1
|
Yang X, Ren L, Chen X, Pang Y, Jia B, Sun J, Quan X. BMP9 maintains the phenotype of HTR-8/Svneo trophoblast cells by activating the SDF1/CXCR4 pathway. BMC Mol Cell Biol 2023; 24:24. [PMID: 37550619 PMCID: PMC10405378 DOI: 10.1186/s12860-023-00487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) has been shown to regulate processes such as angiogenesis, endothelial dysfunction, and tumorigenesis. However, the role of BMP9 in preeclampsia (PE) is unclear. The purpose of this study was to investigate the role and mechanism of BMP9 in PE. METHODS The effects of BMP9 on the viability, migration and invasion of HTR-8/Svneo cells were investigated by CCK-8 assay, wound healing assay and Transwell invasion assay. The effect of BMP9 on apoptosis of HTR-8/Svneo cells was detected by flow cytometry. Plasma levels of BMP9, SDF1 and CXCR4 were detected by ELISA kit. qRT-PCR and Western blot were used to detect the expression levels of each gene in the cells. RESULTS Overexpression of BMP9 promoted the proliferation and migration of trophoblast cells and inhibited apoptosis. Knockdown of BMP9 had the opposite effect. The levels of BMP9, SDF1 and CXCR4 in the plasma of PE patients were down-regulated, and BMP9 was positively correlated with the levels of SDF1 and CXCR4. BMP9 also significantly upregulated the mRNA and protein levels of SDF1 and CXCR4 in HTR-8/SVneo cells. Further mechanistic studies found that BMP9 promoted the migration and invasion of HTR-8/SVneo cells and inhibited apoptosis by activating the SDF1/CXCR4 pathway. CONCLUSION We demonstrate for the first time that BMP9 promoted the migration and invasion of HTR-8/SVneo cells and inhibits apoptosis by activating the SDF1/CXCR4 pathway. This suggests that BMP9 may be a biomarker molecule for PE.
Collapse
Affiliation(s)
- Xue Yang
- Obstetrics department of Weapon Industry 521 Hospital, NO.12, East Zhangba Road, Xi'an, Shannxi, 710065, China
| | - Lingling Ren
- Obstetrics department of Weapon Industry 521 Hospital, NO.12, East Zhangba Road, Xi'an, Shannxi, 710065, China.
| | - Xiang Chen
- Obstetrics department of Weapon Industry 521 Hospital, NO.12, East Zhangba Road, Xi'an, Shannxi, 710065, China
| | - Ying Pang
- Obstetrics department of Weapon Industry 521 Hospital, NO.12, East Zhangba Road, Xi'an, Shannxi, 710065, China
| | - Baoxia Jia
- Obstetrics department of Weapon Industry 521 Hospital, NO.12, East Zhangba Road, Xi'an, Shannxi, 710065, China
| | - Jing Sun
- Obstetrics department of Weapon Industry 521 Hospital, NO.12, East Zhangba Road, Xi'an, Shannxi, 710065, China
| | - Xiaofang Quan
- Obstetrics department of Weapon Industry 521 Hospital, NO.12, East Zhangba Road, Xi'an, Shannxi, 710065, China
| |
Collapse
|
2
|
Ma J, Gao W, Li D. Recurrent implantation failure: A comprehensive summary from etiology to treatment. Front Endocrinol (Lausanne) 2023; 13:1061766. [PMID: 36686483 PMCID: PMC9849692 DOI: 10.3389/fendo.2022.1061766] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Implantation is the first step in human reproduction. Successful implantation depends on the crosstalk between embryo and endometrium. Recurrent implantation failure (RIF) is a clinical phenomenon characterized by a lack of implantation after the transfer of several embryos and disturbs approximately 10% couples undergoing in vitro fertilization and embryo transfer. Despite increasing literature on RIF, there is still no widely accepted definition or standard protocol for the diagnosis and treatment of RIF. Progress in predicting and preventing RIF has been hampered by a lack of widely accepted definitions. Most couples with RIF can become pregnant after clinical intervention. The prognosis for couples with RIF is related to maternal age. RIF can be caused by immunology, thrombophilias, endometrial receptivity, microbiome, anatomical abnormalities, male factors, and embryo aneuploidy. It is important to determine the most possible etiologies, and individualized treatment aimed at the primary cause seems to be an effective method for increasing the implantation rate. Couples with RIF require psychological support and appropriate clinical intervention. Further studies are required to evaluate diagnostic method and he effectiveness of each therapy, and guide clinical treatment.
