1
|
Porvari K, Horioka K, Kaija H, Pakanen L. Amphiregulin is overexpressed in human cardiac tissue in hypothermia deaths; associations between the transcript and stress hormone levels in cardiac deaths. Ann Med 2024; 56:2420862. [PMID: 39506618 PMCID: PMC11544741 DOI: 10.1080/07853890.2024.2420862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Amphiregulin (AREG) is a growth factor linked to cardioprotection and heart pathology during myocardial stress. Our aim was to investigate cardiac AREG expression, its potential as a postmortem hypothermia marker and its possible stress hormone dependency in different types of deaths. MATERIALS AND METHODS Heart RNA was isolated from hypothermic, cardiac and non-cardiac deaths. Relative AREG mRNA levels and urine stress hormone concentrations were measured by qPCR and enzyme-linked immunosorbent assays from eight different death cause groups. Receiver operating characteristic curve was used to evaluate a cut-off point for AREG expression as a hypothermia marker. Regulatory elements were predicted by PROMO. RESULTS The AREG mRNA levels were significantly higher in hypothermic deaths than in most cardiac and non-cardiac deaths. AREG expression indicated hypothermic deaths with nearly 70% sensitivity and specificity. However, high expression levels were also detected in non-ischaemic deaths. The highest concentrations of adrenaline and cortisol were detected in hypothermic deaths, while the highest noradrenaline concentrations associated with atherosclerotic heart disease (AHD) deaths with acute myocardial infarction and trauma deaths. There were no significant correlations between stress hormones and AREG mRNA in hypothermic and non-cardiac deaths, whereas moderate-to-high associations were detected in cardiac deaths. Putative response elements for cortisol and catecholamines were found in AREG. CONCLUSIONS Severe hypothermia activates cardiac AREG expression practicable as a postmortem hypothermia marker. Cortisol and catecholamines may act as transcriptional modifiers of this gene, especially in long-term ischaemic heart disease. However, the exact role of these hormones in upregulation of AREG during hypothermia remains unclear.
Collapse
Affiliation(s)
- Katja Porvari
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Kie Horioka
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Helena Kaija
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Lasse Pakanen
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Oulu, Finland
| |
Collapse
|
2
|
Jo M, Brännström M, Akins JW, Curry TE. New insights into the ovulatory process in the human ovary. Hum Reprod Update 2024:dmae027. [PMID: 39331957 DOI: 10.1093/humupd/dmae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Successful ovulation is essential for natural conception and fertility. Defects in the ovulatory process are associated with various conditions of infertility or subfertility in women. However, our understanding of the intra-ovarian biochemical mechanisms underlying this process in women has lagged compared to our understanding of animal models. This has been largely due to the limited availability of human ovarian samples that can be used to examine changes across the ovulatory period and delineate the underlying cellular/molecular mechanisms in women. Despite this challenge, steady progress has been made to improve our knowledge of the ovulatory process in women by: (i) collecting granulosa cells across the IVF interval, (ii) creating a novel approach to collecting follicular cells and tissues across the periovulatory period from normally cycling women, and (iii) developing unique in vitro models to examine the LH surge or hCG administration-induced ovulatory changes in gene expression, the regulatory mechanisms underlying the ovulatory changes, and the specific functions of the ovulatory factors. OBJECTIVE AND RATIONALE The objective of this review is to summarize findings generated using in vivo and in vitro models of human ovulation, with the goal of providing new insights into the mechanisms underlying the ovulatory process in women. SEARCH METHODS This review is based on the authors' own studies and a search of the relevant literature on human ovulation to date using PubMed search terms such as 'human ovulation EGF-signaling', 'human ovulation steroidogenesis', 'human ovulation transcription factor', 'human ovulation prostaglandin', 'human ovulation proteinase', 'human ovulation angiogenesis' 'human ovulation chemokine', 'human ovulatory disorder', 'human granulosa cell culture'. Our approach includes comparing the data from the authors' studies with the existing microarray or RNA-seq datasets generated using ovarian cells obtained throughout the ovulatory period from humans, monkeys, and mice. OUTCOMES Current findings from studies using in vivo and in vitro models demonstrate that the LH surge or hCG administration increases the expression of ovulatory mediators, including EGF-like factors, steroids, transcription factors, prostaglandins, proteolytic systems, and other autocrine and paracrine factors, similar to those observed in other animal models such as rodents, ruminants, and monkeys. However, the specific ovulatory factors induced, their expression pattern, and their regulatory mechanisms vary among different species. These species-specific differences stress the necessity of utilizing human samples to delineate the mechanisms underlying the ovulatory process in women. WIDER IMPLICATIONS The data from human ovulation in vivo and in vitro models have begun to fill the gaps in our understanding of the ovulatory process in women. Further efforts are needed to discover novel ovulatory factors. One approach to address these gaps is to improve existing in vitro models to more closely mimic in vivo ovulatory conditions in humans. This is critically important as the knowledge obtained from these human studies can be translated directly to aid in the diagnosis of ovulation-associated pathological conditions, for the development of more effective treatment to help women with anovulatory infertility or, conversely, to better manage ovulation for contraceptive purposes. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
3
|
Shpakov AO. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. FRONT BIOSCI-LANDMRK 2024; 29:313. [PMID: 39344322 DOI: 10.31083/j.fbl2909313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and β-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (β-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
4
|
Fan X, Wang J, Ma Y, Chai D, Han S, Xiao C, Huang Y, Wang X, Wang J, Wang S, Xiao L, Zhang C. Activation of P2X7 Receptor Mediates the Abnormal Ovulation Induced by Chronic Restraint Stress and Chronic Cold Stress. BIOLOGY 2024; 13:620. [PMID: 39194558 DOI: 10.3390/biology13080620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Chronic stress has become a major problem that endangers people's physical and mental health. Studies have shown that chronic stress impairs female reproduction. However, the related mechanism is not fully understood. P2X7 receptor (P2X7R) is involved in a variety of pathological changes induced by chronic stress. Whether P2X7R is involved in the effect of chronic stress on female reproduction has not been studied. In this study, we established a chronic restraint stress mouse model and chronic cold stress mouse model. We found that the number of corpora lutea was significantly reduced in the two chronic stress models. The number of corpora lutea indirectly reflects the ovulation, suggesting that chronic stress influences ovulation. P2X7R expression was significantly increased in ovaries of the two chronic stress models. A superovulation experiment showed that P2X7R inhibitor A-438079 HCL partially rescued the ovulation rate of the two chronic stress models. Further studies showed that activation of P2X7R signaling inhibited the cumulus expansion and promoted the expression of NPPC in granulosa cells, one key negative factor of cumulus expansion. Moreover, sirius red staining showed that the ovarian fibrosis was increased in the two chronic stress models. For the fibrosis-related factors, TGF-β1 was increased and MMP2 was decreased. In vitro studies also showed that activation of P2X7R signaling upregulated the expression of TGF-β1 and downregulated the expression of MMP2 in granulosa cells. In conclusion, P2X7R expression was increased in the ovaries of the chronic restraint-stress and chronic cold-stress mouse models. Activation of P2X7R signaling promoted NPPC expression and cumulus expansion disorder, which contributed to the abnormal ovulation of the chronic stress model. Activation of P2X7R signaling is also associated with the ovarian fibrosis changes in the chronic stress model.
Collapse
Affiliation(s)
- Xiang Fan
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- Institute of Rehabilitation Science, Shaanxi Provincial Rehabilitation Hospital, Xi'an 710065, China
| | - Jing Wang
- Department of Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yinyin Ma
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Dandan Chai
- Shangrao People's Hospital, Shangrao 334000, China
| | - Suo Han
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Chuyu Xiao
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yingtong Huang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiaojie Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianming Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Shimeng Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Li Xiao
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Chunping Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
5
|
Hsu CY, Faisal Mutee A, Porras S, Pineda I, Ahmed Mustafa M, J Saadh M, Adil M, H A Z. Amphiregulin in infectious diseases: Role, mechanism, and potential therapeutic targets. Microb Pathog 2024; 186:106463. [PMID: 38036111 DOI: 10.1016/j.micpath.2023.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Sandra Porras
- Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Indira Pineda
- Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Iraq; Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Iraq.
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Zainab H A
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| |
Collapse
|
6
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
7
|
Conte JG, Tellechea ML, Park B, Ballerini MG, Jaita G, Peluffo MC. Interaction between epidermal growth factor receptor and C-C motif chemokine receptor 2 in the ovulatory cascade. Front Cell Dev Biol 2023; 11:1161813. [PMID: 37082622 PMCID: PMC10110862 DOI: 10.3389/fcell.2023.1161813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is one of the main pathways responsible for propagating the luteinizing hormone (LH) signal throughout the cumulus cells and the oocyte. Recently, we have proposed the C-C motif chemokine receptor 2 (CCR2) and its main ligand (monocyte chemoattractant protein-1, MCP1) as novel mediators of the ovulatory cascade. Our previous results demonstrate that the gonadotropins (GNT), amphiregulin (AREG), and prostaglandin E2 (PGE2) stimulation of periovulatory gene mRNA levels occurs, at least in part, through the CCR2/MCP1 pathway, proposing the CCR2 receptor as a novel mediator of the ovulatory cascade in a feline model. For that purpose, feline cumulus-oocyte complexes (COCs) were cultured in the presence or absence of an EGFR inhibitor, recombinant chemokine MCP1, and gonadotropins [as an inducer of cumulus-oocyte expansion (C-OE), and oocyte maturation] to further assess the mRNA expression of periovulatory key genes, C-OE, oocyte nuclear maturation, and steroid hormone production. We observed that MCP1 was able to revert the inhibition of AREG mRNA expression by an EGFR inhibitor within the feline COC. In accordance, the confocal analysis showed that the GNT-stimulated hyaluronic acid (HA) synthesis, blocked by the EGFR inhibitor, was recovered by the addition of recombinant MCP1 in the C-OE culture media. Also, MCP1 was able to revert the inhibition of progesterone (P4) production by EGFR inhibitor in the C-OE culture media. Regarding oocyte nuclear maturation, recombinant MCP1 could also revert the inhibition triggered by the EGFR inhibitor, leading to a recovery in the percentage of metaphase II (MII)-stage oocytes. In conclusion, our results confirm the chemokine receptor CCR2 as a novel intermediate in the ovulatory cascade and demonstrate that the EGFR/AREG and the CCR2/MCP1 signaling pathways play critical roles in regulating feline C-OE and oocyte nuclear maturation, with CCR2/MCP1 signaling pathway being downstream EGFR/AREG pathway within the ovulatory cascade.
Collapse
Affiliation(s)
- J. G. Conte
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. L. Tellechea
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - B. Park
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - M. G. Ballerini
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - G. Jaita
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular e Histología, Facultad de Medicina-Universidad de Buenos Aires Buenos, Buenos Aires, Argentina
| | - M. C. Peluffo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
8
|
Fang L, Sun YP, Cheng JC. The role of amphiregulin in ovarian function and disease. Cell Mol Life Sci 2023; 80:60. [PMID: 36749397 PMCID: PMC11071807 DOI: 10.1007/s00018-023-04709-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
Amphiregulin (AREG) is an epidermal growth factor (EGF)-like growth factor that binds exclusively to the EGF receptor (EGFR). Treatment with luteinizing hormone (LH) and/or human chorionic gonadotropin dramatically induces the expression of AREG in the granulosa cells of the preovulatory follicle. In addition, AREG is the most abundant EGFR ligand in human follicular fluid. Therefore, AREG is considered a predominant propagator that mediates LH surge-regulated ovarian functions in an autocrine and/or paracrine manner. In addition to the well-characterized stimulatory effect of LH on AREG expression, recent studies discovered that several local factors and epigenetic modifications participate in the regulation of ovarian AREG expression. Moreover, aberrant expression of AREG has recently been reported to contribute to the pathogenesis of several ovarian diseases, such as ovarian hyperstimulation syndrome, polycystic ovary syndrome, and epithelial ovarian cancer. Furthermore, increasing evidence has elucidated new applications of AREG in assisted reproductive technology. Collectively, these studies highlight the importance of AREG in female reproductive health and disease. Understanding the normal and pathological roles of AREG and elucidating the molecular and cellular mechanisms of AREG regulation of ovarian functions will inform innovative approaches for fertility regulation and the prevention and treatment of ovarian diseases. Therefore, this review summarizes the functional roles of AREG in ovarian function and disease.
