1
|
Quelhas AR, Mariana M, Cairrao E. Prenatal Exposure to Dibutyl Phthalate and Its Negative Health Effects on Offspring: In Vivo and Epidemiological Studies. J Xenobiot 2024; 14:2039-2075. [PMID: 39728417 DOI: 10.3390/jox14040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Dibutyl phthalate (DBP) is a low-molecular-weight phthalate commonly found in personal care products, such as perfumes, aftershaves, and nail care items, as well as in children's toys, pharmaceuticals, and food products. It is used to improve flexibility, make polymer products soft and malleable, and as solvents and stabilizers in personal care products. Pregnancy represents a critical period during which both the mother and the developing embryo can be significantly impacted by exposure to endocrine disruptors. This article aims to elucidate the effects of prenatal exposure to DBP on the health and development of offspring, particularly on the reproductive, neurological, metabolic, renal, and digestive systems. Extensive research has examined the effects of DBP on the male reproductive system, where exposure is linked to decreased testosterone levels, reduced anogenital distance, and male infertility. In terms of the female reproductive system, DBP has been shown to elevate serum estradiol and progesterone levels, potentially compromising egg quality. Furthermore, exposure to this phthalate adversely affects neurodevelopment and is associated with obesity, metabolic disorders, and conditions such as hypospadias. These findings highlight how urgently stronger laws prohibiting the use of phthalates during pregnancy are needed to lower the risks to the fetus's health and the child's development.
Collapse
Affiliation(s)
- Ana R Quelhas
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Sciences (FC-UBI), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Melissa Mariana
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Sciences (FC-UBI), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Elisa Cairrao
- Faculty of Sciences (FC-UBI), University of Beira Interior, 6201-001 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
2
|
Ribeiro JC, Rodrigues BC, Bernardino RL, Alves MG, Oliveira PF. The interactome of cystic fibrosis transmembrane conductance regulator and its role in male fertility: A critical review. J Cell Physiol 2024; 239:e31422. [PMID: 39324358 DOI: 10.1002/jcp.31422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic adenosine monophosphate (cAMP)-regulated chloride and bicarbonate ion channel found in many human cells. Its unique biochemical characteristics and role as a member of the adenosine triphosphate (ATP)-binding cassette transporters superfamily are pivotal for the transport of several substrates across cellular membranes. CFTR is known to interact, physically and functionally, with several other cellular proteins. Hence, its properties are essential for moving various substances across cell membranes and ensuring correct cell functioning. Genetic mutations or environmental factors may disrupt CFTR's function resulting in different possible phenotypes due to gene variations that affect not only CFTR's function, localization, and processing within cells, but also those of its interactors. This has been reported as an underlying cause of various diseases, including cystic fibrosis. The severe clinical implications of cystic fibrosis have driven intense research into the role of CFTR in lung function but its significance to fertility, particularly in men, has been comparatively understudied. However, ongoing and more recent research into CFTR and its interacting proteins in the testis or specific testicular cells is beginning to shed light on this field. Herein, we provide a comprehensive and up-to-date overview of the CFTR, its interactome, and its crucial role in male reproduction, highlighting recent discoveries and advancements in understanding the molecular mechanisms involved. The comprehension of these complex interactions may pave the way for potential therapeutic approaches to improve fertility of men suffering from alterations in the function of CFTR.
Collapse
Grants
- This research was funded by "Fundação para a Ciência e a Tecnologia"-FCT to UMIB (UIDB/00215/2020, and UIDP/00215/2020), ITR-Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020) and the post-graduation students João C. Ribeiro (UI/BD/150749/2020). The work was co-funded by FEDER through the COMPETE/QREN, FSE/POPH and POCI-COMPETE 2020 (POCI-01-0145-FEDER-007491) funds.
- Pedro F. Oliveira is funded by national funds through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus-Institutional Call-reference CEEC-INST/00026/2018.
- This work also received support and help from FCT/MCTES to LAQV-REQUIMTE (LA/P/0008/202 - DOI 10.54499/LA/P/0008/2020; UIDP/50006/2020 - DOI 10.54499/UIDP/50006/2020; and UIDB/50006/2020 - DOI 10.54499/UIDB/50006/2020) and to iBiMed (UIDB/04501/2020 - DOI 10.54499/UIDB/04501/2020 and UIDP/04501/2020 - DOI 10.54499/UIDP/04501/2020), through national funds
- This research was funded by "Fundação para a Ciência e a Tecnologia"-FCT to UMIB (UIDB/00215/2020, and UIDP/00215/2020), ITR-Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020) and the post-graduation students João C. Ribeiro (UI/BD/150749/2020). The work was co-funded by FEDER through the COMPETE/QREN, FSE/POPH and POCI-COMPETE 2020 (POCI-01-0145-FEDER-007491) funds. Pedro F. Oliveira is funded by national funds through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus-Institutional Call-reference CEEC-INST/00026/2018. This work also received support and help from FCT/MCTES to LAQV-REQUIMTE (LA/P/0008/202 - DOI 10.54499/LA/P/0008/2020; UIDP/50006/2020 - DOI 10.54499/UIDP/50006/2020; and UIDB/50006/2020 - DOI 10.54499/UIDB/50006/2020) and to iBiMed (UIDB/04501/2020 - DOI 10.54499/UIDB/04501/2020 and UIDP/04501/2020 - DOI 10.54499/UIDP/04501/2020), through national funds
Collapse
Affiliation(s)
- João C Ribeiro
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bernardo C Rodrigues
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Raquel L Bernardino
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Yan Q, Wang Q, Zhang Y, Yuan L, Hu J, Zhao X. The Novel-m0230-3p miRNA Modulates the CSF1/CSF1R/Ras Pathway to Regulate the Cell Tight Junctions and Blood-Testis Barrier in Yak. Cells 2024; 13:1304. [PMID: 39120333 PMCID: PMC11311379 DOI: 10.3390/cells13151304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The yak (Bos grunniens) is a valuable livestock animal endemic to the Qinghai-Tibet Plateau in China with low reproductive rates. Cryptorchidism is one of the primary causes of infertility in male yaks. Compared with normal testes, the tight junctions (TJs) of Sertoli cells (SCs) and the integrity of the blood-testis barrier (BTB) in cryptorchidism are both disrupted. MicroRNAs are hairpin-derived RNAs of about 19-25 nucleotides in length and are involved in a variety of biological processes. Numerous studies have shown the involvement of microRNAs in the reproductive physiology of yak. In this study, we executed RNA sequencing (RNA-seq) to describe the expression profiles of mRNAs and microRNAs in yaks with normal testes and cryptorchidism to identify differentially expressed genes. GO and KEGG analyses were used to identify the biological processes and signaling pathways which the target genes of the differentially expressed microRNAs primarily engaged. It was found that novel-m0230-3p is an important miRNA that significantly differentiates between cryptorchidism and normal testes, and it is down-regulated in cryptorchidism with p < 0.05. Novel-m0230-3p and its target gene CSF1 both significantly contribute to the regulation of cell adhesion and tight junctions. The binding sites of novel-m0230-3p with CSF1 were validated by a dual luciferase reporter system. Then, mimics and inhibitors of novel-m0230-3p were transfected in vitro into SCs, respectively. A further analysis using qRT-PCR, immunofluorescence (IF), and Western blotting confirmed that the expression of cell adhesion and tight-junction-related proteins Occludin and ZO-1 both showed changes. Specifically, both the mRNA and protein expression levels of Occludin and ZO-1 in SCs decreased after transfection with the novel-m0230-3p mimics, while they increased after transfection with the inhibitors, with p < 0.05. These were achieved via the CSF1/CSF1R/Ras signaling pathway. In summary, our findings indicate a negative miRNA-mRNA regulatory network involving the CSF1/CSF1R/Ras signaling pathway in yak SCs. These results provide new insights into the molecular mechanisms of CSF1 and suggest that novel-m0230-3p and its target protein CSF1 could be used as potential therapeutic targets for yak cryptorchidism.
