mouse Embryo in Vitro. MICROMACHINES 2020; 11:mi11080714. [PMID: 32717960 PMCID: PMC7464277 DOI: 10.3390/mi11080714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
Abstract
Droplet microfluidics has appealed to many interests for its capability to epitomize cells in a microscale environment and it is also a forceful technique for high-throughput single-cell epitomization. A dielectrophoretic microfluidic system imitates the oviduct of mammals with a microchannel to achieve fertilization in vitro (IVF) of an imprinting control-region (ICR) mouse. We applied a microfluidic chip and a positive dielectrophoretic (p-DEP) force to capture and to screen the sperm for the purpose of manipulating the oocyte. The p-DEP responses of the oocyte and sperm were exhibited under applied bias conditions (waveform AC 10 Vpp, 1 MHz) for trapping 1 min. The insemination concentration of sperm nearby the oocyte was increased to enhance the probability of natural fertilization through the p-DEP force trapping. A simulation tool (CFDRC-ACE+) was used to simulate and to analyze the distribution of the electric field. The DEP microfluidic devices were fabricated using poly (dimethylsiloxane) (PDMS) and ITO (indium tin oxide)-glass with electrodes. We discuss the requirement of sperm in a DEP microfluidic chip at varied concentrations to enhance the future rate of fertilization in vitro for an oligozoospermia patient. The result indicates that the rate of fertility in our device is 17.2 ± 7.5% (n = 30) at about 3000 sperms, compatible with traditional droplet-based IVF, which is 14.2 ± 7.5% (n = 28).
Collapse
|
14
|
Bettera Marcat MA, Gallea MN, Miño GL, Cubilla MA, Banchio AJ, Giojalas LC, Marconi VI, Guidobaldi HA. Hitting the wall: Human sperm velocity recovery under ultra-confined conditions. BIOMICROFLUIDICS 2020; 14:024108. [PMID: 32266047 PMCID: PMC7105397 DOI: 10.1063/1.5143194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/08/2020] [Indexed: 05/12/2023]
Abstract
Infertility is a common medical condition encountered by health systems throughout the world. Despite the development of complex in vitro fertilization techniques, only one-third of these procedures are successful. New lab-on-a-chip systems that focus on spermatozoa selection require a better understanding of sperm behavior under ultra-confined conditions in order to improve outcomes. Experimental studies combined with models and simulations allow the evaluation of the efficiency of different lab-on-a-chip devices during the design process. In this work, we provide experimental evidence of the dynamics of sperm interacting with a lateral wall in a shallow chamber. We observe a decrease in average sperm velocity during initial wall interaction and partial recovery after the alignment of the trajectory of the cell. To describe this phenomenon, we propose a simple model for the sperm alignment process with a single free parameter. By incorporating experimental motility characterization into the model, we achieve an accurate description of the average velocity behavior of the sperm population close to walls. These results will contribute to the design of more efficient lab-on-a-chip devices for the treatment of human infertility.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Héctor A. Guidobaldi
- Author to whom correspondence should be addressed:. Telephone: +54 351 535-3800 ext. 30307
| |
Collapse
|
15
|
Weng L. IVF-on-a-Chip: Recent Advances in Microfluidics Technology for In Vitro Fertilization. SLAS Technol 2019; 24:373-385. [PMID: 31145861 DOI: 10.1177/2472630319851765] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vitro fertilization (IVF) has been one of the most exciting modern medical technologies. It has transformed the landscape of human infertility treatment. However, current IVF procedures still provide limited accessibility and affordability to most infertile couples because of the multiple cumbersome processes and heavy dependence on technically skilled personnel. Microfluidics technology offers unique opportunities to automate IVF procedures, reduce stress imposed upon gametes and embryos, and minimize the operator-to-operator variability. This article describes the rapidly evolving state of the application of microfluidics technology in the field of IVF, summarizes the diverse angles of how microfluidics has been complementing or transforming current IVF protocols, and discusses the challenges that motivate continued innovation in this field.
Collapse
|
16
|
|
17
|
Microfluidic Devices for Gamete Processing and Analysis, Fertilization and Embryo Culture and Characterization. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
18
|
Weng L, Lee GY, Liu J, Kapur R, Toth TL, Toner M. On-chip oocyte denudation from cumulus-oocyte complexes for assisted reproductive therapy. LAB ON A CHIP 2018; 18:3892-3902. [PMID: 30465050 PMCID: PMC6335650 DOI: 10.1039/c8lc01075g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Human infertility can be treated using assisted reproductive technology (ART) such as intracytoplasmic sperm injection (ICSI). But current ART techniques suffer from multiple cumbersome processes requiring technically skilled personnel. Microfluidics technologies offer unique opportunities to streamline ART procedures, reduce stress imposed upon gametes and embryos, and minimize the operator-to-operator variability. However, there have been no automated and continuous processing systems that can reduce the dependence on well-trained embryologists to obtain ICSI-ready oocytes from patients. In this study, using mouse models, we developed a microfluidic device to denude oocytes from the surrounding cumulus-corona cell mass, facilitating the evaluation of oocyte quality and the injection of sperm. Enzyme-treated cumulus-oocyte complexes pass through a series of jagged-surface constriction microchannels of optimized geometries. The jagged inner wall of constriction channels facilitates stripping off of the cumulus-corona cell mass. Oocytes that were denuded by the device showed comparable fertilization and developmental competence compared with mechanical pipetting. The device developed in this study achieves the automation of a manual process for oocyte denudation in a continuous flow, as well as improving standardization and ease-of-use. Our denudation-on-a-chip approach requires inexpensive and simple equipment, which represents one step forward towards improving the accessibility and affordability of assisted reproductive therapy.
Collapse
Affiliation(s)
- Lindong Weng
- BioMEMS Resource Center, The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Beckham J, Alam F, Omojola V, Scherr T, Guitreau A, Melvin A, Park DS, Choi JW, Tiersch TR, Todd Monroe W. A microfluidic device for motility and osmolality analysis of zebrafish sperm. Biomed Microdevices 2018; 20:67. [PMID: 30090952 PMCID: PMC6600829 DOI: 10.1007/s10544-018-0308-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A microfluidic chip is described that facilitates research and quality control analysis of zebrafish sperm which, due to its miniscule (i.e., 2-5 μl) sample volume and short duration of motility (i.e., <1 min), present a challenge for traditional manual assessment methods. A micromixer molded in polydimethylsiloxane (PDMS) bonded to a glass substrate was used to activate sperm samples by mixing with water, initiated by the user depressing a transfer pipette connected to the chip. Sample flow in the microfluidic viewing chamber was able to be halted within 1 s, allowing for rapid analysis of the sample using established computer-assisted sperm analysis (CASA) methods. Zebrafish sperm cell activation was consistent with manual hand mixing and yielded higher values of motility at earlier time points, as well as more subtle time-dependent trends in motility, than those processed by hand. Sperm activation curves, which indicate sample quality by evaluating percentage and duration of motility at various solution osmolalities, were generated with on-chip microfabricated gold floor electrodes interrogated by impedance spectroscopy. The magnitude of admittance was linearly proportional to osmolality and was not affected by the presence of sperm cells in the vicinity of the electrodes. This device represents a pivotal step in streamlining methods for consistent, rapid assessment of sperm quality for aquatic species. The capability to rapidly activate sperm and consistently measure motility with CASA using the microfluidic device described herein will help improve the reproducibility of studies on sperm and assist development of germplasm repositories.