Collapse
Affiliation(s)
- Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
9
|
Wang Q, Wan Q, Bu X, Feng Q, Li T, Lv X, Meng X, Chen M, Qian Y, Yang Y, Geng L, Zhong Z, Tang X, Ding Y. Nomogram models to predict low fertilisation rate and total fertilisation failure in patients undergoing conventional IVF cycles. BMJ Open 2022; 12:e067838. [PMID: 36428025 PMCID: PMC9703318 DOI: 10.1136/bmjopen-2022-067838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES To establish visualised prediction models of low fertilisation rate (LFR) and total fertilisation failure (TFF) for patients in conventional in vitro fertilisation (IVF) cycles. DESIGN A retrospective cohort study. SETTING Data from August 2017 to August 2021 were collected from the electronic records of a large obstetrics and gynaecology hospital in Sichuan, China. PARTICIPANTS A total of 11 598 eligible patients who underwent the first IVF cycles were included. All patients were randomly divided into the training group (n=8129) and the validation group (n=3469) in a 7:3 ratio. PRIMARY OUTCOME MEASURE The incidence of LFR and TFF. RESULTS Logistic regressions showed that ovarian stimulation protocol, primary infertility and initial progressive sperm motility were the independent predictors of LFR, while serum luteinising hormone and P levels before human chorionic gonadotropin injection and number of oocytes retrieved were the critical predictors of TFF. And these indicators were incorporated into the nomogram models. According to the area under the curve values, the predictive ability for LFR and TFF were 0.640 and 0.899 in the training set and 0.661 and 0.876 in the validation set, respectively. The calibration curves also showed good concordance between the actual and predicted probabilities both in the training and validation group. CONCLUSION The novel nomogram models provided effective methods for clinicians to predict LFR and TFF in traditional IVF cycles.
Collapse
Affiliation(s)
- Qiaofeng Wang
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Qi Wan
- Department of Reproductive Medicine, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, China
- Department of Gynecology and Obstetrics, Sichuan University, Chengdu, China
| | - Xiaoqing Bu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Qian Feng
- Department of Gynecology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Tian Li
- Department of Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Lv
- Department of Gynecology and Obstetrics, Sichuan University, Chengdu, China
| | - Xiangqian Meng
- Department of Gynecology and Obstetrics, Sichuan University, Chengdu, China
| | - Mingxing Chen
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yue Qian
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yin Yang
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Lihong Geng
- Department of Gynecology and Obstetrics, Sichuan University, Chengdu, China
| | - Zhaohui Zhong
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiaojun Tang
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yubin Ding
- School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Clark KL, Davis JS. Perfluorooctanoic acid (PFOA) promotes follicular growth and alters expression of genes that regulate the cell cycle and the Hippo pathway in cultured neonatal mouse ovaries. Toxicol Appl Pharmacol 2022; 454:116253. [PMID: 36152675 PMCID: PMC10416762 DOI: 10.1016/j.taap.2022.116253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a synthetic chemical resistant to biodegradation and is environmentally persistent. PFOA is found in many consumer products and is a major source of water contamination. While PFOA has been identified as a contaminant of concern for reproductive health, little is known about the effects of PFOA on ovarian follicular development and growth. Recent evidence indicates that the Hippo pathway is an important regulator of ovarian physiology. Here, we investigated the effects of PFOA on ovarian folliculogenesis during the neonatal period of development and potential impacts on the Hippo signaling pathway. Post-natal day 4 (PND4) neonatal ovaries from CD-1 mice were cultured with control medium (DMSO <0.01% final concentration) or PFOA (50 μM or 100 μM). After 96 h, ovaries were collected for histological analysis of folliculogenesis, gene and protein expression, and immunostaining. Results revealed that PFOA (50 μM) increased the number of secondary follicles, which was accompanied by increases in mRNA transcripts and protein of marker of proliferation marker Ki67 with no impacts on apoptosis markers Bax, Bcl2, or cleaved caspase-3. PFOA treatment (50 μM and 100 μM) stimulated an upregulation of transcripts for cell cycle regulators Ccna2, Ccnb2, Ccne1, Ccnd1, Ccnd2, and Ccnd3. PFOA also increased abundance of transcripts of Hippo pathway components Mst1/2, Lats1, Mob1b, Yap1, and Taz, as well as downstream Hippo pathway targets Areg, Amotl2, and Cyr61, although it decreased transcripts for anti-apoptotic Birc5. Inhibition of the Hippo pathway effector YAP1 with Verteporfin resulted in the attenuation of PFOA-induced follicular growth and proliferation. Together, these findings suggest that occupationally relevant levels of PFOA (50 μM) can stimulate follicular activation in neonatal ovaries potentially through activation of the Hippo pathway.
Collapse
Affiliation(s)
- Kendra L Clark
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA.
| |
Collapse
|
11
|
HDAC1 in the Ovarian Granulosa Cells of Tan Sheep Improves Cumulus Cell Expansion and Oocyte Maturation Independently of the EGF-like Growth Factors. BIOLOGY 2022; 11:biology11101464. [PMID: 36290368 PMCID: PMC9598242 DOI: 10.3390/biology11101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that some of the histone deacetylases (HDACs) play diverse roles in the regulation of ovarian somatic cell development, oocyte maturation and early embryonic development in different species including sheep. This study aimed to clarify whether HDAC1 also played pivotal roles in regulating oocyte maturation in Tan sheep. The results showed that HDAC1 was expressed in the nuclei of both the granulosa cells and oocytes of the growing follicles in the Tan sheep's ovaries. However, the level of HDAC1 was unaffected by luteinizing hormone (LH) induction in cultured granulosa cells. Meanwhile, the specific inhibition of HDAC1 using pyroxamide did not induce significant changes in the expression levels of EGF-like growth factors in vitro, whereas both the cumulus expansion and oocyte maturation of the cultured cumulus oocyte complexes (COCs) were significantly inhibited by pyroxamide. Additionally, the numbers of histone acetylation sites (H4K5, H4K12, H3K14 and H3K9) in ovarian granulosa cells were significantly increased. In conclusion, a constant expression of HDAC1 in the growing follicles of Tan sheep may be pivotal for supporting oocyte growth and maturation, although its action may not be closely correlated with LH induction, nor does it directly affect the expression of the EGF-like factors. Our study implies that there may exist diverse functions of the respective HDACs in modulating female reproduction in sheep.
Collapse
|
12
|
Abhari S, Lu J, Hipp HS, Petritis B, Gerkowicz SA, Katler QS, Yen HH, Mao Y, Tang H, Shang W, McKenzie LJ, Smith AK, Huang RP, Knight AK. A Case-Control Study of Follicular Fluid Cytokine Profiles in Women with Diminished Ovarian Reserve. Reprod Sci 2022; 29:2515-2524. [PMID: 34738218 PMCID: PMC10201686 DOI: 10.1007/s43032-021-00757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022]
Abstract
Ovarian reserve is an important determinant of a woman's reproductive potential, and women with diminished ovarian reserve (DOR) often seek in vitro fertilization (IVF). The underlying etiology of DOR is unknown, but follicular fluid cytokine concentrations likely play a role in follicular development and maturation. The present study seeks to investigate the expression of cytokines in follicular fluid (FF) of women with DOR undergoing IVF and explore correlated functional pathways. One hundred ninety-four women undergoing ovarian stimulation were recruited at the time of oocyte retrieval. Women were classified as having DOR if they met one or more of the following criteria: AMH < 1 ng/ml, FSH > 10 mIU/ml, and/or AFC < 10. Controls included women undergoing IVF for male factor, tubal factor due to tubal ligation, or planned oocyte cryopreservation (non-oncologic). The concentrations of 480 cytokines and related growth factors in follicular fluid were determined using a multiplex immunoassay. Fifty-nine cytokines had significantly different concentrations (53 higher and 6 lower) in the DOR relative to the control group after adjusting for age and body mass index (BMI) (false discovery rate; FDR < 0.1). Using the most informative 44 biomarkers as indicated by a random forest (RF) model, an area under the curve (AUC) of 0.78 was obtained. Thus, follicular microenvironment differs between women with DOR and normal ovarian reserve. The differentially expressed cytokines belong to diverse processes that are primarily involved in follicular maturation and ovulation. These changes may play an important role in treatment outcomes in women with DOR.
Collapse
Affiliation(s)
- Sina Abhari
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology and Infertility, Emory University School of Medicine, 550 Peachtree Street, NE Suite 1800, Atlanta, GA, 30308, USA
| | - Jingqiao Lu
- RayBiotech Life, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | - Heather S Hipp
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology and Infertility, Emory University School of Medicine, 550 Peachtree Street, NE Suite 1800, Atlanta, GA, 30308, USA
| | - Brianne Petritis
- RayBiotech Life, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | | | - Quinton S Katler
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology and Infertility, Emory University School of Medicine, 550 Peachtree Street, NE Suite 1800, Atlanta, GA, 30308, USA
| | - Haw-Han Yen
- RayBiotech Life, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | - Yingqing Mao
- RayBiotech Life, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | - Hao Tang
- RayBiotech Life, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | - Weirong Shang
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology and Infertility, Emory University School of Medicine, 550 Peachtree Street, NE Suite 1800, Atlanta, GA, 30308, USA
| | - Laurie J McKenzie
- Division of Reproductive Endocrinology and Infertility, Baylor College of Medicine, Houston, TX, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Division of Research, Emory University School of Medicine, Woodruff Memorial Research Building, Atlanta, GA, 30322, USA
| | - Ruo-Pan Huang
- RayBiotech Life, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | - Anna K Knight
- Department of Gynecology and Obstetrics, Division of Research, Emory University School of Medicine, Woodruff Memorial Research Building, Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Li H, Chang HM, Li S, Klausen C, Shi Z, Leung PC. Characterization of the roles of amphiregulin and transforming growth factor β1 in microvasculature-like formation in human granulosa-lutein cells. Front Cell Dev Biol 2022; 10:968166. [PMID: 36092732 PMCID: PMC9448859 DOI: 10.3389/fcell.2022.968166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular endothelial-cadherin (VE-cadherin) is an essential component that regulates angiogenesis during corpus luteum formation. Amphiregulin (AREG) and transforming growth factor β1 (TGF-β1) are two intrafollicular factors that possess opposite functions in directing corpus luteum development and progesterone synthesis in human granulosa-lutein (hGL) cells. However, whether AREG or TGF-β1 regulates the VE-cadherin expression and subsequent angiogenesis in the human corpus luteum remains to be elucidated. Results showed that hGL cells cultured on Matrigel spontaneously formed capillary-like and sprout-like microvascular networks. Results of specific inhibitor treatment and small interfering RNA-mediated knockdown revealed that AREG promoteed microvascular-like formation in hGL cells by upregulating the VE-cadherin expression mediated by the epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase1/2 (ERK1/2) signaling pathway. However, TGF-β1 suppressed microvascular-like formation in hGL cells by downregulating VE-cadherin expression mediated by the activin receptor-like kinase (ALK)5-Sma- and Mad-related protein (SMAD)2/3/4 signaling pathway. Collectively, this study provides important insights into the underlying molecular mechanisms by which TGF-β1 and AREG differentially regulate corpus luteum formation in human ovaries.
Collapse
Affiliation(s)
- Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hsun-Ming Chang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Hsun-Ming Chang, ; Peter C.K. Leung,
| | - Saijiao Li
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peter C.K. Leung
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Hsun-Ming Chang, ; Peter C.K. Leung,
| |
Collapse
|
14
|
Zhang X, Zhao H, Li Y, Zhang Y, Liang Y, Shi J, Zhou R, Hong L, Cai G, Wu Z, Li Z. Amphiregulin Supplementation During Pig Oocyte In Vitro Maturation Enhances Subsequent Development of Cloned Embryos by Promoting Cumulus Cell Proliferation. Cell Reprogram 2022; 24:175-185. [PMID: 35861708 DOI: 10.1089/cell.2022.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The oocyte in vitro maturation (IVM) technique is important in animal husbandry, biomedicine, and human-assisted reproduction. However, the developmental potential of in vitro matured oocytes is usually lower than that of in vivo matured (IVVM) oocytes. Amphiregulin (AREG) is an EGF-like growth factor that plays critical roles in the maturation and development of mammalian oocytes. This study investigated the effects of AREG supplementation during pig oocyte IVM on the subsequent development of cloned embryos. The addition of AREG to pig oocyte IVM medium improved the developmental competence of treated oocyte-derived cloned embryos by enhancing the expansion and proliferation of cumulus cells (CCs) during IVM. The positive effect of AREG on enhancing the quality of IVVM pig oocytes might be due to the activation of proliferation-related pathways in CCs by acting on the AREG receptor. The present study provides an AREG treatment-based method to improve the developmental competence of cloned pig embryos.