Collapse
Affiliation(s)
- Junying Ma
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, Shenyang, China
- Shengjing Hospital of China Medical University, Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Wenyan Gao
- Department of Obstetrics, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, Shenyang, China
- Shengjing Hospital of China Medical University, Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| |
Collapse
|
3
|
Wu PL, Zhu JW, Zeng C, Li X, Xue Q, Yang HX. IGFBP7 enhances trophoblast invasion via IGF-1R/c-Jun signaling in unexplained recurrent spontaneous abortion. Reproduction 2022; 164:231-241. [PMID: 35900339 DOI: 10.1530/rep-21-0501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/26/2022] [Indexed: 11/08/2022]
Abstract
In brief Insufficient trophoblast invasion at the maternal-fetal interface contributes to abortion-prone pregnancy. Our study shows that decreased levels of IGFBP7 in unexplained recurrent spontaneous abortion (URSA) trophoblast cells inhibit MMP2 and Slug expression as well as trophoblast invasion, suggesting that IGFBP7 should be considered a potential therapeutic protein target in URSA. Abstract Insufficient trophoblast invasion at the maternal-fetal interface contributes to abortion-prone pregnancy. Cyclosporine A (CsA) can exert therapeutic effects on URSA by promoting trophoblast invasion. A previous study showed decreased expression of insulin-like growth factor-binding protein 7 (IGFBP7) in the sera of recurrent spontaneous abortion patients. However, the role of IGFBP7 in URSA remains unknown. The aim of this study was to determine whether IGFBP7 modulates trophoblast invasion in URSA and the underlying molecular mechanisms. We found that IGFBP7 was expressed at lower levels in villous specimens from URSA patients. Manipulating IGFBP7 expression significantly affected the MMP2 and Slug expression in HTR-8/SVneo cells as well as trophoblast invasion in vitro. Inactivation of IGF-1R by IGFBP7 was observed, and IGF-1R inhibition increased the IGFBP7-induced MMP2 and Slug expression in HTR-8/SVneo cells. Moreover, the level of c-Jun was significantly upregulated in the URSA group. Silencing IGFBP7 increased the binding of downstream c-Jun to the MMP2 and Slug promoter regions in HTR-8/SVneo cells, thus suppressing transcription. In addition, increased expression of IGFBP7 in HTR-8/SVneo cells was observed upon CsA treatment. Knockdown of IGFBP7 inhibited the CsA-enhanced MMP2 and Slug expression in HTR-8/SVneo cells. Our results suggest that in normal pregnancy, IGFBP7 induces MMP2 and Slug expression via the IGF-1R-mediated c-Jun signaling pathway, thereby promoting trophoblast invasion. IGFBP7 depletion in URSA inhibits MMP2 and Slug expression as well as trophoblast invasion. Moreover, IGFBP7 participates in CsA-induced trophoblast invasion, suggesting that IGFBP7 is a potential therapeutic target for URSA.
Collapse
Affiliation(s)
- Pei-Li Wu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jing-Wen Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Cheng Zeng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Xin Li
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Hui-Xia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
4
|
Cheng W, Wu Y, Wu H, Zou Q, Meng Q, Wang F, Li H, Xu Y, Zhao N, Zhou Y, Li M, Du M, Li D, Li H, Zhu R. Improved pregnancy outcomes of cyclosporine A on patients with unexplained repeated implantation failure in IVF/ICSI cycles: A retrospective cohort study. Am J Reprod Immunol 2022; 87:e13525. [PMID: 35129849 DOI: 10.1111/aji.13525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 11/01/2022] Open
Abstract
PROBLEM Repeated implantation failure (RIF) is a daunting obstacle restricting the further improvement of embryo implantation rate (IR) and live birth rate (LBR). The beneficial effect of cyclosporine A (CsA) on reproductive outcomes of unexplained RIF(URIF) was explored after de novo embryo transfer (ET). METHOD OF STUDY A retrospective cohort study was conducted, comparing pregnancy outcomes of 146 cycles (CsA group, n = 62; control group, n = 84) at the IVF center of Suzhou Municipal Hospital from April 2016 to March 2020. RESULTS Baseline and transfer cycle characteristics of participants were comparable between groups. Overall, CsA exerted obvious improvement on IR (51.16% vs 31.97%, P = .006), clinical pregnancy rate (CPR) (58.06% vs 38.10%, P = .017), and LBR (48.39% vs 32.14%, P = .047). Especially, CsA showed remarkably enhancement on IR (41.38% vs 14.63%, P = .012), CPR (47.62% vs 17.24%, P = .021) of non-high quality embryos. No difference in obstetric and pediatric complications was observed, and no birth defects were reported under CsA application. CsA was found to be a predictor of clinical pregnancy [fine adjusted OR 2.360, 95 % CI 1.165-4.781; P = .017] and live birth [fine adjusted OR 2.339, 95% CI 1.124-4.867; P = .023] for multivariate logistic regression. Not surprisingly, the number of high quality embryos should also be considered as an independent predictor for clinical pregnancy [fine adjusted OR 1.637,95%CI 1.027-2.609; P = .038] and live birth [fine adjusted OR 1.890, 95% CI 1.165-3.068; P = .010]. CONCLUSION CsA application in patients with URIF promotes the pregnancy outcomes and does not increase the risk of obstetric and pediatric complications.
Collapse
Affiliation(s)
- Wei Cheng
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yanan Wu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Huihua Wu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qinyan Zou
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qingxia Meng
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Fuxin Wang
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Huimin Li
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yongle Xu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Nannan Zhao
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Zhou
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Mingqing Li
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Dajin Li
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Hong Li
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Ray A, Bhati T, Arora R, Pradhan D, Parvez S, Rastogi S. Differential expression of urine-circulating micro-RNAs in Chlamydia trachomatis-induced recurrent spontaneous aborters. Microb Pathog 2021; 160:105156. [PMID: 34418493 DOI: 10.1016/j.micpath.2021.105156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/01/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022]
Abstract
Studies behind mechanisms of Chlamydia trachomatis-induced recurrent spontaneous abortion is still in its infancy. Possible strategy for preventing recurrent spontaneous abortion at molecular level is needed. Despite its multifactorial aetiology, Chlamydia trachomatis is important cause of RSA. However, mechanism leading to RSA in C. trachomatis-positive patients is not understood and novel strategies are needed. It is hypothesized that microRNAs play important role in RSA regulation during infection. Study aimed to elucidate expression/role of urine-circulating miRs-320b, 221-3p, 146b-5p,-16,-24,-559 in recurrent spontaneous aborters with C. trachomatis infection and to find their target genes by bioinformatic analysis. First-void urine was collected from 30 non-pregnant women with RSA (Group I) and 30 non-pregnant women with ≥2 successful deliveries (Group II; Controls) attending Department of Obstetrics and Gynaecology, Vardhman Mahavir Medical College, Safdarjung hospital, New Delhi (India). PCR was performed to detect C. trachomatis. Expression of miRNAs was studied by quantitative real-time PCR while target genes/functional annotations were predicted by GO/KEGG databases. Data was statistically evaluated. 05 RSA patients were C. trachomatis-positive. Group I was subdivided into Group Ia (C. trachomatis-positive RSA; n = 5) and Group Ib (C. trachomatis-negative RSA; internal controls). miR-320b, -221-3p, -146b-5p, -16, -24 were significantly upregulated (miR-16 showed maximum 4.3 fold-change) while miR-559 was downregulated (0.5 fold-change) in Group Ia versus controls ('p'<0.001). Bioinformatic analysis revealed that target genes of miRNAs in RSA are involved in apoptosis and AMPK signalling pathways. Results showed differential expression of miRNAs implyingmiR-16 and miR-559 as potential biomarkers of RSA in infected women. Furthermore, network of genes of differentially expressed miRNAs regulates RSA by targeting gene function in apoptosis, cell adhesion and angiogenesis.