Collapse
Affiliation(s)
- Jacob Beckham
- Department of Biological & Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, USA
| | - Faiz Alam
- Department of Biological & Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, USA
| | - Victor Omojola
- Department of Biological & Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, USA
| | - Thomas Scherr
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Amy Guitreau
- Aquatic Germplasm and Genetic Resources Center, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Adam Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Daniel S Park
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Jin-Woo Choi
- School of Electrical Engineering & Computer Science, Louisiana State University, Baton Rouge, LA, USA
| | - Terrence R Tiersch
- Aquatic Germplasm and Genetic Resources Center, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - W Todd Monroe
- Department of Biological & Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, USA.
| |
Collapse
|
20
|
Huang HY, Lai YL, Yao DJ. Dielectrophoretic Microfluidic Device for in Vitro Fertilization. MICROMACHINES 2018; 9:E135. [PMID: 30424069 PMCID: PMC6187277 DOI: 10.3390/mi9030135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/20/2022]
Abstract
The aim of this work was to create a microfluidic platform that uses in vitro fertilization (IVF) and avoids unnecessary damage to oocytes due to the dielectrophoretic force manipulation of the sperms and oocytes that occurs in a traditional IVF operation. The device from this research can serve also to decrease medium volumes, as well as the cost of cell culture under evaporation, and to prevent unnecessary risk in intracytoplasmic sperm injection (ICSI). To decrease the impact and destruction of the oocyte and the sperm, we adopted a positive dielectrophoretic force to manipulate both the sperms and the oocyte. The mouse oocytes were trapped with a positive dielectrophoretic (p-DEP) force by using Indium Tin Oxide (ITO)-glass electrodes; the ITO-glass electrode chip was fabricated by wet etching the ITO-glass. The polydimethylsiloxane (PDMS) flow-focusing microfluidic device was used to generate microdroplets of micrometer size to contain the zygotes. The volume of the microdroplets was controlled by adjusting the flow rates of both inlets for oil and the DEP buffer. As a result, the rate of fertilization was increased by about 5% beyond that of the DEP treatment in traditional IVF, and more than 20% developed to the blastocyst stage with a low sperm-oocyte ratio.
Collapse
Affiliation(s)
- Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Kwei-Shan, Tao-Yuan 333, Taiwan.
- Department of Obstetrics and Gynecology, Chang Gung University and College of Medicine, 259, Wen-Hua 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Yun-Li Lai
- Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Da-Jeng Yao
- Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| |
Collapse
|
21
|
Kashaninejad N, Shiddiky MJA, Nguyen N. Advances in Microfluidics‐Based Assisted Reproductive Technology: From Sperm Sorter to Reproductive System‐on‐a‐Chip. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700197] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Navid Kashaninejad
- Queensland Micro‐ and Nanotechnology Centre Nathan Campus Griffith University 170 Kessels Road Brisbane QLD 4111 Australia
| | | | - Nam‐Trung Nguyen
- Queensland Micro‐ and Nanotechnology Centre Nathan Campus Griffith University 170 Kessels Road Brisbane QLD 4111 Australia
| |
Collapse
|
22
|
Wheeler MB, Rubessa M. Integration of microfluidics in animal in vitro embryo production. Mol Hum Reprod 2017; 23:248-256. [PMID: 27418669 DOI: 10.1093/molehr/gaw048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/09/2016] [Indexed: 11/12/2022] Open
Abstract
The in vitro production of livestock embryos is central to several areas of animal biotechnology. Further, the use of in vitro embryo manipulation is expanding as new applications emerge. ARTs find direct applications in increasing genetic quality of livestock, producing transgenic animals, cloning, artificial insemination, reducing disease transmission, preserving endangered germplasm, producing chimeric animals for disease research, and treating infertility. Whereas new techniques such as nuclear transfer and intracytoplasmic sperm injection are now commonly used, basic embryo culture procedures remain the limiting step to the development of these techniques. Research over the past 2 decades focusing on improving the culture medium has greatly improved in vitro development of embryos. However, cleavage rates and viability of these embryos is reduced compared with in vivo indicating that present in vitro systems are still not optimal. Furthermore, the methods of handling mammalian oocytes and embryos have changed little in recent decades. While pipetting techniques have served embryology well in the past, advanced handling and manipulation technologies will be required to efficiently implement and commercialize the basic biological advances made in recent years. Microfluidic systems can be used to handle gametes, mature oocytes, culture embryos, and perform other basic procedures in a microenvironment that more closely mimic in vivo conditions. The use of microfluidic technologies to fabricate microscale devices has being investigated to overcome this obstacle. In this review, we summarize the development and testing of microfabricated fluidic systems with feature sizes similar to the diameter of an embryo for in vitro production of pre-implantation mammalian embryos.
Collapse
Affiliation(s)
- M B Wheeler
- Laboratory of Molecular Embryology, Department of Animal Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - M Rubessa
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 West Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
23
|
Smith GD, Takayama S. Application of microfluidic technologies to human assisted reproduction. Mol Hum Reprod 2017; 23:257-268. [PMID: 28130394 DOI: 10.1093/molehr/gaw076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/11/2017] [Indexed: 12/11/2022] Open
Abstract
Microfluidics can be considered both a science and a technology. It is defined as the study of fluid behavior at a sub-microliter level and the investigation into its application to cell biology, chemistry, genetics, molecular biology and medicine. There are at least two characteristics of microfluidics, mechanical and biochemical, which can be influential in the field of mammalian gamete and preimplantation embryo biology. These microfluidic characteristics can assist in basic biological studies on sperm, oocyte and preimplantation embryo structure, function and environment. The mechanical and biochemical characteristics of microfluidics may also have practical and/or technical application(s) to assisted reproductive technologies (ART) in rodents, domestic species, endangered species and humans. This review will consider data in mammals, and when available humans, addressing the potential application(s) of microfluidics to assisted reproduction. There are numerous sequential steps in the clinical assisted reproductive laboratory process that work, yet could be improved. Cause and effect relations of procedural inefficiencies can be difficult to identify and/or remedy. Data will be presented that consider microfluidic applications to sperm isolation, oocyte cumulus complex isolation, oocyte denuding, oocyte mechanical manipulation, conventional insemination, intracytoplasmic sperm injection, embryo culture, embryo analysis and oocyte and embryo cryopreservation. While these studies have progressed in animal models, data with human gametes and embryos are significantly lacking. These data from clinical trials are requisite for making future evidence-based decisions regarding the application of microfluidics in human ART.