Collapse
Affiliation(s)
- Xianjun Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yanan Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yuxing Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yalin Liang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu, China
| | - Rong Zhou
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Compromised Cumulus-Oocyte Complex Matrix Organization and Expansion in Women with PCOS. Reprod Sci 2021; 29:836-848. [PMID: 34748173 DOI: 10.1007/s43032-021-00775-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
The cumulus-oocyte complex (COC) matrix plays a critical role in the ovulation and fertilization process and a major predictor of oocyte quality. Proteomics studies of follicular fluid showed differential expression of COC matrix proteins in women with polycystic ovary syndrome (PCOS), indicating altered COC matrix in these women. In the present study, we aimed to understand COC matrix gene induction in humans and its probable dysfunction in women with PCOS. Animal studies have shown that amphiregulin (AREG) and growth differentiation factor-9 (GDF-9) are important in the induction of COC matrix genes which are involved in cumulus expansion. The effects of AREG and GDF-9 on expression of tumor necrosis factor alpha induced protein 6 (TNFAIP6) and hyaluronan synthase 2 (HAS2) on human cumulus granulosa cells (CGCs) and murine COC expansion were evaluated. Further time-dependent effects of growth factor supplementation on these gene expressions in CGCs from PCOS and control women were compared. Follicular fluid from PCOS showed reduced COC matrix expansion capacity, using murine COCs. Expression of COC matrix genes TNFAIP6 and HAS2 were significantly reduced in CGCs of PCOS. Treatment of CGCs with AREG and GDF-9 together induced expression of both these genes in controls and could only restore HAS2 but not TNFAIP6 expression in PCOS. Our results suggest that the reduced potential of follicular fluid to support COC expansion, altered expression of structural constituents, and intrinsic defects in granulosa cells of women with PCOS may contribute to the aberrant COC organization and expansion in PCOS, thus affecting fertilization.
Collapse
|
16
|
Akin N, Le AH, Ha UDT, Romero S, Sanchez F, Pham TD, Nguyen MHN, Anckaert E, Ho TM, Smitz J, Vuong LN. Positive effects of amphiregulin on human oocyte maturation and its molecular drivers in patients with polycystic ovary syndrome. Hum Reprod 2021; 37:30-43. [PMID: 34741172 DOI: 10.1093/humrep/deab237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/03/2021] [Indexed: 01/19/2023] Open
Abstract
STUDY QUESTION Does use of medium containing amphiregulin improve meiotic maturation efficiency in oocytes of women with polycystic ovary syndrome (PCOS) undergoing in vitro maturation (IVM) preceded by a capacitation culture step capacitation IVM (CAPA-IVM)? SUMMARY ANSWER Use of medium containing amphiregulin significantly increased the maturation rate from oocytes retrieved from follicles with diameters <6 or ≥6 mm pre-cultured in capacitation medium. WHAT IS KNOWN ALREADY Amphiregulin concentration in follicular fluid is correlated with human oocyte developmental competence. Amphiregulin added to the meiotic trigger has been shown to improve outcomes of IVM in a range of mammalian species. STUDY DESIGN, SIZE, DURATION This prospective, randomized cohort study included 30 patients and was conducted at an academic infertility centre in Vietnam from April to December 2019. Patients with PCOS were included. PARTICIPANTS/MATERIALS, SETTING, METHODS In the first stage, sibling oocytes from each patient (671 in total) were allocated in equal numbers to maturation in medium with (CAPA-AREG) or without (CAPA-Control) amphiregulin 100 ng/ml. After a maturation check and fertilization using intracytoplasmic sperm injection (ICSI), all good quality Day 3 embryos were vitrified. Cumulus cells (CCs) from both groups were collected at the moment of ICSI denudation and underwent a molecular analysis to quantify key transcripts of oocyte maturation and to relate these to early embryo development. On return for frozen embryo transfer (second stage), patients were randomized to have either CAPA-AREG or CAPA-Control embryo(s) implanted. Where no embryo(s) from the randomized group were available, embryo(s) from the other group were transferred. The primary endpoint of the study was meiotic maturation efficiency (proportion of metaphase II [MII] oocytes; maturation rate). MAIN RESULTS AND THE ROLE OF CHANCE In the per-patient analysis, the number of MII oocytes was significantly higher in the CAPA-AREG group versus the CAPA-Control group (median [interquartile range] 7.0 [5.3, 8.0] versus 6.0 [4.0, 7.0]; P = 0.01). When each oocyte was evaluated, the maturation rate was also significantly higher in the CAPA-AREG group versus the CAPA-Control group (67.6% versus 55.2%; relative risk [RR] 1.22 [95% confidence interval (CI) 1.08-1.38]; P = 0.001). No other IVM or embryology outcomes differed significantly between the two groups. Rates of clinical pregnancy (66.7% versus 42.9%; RR 1.56 [95% CI 0.77-3.14]), ongoing pregnancy (53.3% versus 28.6%; RR 1.87 [95% CI 0.72-4.85]) and live birth (46.7% versus 28.6%; RR 1.63 [95% CI 0.61-4.39]) were numerically higher in the patients who had CAPA-AREG versus CAPA-Control embryos implanted, but each fertility and obstetric outcome did not differ significantly between the groups. In the CAPA-AREG group, there were significant shifts in CC expression of genes involved in steroidogenesis (STAR, 3BHSD), the ovulatory cascade (DUSP16, EGFR, HAS2, PTGR2, PTGS2, RPS6KA2), redox and glucose metabolism (CAT, GPX1, SOD2, SLC2A1, LDHA) and transcription (NRF2). The expression of three genes (TRPM7, VCAN and JUN) in CCs showed a significant correlation with embryo quality. LIMITATIONS, REASONS FOR CAUTION This study included only Vietnamese women with PCOS, limiting the generalizability. Although 100 ng/ml amphiregulin addition to the maturation culture step significantly improved the MII rate, the sample size in this study was small, meaning that these findings should be considered as exploratory. Therefore, a larger patient cohort is needed to confirm whether the positive effects of amphiregulin translate into improved fertility outcomes in patients undergoing IVM. WIDER IMPLICATIONS OF THE FINDINGS Data from this study confirm the beneficial effects of amphiregulin during IVM with respect to the trigger of oocyte maturation. The gene expression findings in cumulus indicate that multiple pathways might contribute to these beneficial effects and confirm the key role of the epidermal growth factor system in the stepwise acquisition of human oocyte competence. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED; grant number FWO.106-YS.2017.02) and by the Fund for Research Flanders (FWO; grant number G.OD97.18N). L.N.V. has received speaker and conference fees from Merck, grants, speaker and conference fees from Merck Sharpe and Dohme, and speaker, conference and scientific board fees from Ferring. T.M.H. has received speaker fees from Merck, Merck Sharp and Dohme and Ferring. J.S. reports speaker fees from Ferring Pharmaceuticals and Biomérieux Diagnostics and grants from FWO Flanders, is co-inventor on granted patents on CAPA-IVM methodologies in USA (US10392601B2), Europe (EP3234112B1) and Japan (JP 6806683 registered 08-12-2020) and is a co-shareholder of Lavima Fertility Inc., a spin-off company of the Vrije Universiteit Brussel (VUB, Brussels, Belgium). NA, TDP, AHL, MNHN, SR, FS, EA and UDTH report no financial relationships with any organizations that might have an interest in the submitted work in the previous three years, and no other relationships or activities that could appear to have influenced the submitted work. TRIAL REGISTRATION NUMBER NCT03915054.
Collapse
Affiliation(s)
- Nazli Akin
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Anh H Le
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam.,HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Uyen D T Ha
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam.,HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Sergio Romero
- Laboratory of Reproductive Biology and Fertility Preservation, Cayetano Heredia University (UPCH), Lima, Peru
| | - Flor Sanchez
- Laboratory of Reproductive Biology and Fertility Preservation, Cayetano Heredia University (UPCH), Lima, Peru
| | - Toan D Pham
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam.,HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Minh H N Nguyen
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam.,HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Ellen Anckaert
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Tuong M Ho
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam.,HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Johan Smitz
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Lan N Vuong
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam.,HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam.,Department of Obstetrics and Gynecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
17
|
Polymorphism of OPN and AREG Genes in Relation to Transcript Expression of a Panel of 12 Genes Controlling Reproduction Processes and Litter Size in Pigs. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this study was to define the transcript expression of 12 genes, identify new polymorphisms in selected 2 genes and to estimate the association between the level of expression, gene polymorphism and litter size in sows. Two groups of sows were selected: 71 crossbred sows and 328 purebred sows. For transcript analysis endometrial tissue samples were collected, while blood was sampled for the purpose of DNA polymorphism analysis. For all animals data on litter size and weaned piglets were obtained. Transcript analysis of 12 genes was performed in the uterine endometrium of sows in the luteal and follicular phases. Eight out of 12 genes showed higher mRNA expression levels during the luteal phase (AREG, FABP3, IL1A, ITGAV, ITGB3, NMB, OPN, RBP4). In turn, higher expression levels in the follicular phase were observed for 4 genes (IL1B, PPARG, S100A8, SELL). Analysis of six new polymorphic sites within the OPN and AREG genes revealed the highest heterozygosity for OPNe6_Knoll, OPNp3_617 and AREGe2_317 polymorphisms and the lowest heterozygosity in the AREGe3_561 locus. Association analyses concerning transcript expression levels of the 12 genes and the OPN and AREG genotypes in the two groups of sows showed a significant relationship between the IL1A, ITGB3 transcript expression and the OPNe7_603 genotype also between OPNp3_617 genotype and ITGB3 transcript expression. With regard to the litter size and the number of weaned piglets a significant relation with the OPNp3_617, OPNe6_462 and AREGe2_317 genotypes was observed only in the purebred sows. Transcript expression of the genes encoding osteopontin and amphiregulin in the uterus of the sows affect reproductive traits by preparing the uterus for embryo reception.
Collapse
|
18
|
In Vitro Maturation of Oocytes Retrieved from Ovarian Tissue: Outcomes from Current Approaches and Future Perspectives. J Clin Med 2021; 10:jcm10204680. [PMID: 34682803 PMCID: PMC8540978 DOI: 10.3390/jcm10204680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/02/2023] Open
Abstract
In vitro maturation (IVM) of transvaginally aspirated immature oocytes is an effective and safe assisted reproductive treatment for predicted or high responder patients. Currently, immature oocytes are also being collected from the contralateral ovary during laparoscopy/laparotomy and even ex vivo from the excised ovary or the spent media during ovarian tissue preparation prior to ovarian cortex cryopreservation. The first live births from in vitro-matured ovarian tissue oocytes (OTO-IVM) were reported after monophasic OTO-IVM, showing the ability to achieve mature OTO-IVM oocytes. However, fertilisations rates and further embryological developmental capacity appeared impaired. The introduction of a biphasic IVM, also called capacitation (CAPA)-IVM, has been a significant improvement of the oocytes maturation protocol. However, evidence on OTO-IVM is still scarce and validation of the first results is of utmost importance to confirm reproducibility, including the follow-up of OTO-IVM children. Differences between IVM and OTO-IVM should be well understood to provide realistic expectations to patients.
Collapse
|
19
|
Veikkolainen V, Ali N, Doroszko M, Kiviniemi A, Miinalainen I, Ohlsson C, Poutanen M, Rahman N, Elenius K, Vainio SJ, Naillat F. Erbb4 regulates the oocyte microenvironment during folliculogenesis. Hum Mol Genet 2021; 29:2813-2830. [PMID: 32716031 DOI: 10.1093/hmg/ddaa161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders leading to infertility in women affecting reproductive, endocrine and metabolic systems. Recent genomewide association studies on PCOS cohorts revealed a single nucleotide polymorphism (SNP) in the ERBB4 receptor tyrosine kinase 4 gene, but its role in ovary development or during folliculogenesis remains poorly understood. Since no genetic animal models mimicking all PCOS reproductive features are available, we conditionally deleted Erbb4 in murine granulosa cells (GCs) under the control of Amh promoter. While we have demonstrated that Erbb4 deletion displayed aberrant ovarian function by affecting the reproductive function (asynchronous oestrous cycle leading to few ovulations and subfertility) and metabolic function (obesity), their ovaries also present severe structural and functional abnormalities (impaired oocyte development). Hormone analysis revealed an up-regulation of serum luteinizing hormone, hyperandrogenism, increased production of ovarian and circulating anti-Müllerian hormone. Our data implicate that Erbb4 deletion in GCs leads to defective intercellular junctions between the GCs and oocytes, causing changes in the expression of genes regulating the local microenvironment of the follicles. In vitro culture assays reducing the level of Erbb4 via shRNAs confirm that Erbb4 is essential for regulating Amh level. In conclusion, our results indicate a functional role for Erbb4 in the ovary, especially during folliculogenesis and its reduced expression plays an important role in reproductive pathophysiology, such as PCOS development.