Collapse
Affiliation(s)
- Ankita Ray
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India
| | - Tanu Bhati
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India
| | - Renu Arora
- Department of Obstetrics and Gynaecology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, New Delhi, 110029, India
| | - Dibyabhaba Pradhan
- ICMR Computational Genomics Centre, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, 110062, India
| | - Sangita Rastogi
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| |
Collapse
|
6
|
Unfer V, Tilotta M, Kaya C, Noventa M, Török P, Alkatout I, Gitas G, Bilotta G, Laganà AS. Absorption, distribution, metabolism and excretion of hyaluronic acid during pregnancy: a matter of molecular weight. Expert Opin Drug Metab Toxicol 2021; 17:823-840. [PMID: 33999749 DOI: 10.1080/17425255.2021.1931682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION For many years hyaluronic acid (HA) was mainly used for its hydrating properties. However, new applications have recently arisen, considering the biological properties of HA and its molecular weight. Clinical application of low molecular weight HA (LMW-HA) initially was supported by specific absorption data. The identification of high molecular weight HA (HMW-HA) absorption pathways and the knowledge of its physiological role allowed to evaluate its clinical application. Based on the immunomodulatory properties of HMW-HA and its physiological involvement as signaling molecule, pregnancy represents an interesting context of application. AREA COVERED This expert opinion includes in-vitro, in-vivo, ex-vivo and clinical studies on gestational models. It provides an overview of the physiological and the therapeutic role of HMW-HA in pregnancy starting from its metabolism. Indeed, HMW-HA is widely involved in several physiological processes as implantation, immune response, uterine quiescence and cervical remodeling, and therefore is an essential molecule for a successful pregnancy. EXPERT OPINION Available evidence suggests that HMW-HA administration can support physiological pregnancy, favoring blastocyst adhesion and development, preventing miscarriage and pre-term birth. For this reason, supplementation in pregnancy should be evaluated.
Collapse
Affiliation(s)
| | | | - Cihan Kaya
- Department of Obstetrics and Gynaecology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Marco Noventa
- Department of Women and Children's Health, Clinic of Gynecology and Obstetrics, University of Padua, Padua, Italy
| | - Péter Török
- Faculty of Medicine, Institute of Obstetrics and Gynecology, University of Debrecen, Hungary
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Georgios Gitas
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital,University of Insubria, Varese, Italy
| |
Collapse
|
7
|
Qu D, Tian X, Ding L, Li Y, Zhou W. Impacts of Cyclosporin A on clinical pregnancy outcomes of patients with a history of unexplained transfer failure: a retrospective cohort study. Reprod Biol Endocrinol 2021; 19:44. [PMID: 33726772 PMCID: PMC7962312 DOI: 10.1186/s12958-021-00728-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/07/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND A rapid development in assisted reproductive technology (ART) has led to a surge in its popularity among target couples. However, elucidation on the molecular mechanism and effective solutions for a common problem posed by ART, namely transfer failure, is still lacking. The new therapeutic potential of cyclosporin A (CsA), a typical immunosuppressant widely used in the treatment of rejection after organ transplantation, in recurrent pregnancy loss (RPL) patients may inspire some novel transfer failure therapies in the future. To further explore the clinical effects of CsA, this study investigated whether its application can improve clinical pregnancy outcomes in patients with a history of unexplained transfer failure in frozen-thawed embryo transfer (FET) cycles. METHODS Data from a retrospective cohort investigation (178 frozen-thawed embryo transfer cycles in 178 patients) were analysed using binary logistic regression to explore the relationship between CsA treatment and clinical pregnancy outcomes; the odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated as a measure of relevancy. Implantation rate was the main outcome measure. RESULTS There was no difference in the fine adjusted OR (95 % CI) of the implantation rate [1.251 (0.739-2.120)], clinical pregnancy rate [1.634 (0.772-3.458)], chemical pregnancy rate [1.402 (0.285-6.909)], take-home baby rate [0.872 (0.423-1.798)], multiple births rate [0.840 (0.197-3.590)], preterm birth [1.668 (0.377-7.373)], abnormal birth weight [1.834 (0.533-6.307)] or sex ratio [0.956 (0.339-2.698)] between the CsA-treated group and control group. No birth defects were observed in the present study. CONCLUSIONS Although CsA does not affect infant characteristics, it has no beneficial effects on the clinical pregnancy outcomes in patients with a history of unexplained transfer failure in FET cycles.