Collapse
Affiliation(s)
- Gary D Smith
- Departments of Obstetrics and Gynecology, Physiology and Urology, University of Michigan, 6428 Medical Sciences I, 1301 E Catherine Street, Ann Arbor, MI 48108-1649, USA
| | - Shuichi Takayama
- Departments of Biomedical Engineering and Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Luo ZY, Bai BF. Off-center motion of a trapped elastic capsule in a microfluidic channel with a narrow constriction. SOFT MATTER 2017; 13:8281-8292. [PMID: 29071316 DOI: 10.1039/c7sm01425b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Owing to their significance in capsule-related engineering and biomedical applications, a number of studies have considered the dynamics of elastic capsules flowing in constricted microchannels. However, these studies have focused on capsules moving along the channel centerline. In the present study, we numerically investigate the transient motion of an elastic capsule in a microfluidic channel with a rectangular constriction, which is initially trapped at the constriction inlet while off the channel centerline (i.e., on the channel bottom-wall). Under the push of the surrounding flow, the capsule can squeeze into the constriction, but only if the capsule deformability or the constriction size is sufficiently large. We find that the critical capillary number leading to the penetration of the capsule into the constriction is larger for off-centerline capsules compared to centered capsules. The centered capsule is stationary at the steady state when it remains stuck at the constriction; in contrast, the off-centerline capsule is not stationary but exhibits a tank-treading motion, i.e., its overall shape maintains a nonspherical shape with a protrusion into the constriction while its membrane exhibits a continuous rotation. Further, we examine the dependence of the capsule motion type, capsule deformation degree and membrane tension distribution on the capillary number (measuring the effects of flow strength and membrane mechanics) and constriction geometries (including the constriction height and width). Finally, we discuss the mechanism governing the capsule motion by analyzing the hydrodynamic forces acting on the capsule. The shear force acting on the capsule top owing to the fluid flow in the gap between the capsule top and the channel top-wall is the main source inducing the membrane tank-treading rotation.
Collapse
Affiliation(s)
- Zheng Yuan Luo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | | |
Collapse
|
25
|
Son J, Samuel R, Gale BK, Carrell DT, Hotaling JM. Separation of sperm cells from samples containing high concentrations of white blood cells using a spiral channel. BIOMICROFLUIDICS 2017; 11:054106. [PMID: 29034050 PMCID: PMC5617737 DOI: 10.1063/1.4994548] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/24/2017] [Indexed: 05/21/2023]
Abstract
Microfluidic technology has potential to separate sperm cells from unwanted debris while improving the effectiveness of assisted reproductive technologies (ART). Current clinical protocol limitations regarding the separation of sperm cells from other cells/cellular debris can lead to low sperm recovery when the sample contains a low concentration of mostly low motility sperm cells and a high concentration of unwanted cells/cellular debris, such as in semen samples from patients with pyospermia [high white blood cell (WBC) semen]. This study demonstrates label-free separation of sperm cells from such semen samples using inertial microfluidics. The approach does not require any externally applied forces except the movement of the fluid sample through the instrument. Using this approach, it was possible to recover not only any motile sperm, but also viable less-motile and non-motile sperm cells with high recovery rates. Our results demonstrate the ability of inertial microfluidics to significantly reduce WBC concentration by flow focusing of target WBCs within a spiral channel flow. The estimated sample process time was more rapid (∼5 min) and autonomous than the conventional method (gradient centrifuge sperm wash; ∼1 h). A mixture of sperm/WBC was injected as the device input and 83% of sperm cells and 93% of WBCs were collected separately from two distinct outlets. The results show promise for enhancing sperm samples through inertial flow processing of WBCs and sperm cells that can provide an advantage to ART procedures such as sample preparation for intrauterine insemination.
Collapse
Affiliation(s)
- Jiyoung Son
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Raheel Samuel
- Urology Division of Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| | - Bruce K Gale
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Douglas T Carrell
- Urology Division of Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| | - James M Hotaling
- Urology Division of Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| |
Collapse
|
26
|
Zhao G, Fu J. Microfluidics for cryopreservation. Biotechnol Adv 2017; 35:323-336. [PMID: 28153517 PMCID: PMC6236673 DOI: 10.1016/j.biotechadv.2017.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/19/2022]
Abstract
Cryopreservation has utility in clinical and scientific research but implementation is highly complex and includes labor-intensive cell-specific protocols for the addition/removal of cryoprotective agents and freeze-thaw cycles. Microfluidic platforms can revolutionize cryopreservation by providing new tools to manipulate and screen cells at micro/nano scales, which are presently difficult or impossible with conventional bulk approaches. This review describes applications of microfluidic tools in cell manipulation, cryoprotective agent exposure, programmed freezing/thawing, vitrification, and in situ assessment in cryopreservation, and discusses achievements and challenges, providing perspectives for future development.
Collapse
Affiliation(s)
- Gang Zhao
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, PR China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Le Gac S, Nordhoff V. Microfluidics for mammalian embryo culture and selection: where do we stand now? Mol Hum Reprod 2016; 23:213-226. [DOI: 10.1093/molehr/gaw061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022] Open
|
28
|
Application of microfluidic technologies to the quantification and manipulation of sperm. UROLOGICAL SCIENCE 2016. [DOI: 10.1016/j.urols.2014.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Nosrati R, Graham PJ, Liu Q, Sinton D. Predominance of sperm motion in corners. Sci Rep 2016; 6:26669. [PMID: 27211846 PMCID: PMC4876399 DOI: 10.1038/srep26669] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/03/2016] [Indexed: 01/20/2023] Open
Abstract
Sperm migration through the female tract is crucial to fertilization, but the role of the complex and confined structure of the fallopian tube in sperm guidance remains unknown. Here, by confocal imaging microchannels head-on, we distinguish corner- vs. wall- vs. bulk-swimming bull sperm in confined geometries. Corner-swimming dominates with local areal concentrations as high as 200-fold that of the bulk. The relative degree of corner-swimming is strongest in small channels, decreases with increasing channel size, and plateaus for channels above 200 μm. Corner-swimming remains predominant across the physiologically-relevant range of viscosity and pH. Together, boundary-following sperm account for over 95% of the sperm distribution in small rectangular channels, which is similar to the percentage of wall swimmers in circular channels of similar size. We also demonstrate that wall-swimming sperm travel closer to walls in smaller channels (~100 μm), where the opposite wall is within the hydrodynamic interaction length-scale. The corner accumulation effect is more than the superposition of the influence of two walls, and over 5-fold stronger than that of a single wall. These findings suggest that folds and corners are dominant in sperm migration in the narrow (sub-mm) lumen of the fallopian tube and microchannel-based sperm selection devices.