Collapse
Affiliation(s)
- Ville Veikkolainen
- Institute of Biomedicine and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland
| | - Nsrein Ali
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Milena Doroszko
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland.,Department of Immunology Genetics and Pathology, Section for Neuro-oncology, Uppsala University, 752 36 Uppsala, Sweden
| | - Antti Kiviniemi
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Ilkka Miinalainen
- Electron Microscopy Unit, Biocenter Oulu, University of Oulu, FI-90220 Oulu, Finland
| | - Claes Ohlsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland.,Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Nafis Rahman
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland.,Department of Oncology, Turku University Hospital, FI-20520 Turku, Finland
| | - Seppo J Vainio
- Department of Immunology Genetics and Pathology, Section for Neuro-oncology, Uppsala University, 752 36 Uppsala, Sweden.,InfoTech Oulu, Oulu University and Biobank Borealis of Northern Finland, Oulu University Hospital, University of Oulu, FI-90014 Oulu, FINLAND
| | - Florence Naillat
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|
20
|
Pla I, Sanchez A, Pors SE, Pawlowski K, Appelqvist R, Sahlin KB, Poulsen LLC, Marko-Varga G, Andersen CY, Malm J. Proteome of fluid from human ovarian small antral follicles reveals insights in folliculogenesis and oocyte maturation. Hum Reprod 2021; 36:756-770. [PMID: 33313811 PMCID: PMC7891813 DOI: 10.1093/humrep/deaa335] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Is it possible to identify by mass spectrometry a wider range of proteins and key proteins involved in folliculogenesis and oocyte growth and development by studying follicular fluid (FF) from human small antral follicles (hSAF)? SUMMARY ANSWER The largest number of proteins currently reported in human FF was identified in this study analysing hSAF where several proteins showed a strong relationship with follicular developmental processes. WHAT IS KNOWN ALREADY Protein composition of human ovarian FF constitutes the microenvironment for oocyte development. Previous proteomics studies have analysed fluids from pre-ovulatory follicles, where large numbers of plasma constituents are transferred through the follicular basal membrane. This attenuates the detection of low abundant proteins, however, the basal membrane of small antral follicles is less permeable, making it possible to detect a large number of proteins, and thereby offering further insights in folliculogenesis. STUDY DESIGN, SIZE, DURATION Proteins in FF from unstimulated hSAF (size 6.1 ± 0.4 mm) were characterised by mass spectrometry, supported by high-throughput and targeted proteomics and bioinformatics. The FF protein profiles from hSAF containing oocytes, capable or not of maturing to metaphase II of the second meiotic division during an IVM (n = 13, from 6 women), were also analysed. PARTICIPANTS/MATERIALS, SETTING, METHODS We collected FF from hSAF of ovaries that had been surgically removed from 31 women (∼28.5 years old) undergoing unilateral ovariectomy for fertility preservation. MAIN RESULTS AND THE ROLE OF CHANCE In total, 2461 proteins were identified, of which 1108 identified for the first time in FF. Of the identified proteins, 24 were related to follicular regulatory processes. A total of 35 and 65 proteins were down- and up-regulated, respectively, in fluid from hSAF surrounding oocytes capable of maturing (to MII). We found that changes at the protein level occur already in FF from small antral follicles related to subsequent oocyte maturation. LIMITATIONS, REASONS FOR CAUTION A possible limitation of our study is the uncertainty of the proportion of the sampled follicles that are undergoing atresia. Although the FF samples were carefully aspirated and processed to remove possible contaminants, we cannot ensure the absence of some proteins derived from cellular lysis provoked by technical reasons. WIDER IMPLICATIONS OF THE FINDINGS This study is, to our knowledge, the first proteomics characterisation of FF from hSAF obtained from women in their natural menstrual cycle. We demonstrated that the analysis by mass spectrometry of FF from hSAF allows the identification of a greater number of proteins compared to the results obtained from previous analyses of larger follicles. Significant differences found at the protein level in hSAF fluid could predict the ability of the enclosed oocyte to sustain meiotic resumption. If this can be confirmed in further studies, it demonstrates that the viability of the oocyte is determined early on in follicular development and this may open up new pathways for augmenting or attenuating subsequent oocyte viability in the pre-ovulatory follicle ready to undergo ovulation. STUDY FUNDING/COMPETING INTEREST(S) The authors thank the financial support from ReproUnion, which is funded by the Interreg V EU programme. No conflict of interest was reported by the authors. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Indira Pla
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Krzysztof Pawlowski
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden.,Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences SGGW, Warszawa 02-787, Poland
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - K Barbara Sahlin
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - Liv La Cour Poulsen
- Fertility Clinic, Department of Gynaecology and Obstetrics, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden.,First Department of Surgery, Tokyo Medical University, Shinjiku-ku, Japan
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| |
Collapse
|
21
|
Wang J, Zhuo Z, Ma X, Liu Y, Xu J, He C, Fu Y, Wang F, Ji P, Zhang L, Liu G. Melatonin Alleviates the Suppressive Effect of Hypoxanthine on Oocyte Nuclear Maturation and Restores Meiosis via the Melatonin Receptor 1 (MT1)-Mediated Pathway. Front Cell Dev Biol 2021; 9:648148. [PMID: 33937242 PMCID: PMC8083900 DOI: 10.3389/fcell.2021.648148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 01/12/2023] Open
Abstract
It is well known that hypoxanthine (HX) inhibits nuclear maturation of oocytes by elevating the intracellular cAMP level, while melatonin (MT) is a molecule that reduces cAMP production, which may physiologically antagonize this inhibition and restore the meiosis process. We conducted in vitro and in vivo studies to examine this hypothesis. The results showed that 10-3 M MT potentiated the inhibitory effect of HX on mouse oocyte meiosis by lowering the rate of germinal vesicle breakdown (GVBD) and the first polar body (PB1). However, 10-5 M and 10-7 M MT significantly alleviated the nuclear suppression induced by HX and restored meiosis in 3- and 6-week-old mouse oocytes, respectively. We identified that the rate-limiting melatonin synthetic enzyme AANAT and melatonin membrane receptor MT1 were both expressed in oocytes and cumulus cells at the GV and MII stages. Luzindole, a non-selective melatonin membrane receptor antagonist, blocked the activity of MT on oocyte meiotic recovery (P < 0.05). This observation indicated that the activity of melatonin was mediated by the MT1 receptor. To understand the molecular mechanism further, MT1 knockout (KO) mice were constructed. In this MT1 KO animal model, the PB1 rate was significantly reduced with the excessive expression of cAPM synthases (Adcy2, Adcy6, Adcy7, and Adcy9) in the ovaries of these animals. The mRNA levels of Nppc and Npr2 were upregulated while the genes related to progesterone synthesis (Cyp11a11), cholesterol biosynthesis (Insig1), and feedback (Lhcgr, Prlr, and Atg7) were downregulated in the granulosa cells of MT1 KO mice (P < 0.05). The altered gene expression may be attributed to the suppression of oocyte maturation. In summary, melatonin protects against nuclear inhibition caused by HX and restores oocyte meiosis via MT1 by reducing the intracellular concentration of cAMP.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiyong Zhuo
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Beijing Keao Xieli Feed Co., Ltd., Beijing, China
| | - Xiao Ma
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunjie Liu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Xu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changjiu He
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Fu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Feng Wang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Cheng JC, Fang L, Yan Y, He J, Guo Y, Jia Q, Gao Y, Han X, Sun YP. TGF-β1 stimulates aromatase expression and estradiol production through SMAD2 and ERK1/2 signaling pathways in human granulosa-lutein cells. J Cell Physiol 2021; 236:6619-6629. [PMID: 33512728 DOI: 10.1002/jcp.30305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/27/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
Estradiol (E2), one of the main steroid hormones secreted by the ovaries, plays an important role in maintaining normal female reproductive function. Ovarian granulosa cells are the main source of E2 production because these cells express aromatase, which is encoded by the CYP19A1 gene and catalyzes the final step in E2 biosynthesis from androgens. Transforming growth factor-beta 1 (TGF-β1) and its receptors are expressed in human granulosa cells, and TGF-β1 expression can be detected in human follicular fluid. To date, TGF-β1 has been shown to regulate various ovarian functions. However, whether aromatase can be regulated by TGF-β1 in human granulosa cells has not been determined. In the present study, we demonstrate that TGF-β1 stimulates aromatase expression in primary human granulosa-lutein cells and in the human ovarian granulose-like tumor cell line, KGN. We used pharmacological inhibitors and small interfering RNA-mediated knockdown approaches to reveal that the SMAD2 and ERK1/2 signaling pathways are involved in TGF-β1-induced aromatase expression and E2 production. These results not only provide important insights into the molecular mechanisms that mediate TGF-β1-induced aromatase expression and E2 production in human granulosa cells but also increase the understanding of the normal physiological roles of TGF-β1 in the ovary.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lanlan Fang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Yan
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingyan He
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanjie Guo
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiongqiong Jia
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yibo Gao
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyu Han
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying-Pu Sun
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Richani D, Dunning KR, Thompson JG, Gilchrist RB. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence. Hum Reprod Update 2020; 27:27-47. [PMID: 33020823 DOI: 10.1093/humupd/dmaa043] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/19/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Within the antral follicle, the oocyte is reliant on metabolic support from its surrounding somatic cells. Metabolism plays a critical role in oocyte developmental competence (oocyte quality). In the last decade, there has been significant progress in understanding the metabolism of the cumulus-oocyte complex (COC) during its final stages of growth and maturation in the follicle. Certain metabolic conditions (e.g. obesity) or ART (e.g. IVM) perturb COC metabolism, providing insights into metabolic regulation of oocyte quality. OBJECTIVE AND RATIONALE This review provides an update on the progress made in our understanding of COC metabolism, and the metabolic conditions that influence both meiotic and developmental competence of the oocyte. SEARCH METHODS The PubMed database was used to search for peer-reviewed original and review articles. Searches were performed adopting the main terms 'oocyte metabolism', 'cumulus cell metabolism', 'oocyte maturation', 'oocyte mitochondria', 'oocyte metabolism', 'oocyte developmental competence' and 'oocyte IVM'. OUTCOMES Metabolism is a major determinant of oocyte quality. Glucose is an essential requirement for both meiotic and cytoplasmic maturation of the COC. Glucose is the driver of cumulus cell metabolism and is essential for energy production, extracellular matrix formation and supply of pyruvate to the oocyte for ATP production. Mitochondria are the primary source of ATP production within the oocyte. Recent advances in real-time live cell imaging reveal dynamic fluctuations in ATP demand throughout oocyte maturation. Cumulus cells have been shown to play a central role in maintaining adequate oocyte ATP levels by providing metabolic support through gap junctional communication. New insights have highlighted the importance of oocyte lipid metabolism for oocyte oxidative phosphorylation for ATP production, meiotic progression and developmental competence. Within the last decade, several new strategies for improving the developmental competence of oocytes undergoing IVM have emerged, including modulation of cyclic nucleotides, the addition of precursors for the antioxidant glutathione or endogenous maturation mediators such as epidermal growth factor-like peptides and growth differentiation factor 9/bone morphogenetic protein 15. These IVM additives positively alter COC metabolic endpoints commonly associated with oocyte competence. There remain significant challenges in the study of COC metabolism. Owing to the paucity in non-invasive or in situ techniques to assess metabolism, most work to date has used in vitro or ex vivo models. Additionally, the difficulty of measuring oocyte and cumulus cell metabolism separately while still in a complex has led to the frequent use of denuded oocytes, the results from which should be interpreted with caution since the oocyte and cumulus cell compartments are metabolically interdependent, and oocytes do not naturally exist in a naked state until after fertilization. There are emerging tools, including live fluorescence imaging and photonics probes, which may provide ways to measure the dynamic nature of metabolism in a single oocyte, potentially while in situ. WIDER IMPLICATIONS There is an association between oocyte metabolism and oocyte developmental competence. Advancing our understanding of basic cellular and biochemical mechanisms regulating oocyte metabolism may identify new avenues to augment oocyte quality and assess developmental potential in assisted reproduction.
Collapse
Affiliation(s)
- Dulama Richani
- School of Women's and Children's Health, Fertility & Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Kylie R Dunning
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, Australia
| | - Jeremy G Thompson
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, Fertility & Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Fang L, Yu Y, Li Y, Wang S, He J, Zhang R, Sun YP. Upregulation of AREG, EGFR, and HER2 contributes to increased VEGF expression in granulosa cells of patients with OHSS†. Biol Reprod 2020; 101:426-432. [PMID: 31167229 DOI: 10.1093/biolre/ioz091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/14/2019] [Accepted: 05/29/2019] [Indexed: 11/14/2022] Open
Abstract
Ovarian hyperstimulation syndrome (OHSS) is a serious iatrogenic complication in women undergoing induction of ovulation with human chorionic gonadotropin (hCG) for assisted reproductive techniques. Amphiregulin (AREG) is the most abundant epidermal growth factor receptor (EGFR) ligand expressed in human granulosa cells and follicular fluid and can be upregulated by luteinizing hormone (LH)/hCG. However, whether the expression levels of AREG, EGFR, and HER2 change in the granulosa cells of OHSS patients remains unknown. If it does, whether these molecules are involved in the development of OHSS requires investigation. In the present study, we showed that AREG, EGFR, and HER2 transcripts in granulosa cells as well as follicular fluid AREG proteins were elevated in OHSS patients. Increased AREG levels were associated with transcript levels and follicular content of vascular endothelial growth factor (VEGF), the marker for OHSS pathology. Treatment of cultured granulosa cells with AREG stimulated VEGF expression and secretion, with granulosa cells from OHSS patients showing more rapid and pronounced increases than the non-OHSS group. In addition, siRNA-mediated knockdown of EGFR and AREG attenuated the hCG-induced upregulation of VEGF. This study demonstrated that granulosa cell-secreted AREG plays an important role in the development of OHSS, suggesting that the EGFR/HER2-mediated signaling could be a novel drug target for the prevention and treatment of OHSS.