Collapse
Affiliation(s)
- Qiu Yan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Y.Z.); (L.Y.); (J.H.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Y.Z.); (L.Y.); (J.H.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Y.Z.); (L.Y.); (J.H.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Y.Z.); (L.Y.); (J.H.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Y.Z.); (L.Y.); (J.H.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Y.Z.); (L.Y.); (J.H.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
4
|
Sadek KM, AbdEllatief HY, Mahmoud SFE, Alexiou A, Papadakis M, Al‐Hajeili M, Saad HM, Batiha GE. New insights on testicular cancer prevalence with novel diagnostic biomarkers and therapeutic approaches. Cancer Rep (Hoboken) 2024; 7:e2052. [PMID: 38507271 PMCID: PMC10953835 DOI: 10.1002/cnr2.2052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Testicular cancer (TC), comprising merely 1% of male neoplasms, holds the distinction of being the most commonly encountered neoplasm among young males. RECENT FINDINGS Most cases of testicular neoplasms can be classified into two main groups, namely germ cell tumors representing approximately 95% of the cases, and sex cord-stromal tumors accounting for about 5% of the cases. Moreover, its prevalence is on the rise across the globe. TC is a neoplastic condition characterized by a favorable prognosis. The advent of cisplatin-based chemotherapeutic agents in the latter part of the 1970s has led to a significant enhancement in the 5-year survival rate, which presently surpasses 95%. Given that TC is commonly detected before reaching the age of 40, it can be anticipated that these individuals will enjoy an additional 40-50 years of life following successful treatment. The potential causes of TC are multifactorial and related to different pathologies. Accurate identification is imperative to guarantee the utmost efficacious and suitable therapy. To a certain degree, this can be accomplished through the utilization of blood examinations for neoplastic indicators; nonetheless, an unequivocal diagnosis necessitates an evaluation of the histological composition of a specimen via a pathologist. CONCLUSION TC is multifactorial and has various pathologies, therefore this review aimed to revise the prenatal and postnatal causes as well as novel diagnostic biomarkers and the therapeutic strategies of TC.
Collapse
Affiliation(s)
- Kadry M. Sadek
- Department of Biochemistry, Faculty of Veterinary MedicineDamanhour UniversityAbadiyyat DamanhurEgypt
| | - Hazem Y. AbdEllatief
- Department of Biochemistry, Faculty of Veterinary MedicineDamanhour UniversityAbadiyyat DamanhurEgypt
| | - Sahar F. E. Mahmoud
- Department of Histology, Faculty of Veterinary MedicineDamanhour UniversityAbadiyyat DamanhurEgypt
| | - Athanasios Alexiou
- University Centre for Research and DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research and Development, FunogenAthensGreece
- Department of Research and DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Marwan Al‐Hajeili
- Department of MedicineKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMarsa MatruhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
5
|
Liu P, Shao Y, Liu C, Lv X, Afedo SY, Bao W. Special Staining and Protein Expression of VEGF/EGFR and P53/NF-κB in Cryptorchid Tissue of Erhualian Pigs. Life (Basel) 2024; 14:100. [PMID: 38255715 PMCID: PMC10817362 DOI: 10.3390/life14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Erhualian pigs exhibit one of the highest reproductive rates globally, and cryptorchidism is a crucial factor affecting reproductive abilities of boars. This investigation focused on cryptorchid tissues from Erhualian pigs, where the histological structure of cryptorchidism was observed using specialized staining. In addition, protein expression of P53/NF-κB in cryptorchid tissues was assessed using Western blot and immunohistochemistry. In comparison to normal Erhualian testes, Masson's trichrome staining indicated a reduction in collagen fibers in the connective tissue and around the basal membrane of the seminiferous tubules in cryptorchid testes. Moreover, collagen fiber distribution was observed to be disordered. Verhoeff Van Gieson (EVG) and argyrophilic staining demonstrated brownish-black granular nucleoli organized regions in mesenchymal cells and germ cells. When compared to normal testicles, the convoluted seminiferous tubules of cryptorchids exhibited a significantly reduced number and diameter (p < 0.01). Notably, VEGF/EGFR and P53/NF-κB expression in cryptorchidism significantly differed from that in normal testes. In particular, the expression of VEGF and P53 in cryptorchid tissues was significantly higher than that in normal testes tissues, whereas the expression of EGFR in cryptorchid tissues was significantly lower than that in normal testes tissues (all p < 0.01). NF-κB expressed no difference in both conditions. The expressions of VEGF and NF-κB were observed in the cytoplasm of testicular Leydig cells and spermatogenic cells, but they were weak in the nucleus. EGFR and P53 were more positively expressed in the cytoplasm of these cells, with no positive expression in the nucleus. Conclusion: There were changes in the tissue morphology and structure of the cryptorchid testis, coupled with abnormally high expression of VEGF and P53 proteins in Erhualian pigs. We speculate that this may be an important limiting factor to fecundity during cryptorchidism.
Collapse
Affiliation(s)
- Penggang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Yiming Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Caihong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Seth Yaw Afedo
- Department of Animal Science, School of Agriculture, University of Cape Coast, Cape Coast P.O. Box 5007, Ghana
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Mukherjee AG, Valsala Gopalakrishnan A. The interplay of arsenic, silymarin, and NF-ĸB pathway in male reproductive toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114614. [PMID: 36753973 DOI: 10.1016/j.ecoenv.2023.114614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Arsenic toxicity is one of the most trending reasons for several malfunctions, particularly reproductive toxicity. The exact mechanism of arsenic poisoning is a big question mark. Exposure to arsenic reduces sperm count, impairs fertilization, and causes inflammation and genotoxicity through interfering with autophagy, epigenetics, ROS generation, downregulation of essential protein expression, metabolite changes, and hampering several signaling cascades, particularly by the alteration of NF-ĸB pathway. This work tries to give a clear idea about the different aspects of arsenic resulting in male reproductive complications, often leading to infertility. The first part of this article explains the implications of arsenic poisoning and the crosstalk of the NF-ĸB pathway in male reproductive toxicity. Silymarin is a bioactive compound that exerts anti-cancer and anti-inflammatory properties and has demonstrated hopeful outcomes in several cancers, including colon cancer, breast cancer, and skin cancer, by downregulating the hyperactive NF-ĸB pathway. The next half of this article thus sheds light on silymarin's therapeutic potential in inhibiting the NF-ĸB signaling cascade, thus offering protection against arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
7
|
Maharajan T, Chellasamy G, Tp AK, Ceasar SA, Yun K. The role of metal transporters in phytoremediation: A closer look at Arabidopsis. CHEMOSPHERE 2023; 310:136881. [PMID: 36257391 DOI: 10.1016/j.chemosphere.2022.136881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Pollution of the environment by heavy metals (HMs) has recently become a global issue, affecting the health of all living organisms. Continuous human activities (industrialization and urbanization) are the major causes of HM release into the environment. Over the years, two methods (physical and chemical) have been widely used to reduce HMs in polluted environment. However, these two methods are inefficient and very expensive to reduce the HMs released into the atmosphere. Alternatively, researchers are trying to remove the HMs by employing hyper-accumulator plants. This method, referred to phytoremediation, is highly efficient, cost-effective, and eco-friendly. Phytoremediation can be divided into five types: phytostabilization, phytodegradation, rhizofiltration, phytoextraction, and phytovolatilization, all of which contribute to HMs removal from the polluted environment. Brassicaceae family members (particularly Arabidopsis thaliana) can accumulate more HMs from the contaminated environment than those of other plants. This comprehensive review focuses on how HMs pollute the environment and discusses the phytoremediation measures required to reduce the impact of HMs on the environment. We discuss the role of metal transporters in phytoremediation with a focus on Arabidopsis. Then draw insights into the role of genome editing tools in enhancing phytoremediation efficiency. This review is expected to initiate further research to improve phytoremediation by biotechnological approaches to conserve the environment from pollution.