Collapse
Affiliation(s)
- Danni Qu
- grid.24696.3f0000 0004 0369 153XMedical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, People’s Republic of China
| | - Xiangming Tian
- grid.24696.3f0000 0004 0369 153XMedical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, People’s Republic of China
| | - Ling Ding
- grid.24696.3f0000 0004 0369 153XMedical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, People’s Republic of China
| | - Yuan Li
- grid.24696.3f0000 0004 0369 153XMedical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, People’s Republic of China
| | - Wenhui Zhou
- grid.24696.3f0000 0004 0369 153XMedical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Ao D, Li DJ, Li MQ. CXCL12 in normal and pathological pregnancies: A review. Am J Reprod Immunol 2020; 84:e13280. [PMID: 32485053 DOI: 10.1111/aji.13280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
The survival of allogeneic fetuses during pregnancy is a rather paradoxical phenomenon with a complex mechanism. Chemokine ligand12 (CXCL12) and its receptors CXC chemokine receptor (CXCR)4 and 7 are extensively found in placenta tissues and cells, including trophoblast cells, vascular endothelial cells, and decidual stromal and decidual immune cells (eg, NK cells and regulatory T cells). Evidence has illustrated that the CXClL12/CXCR4/CXCR7 axis could enhance the cross talk at the maternal-fetal interface through multiple processes, such as invasion and placental angiogenesis, which appears to be critical signaling components in placentation and fetal outcome. In addition, an increasing number of studies have demonstrated that the CXCL12/CXCR4/CXCR7 axis also stands out for its pleiotropic roles in several pregnancy-associated diseases (eg, recurrent spontaneous abortion (RSA), pre-eclampsia (PE), and preterm labor). In the present review, the different biological properties and signaling in physiological and pathological pregnancy conditions of CXCL12/CXCR4/CXCR7 axis were discussed, with the aim of obtaining a further understanding of the regulatory mechanisms and highlighting their potential as a target for therapeutic approaches.
Collapse
Affiliation(s)
- Deng Ao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Zheng J, Qu D, Wang C, Ding L, Zhou W. Involvement of CXCL12/CXCR4 in the motility of human first-trimester endometrial epithelial cells through an autocrine mechanism by activating PI3K/AKT signaling. BMC Pregnancy Childbirth 2020; 20:87. [PMID: 32041571 PMCID: PMC7011269 DOI: 10.1186/s12884-020-2788-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Background CXCL12(chemokine ligand 12, CXCL12) and its receptors CXCR4 are widely expressed in maternal-fetal interface and plays an adjust role in materno-fetal dialogue and immune tolerance during early pregnancy. This study aimed to evaluate the role and mechanism of self-derived CXCL12 in modulating the functions of human first-trimester endometrial epithelial cells (EECs) and to identify the potential protein kinase signaling pathways involved in the CXCL12/CXCR4’s effect on EECs. Methods The expression of CXCL12 and CXCR4 in EECs was measured by using immunohistochemistry, immunofluorescence, real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The effects of EEC-conditioned medium (EEC-CM) and recombinant human CXCL12 (rhCXCL12) on EEC migration and invasion in vitro were evaluated with migration and invasion assays. In-cell western blot analysis was used to examine the phosphorylation of protein kinase B (AKT), extracellular regulated protein kinases (ERKs) and phosphatidylinositol 3-kinase (PI3K) after CXCL12 treatment. Results CXCL12 and CXCR4 were both expressed in human first-trimester EECs at the mRNA and protein level. Both EEC-CM and rhCXCL12 significantly increased the migration and invasion of EECs (P < 0.05), which could be blocked by neutralizing antibodies against CXCR4 (P < 0.05) or CXCL12 (P < 0.05), respectively. CXCL12 activated both PI3K/AKT and ERK1/2 signaling and CXCR4 neutralizing antibody effectively reduced CXCL12-induced phosphorylation of AKT and ERK1/2. LY294002, a PI3K-AKT inhibitor, was able to reverse the promotive effect of EEC-CM or rhCXCL12 on EEC migration and invasion. Conclusions Human first-trimester EECs promoted their own migration and invasion through the autocrine mechanism with CXCL12/CXCR4 axis involvement by activating PI3K/AKT signaling. This study contributes to a better understanding of the epithelium function mediated by chemokine and chemokine receptor during normal pregnancy.
Collapse
Affiliation(s)
- Jiayi Zheng
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Danni Qu
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Chen Wang
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Ling Ding
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Wenhui Zhou
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.