Collapse
Affiliation(s)
- Lanlan Fang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiping Yu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Li
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sijia Wang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyan He
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruizhe Zhang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying-Pu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Fang L, Yu Y, Li Y, Wang S, Zhang R, Guo Y, Li Y, Yan Y, Sun YP. Human chorionic gonadotropin-induced amphiregulin stimulates aromatase expression in human granulosa-lutein cells: a mechanism for estradiol production in the luteal phase. Hum Reprod 2020; 34:2018-2026. [PMID: 31553790 DOI: 10.1093/humrep/dez171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 06/18/2019] [Indexed: 02/02/2023] Open
Abstract
STUDY QUESTION Does amphiregulin (AREG), the most abundant and important epidermal growth factor receptor (EGFR) ligand in the follicular fluid, regulate aromatase expression in human granulosa-lutein (hGL) cells? SUMMARY ANSWER AREG mediates the hCG-induced up-regulation of aromatase expression and estradiol (E2) production in hGL cells. WHAT IS KNOWN ALREADY AREG expression and secretion are rapidly induced by hCG in hGL cells and mediate physiological functions of LH/hCG in the ovary. EGFR protein is expressed in follicles not only in the pre-ovulatory phase but also throughout the luteal phase of the menstrual cycle. After the LH surge, the human corpus luteum secretes high levels of E2, which regulates various luteal cell functions. Aromatase is an enzyme responsible for a key step in the biosynthesis of E2. However, whether AREG regulates aromatase expression and E2 production in hGL cells remains unexplored. STUDY DESIGN, SIZE, DURATION This study is an experimental study performed over a 1-year period. In vitro investigations examined the role of AREG in the regulation of aromatase expression and E2 production in primary hGL cells. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary hGL cells were obtained from women undergoing IVF treatment in an academic research center. Aromatase mRNA and protein levels were examined after exposure of hGL cells to recombinant human AREG, hCG or LH. The EGFR tyrosine kinase inhibitor AG1478, PI3K inhibitor LY294002 and siRNAs targeting EGFR, LH receptor, StAR and AREG were used to verify the specificity of the effects and to investigate the underlying molecular mechanisms. Reverse transcription quantitative real-time PCR (RT-qPCR) and western blot were used to measure the specific mRNA and protein levels, respectively. Follicular fluid and serum were collected from 65 infertile women during IVF treatment. Pearson's correlation analysis was performed to examine the correlation coefficient between two values. MAIN RESULTS AND THE ROLE OF CHANCE Treatment of hGL cells with AREG-stimulated aromatase expression and E2 production. Using pharmacological inhibitors and specific siRNAs, we revealed that AREG-stimulated aromatase expression and E2 production via EGFR-mediated activation of the protein kinase B (AKT) signaling pathway. In addition, inhibition of EGFR activity and AREG knockdown attenuated hCG-induced up-regulation of aromatase expression and E2 production. Importantly, the protein levels of AREG in the follicular fluid were positively correlated with the E2 levels in serum after 2 days of oocyte pick-up and in the follicular fluid of IVF patients. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The in vitro setting of this study is a limitation that may not reflect the real intra-ovarian microenvironment. Clinical data were obtained from a small sample size. WIDER IMPLICATIONS OF THE FINDINGS Our results provide the first evidence that hCG-induced AREG contributes to aromatase expression and E2 production in the luteal phase of the menstrual cycle. A better understanding of the hormonal regulation of female reproductive function may help to develop new strategies for the treatment of clinical infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China for Young Scientists (81601253), the specific fund of clinical medical research of Chinese Medical Association (16020160632) and the Foundation from the First Affiliated Hospital of Zhengzhou University for Young Scientists to Lanlan Fang. This work was also supported by an operating grant from the National Natural Science Foundation of China (81820108016) to Ying-Pu Sun. All authors declare no conflict of interest.
Collapse
Affiliation(s)
- Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiping Yu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiran Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Sijia Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruizhe Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanjie Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuxi Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Yan
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
26
|
Smitz J, Platteau P. Influence of human chorionic gonadotrophin during ovarian stimulation: an overview. Reprod Biol Endocrinol 2020; 18:80. [PMID: 32762698 PMCID: PMC7409634 DOI: 10.1186/s12958-020-00639-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
It is widely known that luteinising hormone (LH) and human chorionic gonadotrophin (hCG) are integral in the female reproductive lifecycle. Due to the common binding site and similarity in molecular structure, they were previously thought to have overlapping roles. However, with the development of both purified urinary-derived and recombinant gonadotrophins, the individual characteristics of these molecules have begun to be defined. There is evidence to suggest that LH and hCG preferentially activate different signalling cascades and display different receptor-binding kinetics. The data generated on the two molecules have led to an improved understanding of their distinct physiological functions, resulting in a debate among clinicians regarding the most beneficial use of LH- and hCG-containing products for ovarian stimulation (OS) in assisted reproductive technologies (ARTs). Over the past few decades, a number of trials have generated data supporting the use of hCG for OS in ART. Indeed, the data indicated that hCG plays an important role in folliculogenesis, leads to improved endometrial receptivity and is associated with a higher quality of embryos, while presenting a favourable safety profile. These observations support the increased use of hCG as a method to provide LH bioactivity during OS. This review summarises the molecular and functional differences between hCG and LH, and provides an overview of the clinical trial data surrounding the use of products for OS that contain LH bioactivity, examining their individual effect on outcomes such as endometrial receptivity, oocyte yield and embryo quality, as well as key pregnancy outcomes.
Collapse
Affiliation(s)
- Johan Smitz
- Follicle Biology Laboratory, Vrije Universiteit Brussel, Laarbeeklaan, 103, 1090 Brussels, Belgium
| | - Peter Platteau
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
27
|
Shomali N, Hemmatzadeh M, Yousefzadeh Y, Soltani-Zangbar MS, Hamdi K, Mehdizadeh A, Yousefi M. Exosomes: Emerging biomarkers and targets in folliculogenesis and endometriosis. J Reprod Immunol 2020; 142:103181. [PMID: 32717674 DOI: 10.1016/j.jri.2020.103181] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 06/14/2020] [Accepted: 07/18/2020] [Indexed: 12/31/2022]
Abstract
An appropriate connection of the cells in the ovary follicles is vital for a healthy ovule maturation and fertilization, and also for endometrium preparation for implantation that can cause endometriosis. Cellular communication within the follicle and endometrial epithelium involve many signaling molecules. Recent studies indicate that cellular communication can be enclosed by secretion and absorption of small membrane carriers which are named extracellular vesicles including exosomes and microvesicles. Understanding and defining these EVs (Extracellular vesicles) population are important for future studies and clinical translation. Here, we describe the various important cargos which are carried by exosomes during folliculogenesis and endometriosis. Additionally, the current knowledge of exosomes and their cargo within the FF (Follicular fluid) during the folliculogenesis and also in the intrauterine cavity which are involved in endometriosis lesions have also been summarized. Considering the potential importance of this form of the cell to cell communication in the reproductive system, the vital issues under discussion lead to a new insight in this rapidly expanding field and it may be an interesting approach for diagnostic, prognostic and especially therapeutic strategies in the field of infertility and assisted reproductive technology (ART).
Collapse
Affiliation(s)
- Navid Shomali
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Yousefzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Kobra Hamdi
- Reproductive Biology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Luo Y, Zhang R, Gao J, Wang Y, Zhang W, Qing S. The localization and expression of epidermal growth factor and epidermal growth factor receptor in bovine ovary during oestrous cycle. Reprod Domest Anim 2020; 55:822-832. [PMID: 32330337 DOI: 10.1111/rda.13690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor (EGF) is one of the important regulatory factors of EGF family. EGF has been indicated to effectively inhibit the apoptosis of follicular cells, to promote the proliferation of granulosa cells and the maturation of oocytes, and to induce ovulation process via binding to epidermal growth factor receptor (EGFR). However, little is known about the distribution and expression of EGF and EGFR in cattle ovary especially during oestrous cycle. In this study, the localization and expression rule of EGF and EGFR in cattle ovaries of follicular phase and luteal phase at different time points in oestrous cycle were investigated by using IHC and real-time qPCR. The results showed that EGF and EGFR in cattle ovary were mainly expressed in granulosa cells, cumulus cells, oocytes, zona pellucida, follicular fluid and theca folliculi externa of follicles. The protein and mRNA expression of EGF/EGFR in follicles changed regularly with the follicular growth wave both in follicular and in luteal phase ovaries. In follicular phase ovaries, the protein expression of EGF and EGFR was higher in antral follicles than that of those in other follicles during follicular growth stage, and the mRNA expression of EGFR was also increased in stage of dominant follicle selection. However, in luteal phase ovaries, the growth of follicles was impeded during corpus luteum development under the action of progesterone secreted by granular lutein cell. The mRNA and protein expressions of EGF and EGFR in ovarian follicles during oestrous cycle indicate that they play a role in promoting follicular development in follicular growth waves and mediating the selection process of dominant follicles.
Collapse
Affiliation(s)
- Yuru Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Beijing Shunxin Xinyuan Research Institute of Cattle Breeding, Beijing, China
| | - Ruiqi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jing Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yali Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
29
|
Luteinizing Hormone Action in Human Oocyte Maturation and Quality: Signaling Pathways, Regulation, and Clinical Impact. Reprod Sci 2020; 27:1223-1252. [PMID: 32046451 PMCID: PMC7190682 DOI: 10.1007/s43032-019-00137-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
The ovarian follicle luteinizing hormone (LH) signaling molecules that regulate oocyte meiotic maturation have recently been identified. The LH signal reduces preovulatory follicle cyclic nucleotide levels which releases oocytes from the first meiotic arrest. In the ovarian follicle, the LH signal reduces cyclic nucleotide levels via the CNP/NPR2 system, the EGF/EGF receptor network, and follicle/oocyte gap junctions. In the oocyte, reduced cyclic nucleotide levels activate the maturation promoting factor (MPF). The activated MPF induces chromosome segregation and completion of the first and second meiotic divisions. The purpose of this paper is to present an overview of the current understanding of human LH signaling regulation of oocyte meiotic maturation by identifying and integrating the human studies on this topic. We found 89 human studies in the literature that identified 24 LH follicle/oocyte signaling proteins. These studies show that human oocyte meiotic maturation is regulated by the same proteins that regulate animal oocyte meiotic maturation. We also found that these LH signaling pathway molecules regulate human oocyte quality and subsequent embryo quality. Remarkably, in vitro maturation (IVM) prematuration culture (PMC) protocols that manipulate the LH signaling pathway improve human oocyte quality of cultured human oocytes. This knowledge has improved clinical human IVM efficiency which may become a routine alternative ART for some infertile patients.
Collapse
|
30
|
Wang H, Cai H, Wang X, Zhang M, Liu B, Chen Z, Yang T, Fang J, Zhang Y, Liu W, Han J, Guo Q, Zhang H, Wang H, Xia G, Wang C. HDAC3 maintains oocyte meiosis arrest by repressing amphiregulin expression before the LH surge. Nat Commun 2019; 10:5719. [PMID: 31844300 PMCID: PMC6915726 DOI: 10.1038/s41467-019-13671-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
It is known that granulosa cells (GCs) mediate gonadotropin-induced oocyte meiosis resumption by releasing EGF-like factors in mammals, however, the detailed molecular mechanisms remain unclear. Here, we demonstrate that luteinizing hormone (LH) surge-induced histone deacetylase 3 (HDAC3) downregulation in GCs is essential for oocyte maturation. Before the LH surge, HDAC3 is highly expressed in GCs. Transcription factors, such as FOXO1, mediate recruitment of HDAC3 to the amphiregulin (Areg) promoter, which suppresses AREG expression. With the LH surge, decreased HDAC3 in GCs enables histone H3K14 acetylation and binding of the SP1 transcription factor to the Areg promoter to initiate AREG transcription and oocyte maturation. Conditional knockout of Hdac3 in granulosa cells in vivo or inhibition of HDAC3 activity in vitro promotes the maturation of oocytes independent of LH. Taking together, HDAC3 in GCs within ovarian follicles acts as a negative regulator of EGF-like growth factor expression before the LH surge. Before ovulation, a surge of luteinizing hormone (LH) triggers the resumption of meiosis in oocytes, which is mediated by EGF-like growth factors. Here, the authors show that HDAC3 inhibits mouse oocyte maturation by negatively regulating the expression of EGF-like factor before the LH surge.