Collapse
Affiliation(s)
- Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea
| | - Ajeesh Krishna Tp
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India
| | - Stanislaus Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
8
|
Hou L, Wang D, Yin K, Zhang Y, Lu H, Guo T, Li J, Zhao H, Xing M. Polystyrene microplastics induce apoptosis in chicken testis via crosstalk between NF-κB and Nrf2 pathways. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109444. [PMID: 36007826 DOI: 10.1016/j.cbpc.2022.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
Abstract
Microplastics (MPs) are a new type of pollutants that are widespread in nature, and their toxic effects on humans or animals are receiving attention. Birds are in a higher ecological niche in nature, and MPs may have potential bioaccumulation and biomagnification risks to birds. The mechanisms underlying the reproductive toxicity of MPs to birds are mainly unknown. To study the reproductive toxicity of MPs to birds, we randomly divided chickens into six groups and exposed polystyrene microplastics (PS-MPs) through drinking water (0, 1, and 100 mg/L) for 28 and 42 days. We found that PS-MPs caused testicular inflammatory infiltration and interstitial hemorrhage, resulting in testicular tissue damage; the expression of Claudin3 and Occludin in the blood-testis barrier (BTB) decreased and may damage the integrity of the BTB. PS-MPs exposure inhibited the expression of the Nrf2-Keap1 pathway, which in turn reduced HO-1 and NQO1, simultaneous GSH and T-AOC were also reduced, resulting in an imbalance of the redox system; in addition, the NF-κB signaling pathway was activated, increasing the expression of TNF-α, COX-2 and iNOS. Under redox system imbalance and inflammatory stress, exposure to PS-MPs led to decreased expression of Bcl-2 and increased Bax, cytc, caspase-8, and caspase-3, etc., activating apoptosis, and ultimately causing testicular damage. These results suggested that PS-MPs exposure led to an imbalance of the redox system and an inflammatory response, inducing both endogenous and exogenous apoptosis, resulting in testicular tissue damage. Our study provides a theoretical basis for reproductive injury mechanisms in chicken.
Collapse
Affiliation(s)
- Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Junbo Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
9
|
Rachamalla M, Chinthada J, Kushwaha S, Putnala SK, Sahu C, Jena G, Niyogi S. Contemporary Comprehensive Review on Arsenic-Induced Male Reproductive Toxicity and Mechanisms of Phytonutrient Intervention. TOXICS 2022; 10:toxics10120744. [PMID: 36548577 PMCID: PMC9784647 DOI: 10.3390/toxics10120744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/26/2023]
Abstract
Arsenic (As) is a poisonous metalloid that is toxic to both humans and animals. Drinking water contamination has been linked to the development of cancer (skin, lung, urinary bladder, and liver), as well as other disorders such as diabetes and cardiovascular, gastrointestinal, neurological, and developmental damage. According to epidemiological studies, As contributes to male infertility, sexual dysfunction, poor sperm quality, and developmental consequences such as low birth weight, spontaneous abortion, and small for gestational age (SGA). Arsenic exposure negatively affected male reproductive systems by lowering testicular and accessory organ weights, and sperm counts, increasing sperm abnormalities and causing apoptotic cell death in Leydig and Sertoli cells, which resulted in decreased testosterone synthesis. Furthermore, during male reproductive toxicity, several molecular signalling pathways, such as apoptosis, inflammation, and autophagy are involved. Phytonutrient intervention in arsenic-induced male reproductive toxicity in various species has received a lot of attention over the years. The current review provides an in-depth summary of the available literature on arsenic-induced male toxicity, as well as therapeutic approaches and future directions.
Collapse
Affiliation(s)
- Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Joshi Chinthada
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Sravan Kumar Putnala
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
10
|
Tang X, Li D, Zhao T, Zhu S, Gao X, Zhou R, Deng F, Fu W, Jia W, Liu G. The inhibition of CFTR in the descended testis of SD rats with unilateral cryptorchidism induced by di-(2-ethylhexyl) phthalate (DEHP). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77047-77056. [PMID: 35676569 DOI: 10.1007/s11356-022-21134-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a kind of environmental endocrine disruptors (EEDs), which has been confirmed to cause serious consequences, such as cryptorchidism. Patients with unilateral cryptorchidism still had oligospermia or infertility even if they received orchidopexy before puberty. Testicular dysgenesis syndrome (TDS) attributes this kind of problems to the abnormal testicular development during the embryonic period, and considers that the environmental exposure factors during pregnancy play a major role. Therefore, for unilateral cryptorchidism, even if one testicle has dropped to scrotum, it may be exposed to these substances and cause damage. Cystic fibrosis transmembrane conduction regulator (CFTR) is very important for the maturation of male reproductive system. Previously, cryptorchidism was thought to cause abnormal expression of heat sensitive protein CFTR in testis, but the expression of CFTR in healthy side (descended side) testis was not clear. In this study, we established SD rats with unilateral cryptorchidism by exposure to DEHP (500 mg/kg/day) during pregnancy, and detected the expression of CFTR and downstream signal NF-κB/COX-2/PGE2 in bilateral testis. Finally, we found that the expression of CFTR and downstream signal NF-κB/COX-2/PGE2 in the undescended testis was significantly abnormal, but the expression of them in the descended testis was also abnormal to some extent. Therefore, we speculate that in addition to high temperature will affect the expression of CFTR, there may be other factors that cause abnormal expression of CFTR induced by DEHP, and lead to abnormal male reproductive function eventually, but the specific mechanism needs to be further studied.
Collapse
Affiliation(s)
- Xiangliang Tang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Dian Li
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Shibo Zhu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Xiaofeng Gao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Rui Zhou
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Fuming Deng
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China.