Collapse
Affiliation(s)
- Reza Nosrati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Percival J Graham
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Qiaozhi Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| |
Collapse
|
30
|
Huang HY, Shen HH, Chung LY, Chung YH, Chen CC, Hsu CH, Fan SK, Yao DJ. Fertilization of Mouse Gametes in Vitro Using a Digital Microfluidic System. IEEE Trans Nanobioscience 2015; 14:857-63. [PMID: 26529769 DOI: 10.1109/tnb.2015.2485303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We demonstrated in vitro fertilization (IVF) using a digital microfluidic (DMF) system, so-called electrowetting on dielectric (EWOD). The DMF device was proved to be biocompatible and the DMF manipulation of a droplet was harmless to the embryos. This DMF platform was then used for the fertilization of mouse gametes in vitro and for embryo dynamic culture based on a dispersed droplet form. Development of the embryos was instantaneously recorded by a time-lapse microscope in an incubator. Our results indicated that increasing the number of sperms for IVF would raise the rate of fertilization. However, the excess of sperms in the 10 μL culture medium would more easily make the embryo dead during cell culture. Dynamic culture powered with EWOD can manipulate a single droplet containing mouse embryos and culture to the eight-cell stage. The fertilization rate of IVF demonstrated by DMF system was 34.8%, and about 25% inseminated embryos dynamically cultured on a DMF chip developed into an eight-cell stage. The results indicate that the DMF system has the potential for application in assisted reproductive technology.
Collapse
|
31
|
Luo Z, Guven S, Gozen I, Chen P, Tasoglu S, Anchan RM, Bai B, Demirci U. Deformation of a single mouse oocyte in a constricted microfluidic channel. MICROFLUIDICS AND NANOFLUIDICS 2015; 19:883-890. [PMID: 26696793 PMCID: PMC4684828 DOI: 10.1007/s10404-015-1614-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Single oocyte manipulation in microfluidic channels via precisely controlled flow is critical in microfluidic-based in vitro fertilization. Such systems can potentially minimize the number of transfer steps among containers for rinsing as often performed during conventional in vitro fertilization and can standardize protocols by minimizing manual handling steps. To study shape deformation of oocytes under shear flow and its subsequent impact on their spindle structure is essential for designing microfluidics for in vitro fertilization. Here, we developed a simple yet powerful approach to (i) trap a single oocyte and induce its deformation through a constricted microfluidic channel, (ii) quantify oocyte deformation in real-time using a conventional microscope, and (iii) retrieve the oocyte from the microfluidic device to evaluate changes in their spindle structures. We found that oocytes can be significantly deformed under high flow rates, e.g., 10 μl/min in a constricted channel with a width and height of 50 and 150 μm, respectively. Oocyte spindles can be severely damaged, as shown here by immunocytochemistry staining of the microtubules and chromosomes. The present approach can be useful to investigate underlying mechanisms of oocyte deformation exposed to well-controlled shear stresses in microfluidic channels, which enables a broad range of applications for reproductive medicine.
Collapse
Affiliation(s)
- ZhengYuan Luo
- Division of Biomedical Engineering, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, MA, 02139, USA
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Sinan Guven
- Division of Biomedical Engineering, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, MA, 02139, USA
- Demirci Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, Stanford University School of Medicine, Canary Center for Early Cancer Detection, Stanford, CA, 94304, USA
| | - Irep Gozen
- Division of Biomedical Engineering, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, MA, 02139, USA
| | - Pu Chen
- Division of Biomedical Engineering, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, MA, 02139, USA
- Demirci Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, Stanford University School of Medicine, Canary Center for Early Cancer Detection, Stanford, CA, 94304, USA
| | - Savas Tasoglu
- Division of Biomedical Engineering, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, MA, 02139, USA
| | - Raymond M Anchan
- Center for Infertility and Reproductive Surgery, Obstetrics Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - BoFeng Bai
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Utkan Demirci
- Division of Biomedical Engineering, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, MA, 02139, USA
- Demirci Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, Stanford University School of Medicine, Canary Center for Early Cancer Detection, Stanford, CA, 94304, USA
| |
Collapse
|
32
|
Sakkas D, Ramalingam M, Garrido N, Barratt CLR. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum Reprod Update 2015; 21:711-26. [PMID: 26386468 PMCID: PMC4594619 DOI: 10.1093/humupd/dmv042] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 08/12/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In natural conception only a few sperm cells reach the ampulla or the site of fertilization. This population is a selected group of cells since only motile cells can pass through cervical mucus and gain initial entry into the female reproductive tract. In animals, some studies indicate that the sperm selected by the reproductive tract and recovered from the uterus and the oviducts have higher fertilization rates but this is not a universal finding. Some species show less discrimination in sperm selection and abnormal sperm do arrive at the oviduct. In contrast, assisted reproductive technologies (ART) utilize a more random sperm population. In this review we contrast the journey of the spermatozoon in vivo and in vitro and discuss this in the context of developing new sperm preparation and selection techniques for ART. METHODS A review of the literature examining characteristics of the spermatozoa selected in vivo is compared with recent developments in in vitro selection and preparation methods. Contrasts and similarities are presented. RESULTS AND CONCLUSIONS New technologies are being developed to aid in the diagnosis, preparation and selection of spermatozoa in ART. To date progress has been frustrating and these methods have provided variable benefits in improving outcomes after ART. It is more likely that examining the mechanisms enforced by nature will provide valuable information in regard to sperm selection and preparation techniques in vitro. Identifying the properties of those spermatozoa which do reach the oviduct will also be important for the development of more effective tests of semen quality. In this review we examine the value of sperm selection to see how much guidance for ART can be gleaned from the natural selection processes in vivo.