Collapse
Affiliation(s)
- Huarong Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.,Medical College of Xiamen University, 361005, Xiamen, China
| | - Han Cai
- Medical College of Xiamen University, 361005, Xiamen, China
| | - Xiao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Meiling Zhang
- Shanghai Key Laboratory for Assistant Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Bingying Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Ziqi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Tingting Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Junshun Fang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.,Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Zhongshan Road 321, 210008, Nanjing, China
| | - Yanhao Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Wei Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jun Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qirui Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Haibin Wang
- Medical College of Xiamen University, 361005, Xiamen, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 750021, Yinchuan, Ningxia, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
31
|
Saenz-de-Juano MD, Ivanova E, Romero S, Lolicato F, Sánchez F, Van Ranst H, Krueger F, Segonds-Pichon A, De Vos M, Andrews S, Smitz J, Kelsey G, Anckaert E. DNA methylation and mRNA expression of imprinted genes in blastocysts derived from an improved in vitro maturation method for oocytes from small antral follicles in polycystic ovary syndrome patients. Hum Reprod 2019; 34:1640-1649. [PMID: 31398248 DOI: 10.1093/humrep/dez121] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 11/08/2023] Open
Abstract
STUDY QUESTION Does imprinted DNA methylation or imprinted gene expression differ between human blastocysts from conventional ovarian stimulation (COS) and an optimized two-step IVM method (CAPA-IVM) in age-matched polycystic ovary syndrome (PCOS) patients? SUMMARY ANSWER No significant differences in imprinted DNA methylation and gene expression were detected between COS and CAPA-IVM blastocysts. WHAT IS KNOWN ALREADY Animal models have revealed alterations in DNA methylation maintenance at imprinted germline differentially methylated regions (gDMRs) after use of ARTs. This effect increases as more ART interventions are applied to oocytes or embryos. IVM is a minimal-stimulation ART with reduced hormone-related side effects and risks for patients. CAPA-IVM is an improved IVM system that includes a pre-maturation step (CAPA), followed by an IVM step, both in the presence of physiological compounds that promote oocyte developmental capacity. STUDY DESIGN, SIZE, DURATION For DNA methylation analysis 20 CAPA-IVM blastocysts were compared to 12 COS blastocysts. For RNA-Seq analysis a separate set of 15 CAPA-IVM blastocysts were compared to 5 COS blastocysts. PARTICIPANTS/MATERIALS, SETTING, METHODS COS embryos originated from 12 patients with PCOS (according to Rotterdam criteria) who underwent conventional ovarian stimulation. For CAPA-IVM 23 women were treated for 3-5 days with highly purified hMG (HP-hMG) and no hCG trigger was given before oocyte retrieval. Oocytes were first cultured in pre-maturation medium (CAPA for 24 h containing C-type natriuretic peptide), followed by an IVM step (30 h) in medium containing FSH and Amphiregulin. After ICSI, Day 5 or 6 embryos in both groups were vitrified and used for post-bisulphite adaptor tagging (PBAT) DNA methylation analysis or RNA-seq gene expression analysis of individual embryos. Data from specific genes and gDMRs were extracted from the PABT and RNA-seq datasets. MAIN RESULTS AND THE ROLE OF CHANCE CAPA-IVM blastocysts showed similar rates of methylation and gene expression at gDMRs compared to COS embryos. In addition, expression of major epigenetic regulators was similar between the groups. LIMITATIONS, REASONS FOR CAUTION The embryos from the COS group were generated in a range of culture media. The CAPA-IVM embryos were all generated using the same sperm donor. The DNA methylation level of gDMRs in purely in vivo-derived human blastocysts is not known. WIDER IMPLICATIONS OF THE FINDINGS A follow-up of children born after CAPA-IVM is important as it is for other new ARTs, which are generally introduced into clinical practice without prior epigenetic safety studies on human blastocysts. CAPA-IVM opens new perspectives for patient-friendly ART in PCOS. STUDY FUNDING/COMPETING INTEREST(S) IVM research at the Vrije Universiteit Brussel has been supported by grants from the Institute for the Promotion of Innovation by Science and Technology in Flanders (Agentschap voor Innovatie door Wetenschap en Technologie-IWT, project 110680), the Fund for Research Flanders (Fonds voor Wetenschappelijk Onderzoek-Vlaanderen-FWO-AL 679 project, project G.0343.13), the Belgian Foundation Against Cancer (HOPE project, Dossier C69Ref Nr 2016-119) and the Vrije Universiteit Brussel (IOF Project 4R-ART Nr 2042). Work in G.K.'s laboratory is supported by the UK Biotechnology and Biological Sciences Research Council and Medical Research Council. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- M D Saenz-de-Juano
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Switzerland
| | - E Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - S Romero
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Reproductive Biology and Fertility Preservation, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - F Lolicato
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Fertilab Barcelona, Via Augusta, 237-239, Barcelona 08021, Spain
| | - F Sánchez
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Reproductive Biology and Fertility Preservation, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - H Van Ranst
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - F Krueger
- Bioinformatics Unit, The Babraham Institute, Cambridge, UK
| | | | - M De Vos
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Centre for Reproductive Medicine, UZ Brussel, Brussels 1090, Belgium
| | - S Andrews
- Bioinformatics Unit, The Babraham Institute, Cambridge, UK
| | - J Smitz
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - G Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - E Anckaert
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
32
|
Poulsen LLC, Pla I, Sanchez A, Grøndahl ML, Marko-Varga G, Yding Andersen C, Englund ALM, Malm J. Progressive changes in human follicular fluid composition over the course of ovulation: quantitative proteomic analyses. Mol Cell Endocrinol 2019; 495:110522. [PMID: 31356852 DOI: 10.1016/j.mce.2019.110522] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Follicular fluid (FF) acts as a vehicle for paracrine signalling between somatic cells of the follicle and the oocyte. To investigate changes in the protein composition of FF during ovulation, we conducted a prospective cohort study including 25 women undergoing fertility treatment. Follicular fluid was aspirated either before or 12, 17, 32 or 36 h after induction of ovulation (five patients per time point). Liquid chromatography-mass spectrometry was used to identify and quantify FF proteins. In total, 400 proteins were identified and the levels of 40 proteins changed significantly across ovulation, evaluated by analysis of covariance (adjusted p < 0.05) and on-off expression patterns. The majority peaked after 12-17 h, e.g., AREG (p < 0.0001), TNFAIP6 (p < 0.0001), and LDHB (p = 0.0316), while some increased to peak after 36 h e.g., ACPP (p < 0.0001), TIMP1 (p < 0.0001) and SERPINE1 (p = 0.0002). Collectively, this study highlights proteins and pathways of importance for ovulation and oocyte competence in humans.
Collapse
Affiliation(s)
- Liv la Cour Poulsen
- Zealand Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark.
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Marie Louise Grøndahl
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Japan
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | | | - Johan Malm
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| |
Collapse
|
33
|
Pogrmic-Majkic K, Samardzija Nenadov D, Stanic B, Milatovic S, Trninic-Pjevic A, Kopitovic V, Andric N. T-2 toxin downregulates LHCGR expression, steroidogenesis, and cAMP level in human cumulus granulosa cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:844-852. [PMID: 30951242 DOI: 10.1002/tox.22752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Our goals were to investigate whether environmentally relevant doses of T-2 toxin can affect human ovarian granulosa cells' function and to reveal the potential mechanism of T-2 toxin's action. Results showed that T-2 toxin strongly attenuated luteinizing hormone/choriogonadotropin receptor (LHCGR) mRNA expression in follicle-stimulating hormone (FSH)-stimulated human cumulus granulosa cells. Addition of human chorionic gonadotropin was not able to elicit maximal response of ovulatory genes amphiregulin, epiregulin, and progesterone receptor. T-2 toxin reduced mRNA levels of CYP19A1 and steroidogenic acute regulatory protein (STAR) and lowered FSH-stimulated estradiol and progesterone production. Mechanistic experiments demonstrated that T-2 toxin decreased FSH-stimulated cyclic adenosine monophosphate (cAMP) production. Addition of total PDE inhibitor 3-isobutyl-1-methylxanthine prevented T-2 toxin's action on LHCGR, STAR, and CYP19A1 mRNA expression in FSH-stimulated human cumulus granulosa cells. Furthermore, T-2 toxin partially decreased 8-bromoadenosine 3'5'-cyclic monophosphate (8-Br-cAMP)-stimulated LHCGR and STAR, but did not affect 8-Br-cAMP-stimulated CYP19A1 mRNA expression in human cumulus granulosa cells. Overall, our data indicate that environmentally relevant dose of T-2 toxin decreases steroidogenesis and ovulatory potency in human cumulus granulosa cells probably through activation of PDE, thus posing a significant risk for female fertility.
Collapse
Affiliation(s)
- Kristina Pogrmic-Majkic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Novi Sad, Serbia
| | | | - Bojana Stanic
- University of Novi Sad, Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, Novi Sad, Serbia
| | - Stevan Milatovic
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
- Clinic for Gynecology and Obstetrics, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Aleksandra Trninic-Pjevic
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
- Clinic for Gynecology and Obstetrics, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Vesna Kopitovic
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
- Clinic for Gynecology and Obstetrics, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Novi Sad, Serbia
| |
Collapse
|
34
|
Yin L, Wang W, Wei H, Xi F, Chu G, Yang G. Localization and expression of CTRP6 in ovary and its regulation by FSH in porcine granulosa cells. Theriogenology 2019; 127:56-65. [DOI: 10.1016/j.theriogenology.2019.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 02/01/2023]
|
35
|
Ophir L, Yung Y, Yerushalmi GM, Baum M, Machtinger R, Maman E, Hourvitz A. An optimized model for hCG stimulation of human mural granulosa cell culture. Reprod Biol 2019; 19:67-74. [PMID: 30661769 DOI: 10.1016/j.repbio.2019.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/01/2019] [Accepted: 01/10/2019] [Indexed: 11/25/2022]
Abstract
Ovarian follicular development and ovulation in mammals is a highly-regulated process. Most of the current knowledge of ovarian processes was obtained from the studies of non-human models. Molecular studies on human ovarian processes suffer from lack of material and appropriate research tools. Mural granulosa cells (MGCs) culture is a major tool for studying the effect of different substances but a major problem for using these primary MGCs is their unresponsiveness to hCG stimulation at the time of oocyte retrieval. It is acceptable that MGCs regain responsiveness during days in culture but when the best time is and how to accelerate the regenerative process are unknown. The aim of the current study was to establish an optimized protocol which will provide a practical and efficient tool to examine the effect of LH/hCG on different downstream targets in luteinized MGCs. hCG effects were examined according to days in culture and hCG stimulation time. As read-out, we analyzed the gene expression of known hCG targets, protein production, and progesterone secretion. Our results show that with a daily medium exchange, the strongest effect was achieved already 4 days after seeding. On day 4, hCG stimulation triggers two major patterns of gene expression. Early induced genes were highly expressed 6-8 h after hCG, while 24 h of hCG stimulation was needed for late induced genes. Based on our results, we suggest daily medium exchange for 4 days before adding hCG and examine its effect 6 and 24 h later.