| |
Collapse
|
10
|
Zhang Y, Zhang Y, Li C, Fu S, Yang C, Song Y, Liu M, Wang Z, Liang P, Zhang J. NOD1 modulates decidual stromal cell function to maintain pregnancy in the early trimester. Cell Biochem Funct 2019; 37:464-473. [PMID: 31396989 DOI: 10.1002/cbf.3417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/06/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022]
Abstract
We sought to explore the functions and modulated factors of NOD1 in normal decidual stromal cells (DSCs) derived from the first trimester pregnancy and whether existed different expression of NOD1 between normal and unexplained recurrent pregnancy loss (URPL) in DSCs. Twenty-six patients with normal pregnancies that required abortion and 12 URPL patients at first trimester were enrolled for the study. As a result, we found lower levels of NOD1 in the DSCs derived from URPL compared with those from normal early trimester pregnancy. Furthermore, increased NOD1 expression in the normal DSCs induced apoptosis and increased monocyte chemotactic protein-1 (MCP-1) and IL-1β (interleukin 1 beta) secretion but decreased their invasion capacity. In addition, several cytokines such as IL-1β, tumour necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin-17 (IL-17) were present at the maternal-fetal interface in RPL and were found to regulate NOD1 expression in primary DSCs. Our study indicates that RPL may be associated with NOD1 aberrant expression in DSCs, which plays a significant role in maintaining pregnancy via infection control and regulation of immune responses that might affect the pregnancy outcome. We expect that our results will bring more comprehensively understanding about the connection between NOD1 and RPL for researchers.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Gynecologic Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, 100021, Beijing, P.R. China
| | - Yuhui Zhang
- Department of Reproductive Center, Gynecology and Obstetric, Henan Provincial People's Hospital of Zhengzhou University, Jinshui Area, 450003, Zhengzhou, Henan, P.R. China
| | - Chunmei Li
- Department of Reproductive Center, Gynecology and Obstetric, Henan Provincial People's Hospital of Zhengzhou University, Jinshui Area, 450003, Zhengzhou, Henan, P.R. China
| | - Shuai Fu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunfeng Yang
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Song
- Department of Reproductive Center, Gynecology and Obstetric, Henan Provincial People's Hospital of Zhengzhou University, Jinshui Area, 450003, Zhengzhou, Henan, P.R. China
| | - Meilan Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenhua Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peili Liang
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianping Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Lieberman A, Barrett R, Kim J, Zhang KL, Avery D, Monslow J, Kim H, Kim BJ, Puré E, Ryeom S. Deletion of Calcineurin Promotes a Protumorigenic Fibroblast Phenotype. Cancer Res 2019; 79:3928-3939. [PMID: 31189649 PMCID: PMC6679769 DOI: 10.1158/0008-5472.can-19-0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/25/2019] [Accepted: 06/05/2019] [Indexed: 01/05/2023]
Abstract
Fibroblast activation is a crucial step in tumor growth and metastatic progression. Activated fibroblasts remodel the extracellular matrix (ECM) in primary tumor and metastatic microenvironments, exerting both pro- and antitumorigenic effects. However, the intrinsic mechanisms that regulate the activation of fibroblasts are not well-defined. The signaling axis comprising the calcium-activated Ser/Thr phosphatase calcineurin (CN), and its downstream target nuclear factor of activated T cells, has been implicated in endothelial (EC) and immune cell activation, but its role in fibroblasts is not known. Here, we demonstrate that deletion of CN in fibroblasts in vitro altered fibroblast morphology and function consistent with an activated phenotype relative to wild-type fibroblasts. CN-null fibroblasts had a greater migratory capacity, increased collagen secretion and remodeling, and promoted more robust EC activation in vitro. ECM generated by CN-null fibroblasts contained more collagen with greater alignment of fibrillar collagen compared with wild-type fibroblast-derived matrix. These differences in matrix composition and organization imposed distinct changes in morphology and cytoskeletal architecture of both fibroblasts and tumor cells. Consistent with this in vitro phenotype, mice with stromal CN deletion had a greater incidence and larger lung metastases. Our data suggest that CN signaling contributes to the maintenance of fibroblast homeostasis and that loss of CN is sufficient to promote fibroblast activation. SIGNIFICANCE: Calcineurin signaling is a key pathway underlying fibroblast homeostasis that could be targeted to potentially prevent fibroblast activation in distant metastatic sites.
Collapse
Affiliation(s)
- Allyson Lieberman
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Richard Barrett
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Jaewon Kim
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathy L Zhang
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Diana Avery
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - James Monslow
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania.
| | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
12
|
Abdolmohammadi-Vahid S, Danaii S, Hamdi K, Jadidi-Niaragh F, Ahmadi M, Yousefi M. Novel immunotherapeutic approaches for treatment of infertility. Biomed Pharmacother 2016; 84:1449-1459. [DOI: 10.1016/j.biopha.2016.10.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022] Open
|
13
|
Potential role of circulating microRNAs as a biomarker for unexplained recurrent spontaneous abortion. Fertil Steril 2016; 105:1247-1254.e3. [PMID: 26868995 DOI: 10.1016/j.fertnstert.2016.01.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/05/2016] [Accepted: 01/20/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To compare circulating microRNA (miRNA) profiles between unexplained recurrent spontaneous abortion (URSA) and normal early pregnancies (NEP) and to evaluate the potential role of circulating miRNA as a biomarker for URSA. DESIGN Laboratory study using human plasma samples. SETTING Special hospital and research institutes. PATIENT(S) From September 2012 to April 2013, samples of plasma were obtained from 27 URSA patients and 28 NEP patients at 6-10 weeks of gestation at the Department of Reproductive Immunology in Family Planning Special Hospital of Guangdong Province. INTERVENTION(S) Differential miRNA profiling analysis of plasma collected from URSA and NEP patients was performed with the use of microarray. MAIN OUTCOME MEASURE(S) The circulating miRNA expression profile was assessed by means of microarray and real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis. RESULT(S) Twenty-five circulating miRNAs were expressed differentially in URSA compared with NEP. Of these, nine were overexpressed and 16 down-regulated. Six differentially expressed circulating miRNAs were selected to validate the microarray results, and qRT-PCR data confirmed the reliability of the microarray results. Further analysis showed that four circulating miRNAs (miR-320b, miR-146b-5p, miR-221-3p, miR-559) were up-regulated. In URSA, one circulating miRNA (miR-101-3p) was down-regulated in other larger scale samples according to qRT-PCR. Based on target gene analysis, we speculate that these circulating miRNAs regulate URSA by targeting immune, apoptosis, and angiogenic gene functions. CONCLUSION(S) Circulating microRNAs may be involved in URSA pathogenesis and provide a promising new diagnostic biomarker for URSA.