Collapse
Affiliation(s)
- Denny Sakkas
- Boston IVF, 130 Second Ave, Waltham, MA 02451, USA
| | - Mythili Ramalingam
- Reproductive and Developmental Biology, Medical School, Ninewells Hospital, University of Dundee, Dundee DD19SY, UK
| | | | - Christopher L R Barratt
- Reproductive and Developmental Biology, Medical School, Ninewells Hospital, University of Dundee, Dundee DD19SY, UK
| |
Collapse
|
33
|
Huang HY, Shen HH, Tien CH, Li CJ, Fan SK, Liu CH, Hsu WS, Yao DJ. Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip. PLoS One 2015; 10:e0124196. [PMID: 25933003 PMCID: PMC4416819 DOI: 10.1371/journal.pone.0124196] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/26/2015] [Indexed: 01/04/2023] Open
Abstract
Current human fertilization in vitro (IVF) bypasses the female oviduct and manually inseminates, fertilizes and cultivates embryos in a static microdrop containing appropriate chemical compounds. A microfluidic microchannel system for IVF is considered to provide an improved in-vivo-mimicking environment to enhance the development in a culture system for an embryo before implantation. We demonstrate a novel digitalized microfluidic device powered with electrowetting on a dielectric (EWOD) to culture an embryo in vitro in a single droplet in a microfluidic environment to mimic the environment in vivo for development of the embryo and to culture the embryos with good development and live births. Our results show that the dynamic culture powered with EWOD can manipulate a single droplet containing one mouse embryo and culture to the blastocyst stage. The rate of embryo cleavage to a hatching blastocyst with a dynamic culture is significantly greater than that with a traditional static culture (p<0.05). The EWOD chip enhances the culture of mouse embryos in a dynamic environment. To test the reproductive outcome of the embryos collected from an EWOD chip as a culture system, we transferred embryos to pseudo-pregnant female mice and produced live births. These results demonstrate that an EWOD-based microfluidic device is capable of culturing mammalian embryos in a microfluidic biological manner, presaging future clinical application.
Collapse
Affiliation(s)
- Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung University and College of Medicine, Taoyuan, Taiwan
| | - Hsien-Hua Shen
- Institute of Nanoengineering and Microsystem, National Tsing Hua University, Hsinchu, Taiwan
| | - Chang-Hung Tien
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chin-Jung Li
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Kang Fan
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Cheng-Hsien Liu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Syang Hsu
- Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Da-Jeng Yao
- Institute of Nanoengineering and Microsystem, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
34
|
Huang HY, Huang YH, Kao WL, Yao DJ. Embryo formation from low sperm concentration by using dielectrophoretic force. BIOMICROFLUIDICS 2015; 9:022404. [PMID: 25825615 PMCID: PMC4376752 DOI: 10.1063/1.4915612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/12/2015] [Indexed: 05/17/2023]
Abstract
A biochip system imitates the oviduct of mammals with a microfluidic channel to achieve fertilization in vitro of imprinting-control-region (ICR) mice. We apply a method to manipulate and to position the oocyte and the sperm of ICR mice at the same time in our microfluidic channel with a positive dielectrophoretic (DEP) force. The positive dielectrophoretic response of the oocyte and sperm was exhibited under applied bias conditions AC 10 Vpp waveform, 1 MHz, 10 min. With this method, the concentration of sperm in the vicinity of the oocyte was increased and enhanced the probability of natural fertilization. We used commercial numerical software (CFDRC-ACE+) to simulate the square of the electric field and analyzed the location at which the oocyte and sperm are trapped. The microfluidic devices were designed and fabricated with poly(dimethylsiloxane). The results of our experiments indicate that a positive DEP served to drive the position of the oocyte and the sperm to natural fertilization (average rate of fertilization 51.58%) in our microchannel structures at insemination concentration 1.5 × 10(6) sperm ml(-1). Embryos were cultured to two cells after 24 h and four cells after 48 h.
Collapse
Affiliation(s)
| | - Yu-Hsuan Huang
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Wei-Lun Kao
- Institute of Power Mechanical and Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan
| | | |
Collapse
|
35
|
Angione SL, Oulhen N, Brayboy LM, Tripathi A, Wessel GM. Simple perfusion apparatus for manipulation, tracking, and study of oocytes and embryos. Fertil Steril 2014; 103:281-90.e5. [PMID: 25450296 DOI: 10.1016/j.fertnstert.2014.09.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To develop and implement a device and protocol for oocyte analysis at a single cell level. The device must be capable of high resolution imaging, temperature control, perfusion of media, drugs, sperm, and immunolabeling reagents all at defined flow rates. Each oocyte and resultant embryo must remain spatially separated and defined. DESIGN Experimental laboratory study. SETTING University and academic center for reproductive medicine. PATIENT(S)/ANIMAL(S) Women with eggs retrieved for intracytoplasmic sperm injection (ICSI) cycles, adult female FVBN and B6C3F1 mouse strains, sea stars. INTERVENTION(S) Real-time, longitudinal imaging of oocytes after fluorescent labeling, insemination, and viability tests. MAIN OUTCOME MEASURE(S) Cell and embryo viability, immunolabeling efficiency, live cell endocytosis quantification, precise metrics of fertilization, and embryonic development. RESULT(S) Single oocytes were longitudinally imaged after significant changes in media, markers, endocytosis quantification, and development, all with supreme control by microfluidics. Cells remained viable, enclosed, and separate for precision measurements, repeatability, and imaging. CONCLUSION(S) We engineered a simple device to load, visualize, experiment, and effectively record individual oocytes and embryos without loss of cells. Prolonged incubation capabilities provide longitudinal studies without need for transfer and potential loss of cells. This simple perfusion apparatus provides for careful, precise, and flexible handling of precious samples facilitating clinical IVF approaches.
Collapse
Affiliation(s)
- Stephanie L Angione
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae M Brayboy
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Women & Infants Hospital, Providence, Rhode Island; The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island.
| |
Collapse
|
36
|
Tung CK, Ardon F, Fiore A, Suarez SS, Wu M. Cooperative roles of biological flow and surface topography in guiding sperm migration revealed by a microfluidic model. LAB ON A CHIP 2014; 14:1348-56. [PMID: 24535032 PMCID: PMC4497544 DOI: 10.1039/c3lc51297e] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Successful reproduction in mammals requires sperm to swim against a fluid flow and through the long and complex female reproductive tract before reaching the egg in the oviduct. Millions of them do not make it. Despite their clinical importance, the roles played in sperm migration by the diverse biophysical and biochemical microenvironments within the reproductive tract are largely unknown. In this article, we present the development of a double layer microfluidic device that recreates two important biophysical environments within the female reproductive tract: fluid flow and surface topography. The unique feature of the device is that it enables one to study the cooperative roles of fluid flow and surface topography in guiding sperm migration. Using bull sperm as a model system, we found that microfluidic grooves embedded on a channel surface facilitate sperm migration against fluid flow. These findings suggest ways to design in vitro fertilization devices to treat infertility and to develop non-invasive contraceptives that use a microarchitectural design to entrap sperm.