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
11
|
Mu Y, Yin TL, Zhang Y, Yang J, Wu YT. Diet-induced obesity impairs spermatogenesis: the critical role of NLRP3 in Sertoli cells. Inflamm Regen 2022; 42:24. [PMID: 35915511 PMCID: PMC9344614 DOI: 10.1186/s41232-022-00203-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Background Accumulating evidence indicates a key role of Sertoli cell (SC) malfunction in spermatogenesis impairment induced by obesity. Nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) is expressed in SCs, but the role of NLRP3 in the pathological process of obesity-induced male infertility remains unclear. Methods NLRP3-deficient mice were fed a high-fat diet for 24 weeks to establish obesity-related spermatogenesis impairment. In another set of experiments, a lentiviral vector containing a microRNA (miR)-451 inhibitor was injected into AMP-activated protein kinase α (AMPKα)-deficient mouse seminiferous tubules. Human testis samples were obtained by testicular puncture from men with obstructive azoospermia whose samples exhibited histologically normal spermatogenesis. Isolated human SCs were treated with palmitic acid (PA) to mimic obesity model in vitro. Results Increased NLRP3 expression was observed in the testes of obese rodents. NLRP3 was also upregulated in PA-treated human SCs. NLRP3 deficiency attenuated obesity-related male infertility. SC-derived NLRP3 promoted interleukin-1β (IL-1β) secretion to impair testosterone synthesis and sperm performance and increased matrix metalloproteinase-8 (MMP-8) expression to degrade occludin via activation of nuclear factor-kappa B (NF-κB). Increased miR-451 caused by obesity, decreased AMPKα expression and sequentially increased NADPH oxidase activity were responsible for the activation of NLRP3. miR-451 inhibition protected against obesity-related male infertility, and these protective effects were abolished by AMPKα deficiency in mice. Conclusions NLRP3 promoted obesity-related spermatogenesis impairment. Increased miR-451 expression, impaired AMPKα pathway and the subsequent ROS production were responsible for NLRP3 activation. Our study provides new insight into the mechanisms underlying obesity-associated male infertility. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00203-z.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan-Ting Wu
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
12
|
Gao Y, Wang C, Wang K, He C, Hu K, Liang M. The effects and molecular mechanism of heat stress on spermatogenesis and the mitigation measures. Syst Biol Reprod Med 2022; 68:331-347. [PMID: 35722894 DOI: 10.1080/19396368.2022.2074325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Under normal conditions, to achieve optimal spermatogenesis, the temperature of the testes should be 2-6 °C lower than body temperature. Cryptorchidism is one of the common pathogenic factors of male infertility. The increase of testicular temperature in male cryptorchidism patients leads to the disorder of body regulation and balance, induces the oxidative stress response of germ cells, destroys the integrity of sperm DNA, yields morphologically abnormal sperm, and leads to excessive apoptosis of germ cells. These physiological changes in the body can reduce sperm fertility and lead to male infertility. This paper describes the factors causing testicular heat stress, including lifestyle and behavioral factors, occupational and environmental factors (external factors), and clinical factors caused by pathological conditions (internal factors). Studies have shown that wearing tight pants or an inappropriate posture when sitting for a long time in daily life, and an increase in ambient temperature caused by different seasons or in different areas, can cause an increase in testicular temperature, induces testicular oxidative stress response, and reduce male fertility. The occurrence of cryptorchidism causes pathological changes within the testis and sperm, such as increased germ cell apoptosis, DNA damage in sperm cells, changes in gene expression, increase in chromosome aneuploidy, and changes in Na+/K+-ATPase activity, etc. At the end of the article, we list some substances that can relieve oxidative stress in tissues, such as trigonelline, melatonin, R. apetalus, and angelica powder. These substances can protect testicular tissue and relieve the damage caused by excessive oxidative stress.
Collapse
Affiliation(s)
- Yuanyuan Gao
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Chen Wang
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Kaixian Wang
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Chaofan He
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| |
Collapse
|
13
|
Preconception exposure to dibutyl phthalate (DBP) impairs spermatogenesis by activating NF-κB/COX-2/RANKL signaling in Sertoli cells. Toxicology 2022; 474:153213. [DOI: 10.1016/j.tox.2022.153213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022]
|
14
|
Chen XW, Chu JH, Li LX, Gao PC, Wang ZY, Fan RF. Protective mechanism of selenium on mercuric chloride-induced testis injury in chicken via p38 MAPK/ATF2/iNOS signaling pathway. Theriogenology 2022; 187:188-194. [DOI: 10.1016/j.theriogenology.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/31/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022]
|
15
|
Choy KHK, Chan SY, Lam W, Jin J, Zheng T, Law TYS, Yu SS, Wang W, Li L, Xie G, Yim HCH, Chen H, Fok EKL. The repertoire of testicular extracellular vesicle cargoes and their involvement in inter-compartmental communication associated with spermatogenesis. BMC Biol 2022; 20:78. [PMID: 35351114 PMCID: PMC8966158 DOI: 10.1186/s12915-022-01268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Background Spermatogenesis is regulated by a complex network of intercellular communication processes. Extracellular vesicles (EVs) are one of the important mediators in intercellular communication. Previous reports have demonstrated the involvement of EVs from the epididymis and prostate in sperm maturation and function. However, the presence of EVs in the testis and their potential involvement in spermatogenesis has not been explored. Here, we have established a testis dissociation protocol that allows the isolation and characterization of testicular EVs. Results We show that testicular EVs are specifically and efficiently taken up by somatic cells and germ cells, including the spermatozoa in the interstitial space and the seminiferous tubule compartments. We profiled the proteome of testicular EVs and probed the cell types that release them, revealing the potential contributions from the Leydig cells and testicular macrophages. Moreover, we sequenced the small RNA cargoes of testicular EVs and identified sets of small non-coding RNAs that were overlooked in the testis transcriptome. Selected miRNA candidates in testicular EVs were found in sperm RNA payload and demonstrated specific resistance towards ribonuclease A independent of the vesicle membrane. Small molecule inhibition of EV secretion perturbed spermatogenesis via inter-compartmental communication. Conclusions Together, our study provides a valuable resource on the repertoire of cargoes carried by testicular EVs and uncovers a physiological function of testicular EVs in inter-compartmental communication associated to spermatogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01268-5.
Collapse
Affiliation(s)
- Kathleen Hoi Kei Choy
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Sze Yan Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - William Lam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jing Jin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Tingting Zheng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Tin Yu Samuel Law
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Sidney Siubun Yu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Weiping Wang
- Dr. Li Dak-Sum Research Centre, University of Hong Kong, Hong Kong, SAR, China
| | - Linxian Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Hong Kong, SAR, China
| | - Gangcai Xie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, People's Republic of China
| | - Howard Chi Ho Yim
- Microbiome Research Centre, St George and Sutherland Clinical School, The University of New South Wales, Sydney, Australia
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, People's Republic of China.
| | - Ellis Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China. .,Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, People's Republic of China.
| |
Collapse
|
16
|
Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol 2021; 12:643972. [PMID: 33927623 PMCID: PMC8078867 DOI: 10.3389/fphar.2021.643972] [Citation(s) in RCA: 713] [Impact Index Per Article: 178.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
The industrial activities of the last century have caused massive increases in human exposure to heavy metals. Mercury, lead, chromium, cadmium, and arsenic have been the most common heavy metals that induced human poisonings. Here, we reviewed the mechanistic action of these heavy metals according to the available animal and human studies. Acute or chronic poisonings may occur following exposure through water, air, and food. Bioaccumulation of these heavy metals leads to a diversity of toxic effects on a variety of body tissues and organs. Heavy metals disrupt cellular events including growth, proliferation, differentiation, damage-repairing processes, and apoptosis. Comparison of the mechanisms of action reveals similar pathways for these metals to induce toxicity including ROS generation, weakening of the antioxidant defense, enzyme inactivation, and oxidative stress. On the other hand, some of them have selective binding to specific macromolecules. The interaction of lead with aminolevulinic acid dehydratase and ferrochelatase is within this context. Reactions of other heavy metals with certain proteins were discussed as well. Some toxic metals including chromium, cadmium, and arsenic cause genomic instability. Defects in DNA repair following the induction of oxidative stress and DNA damage by the three metals have been considered as the cause of their carcinogenicity. Even with the current knowledge of hazards of heavy metals, the incidence of poisoning remains considerable and requires preventive and effective treatment. The application of chelation therapy for the management of metal poisoning could be another aspect of heavy metals to be reviewed in the future.