Collapse
|
14
|
Wang L, Li X, Zhao Y, Fang C, Lian Y, Gou W, Han T, Zhu X. Insights into the mechanism of CXCL12-mediated signaling in trophoblast functions and placental angiogenesis. Acta Biochim Biophys Sin (Shanghai) 2015; 47:663-72. [PMID: 26188201 DOI: 10.1093/abbs/gmv064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/08/2015] [Indexed: 01/07/2023] Open
Abstract
The chemokine CXCL12 and its receptor CXCR4 are important signaling components required for human blastocyst implantation and the progression of pregnancy. Growing evidence indicates that the CXCL12/CXCR4 axis can regulate trophoblast function and uterine spiral artery remodeling, which plays a fundamental role in placentation and fetal outcome. The orphan receptor CXCR7 is also believed to partly regulate the function of the CXCL12/CXCR4 axis. Additionally, the CXCL12/CXCR4/CXCR7 axis can enhance the cross-talk between trophoblasts and decidual cells such as uterine natural killer cells and decidual stromal cells which are involved in regulation of trophoblast differentiation and invasion and placental angiogenesis. In addition, recent studies proved that CXCL12 expression is elevated in the placenta and mid-trimester amniotic fluid of pregnant women with preeclampsia, implying that dysregulation of CXCL12 plays a role in the pathogenesis of preeclampsia. Further understanding of the regulatory mechanisms of CXCL12-mediated signaling in trophoblast functions and placental angiogenesis may help to design novel therapeutic approaches for pregnancy-associated diseases.
Collapse
Affiliation(s)
- Liang Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China The First Student Brigade, The Fourth Military Medical University, Xi'an 710032, China
| | - Xueyi Li
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatism & Immunity, Xi-jing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yilin Zhao
- Department of Respiratory Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Chao Fang
- Institute of Neurosciences, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an 710032, China
| | - Yingli Lian
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wenli Gou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tao Han
- Department of Orthopedics, Hainan Branch of PLA General Hospital, Sanya 572013, China
| | - Xiaoming Zhu
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|
15
|
Tim-3 protects decidual stromal cells from toll-like receptor-mediated apoptosis and inflammatory reactions and promotes Th2 bias at the maternal-fetal interface. Sci Rep 2015; 5:9013. [PMID: 25757669 PMCID: PMC4355741 DOI: 10.1038/srep09013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/13/2015] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) are important in mediating immune responses against various pathogens during pregnancy. However, uncontrolled TLR-triggered inflammation will endanger normal pregnancy, resulting in pregnancy loss. Therefore, maintenance of a moderate inflammatory response is crucial for successful pregnancy under conditions of infection. Here, we demonstrated significantly lowered expression of T-cell immunoglobulin and mucin domain 3 (Tim-3) in miscarried decidual stromal cells (DSCs), indicating that Tim-3 might play important roles in maintaining successful pregnancies. Activation of TLR signaling induced pro-inflammatory cytokine production and apoptosis of DSCs, which was accompanied by up-regulated Tim-3 expression. Tim-3, in turn, protected DSCs from TLR-mediated apoptosis in an ERK1/2 pathway-dependent manner. In addition, Tim-3 inhibited TLR signaling-induced inflammatory cytokine production by DSCs through suppressing NF-κB activation. Tim-3 increased production of T helper 2 (Th2)-type cytokines by DSCs and reversed the inhibitory effect of LPS on Th2 cytokine generation by up-regulation of interferon regulatory factor 4 expression. Tim-3 blockade abolished the effect of Tim-3 on the inflammatory response to LPS stimulation. Thus, Tim-3 signaling could represent a “self-control” mechanism in TLR-triggered inflammation during pregnancy. These findings identify Tim-3 as a key regulator of DSCs and suggest its potential as a target for the treatment of spontaneous abortion.
Collapse
|
16
|
Zhao H, Ozen M, Wong RJ, Stevenson DK. Heme oxygenase-1 in pregnancy and cancer: similarities in cellular invasion, cytoprotection, angiogenesis, and immunomodulation. Front Pharmacol 2015; 5:295. [PMID: 25642189 PMCID: PMC4294126 DOI: 10.3389/fphar.2014.00295] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/18/2014] [Indexed: 01/28/2023] Open
Abstract
Pregnancy can be defined as a “permissible” process, where a semi-allogeneic fetus and placenta are allowed to grow and survive within the mother. Similarly, in tumor growth, antigen-specific malignant cells proliferate and evade into normal tissues of the host. The microenvironments of the placenta and tumors are amazingly comparable, sharing similar mechanisms exploited by fetal or cancer cells with regard to surviving in a hypoxic microenvironment, invading tissues via degradation and vasculogenesis, and escaping host attack through immune privilege. Heme oxygease-1 (HO-1) is a stress-response protein that has antioxidative, anti-apoptotic, pro-angiogenic, and anti-inflammatory properties. Although a large volume of research has been published in recent years investigating the possible role(s) of HO-1 in pregnancy and in cancer development, the molecular mechanisms that regulate these “yin-yang” processes have still not been fully elucidated. Here, we summarize and compare pregnancy and cancer development, focusing primarily on the function of HO-1 in cellular invasion, cytoprotection, angiogenesis, and immunomodulation. Due to the similarities of both processes, a thorough understanding of the molecular mechanisms of each process may reveal and guide the development of new approaches to prevent not only pregnancy disorders; but also, to study cancer.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine Stanford, CA, USA
| | - Maide Ozen
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine Stanford, CA, USA
| | - Ronald J Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine Stanford, CA, USA
| | - David K Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
17
|
Dong F, Zhang Y, Xia F, Yang Y, Xiong S, Jin L, Zhang J. Genome-wide miRNA profiling of villus and decidua of recurrent spontaneous abortion patients. Reproduction 2014; 148:33-41. [PMID: 24686457 DOI: 10.1530/rep-14-0095] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules of about 22 nucleotides that involved in post-transcriptional gene regulation. Evidence indicates that miRNAs play essential roles in endometriosis, pre-eclampsia, infertility and other reproductive system diseases. However, whether miRNAs are involved in recurrent spontaneous abortion (RSA) is unclear. In this work, we analysed the miRNA expression profiles in six pairs of villus or decidua from RSA patients and normal pregnancy (NP) women using a human miRNA microarray. Some of the chip results were confirmed by RT-qPCR. In the villi of RSA patients, expression of hsa-miR-184, hsa-miR-187 and hsa-miR-125b-2 was significantly higher, while expression of hsa-miR-520f, hsa-miR-3175 and hsa-miR-4672 was significantly lower, comparing with those of NP control. As well, a total of five miRNAs (hsa-miR-517c, hsa-miR-519a-1, hsa-miR-522, hsa-miR-520h and hsa-miR-184) were upregulated in the decidua of RSA patients. The target genes of these differentially expressed miRNAs were predicted by miRWalk, and we speculate a network of miRNA regulating RSA by target genes function on adhesion, apoptosis and angiogenesis. Our study may help clarify the molecular mechanisms which are involved in the progression of RSA, and provide a reference for future research.