Collapse
Affiliation(s)
- Chih-kuan Tung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Florencia Ardon
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Alyssa Fiore
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Susan S. Suarez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
37
|
Li Y, Li T, Mai Q, Long L, Ou J. Comparison of fertilization outcome between microdrop and open insemination methods in non-male factor IVF patients. Syst Biol Reprod Med 2014; 60:165-70. [PMID: 24499510 DOI: 10.3109/19396368.2013.872707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Both microdrop and open methods are commonly used for in vitro fertilization (IVF) protocols for embryo culture as well as oocyte insemination. However, few comparative studies evaluating the microdrop or open method of insemination on the fertilization outcome and subsequent embryo development have been performed. A randomized study was conducted to compare microdrop and open fertilization with respect to fertilization rate and embryo development among non-male factor patients undergoing in vitro fertilization and embryo transfer (IVF-ET). The results presented in this study demonstrate that the fertilization failure rate [total fertilization failure rate (TFF) plus low fertilization rate (<25% oocytes fertilized)] in the microdrop insemination group was higher than in the open insemination group (11.9% versus 3.3%, p < 0.001), while the good quality embryo rate and pregnancy rate did not differ significantly between the groups. As a highly complicated process involving many extrinsic and intrinsic factors, further studies are needed to confirm the effects of these insemination methods on the rate of fertilization failure.
Collapse
Affiliation(s)
- Yubin Li
- The First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | | | | | | | | |
Collapse
|
38
|
Chrimes AF, Khoshmanesh K, Stoddart PR, Mitchell A, Kalantar-Zadeh K. Microfluidics and Raman microscopy: current applications and future challenges. Chem Soc Rev 2014; 42:5880-906. [PMID: 23624774 DOI: 10.1039/c3cs35515b] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Raman microscopy systems are becoming increasingly widespread and accessible for characterising chemical species. Microfluidic systems are also progressively finding their way into real world applications. Therefore, it is anticipated that the integration of Raman systems with microfluidics will become increasingly attractive and practical. This review aims to provide an overview of Raman microscopy-microfluidics integrated systems for researchers who are actively interested in utilising these tools. The fundamental principles and application strengths of Raman microscopy are discussed in the context of microfluidics. Various configurations of microfluidics that incorporate Raman microscopy methods are presented, with applications highlighted. Data analysis methods are discussed, with a focus on assisting the interpretation of Raman-microfluidics data from complex samples. Finally, possible future directions of Raman-microfluidic systems are presented.
Collapse
Affiliation(s)
- Adam F Chrimes
- School of Electrical and Computer Engineering, RMIT University, 124 LaTrobe St, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
39
|
Chen CY, Chiang TC, Lin CM, Lin SS, Jong DS, Tsai VFS, Hsieh JT, Wo AM. Sperm quality assessment via separation and sedimentation in a microfluidic device. Analyst 2013; 138:4967-74. [PMID: 23817531 DOI: 10.1039/c3an00900a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A major reason for infertility is due to male factors, including the quality of spermatozoa, which is a primary factor and often difficult to assess, particularly the total sperm concentration and its motile percentage. This work presents a simple microfluidic device to assess sperm quality by quantifying both total and motile sperm counts. The key design feature of the microfluidic device is two channels separated by a permeative phase-guide structure, where one channel is filled with raw semen and the other with pure buffer. The semen sample was allowed to reach equilibrium in both chambers, whereas non-motile sperms remained in the original channel, and roughly half of the motile sperms would swim across the phase-guide barrier into the buffer channel. Sperms in each channel agglomerated into pellets after centrifugation, with the corresponding area representing total and motile sperm concentrations. Total sperm concentration up to 10(8) sperms per ml and motile percentage in the range of 10-70% were tested, encompassing the cutoff value of 40% stated by World Health Organization standards. Results from patient samples show compact and robust pellets after centrifugation. Comparison of total sperm concentration between the microfluidic device and the Makler chamber reveal they agree within 5% and show strong correlation, with a coefficient of determination of R(2) = 0.97. Motile sperm count between the microfluidic device and the Makler chamber agrees within 5%, with a coefficient of determination of R(2) = 0.84. Comparison of results from the Makler Chamber, sperm quality analyzer, and the microfluidic device revealed that results from the microfluidic device agree well with the Makler chamber. The sperm microfluidic chip analyzes both total and motile sperm concentrations in one spin, is accurate and easy to use, and should enable sperm quality analysis with ease.
Collapse
Affiliation(s)
- Chang-Yu Chen
- Institute of Applied Mechanics, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 106, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Huang HY, Wu TL, Huang HR, Li CJ, Fu HT, Soong YK, Lee MY, Yao DJ. Isolation of motile spermatozoa with a microfluidic chip having a surface-modified microchannel. ACTA ACUST UNITED AC 2013; 19:91-9. [PMID: 23603751 DOI: 10.1177/2211068213486650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conventional methods to prepare sperm have been amenable to the investigation of outcomes such as rates of recovery and conventional semen parameters. The standard preparation of sperm for assisted reproduction is criticized for its centrifugation steps, which might either recover motile sperm in variable proportions or increase the probability of damage to sperm DNA. An microfluidic system was designed to separate motile sperm according to a design whereby nonmotile spermatozoa and debris flow along their initial streamlines and exit through one outlet-up, whereas motile spermatozoa have an opportunity to swim into a parallel stream and to exit through a separate outlet-down. This chip was fabricated by microelectromechanical systems technology with polydimethylsiloxane molding. The hydrophilic surface, coated with poly (ethanediol) methyl ether methacrylate, exhibits enduring stability maintained for the microchannel. Microscopic examination and fluorescent images showed that the motility of sperm varied with the laminar streams. To confirm the sorting, we identified and quantified the proportions of live and dead sperm before and after sorting with flow cytometric analysis. The results on the viability of a sample demonstrated the increased quality of sperm after sorting and collection in the outlet reservoir. The counted ratio of live sperm revealed the quantity and efficiency of the sorted sperm.