Collapse
Affiliation(s)
- Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Kobra Naseri
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zoya Tahergorabi
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
17
|
Gu J, Zhang W, Wu L, Gu Y. CFTR Deficiency Affects Glucose Homeostasis via Regulating GLUT4 Plasma Membrane Transportation. Front Cell Dev Biol 2021; 9:630654. [PMID: 33659254 PMCID: PMC7917208 DOI: 10.3389/fcell.2021.630654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/27/2021] [Indexed: 12/02/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. CF-related diabetes (CFRD) is one of the most prevalent comorbidities of CF. Altered glucose homeostasis has been reported in CF patients. The mechanism has not been fully elucidated. Besides the consequence of pancreatic endocrine dysfunction, we focus on insulin-responsive tissues and glucose transportation to explain glucose homeostasis alteration in CFRD. Herein, we found that CFTR knockout mice exhibited insulin resistance and glucose tolerance. Furthermore, we demonstrated insulin-induced glucose transporter 4 (GLUT4) translocation to the cell membrane was abnormal in the CFTR knockout mice muscle fibers, suggesting that defective intracellular GLUT4 transportation may be the cause of impaired insulin responses and glucose homeostasis. We further demonstrated that PI(4,5)P2 could rescue CFTR related defective intracellular GLUT4 transportation, and CFTR could regulate PI(4,5)P2 cellular level through PIP5KA, suggesting PI(4,5)P2 is a down-stream signal of CFTR. Our results revealed a new signal mechanism of CFTR in GLUT4 translocation regulation, which helps explain glucose homeostasis alteration in CF patients.
Collapse
Affiliation(s)
- Junzhong Gu
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Weiwei Zhang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Lida Wu
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yuchun Gu
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing, China.,Translational and Regenerative Medicine Centre, Aston Medical School, Aston University, Birmingham, United Kingdom
| |
Collapse
|
18
|
Yefimova MG, Buschiazzo A, Burel A, Lavault MT, Pimentel C, Jouve G, Jaillard S, Jegou B, Bourmeyster N, Ravel C. Autophagy is increased in cryptorchid testis resulting in abnormal spermatozoa. Asian J Androl 2020; 21:570-576. [PMID: 31031333 PMCID: PMC6859671 DOI: 10.4103/aja.aja_12_19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autophagy is involved in spermatogenesis by regulating germ cell maturation. This catabolic process increases with hyperthermic conditions to prevent the accumulation of damaged organelles. Cryptorchidism is associated with impairment of germ cell maturation revealed by the presence of immature forms of sperm cells in ejaculates. The aim of the present study was to evaluate the status of autophagy in sperm cells from cryptorchid patients. Semen samples of cryptorchid patients and normozoospermic controls were analyzed by immunocytochemistry and electron microscopy. Autophagy proteins, autophagy-related protein 9 (ATG9) and microtubule-associated protein, 1A/1B-light chain 3 (LC3) were localized by immunocytochemistry on the acrosome and on the equatorial segment of sperm cells. LC3 was also detected in the midpiece of cryptorchid sperm tail. Autophagy substrate p62 protein was present in the acrosome and in the postequatorial segment of sperm in control samples, but not in the cryptorchid ones. Transmission electron microscopy revealed double-membrane-limited autophagosomes in postequatorial part of spermatozoa head and midpiece in cryptorchid samples. Partly degraded mitochondria were frequently discerned in autophagic vacuoles. In conclusion, autophagy is increased in sperm cells from patients with cryptorchid history comparatively to control. Our work provides insights into the role of autophagy in the maturation and survival of human male gametes in pathological conditions. Thus, regulating autophagy could represent a potential way to improve sperm quality in cryptorchid men.
Collapse
Affiliation(s)
- Marina G Yefimova
- Univ Rennes, CHU Rennes, Laboratoire de Biologie de la Reproduction -CECOS, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St-Petersburg, Russia
| | - Antoine Buschiazzo
- Univ Rennes, CHU Rennes, Laboratoire de Biologie de la Reproduction -CECOS, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France
| | - Agnes Burel
- Univ Rennes, Biosit Platform - MRIC, Rennes 35000, France
| | | | - Celine Pimentel
- Univ Rennes, CHU Rennes, Department of Gynecology Obstetric and Human Reproduction, Rennes 35000, France
| | - Guilhem Jouve
- Univ Rennes, CHU Rennes, Laboratoire de Biologie de la Reproduction -CECOS, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France
| | - Sylvie Jaillard
- Univ Rennes, CHU Rennes, Department of Cytogenetic, Irset (Institute for Environmental and Occupational Health) - UMR_S 1085, Rennes 35000, France
| | - Bernard Jegou
- Univ Rennes, Inserm, EHESP, Irset (Institute for Environmental and Occupational Health) - UMR_S 1085, Rennes F-35000, France
| | - Nicolas Bourmeyster
- University of Poitiers - CHU Poitiers, STIM ERL 7003 CNRS, Poitiers 86021, France
| | - Celia Ravel
- Univ Rennes, CHU Rennes, Laboratoire de Biologie de la Reproduction -CECOS, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France
| |
Collapse
|
19
|
Shobana N, Kumar MK, Navin AK, Akbarsha MA, Aruldhas MM. Prenatal exposure to excess chromium attenuates transcription factors regulating expression of androgen and follicle stimulating hormone receptors in Sertoli cells of prepuberal rats. Chem Biol Interact 2020; 328:109188. [PMID: 32679048 DOI: 10.1016/j.cbi.2020.109188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/06/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023]
Abstract
We have reported that gestational exposure to hexavalent chromium (CrVI) represses androgen receptor (Ar) and follicle stimulating hormone receptor (Fshr) in Sertoli cells (SCs) of adult rats, while the mechanism underlying remains obscure. We tested the hypothesis "transient gestational exposure to CrVI during the critical embryonic windows of testicular differentiation and growth may have adverse impact on transcription factors controlling the expression of Ar and Fshr in SCs of the F1 progeny". CrVI (K2Cr2O7) was given through drinking water (50 ppm, 100 ppm and 200 ppm), to pregnant rats from gestational day 9-14 (testicular differentiation) and 15 to 21 (prenatal differentiation and proliferation of SC); male progenies were sacrificed on postnatal day 30 (Completion of postnatal SC maturation). A significant increase in free radicals and decrease in enzymatic and non-enzymatic antioxidants were observed in SCs of experimental rats. Real time PCR and western blot data showed decreased expression of Ar, Fshr, Inhibin B, Transferrin, Androgen binding protein, Claudin 11 and Occludin in SCs of experimental rats; concentrations of lactate, pyruvate and retinoic acid also decreased. Serum FSH, luteinizing hormone and estradiol increased, whereas testosterone and prolactin decreased in experimental rats. Western blot detection revealed decreased levels of transcription factors regulating Fshr viz., USF-1, USF-2, SF-1, c-fos, c-jun and GATA 1, and those of Ar viz., Sp-1, ARA54, SRC-1 and CBP in experimental rats, whereas the levels of cyclinD1 and p53, repressors of Ar increased. ChIP assay detected decreased USF-1 and USF-2 binding to Fshr promoter, and binding of Sp-1 to Ar promoter. We conclude that gestational exposure to CrVI affects SC structure and function in F1 progeny by inducing oxidative stress and diminishing the expression of Ar and Fshr through attenuation of their specific transcriptional regulators and their interaction with the respective promoter.