Collapse
Affiliation(s)
- Fulu Dong
- Institutes of Biology and Medical SciencesSoochow University, Suzhou, Jiangsu Province 215123, People's Republic of ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, People's Republic of China
| | - Yuan Zhang
- Institutes of Biology and Medical SciencesSoochow University, Suzhou, Jiangsu Province 215123, People's Republic of ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, People's Republic of China
| | - Fei Xia
- Institutes of Biology and Medical SciencesSoochow University, Suzhou, Jiangsu Province 215123, People's Republic of ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, People's Republic of China
| | - Yi Yang
- Institutes of Biology and Medical SciencesSoochow University, Suzhou, Jiangsu Province 215123, People's Republic of ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, People's Republic of China
| | - Sidong Xiong
- Institutes of Biology and Medical SciencesSoochow University, Suzhou, Jiangsu Province 215123, People's Republic of ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, People's Republic of China
| | - Liping Jin
- Institutes of Biology and Medical SciencesSoochow University, Suzhou, Jiangsu Province 215123, People's Republic of ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, People's Republic of China
| | - Jinping Zhang
- Institutes of Biology and Medical SciencesSoochow University, Suzhou, Jiangsu Province 215123, People's Republic of ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, People's Republic of China
| |
Collapse
|
18
|
Mao S, Huang S. The signaling pathway of stromal cell-derived factor-1 and its role in kidney diseases. J Recept Signal Transduct Res 2013; 34:85-91. [PMID: 24303939 DOI: 10.3109/10799893.2013.865746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1) regulates the trafficking of progenitor cell (PGC) during embryonic development, cell chemotaxis, and postnatal homing into injury sites. SDF-1 also regulates cell growth, survival, adhesion and angiogenesis. However, in different tissues/cells, the role of SDF-1 is different, such as that it is increased in most of the tumors and associated with cancer metastasis, whereas it is essential for the development of vasculature. For kidney diseases, its role remains controversial. Signaling pathways might be very important in the pathogenesis of kidney diseases. We performed this review to provide a relatively complete signaling pathway flowchart for SDF-1 to the investigators who were interested in the role of SDF-1 in the pathogenesis of kidney diseases. Here, we reviewed the signal transduction pathway of SDF-1 and its role in the pathogenesis of kidney diseases.
Collapse
Affiliation(s)
- Song Mao
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University , Nanjing , China
| | | |
Collapse
|
19
|
Zhu R, Wang SC, Sun C, Tao Y, Piao HL, Wang XQ, Du MR. Hyaluronan-CD44 interaction promotes growth of decidual stromal cells in human first-trimester pregnancy. PLoS One 2013; 8:e74812. [PMID: 24069351 PMCID: PMC3777984 DOI: 10.1371/journal.pone.0074812] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/06/2013] [Indexed: 11/19/2022] Open
Abstract
Hyaluronan (HA) and its receptor CD44 are expressed at the maternal-fetal interface, but its role in early pregnancy remains unclear. Here, we found that primary decidual stromal cells (DSCs) continuously secreted HA and expressed its receptor CD44. Pregnancy-associated hormones up-regulated HA synthetase (HAS) 2 transcription and HA release from DSCs. High molecular weight-HA (HMW-HA), but not medium molecular weight (MMW-HA) or low molecular weight (LMW-HA), promoted proliferation and inhibited apoptosis of DSCs in a CD44-dependent manner. The in-cell Western analysis revealed HMW-HA activated PI3K/AKT and mitogen-activated protein kinase (MAPK)/ERK1/2 signaling pathways time-dependently. Blocking these pathways by specific inhibitor LY294002 or U0126 abrogated HMW-HA-regulated DSc proliferation and apoptosis. Finally, we have found that HA content, HA molecular weight, HAS2 mRNA level, and CD44 expression were significantly decreased in DSCs from unexplained miscarriage compared with the normal pregnancy. Collectively, our results indicate that higher level and greater molecular mass of HA at maternal-fetal interface contributes to DSc growth and maintenance of DSCs in human early pregnancy.