Collapse
Affiliation(s)
- Hong-Yuan Huang
- 1Department of Obstetrics and Gynecology, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Swain JE, Lai D, Takayama S, Smith GD. Thinking big by thinking small: application of microfluidic technology to improve ART. LAB ON A CHIP 2013; 13:1213-24. [PMID: 23400523 DOI: 10.1039/c3lc41290c] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In Vitro Fertilization (IVF) laboratories often carry a penchant to resist change while in the pursuit of maintaining consistency in laboratory conditions. However, implementation of new technology is often critical to expand scientific discoveries and to improve upon prior successes to advance the field. Microfluidic platforms represent a technology that has the potential to revolutionize the fundamental processes of IVF. While the focus of microfluidic application in IVF has centered on embryo culture, the innovative platforms carry tremendous potential to improve other procedural steps and represents a possible paradigm shift in how we handle gametes and embryos. The following review will highlight application of various microfluidic platforms in IVF for use in maturation, manipulation, culture, cryopreservation and non-invasive quality assessment; pointing out new insights gained into functions of sperm, oocytes and embryos. Platform design and function will also be discussed, focusing on limitations, advancements and future refinements that can further aid in their clinical implementation.
Collapse
Affiliation(s)
- J E Swain
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
42
|
Lai D, Smith GD, Takayama S. Lab-on-a-chip biophotonics: its application to assisted reproductive technologies. JOURNAL OF BIOPHOTONICS 2012; 5:650-60. [PMID: 22700221 PMCID: PMC3883811 DOI: 10.1002/jbio.201200041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 05/05/2023]
Abstract
With the benefits of automation, sensitivity and precision, microfluidics has enabled complex and otherwise tedious experiments. Lately, lab-on-a-chip (LOC) has proven to be a useful tool for enhancing non-invasive assisted reproductive technology (ART). Non-invasive gamete and embryo assessment has largely been through periodic morpohological assessment using optical microscopy and early LOC ART was the same. As we realize that morphological assessment is a poor indication of gamete or embryo health, more advanced biophotonics has emerged in LOC ART to assay for metabolites or gamete separation via optoelectrical tweezers. Off-chip, even more advanced biophotonics with broad spectrum analysis of metabolites and secretomes has been developed that show even higher accuracy to predicting reproductive potential. The integration of broad spectrum metabolite analysis into LOC ART is an exciting future that merges automation and sensitivity with the already highly accurate and strong predictive power of biophotonics.
Collapse
Affiliation(s)
- David Lai
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
43
|
Park DS, Egnatchik RA, Bordelon H, Tiersch TR, Monroe WT. Microfluidic mixing for sperm activation and motility analysis of pearl Danio zebrafish. Theriogenology 2012; 78:334-44. [PMID: 22494680 PMCID: PMC3640303 DOI: 10.1016/j.theriogenology.2012.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 11/22/2022]
Abstract
Sperm viability in aquatic species is increasingly being evaluated by motility analysis via computer-assisted sperm analysis (CASA) following activation of sperm with manual dilution and mixing by hand. User variation can limit the speed and control over the activation process, preventing consistent motility analysis. This is further complicated by the short interval (i.e., less than 15 s) of burst motility in these species. The objectives of this study were to develop a staggered herringbone microfluidic mixer to: 1) activate small volumes of Danio pearl zebrafish (Danio albolineatus) sperm by rapid mixing with diluent, and 2) position sperm in a viewing chamber for motility evaluation using a standard CASA system. A herringbone micromixer was fabricated in polydimethylsiloxane (PDMS) to yield high quality smooth surfaces. Based on fluorescence microscopy, mixing efficiency exceeding 90% was achieved within 5 s for a range of flow rates (from 50 to 250 μL/h), with a correlation of mixing distances and mixing efficiency. For example, at the nominal flow rate of 100 μL/h, there was a significant difference in mixing efficiency between 3.5 mm (75±4%; mean±SD) and 7 mm (92±2%; P=0.002). The PDMS micromixer, integrated with standard volumetric slides, demonstrated activation of fresh zebrafish sperm with reduced user variation, greater control, and without morphologic damage to sperm. Analysis of zebrafish sperm viability by CASA revealed a statistically higher motility rate for activation by micromixing (56±4%) than manual activation (45±7%; n=5, P=0.011). This micromixer represented a first step in streamlining methods for consistent, rapid assessment of sperm quality for zebrafish and other aquatic species. The capability to rapidly activate sperm and consistently measure motility with CASA using the PDMS micromixer described herein will improve studies of germplasm physiology and cryopreservation.
Collapse
Affiliation(s)
- Daniel S. Park
- Biological and Agricultural Engineering Department, Louisiana State University and LSU Agricultural Center, Baton Rouge, Louisiana, USA
| | - Robert A. Egnatchik
- Biological and Agricultural Engineering Department, Louisiana State University and LSU Agricultural Center, Baton Rouge, Louisiana, USA
| | - Hali Bordelon
- Biological and Agricultural Engineering Department, Louisiana State University and LSU Agricultural Center, Baton Rouge, Louisiana, USA
| | - Terrence R. Tiersch
- Aquaculture Research Station, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - W. Todd Monroe
- Biological and Agricultural Engineering Department, Louisiana State University and LSU Agricultural Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
44
|
Smith GD, Takayama S, Swain JE. Rethinking in vitro embryo culture: new developments in culture platforms and potential to improve assisted reproductive technologies. Biol Reprod 2012; 86:62. [PMID: 21998170 DOI: 10.1095/biolreprod.111.095778] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The preponderance of research toward improving embryo development in vitro has focused on manipulation of the chemical soluble environment, including altering basic salt composition, energy substrate concentration, amino acid makeup, and the effect of various growth factors or addition or subtraction of other supplements. In contrast, relatively little work has been done examining the physical requirements of preimplantation embryos and the role culture platforms or devices can play in influencing embryo development within the laboratory. The goal of this review is not to reevaluate the soluble composition of past and current embryo culture media, but rather to consider how other controlled and precise factors such as time, space, mechanical interactions, gradient diffusions, cell movement, and surface interactions might influence embryo development. Novel culture platforms are being developed as a result of interdisciplinary collaborations between biologists and biomedical, material, chemical, and mechanical engineers. These approaches are looking beyond the soluble media composition and examining issues such as media volume and embryo spacing. Furthermore, methods that permit precise and regulated dynamic embryo culture with fluid flow and embryo movement are now available, and novel culture surfaces are being developed and tested. While several factors remain to be investigated to optimize the efficiency of embryo production, manipulation of the embryo culture microenvironment through novel devices and platforms may offer a pathway toward improving embryo development within the laboratory of the future.