Collapse
Affiliation(s)
- Navaneethabalakrishnan Shobana
- Department of Endocrinology, Dr.A.L.M Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, India
| | - Mani Kathiresh Kumar
- Department of Endocrinology, Dr.A.L.M Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, India
| | - Ajit Kumar Navin
- Department of Endocrinology, Dr.A.L.M Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, India
| | | | - Mariajoseph Michael Aruldhas
- Department of Endocrinology, Dr.A.L.M Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, India.
| |
Collapse
|
20
|
Ma T, Zhou Y, Xia Y, Meng X, Jin H, Wang B, Chen Y, Qiu J, Wu J, Ding J, Han X, Li D. Maternal Exposure to Di- n-butyl Phthalate Promotes the Formation of Testicular Tight Junctions through Downregulation of NF-κB/COX-2/PGE 2/MMP-2 in Mouse Offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8245-8258. [PMID: 32525310 DOI: 10.1021/acs.est.0c01701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Previous studies demonstrated that maternal exposure to di-n-butyl phthalate (DBP) resulted in developmental disorder of the male reproductive organ; however, the underlying mechanism has not been thoroughly elucidated to date. The present study was aimed to investigate the effects of maternal exposure to DBP on the formation of the Sertoli cell (SC)-based tight junctions (TJs) in the testes of male offspring mice and the underlying molecular mechanism. By observing the pathological structure and ultrastructure, permeability analysis of the testis of 22 day male offspring in vivo, and transepithelial electrical resistance measurement of inter-SCs in vitro, we found that the formation of TJs between SCs in offspring mice was accelerated, which was paralleled by the accumulation of TJ protein occludin at 50 mg/kg/day DBP exposure in utero and 0.1 mM monobutyl phthalate (MBP, the active metabolite of DBP) in vitro. Our in vitro results demonstrated that 0.1 mM MBP downregulated the expression of matrix metalloproteinase-2 (MMP-2) by inhibiting the activation of nuclear factor-κB (NF-κB)/cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) cascades via attenuated binding of NF-κB to both the MMP-2 promoter and COX-2 promoter. Taken together, the data confirmed that maternal exposure to a relatively low dose of DBP promoted the formation of testicular TJs through downregulation of NF-κB/COX-2/PGE2/MMP-2, which might promote the development of the testis during puberty. Our findings may provide new perspectives for prenatal DBP exposure, which is a potential environmental contributor, leading to earlier puberty in male offspring mice.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Bo Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yusheng Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiayin Qiu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
21
|
Kato T, Mizuno K, Nishio H, Moritoki Y, Kamisawa H, Kurokawa S, Nakane A, Maruyama T, Ando R, Hayashi Y, Yasui T. Disorganization of claudin-11 and dysfunction of the blood-testis barrier during puberty in a cryptorchid rat model. Andrology 2020; 8:1398-1408. [PMID: 32196966 DOI: 10.1111/andr.12788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cryptorchidism is known to impair spermatogenesis. The blood-testis barrier (BTB) becomes defined in seminiferous tubules around puberty and provides a suitable environment for germ cells. Little is known about the BTB in undescended testes (UDT). OBJECTIVES To determine the role of BTB during puberty in UDT using a non-surgical cryptorchid rat model. MATERIAL AND METHODS Unilateral cryptorchid male rats were intraperitoneally injected with non-steroidal antiandrogen during intrauterine development; the testes were harvested at 4, 5, and 6 weeks after birth. Testicular histology, expression levels of the BTB proteins (claudin-11, occludin, zonula occludens-1), and apoptotic cells were evaluated by immunohistochemistry, Western blotting, and TUNEL assay. The functionality of the BTB was investigated by electron microscopy using the lanthanum tracer method. RESULTS The testicular histology of undescended testes 6 weeks after birth showed maturation arrest at the spermatocyte level. The BTB protein distributions were altered in the UDT, with a noticeable difference in claudin-11(CLDN11) localization from 4 to 5 weeks after birth between control and UDT samples. BTB protein levels were similar. More apoptotic germ cells were detected in the adluminal compartment of tubules in the UDT than in the control testes. Electron microscopy showed that the lanthanum tracer was limited to the BTB of control testes, whereas it penetrated the BTB of UDT. DISCUSSION Here, loss of normal BTB function and impaired spermatogenesis were observed in UDT during puberty. CLDN11 is a pivotal tight junction protein belonging to the BTB. Tight junctions are considered as essential for normal spermatogenesis, and abnormal CLDN11 organization may cause UDT-associated male infertility. CONCLUSION CLDN11 disorganization within the BTB may cause spermatogenic impairment, possibly by limiting the BTB function.
Collapse
Affiliation(s)
- Taiki Kato
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kentaro Mizuno
- Department of Pediatric Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hidenori Nishio
- Department of Pediatric Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshinobu Moritoki
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideyuki Kamisawa
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Kurokawa
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiro Nakane
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuji Maruyama
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ryosuke Ando
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaro Hayashi
- Department of Pediatric Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
22
|
Yang Q, Soltis AR, Sukumar G, Zhang X, Caohuy H, Freedy J, Dalgard CL, Wilkerson MD, Pollard HB, Pollard BS. Gene therapy-emulating small molecule treatments in cystic fibrosis airway epithelial cells and patients. Respir Res 2019; 20:290. [PMID: 31864360 PMCID: PMC6925517 DOI: 10.1186/s12931-019-1214-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background Several small molecule corrector and potentiator drugs have recently been licensed for Cystic Fibrosis (CF) therapy. However, other aspects of the disease, especially inflammation, are less effectively treated by these drugs. We hypothesized that small molecule drugs could function either alone or as an adjuvant to licensed therapies to treat these aspects of the disease, perhaps emulating the effects of gene therapy in CF cells. The cardiac glycoside digitoxin, which has been shown to inhibit TNFα/NFκB signaling in CF lung epithelial cells, may serve as such a therapy. Methods IB3–1 CF lung epithelial cells were treated with different Vertex (VX) drugs, digitoxin, and various drug mixtures, and ELISA assays were used to assess suppression of baseline and TNFα-activated secretion of cytokines and chemokines. Transcriptional responses to these drugs were assessed by RNA-seq and compared with gene expression in AAV-[wildtype]CFTR-treated IB3–1 (S9) cells. We also compared in vitro gene expression signatures with in vivo data from biopsied nasal epithelial cells from digitoxin-treated CF patients. Results CF cells exposed to digitoxin exhibited significant suppression of both TNFα/NFκB signaling and downstream secretion of IL-8, IL-6 and GM-CSF, with or without co-treatment with VX drugs. No evidence of drug-drug interference was observed. RNA-seq analysis showed that gene therapy-treated CF lung cells induced changes in 3134 genes. Among these, 32.6% were altered by digitoxin treatment in the same direction. Shared functional gene ontology themes for genes suppressed by both digitoxin and gene therapy included inflammation (84 gene signature), and cell-cell interactions and fibrosis (49 gene signature), while genes elevated by both were enriched for epithelial differentiation (82 gene signature). A new analysis of mRNA data from digitoxin-treated CF patients showed consistent trends in expression for genes in these signatures. Conclusions Adjuvant gene therapy-emulating activities of digitoxin may contribute to enhancing the efficacy of currently licensed correctors and potentiators in CF patients.