Collapse
Affiliation(s)
- Libby Ophir
- IVF Unit and Reproduction Laboratory, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Yung
- IVF Unit and Reproduction Laboratory, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Gil Mordechai Yerushalmi
- IVF Unit and Reproduction Laboratory, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Micha Baum
- IVF Unit and Reproduction Laboratory, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Machtinger
- IVF Unit and Reproduction Laboratory, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ettie Maman
- IVF Unit and Reproduction Laboratory, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Hourvitz
- IVF Unit and Reproduction Laboratory, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
Catak Z, Yavuzkir S, Kocdemir E, Ugur K, Yardim M, Sahin İ, Agirbas EP, Aydin S. NUCB2/Nesfatin-1 in the Blood and Follicular Fluid in Patients with Polycystic Ovary Syndrome and Poor Ovarian Response. J Reprod Infertil 2019; 20:225-230. [PMID: 31897389 PMCID: PMC6928404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Failure to respond adequately to standard protocols and to recruit adequate follicles is called 'poor ovarian response'. The relationships between metabolic alterations and NUCB2/Nesfatin-1 levels were explored in patients with polycystic ovary syndrome (PCOS) undergoing in vitro fertilization/intracytoplasmic sperm injection. METHODS This case-control study involved 20 infertile women with PCOS and 20 control women diagnosed as poor ovarian responders stimulated with a GnRH antagonist. Blood samples were taken during ovum pick-up and follicular fluids (FF) were obtained from a dominant follicle from the subjects. Samples were analyzed by using ELISA. Statistical analysis was performed with SPSS version 20. Data are expressed as means ± standard deviation (SD). RESULTS Blood NUCB2/Nesfatin-1 levels in PCOS were significantly lower (p= 0.011) while the NUCB2/Nesfatin-1 levels of FF in poor ovarian response (POR) were higher, but not statistically significant. Insulin, total testosterone, fasting glucose, homeostasis model assessment, and insulin resistance index in women with POR decreased when compared with PCOS. Blood NUCB2/Nesfatin-1 levels were significantly higher than FF NUCB2/Nesfatin-1 levels in both groups (p<0.001). Moreover, a positive correlation was detected between blood NUCB2/Nesfatin-1 and testosterone (p=0.602, r=0.304), HOMA-IR (p=0.252, r=0.384), BMI (p=0.880, r= 0.44) in PCOS, but it was not significant. CONCLUSION NUCB2/Nesfatin-1 levels might be important in follicular growth in PCOS subjects undergoing IVF/ICSI with an antagonist protocol and NUCB2/Nesfatin-1 level could reliably help to predict poor ovarian response.
Collapse
Affiliation(s)
- Zekiye Catak
- Department of Clinical Biochemistry, University of Health Sciences, Elazig Fethi Sekin City Hospital, Elazig, Turkey
| | - Seyda Yavuzkir
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, Elazig, Turkey
| | - Esra Kocdemir
- Department of Clinical Biochemistry, Kovancilar State Hospital, Elazig, Turkey
| | - Kader Ugur
- Department of Internal Medicine (Endocrinology and Metabolism Diseases), School of Medicine, Firat University, Elazig, Turkey
| | - Meltem Yardim
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research Group), Medical School, Firat University, Elazig, Turkey
| | - İbrahim Sahin
- Department of Medical Biology, Medical School, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Esra Piril Agirbas
- School of Medicine, Medical School Student, Firat University, Elazig, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research Group), Medical School, Firat University, Elazig, Turkey,Corresponding Author: Suleyman Aydin, Department of Medical Biochemistry and Clinical Biochemistry, (Firat Hormones Research Group), Medical School, Firat University, 23119 Elazig, Turkey, E-mail:
| |
Collapse
|
37
|
|
38
|
Sánchez F, Lolicato F, Romero S, De Vos M, Van Ranst H, Verheyen G, Anckaert E, Smitz JEJ. An improved IVM method for cumulus-oocyte complexes from small follicles in polycystic ovary syndrome patients enhances oocyte competence and embryo yield. Hum Reprod 2018; 32:2056-2068. [PMID: 28938744 DOI: 10.1093/humrep/dex262] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/27/2017] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Are meiotic and developmental competence of human oocytes from small (2-8 mm) antral follicles improved by applying an optimized IVM method involving a prematuration step in presence of C-Type Natriuretic Peptide (CNP) followed by a maturation step in presence of FSH and Amphiregulin (AREG)? SUMMARY ANSWER A strategy involving prematuration culture (PMC) in the presence of CNP followed by IVM using FSH + AREG increases oocyte maturation potential leading to a higher availability of Day 3 embryos and good-quality blastocysts for single embryo transfer. WHAT IS KNOWN ALREADY IVM is a minimal-stimulation ART with reduced hormone-related side effects and risks for the patients, but the approach is not widely used because of an efficiency gap compared to conventional ART. In vitro systems that enhance synchronization of nuclear and cytoplasmic maturation before the meiotic trigger are crucial to optimize human IVM systems. However, previous PMC attempts have failed in sustaining cumulus-oocyte connections throughout the culture period, which prohibited a normal cumulus-oocyte communication and precluded an adequate response by the cumulus-oocyte complex (COC) to the meiotic trigger. STUDY DESIGN, SIZE, DURATION A first prospective study involved sibling oocytes from a group of 15 patients with polycystic ovary syndrome (PCOS) to evaluate effects of a new IVM culture method on oocyte nuclear maturation and their downstream developmental competence. A second prospective study in an additional series of 15 women with polycystic ovaries characterized and fine-tuned the culture conditions. PARTICIPANTS/MATERIALS, SETTING, METHODS Fifteen women with PCOS (according to Rotterdam criteria) underwent IVM treatment after 3-5 days of highly purified human menopausal gonadotropin (HP-hMG) stimulation and no human chorionic gonadotropin (hCG) trigger before oocyte retrieval. A first study was designed with sibling oocytes to prospectively evaluate the impact of an IVM culture method: 24 h PMC with CNP + 30 h IVM with FSH and AREG, on embryo yield, in comparison to the standard (30 h) IVM clinical protocol (Group I, n = 15). A second prospective study was performed in 15 women with polycystic ovaries, to characterize and optimize the PMC conditions (Group II, n = 15). The latter study involved the evaluation of oocyte meiotic arrest, the preservation of cumulus-oocyte transzonal projections (TZPs), the patterns of oocyte chromatin configuration and cumulus cells apoptosis following the 24 and 46 h PMC. Furthermore, oocyte developmental potential following PMC (24 and 46 h) + IVM was also evaluated. The first 20 good-quality blastocysts from PMC followed by IVM were analysed by next generation sequencing to evaluate their aneuploidy rate. MAIN RESULTS AND THE ROLE OF CHANCE PMC in presence of CNP followed by IVM using FSH and AREG increased the meiotic maturation rate per COC to 70%, which is significantly higher than routine standard IVM (49%; P ≤ 0.001). Hence, with the new system the proportion of COCs yielding transferable Day 3 embryos and good-quality blastocysts increased compared to routine standard IVM (from 23 to 43%; P ≤ 0.001 and from 8 to 18%; P ≤ 0.01, respectively). CNP was able to prevent meiosis resumption for up to 46 h. After PMC, COCs had preserved cumulus-oocyte TZPs. The blastocysts obtained after PMC + IVM did not show increased aneuploidy rates as compared to blastocysts from conventional ART. LIMITATIONS REASONS FOR CAUTION The novel IVM approach in PCOS patients was tested in oocytes derived from small antral follicles which have an intrinsically low developmental potential. Validation of the system would be required for COCs from different (larger) follicular sizes, which may involve further adjustment of PMC conditions. Furthermore, considering that this is a novel strategy in human IVM treatment, its global efficiency needs to be confirmed in large prospective randomized controlled trials. The further application in infertile patients without PCOS, e.g. cancer patients, remains to be evaluated. WIDER IMPLICATIONS OF THE FINDINGS The findings of this pilot study suggest that the efficiency gap between IVM and conventional IVF can be reduced by fine-tuning of the culture methods. This novel strategy opens new perspectives for safe and patient-friendly ART in patients with PCOS. STUDY FUNDING/COMPETING INTEREST(S) IVM research at the Vrije Universiteit Brussel has been supported by grants from: the Institute for the Promotion of Innovation by Science and Technology in Flanders (Agentschap voor Innovatie door Wetenschap en Technologie-IWT, project 110680); the Fund for Research Flanders (Fonds Wetenschappelijk Onderzoek-Vlaanderen-FWO, project G.0343.13), the Belgian Foundation Against Cancer (HOPE project, Dossier C69). The authors have no conflicts of interest.
Collapse
Affiliation(s)
- F Sánchez
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - F Lolicato
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - S Romero
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium.,Centro de Estudios e Investigaciones en Biología y Medicina Reproductiva-BIOMER, Lima, Peru
| | - M De Vos
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium.,Centre for Reproductive Medicine, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - H Van Ranst
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - G Verheyen
- Centre for Reproductive Medicine, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - E Anckaert
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - J E J Smitz
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| |
Collapse
|
39
|
Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update 2018; 24:1-14. [PMID: 29029246 DOI: 10.1093/humupd/dmx029] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The LH surge induces great physiological changes within the preovulatory follicle, which culminate in the ovulation of a mature oocyte that is capable of supporting embryo and foetal development. However, unlike mural granulosa cells, the oocyte and its surrounding cumulus cells are not directly responsive to LH, indicating that the LH signal is mediated by secondary factors produced by the granulosa cells. The mechanisms by which the oocyte senses the ovulatory LH signal and hence prepares for ovulation has been a subject of considerable controversy for the past four decades. Within the last 15 years several significant insights have been made into the molecular mechanisms orchestrating oocyte development, maturation and ovulation. These findings centre on the epidermal growth factor (EGF) pathway and the role it plays in the complex signalling network that finely regulates oocyte maturation and ovulation. OBJECTIVE AND RATIONALE This review outlines the role of the EGF network during oocyte development and regulation of the ovulatory cascade, and in particular focuses on the effect of the EGF network on oocyte developmental competence. Application of this new knowledge to advances in ART is examined. SEARCH METHODS The PubMed database was used to search for peer-reviewed original and review articles concerning the EGF network. Publications offering a comprehensive description of the role of the EGF network in follicle and oocyte development were used. OUTCOMES It is now clear that acute upregulation of the EGF network is an essential component of the ovulatory cascade as it transmits the LH signal from the periphery of the follicle to the cumulus-oocyte complex (COC). More recent findings have elucidated new roles for the EGF network in the regulation of oocyte development. EGF signalling downregulates the somatic signal 3'5'-cyclic guanine monophosphate that suppresses oocyte meiotic maturation and simultaneously provides meiotic inducing signals. The EGF network also controls translation of maternal transcripts in the quiescent oocyte, a process that is integral to oocyte competence. As a means of restricting the ovulatory signal to the Graffian follicle, most COCs in the ovary are unresponsive to EGF-ligands. Recent studies have revealed that development of a functional EGF signalling network in cumulus cells requires dual endocrine (FSH) and oocyte paracrine cues (growth differentiation factor 9 and bone morphogenetic protein 15), and this occurs progressively in COCs during the last stages of folliculogenesis. Hence, a new concept to emerge is that cumulus cell acquisition of EGF receptor responsiveness represents a developmental hallmark in folliculogenesis, analogous to FSH-induction of LH receptor signalling in mural granulosa cells. Likewise, this event represents a major milestone in the oocyte's developmental progression and acquisition of developmental competence. It is now clear that EGF signalling is perturbed in COCs matured in vitro. This has inspired novel concepts in IVM systems to ameliorate this perturbation, resulting in improved oocyte developmental competence. WIDER IMPLICATIONS An oocyte of high quality is imperative for fertility. Elucidating the fundamental molecular and cellular mechanims by which the EGF network regulates oocyte maturation and ovulation can be expected to open new opportunities in ART. This knowledge has already led to advances in oocyte IVM in animal models. Translation of such advances into a clinical setting should increase the efficacy of IVM, making it a viable treatment option for a wide range of patients, thereby simplifying fertility treatment and bringing substantial cost and health benefits.