Collapse
Affiliation(s)
- Gary D Smith
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, Michigan 48109-0617, USA.
| | | | | |
Collapse
|
45
|
Swain JE, Smith GD. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum Reprod Update 2011; 17:541-57. [PMID: 21454356 DOI: 10.1093/humupd/dmr006] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The majority of research aimed at improving embryo development in vitro has focused on manipulation of the chemical environment, examining details such as energy substrate composition and impact of various growth factors or other supplements. In comparison, relatively little work has been done examining the physical requirements of preimplantation embryos and the role culture platforms or devices can play in influencing embryo development. METHODS Electronic searches were performed using keywords centered on embryo culture techniques using PUBMED through June 2010 and references were searched for additional research articles. RESULTS Various approaches to in vitro embryo culture that involve manipulations of the physical culture environment are emerging. Novel culture platforms being developed examine issues such as media volume and embryo spacing. Furthermore, methods to permit dynamic embryo culture with fluid flow and embryo movement are now available, and novel culture surfaces are being tested. CONCLUSIONS Although several factors remain to be studied to optimize efficiency, manipulations of the embryo culture microenvironment through novel culture devices may offer a means to improve embryo development in vitro. Reduced volume systems that reduce embryo spacing, such as the well-of-the-well approach, appear beneficial, although more work is needed to verify the source of their true benefit in human embryos. Emerging microfluidic technology appears to be a promising approach. However, along with the work on specialized culture surfaces, more information is required to determine the impact on human embryo development.
Collapse
Affiliation(s)
- J E Swain
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48108, USA
| | | |
Collapse
|
46
|
Ma R, Xie L, Han C, Su K, Qiu T, Wang L, Huang G, Xing W, Qiao J, Wang J, Cheng J. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal Chem 2011; 83:2964-70. [PMID: 21438638 DOI: 10.1021/ac103063g] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vitro fertilization (IVF) technology has been broadly applied to solve human infertility in recent years. However, the physical tools for IVF remain unchanged over several decades before microfluidic technology was introduced in this field. Here, we report a novel microdevice that integrates each step of IVF, including oocyte positioning, sperm screening, fertilization, medium replacement, and embryo culture. Oocytes can be singly positioned in a 4 × 4 array of octacolumn units. The four symmetrical straight channels, crossing at the oocyte positioning region, allowed efficient motile sperm selection and facilitated rapid medium replacement. The fertilization process and early embryonic development of the individual zygote was traced with microscopic recording and analyzed by in situ fluorescent staining. The murine sperm motility was increased from 60.8 ± 3.4% to 96.1 ± 1.9% through the screening channels. The embryo growth rate and blastocyst formation were similar between the routine Petri dish group and the microdevice group. The healthy blastocysts developed in the microdevice could be conveniently retrieved through a routine pipetting operation and used for further embryo transfer.
Collapse
Affiliation(s)
- Rui Ma
- Medical Systems Biology Research Center, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Han C, Zhang Q, Ma R, Xie L, Qiu T, Wang L, Mitchelson K, Wang J, Huang G, Qiao J, Cheng J. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device. LAB ON A CHIP 2010; 10:2848-54. [PMID: 20844784 DOI: 10.1039/c005296e] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In vitro fertilization (IVF) therapy is an important treatment for human infertility. However, the methods for clinical IVF have only changed slightly over decades: culture medium is held in oil-covered drops in Petri dishes and manipulation occurs by manual pipetting. Here we report a novel microwell-structured microfluidic device that integrates single oocyte trapping, fertilization and subsequent embryo culture. A microwell array was used to capture and hold individual oocytes during the flow-through process of oocyte and sperm loading, medium substitution and debris cleaning. Different microwell depths were compared by computational modeling and flow washing experiments for their effectiveness in oocyte trapping and debris removal. Fertilization was achieved in the microfluidic devices with similar fertilization rates to standard oil-covered drops in Petri dishes. Embryos could be cultured to blastocyst stages in our devices with developmental status individually monitored and tracked. The results suggest that the microfluidic device may bring several advantages to IVF practices by simplifying oocyte handling and manipulation, allowing rapid and convenient medium changing, and enabling automated tracking of any single embryo development.
Collapse
Affiliation(s)
- Chao Han
- Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, 100084, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Desai N, Alex A, AbdelHafez F, Calabro A, Goldfarb J, Fleischman A, Falcone T. Three-dimensional in vitro follicle growth: overview of culture models, biomaterials, design parameters and future directions. Reprod Biol Endocrinol 2010; 8:119. [PMID: 20946661 PMCID: PMC2967553 DOI: 10.1186/1477-7827-8-119] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/14/2010] [Indexed: 01/15/2023] Open
Abstract
In vitro ovarian follicle culture is a new frontier in assisted reproductive technology with tremendous potential, especially for fertility preservation. Folliculogenesis within the ovary is a complex process requiring interaction between somatic cell components and the oocyte. Conventional two-dimensional culture on tissue culture substrata impedes spherical growth and preservation of the spatial arrangements between oocyte and surrounding granulosa cells. Granulosa cell attachment and migration can leave the oocyte naked and unable to complete the maturation process. Recognition of the importance of spatial arrangements between cells has spurred research in to three-dimensional culture system. Such systems may be vital when dealing with human primordial follicles that may require as long as three months in culture. In the present work we review pertinent aspects of in vitro follicle maturation, with an emphasis on tissue-engineering solutions for maintaining the follicular unit during the culture interval. We focus primarily on presenting the various 3-dimensional culture systems that have been applied for in vitro maturation of follicle:oocyte complexes. We also try to present an overview of outcomes with various biomaterials and animal models and also the limitations of the existing systems.
Collapse
Affiliation(s)
- Nina Desai
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Anastasia Alex
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Faten AbdelHafez
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Anthony Calabro
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - James Goldfarb
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Aaron Fleischman
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Tommaso Falcone
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
49
|
Sano H, Matsuura K, Naruse K, Funahashi H. Application of a microfluidic sperm sorter to the in-vitro fertilization of porcine oocytes reduced the incidence of polyspermic penetration. Theriogenology 2010; 74:863-70. [DOI: 10.1016/j.theriogenology.2010.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 11/30/2022]
|
50
|
Sato K, Kitamori T. Development of fundamental technologies for micro bioreactors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 119:251-265. [PMID: 19343306 DOI: 10.1007/10_2008_43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This chapter reviews the development of fundamental technologies required for microchip-based bioreactors utilizing living mammalian cells and pressure driven flow. The most important factor in the bioreactor is the cell culture. For proper cell culturing, continuous medium supply from a microfluidic channel and appropriate modification of the channel surface to accommodate cell attachment is required. Moreover, the medium flow rate should be chosen carefully, because shear stress affects cell activity. The techniques presented here could be applied to the development of micro bioreactors such as microlivers, pigment production by plant cells, and artificial insemination.
Collapse
Affiliation(s)
- Kiichi Sato
- Department of Applied Biological Chemistry, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan,
| | | |
Collapse
|