Collapse
Affiliation(s)
- Q Yang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - A R Soltis
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - G Sukumar
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - X Zhang
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - H Caohuy
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - J Freedy
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - C L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA.,Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - M D Wilkerson
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA.,Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - H B Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA. .,Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA.
| | - B S Pollard
- Silver Pharmaceuticals, Rockville, MD, 20854, USA.
| |
Collapse
|
23
|
Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF- κB/MAPK signaling and protecting chondrocytes. Acta Pharm Sin B 2019; 9:973-985. [PMID: 31649847 PMCID: PMC6804452 DOI: 10.1016/j.apsb.2019.01.015] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/14/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
The objective was to investigate the effect of kinsenoside (Kin) treatments on macrophage polarity and evaluate the resulting protection of chondrocytes to attenuate osteoarthritis (OA) progression. RAW264.7 macrophages were polarized to M1/M2 subtypes then administered with different concentrations of Kin. The polarization transitions were evaluated with quantitative real-time polymerase chain reaction (qRT-PCR), confocal observation and flow cytometry analysis. The mechanism of Kin repolarizing M1 macrophages was evaluated by Western blot. Further, macrophage conditioned medium (CM) and IL-1β were administered to chondrocytes. Micro-CT scanning and histological observations were conducted in vivo on anterior cruciate ligament transection (ACLT) mice with or without Kin treatment. We found that Kin repolarized M1 macrophages to the M2 phenotype. Mechanistically, Kin inhibited the phosphorylation of IκBα, which further reduced the downstream phosphorylation of P65 in nuclear factor-κB (NF-κB) signaling. Moreover, Kin inhibited mitogen-activated protein kinases (MAPK) signaling molecules p-JNK, p-ERK and p-P38. Additionally, Kin attenuated macrophage CM and IL-1β-induced chondrocyte damage. In vivo, Kin reduced the infiltration of M1 macrophages, promoted M2 macrophages in the synovium, inhibited subchondral bone destruction and reduced articular cartilage damage induced by ACLT. All the results indicated that Kin is an effective therapeutic candidate for OA treatment.
Collapse
Key Words
- AP-1, activator protein-1
- Arg-1, arginase-1
- BV, bone volume
- BV/TV, bone volume/total tissue volume
- C/EBP β, CCAAT/enhancer-binding protein β
- CM, conditioned medium
- Chondrocytes
- DMEM, Dulbecco׳s minimum essential medium
- GA, gouty arthritis
- H&E, hematoxylin & eosin
- HUVECs, human umbilical vein endothelial cells
- IFN-γ, interferon-γ
- IRF4, interferon regulatory factor 4
- Kin, kinsenoside
- Kinsenoside
- LPS, lipopolysaccharides
- MAPK, mitogen-activated protein kinases
- MSU, monosodium urate
- Macrophages
- NF-κB, nuclear factor-κB
- NSAIDs, non-steroidal anti-inflammatory drugs
- OA, osteoarthritis
- OARSI, Osteoarthritis Research Society International
- Osteoarthritis
- PPARγ, peroxisome proliferator-activated receptor γ
- Polarization
- RA, rheumatoid arthritis
- ROS, reactive oxygen species
- S&F, safranin O-fast green
- TLRs, toll-like receptors
- TNF-α, tumor necrosis factor-α
- Tb.N, trabecular number
- Tb.Sp, trabecular separation
- Tb.Th, trabecular thickness
- iNOS, inducible nitric oxide synthase
Collapse
|
24
|
Mao BP, Li L, Ge R, Li C, Wong CKC, Silvestrini B, Lian Q, Cheng CY. CAMSAP2 Is a Microtubule Minus-End Targeting Protein That Regulates BTB Dynamics Through Cytoskeletal Organization. Endocrinology 2019; 160:1448-1467. [PMID: 30994903 PMCID: PMC6530524 DOI: 10.1210/en.2018-01097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/11/2019] [Indexed: 01/26/2023]
Abstract
During spermatogenesis, microtubule (MT) cytoskeleton in Sertoli cells confers blood-testis barrier (BTB) function, but the regulators and mechanisms that modulate MT dynamics remain unexplored. In this study, we examined the role of calmodulin-regulated spectrin-associated protein (CAMSAP)2 (a member of the CAMSAP/Patronin protein family), and a minus-end targeting protein (-TIP) that binds to the minus-end (i.e., slow-growing end) of polarized MTs involved in determining MT length, in Sertoli cell function. CAMSAP2 was found to localize at discrete sites across the Sertoli cell cytosol, different from end-binding protein 1 (a microtubule plus-end tracking protein that binds to the plus-end of MTs), and colocalized with MTs. CAMSAP2 displayed a stage-specific expression pattern, appearing as tracklike structures across the seminiferous epithelium in adult rat testes that lay perpendicular to the basement membrane. CAMSAP2 knockdown by RNA interference was found to promote Sertoli cell tight junction (TJ) barrier function, illustrating its role in inducing TJ remodeling under physiological conditions. To further examine the regulatory role of CAMSAP2 in BTB dynamics, we used a perfluorooctanesulfonate (PFOS)-induced Sertoli cell injury model for investigations. CAMSAP2 knockdown blocked PFOS-induced Sertoli cell injury by promoting proper distribution of BTB-associated proteins at the cell-cell interface. This effect was mediated by the ability of CAMSAP2 knockdown to block PFOS-induced disruptive organization of MTs, but also F-actin, across cell cytosol through changes in cellular distribution/localization of MT- and actin-regulatory proteins. In summary, CAMSAP2 is a regulator of MT and actin dynamics in Sertoli cells to support BTB dynamics and spermatogenesis.
Collapse
Affiliation(s)
- Bai-ping Mao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Zhejiang, China
| | - Linxi Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Zhejiang, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Zhejiang, China
| | - Chao Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Zhejiang, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China
| | | | - Qingquan Lian
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Zhejiang, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- Correspondence: C. Yan Cheng, PhD, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065. E-mail:
| |
Collapse
|
25
|
Yefimova M, Bourmeyster N, Becq F, Burel A, Lavault MT, Jouve G, Veau S, Pimentel C, Jégou B, Ravel C. Update on the cellular and molecular aspects of cystic fibrosis transmembrane conductance regulator (CFTR) and male fertility. Morphologie 2018; 103:4-10. [PMID: 30528305 DOI: 10.1016/j.morpho.2018.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/09/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022]
Abstract
CFTR protein regulates electrolyte and fluid transport in almost all tissues with exocrine function, including male reproductive tract. Mutation of CFTR gene causes cystic fibrosis (CF), which affects the function of several organs, and impairs male fertility. The role of CFTR protein in different compartments of male reproductive tract (testis, epididymis, sperm) as well as an impact of CFTR mutation(s) on male fertility phenotype is discussed in relation with the choice of optimal technique for Assisted Reproductive Techniques (ART) management.