Collapse
Affiliation(s)
- Rui Zhu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song-Cun Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, China
| | - Chan Sun
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, China
| | - Yu Tao
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, China
| | - Hai-Lan Piao
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiao-Qiu Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, China
| | - Mei-Rong Du
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, China
- * E-mail: (MRD); (DJL)
| |
Collapse
|
20
|
NFAT signaling in osteoblasts regulates the hematopoietic niche in the bone microenvironment. Clin Dev Immunol 2013; 2013:107321. [PMID: 24023563 PMCID: PMC3654658 DOI: 10.1155/2013/107321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/06/2013] [Indexed: 02/04/2023]
Abstract
Osteoblasts support hematopoietic cell development, including B lymphopoiesis. We have previously shown that the nuclear factor of activated T cells (NFAT) negatively regulates osteoblast differentiation and bone formation. Interestingly, in smooth muscle, NFAT has been shown to regulate the expression of vascular cellular adhesion molecule-1 (VCAM-1), a mediator of cell adhesion and signaling during leukocyte development. To examine whether NFAT signaling in osteoblasts regulates hematopoietic development in vivo, we generated a mouse model expressing dominant-negative NFAT driven by the 2.3 kb fragment of the collagen-αI promoter to disrupt NFAT activity in osteoblasts (dnNFATOB). Bone histomorphometry showed that dnNFATOB mice have significant increases in bone volume (44%) and mineral apposition rate (131%) and decreased trabecular thickness (18%). In the bone microenvironment, dnNFATOB mice displayed a significant increase (87%) in Lineage−cKit+Sca-1+ (LSK) cells and significant decreases in B220+CD19−IgM− pre-pro-B cells (41%) and B220+CD19+IgM+ immature B cells (40%). Concurrent with these findings, LSK cell differentiation into B220+ cells was inhibited when cocultured on differentiated primary osteoblasts harvested from dnNFATOB mice. Gene expression and protein levels of VCAM-1 in osteoblasts decreased in dnNFATOB mice compared to controls. These data suggest that osteoblast-specific NFAT activity mediates early B lymphopoiesis, possibly by regulating VCAM-1 expression on osteoblasts.
Collapse
|
21
|
Sun C, Zhang YY, Tang CL, Wang SC, Piao HL, Tao Y, Zhu R, Du MR, Li DJ. Chemokine CCL28 induces apoptosis of decidual stromal cells via binding CCR3/CCR10 in human spontaneous abortion. Mol Hum Reprod 2013; 19:676-86. [PMID: 23737337 DOI: 10.1093/molehr/gat038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spontaneous abortion is the most common complication of pregnancy. Immune activation and the subsequent inflammation-induced tissue injury are often observed at the maternal-fetal interface as the final pathological assault in recurrent spontaneous abortion. However, the precise mechanisms responsible for spontaneous abortion involving inflammation are not fully understood. Chemokine CCL28 and its receptors CCR3 and CCR10 are important regulators in inflammatory process. Here, we examined the expression of CCL28 and its receptors in decidual stromal cells (DSCs) by immunochemistry and flow cytometry (FCM), and compared their expression level in DSCs from normal pregnancy versus spontaneous abortion, and their relationship to inflammatory cytokines production by DSCs. We further analyzed regulation of the pro-inflammatory cytokines on CCL28 expression in DSCs by real-time polymerase chain reaction, In-cell Western and FCM. The effects of CCL28-CCR3/CCR10 interaction on DSC apoptosis was investigated by Annexin V staining and FCM analysis or DAPI staining and nuclear morphology. Higher levels of the inflammatory cytokines interleukin (IL)-1β, IL-17A and tumor necrosis factor-α, and increased CCR3/CCR10 expression were observed in DSCs from spontaneous abortion compared with normal pregnancy. Treatment with inflammatory cytokines differently affected CCL28 and CCR3/CCR10 expression in DSCs. Human recombinant CCL28 promoted DSC apoptosis, which was eliminated by pretreatment with neutralizing antibodies against CCR3/CCR10 and CCL28. However, CCL28 did not affect DSC growth. These results suggest that the inflammation-promoted up-regulation of CCL28 and its receptors interaction in DSCs is involved in human spontaneous abortion via inducing DSC apoptosis.
Collapse
Affiliation(s)
- Chan Sun
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cyclosporine A promotes in vitro migration of human first-trimester trophoblasts via MAPK/ERK1/2-mediated NF-κB and Ca2+/calcineurin/NFAT signaling. Placenta 2013; 34:374-80. [DOI: 10.1016/j.placenta.2013.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 01/24/2023]
|
23
|
Piao HL, Wang SC, Tao Y, Zhu R, Sun C, Fu Q, Du MR, Li DJ. Cyclosporine A enhances Th2 bias at the maternal-fetal interface in early human pregnancy with aid of the interaction between maternal and fetal cells. PLoS One 2012; 7:e45275. [PMID: 23028901 PMCID: PMC3459906 DOI: 10.1371/journal.pone.0045275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/15/2012] [Indexed: 12/01/2022] Open
Abstract
Our previous study has demonstrated that cyclosporine A (CsA) administration in vivo induces Th2 bias at the maternal-fetal interface, leading to improved murine pregnancy outcomes. Here, we investigated how CsA treatment in vitro induced Th2 bias at the human maternal-fetal interface in early pregnancy. The cell co-culture in vitro in different combination of component cells at the maternal-fetal interface was established to investigate the regulation of CsA on cytokine production from the interaction of these cells. It was found that interferon (IFN)-γ was produced only by decidual immune cells (DICs), and not by trophoblasts or decidual stromal cells (DSCs); all these cells secreted interleukin (IL)-4, IL-10, and tumor necrosis factor (TNF)-α. Treatment with CsA completely blocked IFN-γ production in DICs and inhibited TNF-α production in all examined cells. CsA increased IL-10 and IL-4 production in trophoblasts co-cultured with DSCs and DICs although CsA treatment did not affect IL-10 or IL-4 production in any of the cells when cultured alone. These results suggest that CsA promotes Th2 bias at the maternal-fetal interface by increasing Th2-type cytokine production in trophoblasts with the aid of DSCs and DICs, while inhibiting Th1-type cytokine production in DICs and TNF-α production in all investigated cells. Our study might be useful in clinical therapeutics for spontaneous pregnancy wastage and other pregnancy complications.
Collapse
Affiliation(s)
- Hai-Lan Piao
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Song-Cun Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yu Tao
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Zhu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Chan Sun
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Qiang Fu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Mei-Rong Du
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- * E-mail: (M-RD); (D-JL)
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Department of Obstetrics and Gynecology, Hainan Medical College Affiliated Hospital, Haikou, China
- * E-mail: (M-RD); (D-JL)
| |
Collapse
|