Collapse
Affiliation(s)
- Dulama Richani
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| |
Collapse
|
40
|
Ding C, Zou Q, Wang F, Wu H, Chen R, Lv J, Ling M, Sun J, Wang W, Li H, Huang B. Human amniotic mesenchymal stem cells improve ovarian function in natural aging through secreting hepatocyte growth factor and epidermal growth factor. Stem Cell Res Ther 2018. [PMID: 29523193 PMCID: PMC5845161 DOI: 10.1186/s13287-018-0781-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Although many reports show that various kinds of stem cells have the ability to recover function in premature ovarian aging, few studies have looked at stem cell treatment of natural ovarian aging (NOA). We designed this experimental study to investigate whether human amniotic mesenchymal stem cells (hAMSCs) retain the ability to restore ovarian function, and how hAMSCs work in this process. Methods To build the NOA mouse model, the mice were fed for 12–14 months normally with young fertile female mice as the normal control group (3–5 months old). Hematoxylin and eosin staining permitted follicle counting and showed the ovarian tissue structure. An enzyme-linked immunosorbent assay was used to detect the serum levels of the sex hormones estradiol (E2), anti-mullerian hormone (AMH), and follicle-stimulating hormone (FSH). The proliferation rate and marker expression level of human ovarian granule cells (hGCs) (ki67, AMH, FSH receptor, FOXL2, and CYP19A1) were measured by flow cytometry (FACS). Cytokines (growth factors) were measured by a protein antibody array methodology. After hepatocyte growth factor (HGF) and epidermal growth factor (EGF) were co-cultured with hGCs, proliferation (ki67) and apoptosis (Annexin V) levels were analyzed by FACS. After HGF and EGF were injected into the ovaries of natural aging mice, the total follicle numbers and hormone levels were tested. Results After the hAMSCs were transplanted into the NOA mouse model, the hAMSCs exerted a therapeutic activity on mouse ovarian function by improving the follicle numbers over four stages. In addition, our results showed that hAMSCs significantly promoted the proliferation rate and marker expression level of ovarian granular cells that were from NOA patients. Meanwhile, we found that the secretion level of EGF and HGF from hAMSCs was higher than other growth factors. A growth factor combination (HGF with EGF) improved the proliferation rate and inhibited the apoptosis rate more powerfully after a co-culture with hGCs, and total follicle numbers and hormone levels were elevated to a normal level after the growth factor combination was injected into the ovaries of the NOA mouse model. Conclusions These findings provide insight into the notion that hAMSCs play an integral role in resistance to NOA. Furthermore, our present study demonstrates that a growth factor combination derived from hAMSCs plays a central role in inhibiting ovarian aging. Therefore, we suggest that hAMSCs improve ovarian function in natural aging by secreting HGF and EGF. Electronic supplementary material The online version of this article (10.1186/s13287-018-0781-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenyue Ding
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Qinyan Zou
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Fuxin Wang
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Huihua Wu
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Rulei Chen
- Central Laboratory, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Jinghuan Lv
- Central Laboratory, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Mingfa Ling
- Central Laboratory, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Jian Sun
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Wei Wang
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Hong Li
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China.
| | - Boxian Huang
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China. .,Central Laboratory, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
41
|
Pogrmic-Majkic K, Samardzija D, Stojkov-Mimic N, Vukosavljevic J, Trninic-Pjevic A, Kopitovic V, Andric N. Atrazine suppresses FSH-induced steroidogenesis and LH-dependent expression of ovulatory genes through PDE-cAMP signaling pathway in human cumulus granulosa cells. Mol Cell Endocrinol 2018; 461:79-88. [PMID: 28859905 DOI: 10.1016/j.mce.2017.08.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/13/2017] [Accepted: 08/28/2017] [Indexed: 01/12/2023]
Abstract
Atrazine (ATR) alters female reproductive functions in different animal species. Here, we analyzed whether ATR disturbs steroidogenic and ovulatory processes in hormone-stimulated human cumulus granulosa cells and mechanism of its action. Results showed that treatment of human cumulus granulosa cells with 20 μM ATR for 48 h resulted in lower FSH-stimulated estradiol and progesterone production. ATR reduced mRNA levels of aromatase (CYP19A1), steroidogenic acute regulatory protein (STAR) and luteinizing hormone/choriogonadotropin receptor (LHCGR). Addition of hCG 48 h after FSH and ATR treatment did not trigger maximal expression of the ovulatory genes amphiregulin (AREG) and epiregulin (EREG). Mechanistic experiments showed that ATR activated cPDE and decreased cAMP level. Addition of total PDE and specific PDE4 inhibitors, IBMX and rolipram, prevented ATR's action on CYP19A1 and STAR mRNA expression in FSH-stimulated human cumulus granulosa cells. This study suggests that ATR alters steroidogenesis and ovulatory process in human cumulus granulosa cells jeopardizing female reproduction.
Collapse
Affiliation(s)
| | - Dragana Samardzija
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia
| | - Natasa Stojkov-Mimic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia
| | - Jelena Vukosavljevic
- Clinic for Gynecology and Obstetrics, Clinical Center of Vojvodina, Novi Sad, Serbia
| | | | - Vesna Kopitovic
- Clinic for Gynecology and Obstetrics, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Nebojsa Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia
| |
Collapse
|
42
|
Wang AC, Wang Y, Wu FX, Zhu DY. Assessing predictors for the success of GnRH antagonist protocol in reproductive women in IVF/ICSI - in fresh cycles. Biomed Rep 2017; 7:482-486. [PMID: 29181162 DOI: 10.3892/br.2017.984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/06/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to evaluate the factors that affect the success rate of gonadotropin-releasing hormone antagonist on in vitro fertilization/intracytoplasmic sperm injection cycles. Multivariate analysis was performed to assess the factors that influence the outcomes, such as oocytes retrieved, and the success of pregnancy. The results showed that E2, P on human chorionic gonadotropin (HCG) day and body mass index (BMI) were positively correlated with the number of oocytes retrieved (P=0.001, P=0.024, P=0.017, respectively). The duration of infertility as well as the luteinizing hormone on HCG day were negatively correlated with the number of oocytes (P=0.048, P=0.002, respectively). The age of the women and P on HCG day were negatively correlated with successful pregnancy (P<0.001, P=0.022). In conclusion, some parameters, such as E2, P, and LH on the HCG day, as well as age and BMI, may affect treatment outcomes.
Collapse
Affiliation(s)
- An-Cong Wang
- Department of Reproductive Medicine, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China.,Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Ying Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Feng-Xia Wu
- Department of Anatomy, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dong-Yi Zhu
- Department of Reproductive Medicine, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China.,Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
43
|
Prochazka R, Blaha M, Němcová L. Significance of epidermal growth factor receptor signaling for acquisition of meiotic and developmental competence in mammalian oocytes†. Biol Reprod 2017; 97:537-549. [DOI: 10.1093/biolre/iox112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022] Open
|
44
|
The Vienna consensus: report of an expert meeting on the development of ART laboratory performance indicators. Reprod Biomed Online 2017; 35:494-510. [PMID: 28784335 DOI: 10.1016/j.rbmo.2017.06.015] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/21/2017] [Indexed: 11/19/2022]
Abstract
This proceedings report presents the outcomes from an international workshop supported by the European Society of Human Reproduction and Embryology (ESHRE) and Alpha Scientists in Reproductive Medicine, designed to establish consensus on definitions and recommended values for Indicators for the assisted reproductive technology (ART) laboratory. Minimum performance-level values ('competency') and aspirational ('benchmark') values were recommended for a total of 19 Indicators, including 12 Key Performance Indicators (KPIs), five Performance Indicators (PIs), and two Reference Indicators (RIs).
Collapse
|
45
|
The Vienna consensus: report of an expert meeting on the development of art laboratory performance indicators. Hum Reprod Open 2017; 2017:hox011. [PMID: 31486806 PMCID: PMC6276649 DOI: 10.1093/hropen/hox011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/15/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022] Open
Abstract
STUDY QUESTION What are appropriate performance indicators (PIs) for ART laboratories for use in monitoring 'fresh' IVF and ICSI cycles? SUMMARY ANSWER Minimum performance (competence) levels and aspirational (benchmark) values were recommended for a total of 19 indicators, including 12 key PIs (KPIs), five PIs and two reference indicators (RIs). WHAT IS ALREADY KNOWN PIs are necessary for systematic monitoring of the laboratory and an important element within the Quality Management System. However, there are no established PIs for ART laboratories and there is very little evidence on the topic. STUDY DESIGN SIZE DURATION This is the report of a 2-day consensus meeting of expert professionals. As a starting point for the discussion, two surveys were organized to collect information on indicators used in IVF laboratories. During the meeting, the results of the surveys, scientific evidence (where available), and personal clinical experience where integrated into presentations by experts on specific topics. After presentation, each proposed indicator was discussed until consensus was reached within the panel. PARTICIPANTS/MATERIALS SETTING METHODS Expert professionals representing different countries and settings convened in the consensus meeting. MAIN RESULTS AND THE ROLE OF CHANCE The paper is divided in two parts: the workshop report and the recommendations of the expert panel. The second part reflects the discussion on each of the indicators, with the agreed definition, competence level and benchmark value for each of the 19 indicators, including 12 KPIs, 5 PIs and 2 RIs. LIMITATIONS REASONS FOR CAUTION The KPIs are mainly based on expert opinion. Future research may warrant an update of the recommended KPIs, their definition and the competence level and benchmark values. WIDER IMPLICATIONS OF THE FINDINGS Based on the information presented, each ART laboratory should select its own set of KPIs founded on laboratory organization, and processes. STUDY FUNDING/COMPETING INTERESTS The consensus meeting and writing of the paper was supported by funds from ESHRE and Alpha. Alpha gratefully acknowledges the following organizations for their financial support, through the provision of unrestricted educational grants: Global Fertility Alliance, Merck, Origio and Vitrolife. There are no conflicts of interest to disclose.
Collapse
|
46
|
Brown HM, Dunning KR, Sutton-McDowall M, Gilchrist RB, Thompson JG, Russell DL. Failure to launch: aberrant cumulus gene expression during oocyte in vitro maturation. Reproduction 2017; 153:R109-R120. [DOI: 10.1530/rep-16-0426] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 01/13/2023]
Abstract
In vitro maturation (IVM) offers significant benefits for human infertility treatment and animal breeding, but this potential is yet to be fully realised due to reduced oocyte developmental competence in comparison with in vivo matured oocytes. Cumulus cells occupy an essential position in determining oocyte developmental competence. Here we have examined the areas of deficient gene expression, as determined within microarrays primarily from cumulus cells of mouse COCs, but also other species, between in vivo matured and in vitro matured oocytes. By retrospectively analysing the literature, directed by focussing on downregulated genes, we provide an insight as to why the in vitro cumulus cells fail to support full oocyte potential and dissect molecular pathways that have important roles in oocyte competence. We conclude that the roles of epidermal growth factor signalling, the expanded extracellular matrix, cumulus cell metabolism and the immune system are critical deficiencies in cumulus cells of IVM COCs.
Collapse
|
47
|
Jaffe LA, Egbert JR. Regulation of Mammalian Oocyte Meiosis by Intercellular Communication Within the Ovarian Follicle. Annu Rev Physiol 2017; 79:237-260. [PMID: 27860834 PMCID: PMC5305431 DOI: 10.1146/annurev-physiol-022516-034102] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Meiotic progression in mammalian preovulatory follicles is controlled by the granulosa cells around the oocyte. Cyclic GMP (cGMP) generated in the granulosa cells diffuses through gap junctions into the oocyte, maintaining meiotic prophase arrest. Luteinizing hormone then acts on receptors in outer granulosa cells to rapidly decrease cGMP. This occurs by two complementary pathways: cGMP production is decreased by dephosphorylation and inactivation of the NPR2 guanylyl cyclase, and cGMP hydrolysis is increased by activation of the PDE5 phosphodiesterase. The cGMP decrease in the granulosa cells results in rapid cGMP diffusion out of the oocyte, initiating meiotic resumption. Additional, more slowly developing mechanisms involving paracrine signaling by extracellular peptides (C-type natriuretic peptide and EGF receptor ligands) maintain the low level of cGMP in the oocyte. These coordinated signaling pathways ensure a fail-safe system to prepare the oocyte for fertilization and reproductive success.
Collapse
Affiliation(s)
- Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030; ,
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030; ,
| |
Collapse
|
48
|
Effect of C-type natriuretic peptide pretreatment on in vitro bovine oocyte maturation. In Vitro Cell Dev Biol Anim 2016; 53:199-206. [DOI: 10.1007/s11626-016-0101-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/15/2016] [Indexed: 02/03/2023]
|
49
|
Chen CD, Chiang YT, Yang PK, Chen MJ, Chang CH, Yang YS, Chen SU. Frequency of low serum LH is associated with increased early pregnancy loss in IVF/ICSI cycles. Reprod Biomed Online 2016; 33:449-457. [DOI: 10.1016/j.rbmo.2016.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 11/30/2022]
|
50
|
Fang L, Yu Y, Zhang R, He J, Sun YP. Amphiregulin mediates hCG-induced StAR expression and progesterone production in human granulosa cells. Sci Rep 2016; 6:24917. [PMID: 27113901 PMCID: PMC4845069 DOI: 10.1038/srep24917] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/07/2016] [Indexed: 01/08/2023] Open
Abstract
Progesterone plays critical roles in maintaining a successful pregnancy at the early embryonic stage. Human chorionic gonadotropin (hCG) rapidly induces amphiregulin (AREG) expression. However, it remains unknown whether AREG mediates hCG-induced progesterone production. Thus, the objective of this study was to investigate the role of AREG in hCG-induced progesterone production and the underlying molecular mechanism in human granulosa cells; primary cells were used as the experimental model. We demonstrated that the inhibition of EGFR and the knockdown of AREG abolished hCG-induced steroidogenic acute regulatory protein (StAR) expression and progesterone production. Importantly, follicular fluid AREG levels were positively correlated with progesterone levels in the follicular fluid and serum. Treatment with AREG increased StAR expression and progesterone production, and these stimulatory effects were abolished by EGFR inhibition. Moreover, activation of ERK1/2, but not PI3K/Akt, signaling was required for the AREG-induced up-regulation of StAR expression and progesterone production. Our results demonstrate that AREG mediates hCG-induced StAR expression and progesterone production in human granulosa cells, providing novel evidence for the role of AREG in the regulation of steroidogenesis.
Collapse
Affiliation(s)
- Lanlan Fang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yiping Yu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Ruizhe Zhang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Jingyan He
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Ying-Pu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|