Collapse
Affiliation(s)
- M Yefimova
- Sechenov institute of evolutionary physiology and biochemistry, Russian academy of sciences, 44M. Thorez pr, 194223 St-Petersburg, Russia; Laboratoire STIM, université de Poitiers, 1, rue Georges-Bonnet, 86022 Poitiers cedex, France; Département de gynécologie obstétrique et reproduction humaine - CECOS, CHU de Rennes, 16, boulevard de Bulgarie, 35000 Rennes, France.
| | - N Bourmeyster
- Laboratoire STIM, université de Poitiers, 1, rue Georges-Bonnet, 86022 Poitiers cedex, France.
| | - F Becq
- Laboratoire STIM, université de Poitiers, 1, rue Georges-Bonnet, 86022 Poitiers cedex, France.
| | - A Burel
- Plateforme de MRIC TEM cellulaire, BIOSIT, Université Rennes 1, 2, avenue du Pr Léon-Bernard, 35000 Rennes, France.
| | - M-T Lavault
- Plateforme de MRIC TEM cellulaire, BIOSIT, Université Rennes 1, 2, avenue du Pr Léon-Bernard, 35000 Rennes, France.
| | - G Jouve
- Département de gynécologie obstétrique et reproduction humaine - CECOS, CHU de Rennes, 16, boulevard de Bulgarie, 35000 Rennes, France.
| | - S Veau
- Département de gynécologie obstétrique et reproduction humaine - CECOS, CHU de Rennes, 16, boulevard de Bulgarie, 35000 Rennes, France.
| | - C Pimentel
- Département de gynécologie obstétrique et reproduction humaine - CECOS, CHU de Rennes, 16, boulevard de Bulgarie, 35000 Rennes, France.
| | - B Jégou
- Inserm, université Rennes, EHESP, Irset (Instiut de recherche en santé,environnement et travail)-UMR_S1085, 35000 Rennes, France; Université de Rennes 1, 2, avenue du Pr Léon-Bernard, 35000 Rennes, France.
| | - C Ravel
- Département de gynécologie obstétrique et reproduction humaine - CECOS, CHU de Rennes, 16, boulevard de Bulgarie, 35000 Rennes, France; Inserm, université Rennes, EHESP, Irset (Instiut de recherche en santé,environnement et travail)-UMR_S1085, 35000 Rennes, France; Université de Rennes 1, 2, avenue du Pr Léon-Bernard, 35000 Rennes, France.
| |
Collapse
|
26
|
Review on molecular and biochemical insights of arsenic-mediated male reproductive toxicity. Life Sci 2018; 212:37-58. [DOI: 10.1016/j.lfs.2018.09.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
|
27
|
Zhang J, Wang Y, Jiang X, Chan HC. Cystic fibrosis transmembrane conductance regulator-emerging regulator of cancer. Cell Mol Life Sci 2018; 75:1737-1756. [PMID: 29411041 PMCID: PMC11105598 DOI: 10.1007/s00018-018-2755-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/27/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis, the most common life-limiting recessive genetic disease among Caucasians. CFTR mutations have also been linked to increased risk of various cancers but remained controversial for a long time. Recent studies have begun to reveal that CFTR is not merely an ion channel but also an important regulator of cancer development and progression with multiple signaling pathways identified. In this review, we will first present clinical findings showing the correlation of genetic mutations or aberrant expression of CFTR with cancer incidence in multiple cancers. We will then focus on the roles of CFTR in fundamental cellular processes including transformation, survival, proliferation, migration, invasion and epithelial-mesenchymal transition in cancer cells, highlighting the signaling pathways involved. Finally, the association of CFTR expression levels with patient prognosis, and the potential of CFTR as a cancer prognosis indicator in human malignancies will be discussed.
Collapse
Affiliation(s)
- Jieting Zhang
- Faculty of Medicine, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Yan Wang
- Faculty of Medicine, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Xiaohua Jiang
- Faculty of Medicine, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China.
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China.
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| | - Hsiao Chang Chan
- Faculty of Medicine, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China.
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China.
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, People's Republic of China.
| |
Collapse
|
28
|
Saad DY, Soliman MM, Mohamed AA, Youssef GB. Protective effects of sea cucumber (Holothuria atra) extract on testicular dysfunction induced by immune suppressant drugs in Wistar rats. Andrologia 2018; 50:e13017. [PMID: 29687464 DOI: 10.1111/and.13017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
The current study was aimed to evaluate the protective effect of Holothurian atra (HA) extract; naturally occurring marine resource, against methotrexate (MTX) induced testicular dysfunction. Mature rats received either MTX (20 mg/kg, intraperitoneally) or saline on the 7th day of experiment al design. Seven days prior and after MTX-injection, rats received HA at dose of 300 mg/kg intragastrically (HA + MTX group; HA group alone). Serum was extracted and testicular tissues were examined for the changes in serum biochemistry (liver & kidney biomarkers, testicular hormones and antioxidants), molecular and histopthological alterations using RT-PCR and immunohistochemistry. MTX-injected rats induced alteration in all testicular parameters. Prior administration of HA ameliorated the MTX-induced oxidative stress. HA administration normalised MTX-induced decrease in serum levels of interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α), interferon-gamma (IFN-γ), reproductive hormones (FSH, LH and testosterone) and antioxidants GST, SOD and catalase. MTX-injected rats down-regulated mRNA expression of GST, SOD, steroidogenesis associated genes, IFN-γ, Bcl2 and NFKB. MTX up-regulated BAX expression and caspase 9 immunoreactivity that were ameliorated in HA + MTX group. Collectively, HA ameliorated and restored all altered genes. In conclusion, HA is a promising supplement that is helpful in protection against testicular cytotoxicity and dysfunction induced by methotrexate.
Collapse
Affiliation(s)
- D Y Saad
- Faculty of Applied Medical Sciences, Medical Laboratory Department, Taif University, Turabah, Saudi Arabia.,Faculty of Science, Biology Department, Cairo University, Cairo, Egypt
| | - M M Soliman
- Faculty of Applied Medical Sciences, Medical Laboratory Department, Taif University, Turabah, Saudi Arabia.,Faculty of Veterinary Medicine, Biochemistry Department, Benha University, Benha, Egypt
| | - A A Mohamed
- Faculty of Science, Biology Department, Taif University, Taif, Saudi Arabia.,Department of Animal Reproduction and AI, Veterinary Research Division, National Research Center, Giza, Egypt
| | - G B Youssef
- Faculty of Veterinary Medicine, Forensic Medicine and Toxicology Department, Benha University, Benha, Egypt
| |
Collapse
|
29
|
Li X, Fok KL, Guo J, Wang Y, Liu Z, Chen Z, Wang C, Ruan YC, Yu SS, Zhao H, Wu J, Jiang X, Chan HC. Retinoic acid promotes stem cell differentiation and embryonic development by transcriptionally activating CFTR. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:605-615. [DOI: 10.1016/j.bbamcr.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/03/2018] [Accepted: 01/07/2018] [Indexed: 01/11/2023]
|
30
|
Mohajeri M, Rezaee M, Sahebkar A. Cadmium-induced toxicity is rescued by curcumin: A review. Biofactors 2017; 43:645-661. [PMID: 28719149 DOI: 10.1002/biof.1376] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd) is one of the most common environmental and occupational heavy metals with extended distribution. Exposure to Cd may be associated with several deleterious consequences on the liver, bones, kidneys, lungs, testes, brain, immunological, and cardiovascular systems. Overproduction of reactive oxygen species (ROS) as the main mechanism behind its toxicity causes oxidative stress and subsequent damages to lipids, proteins, and DNA. Therefore, antioxidants along with chelating agents have shown promising outcomes against Cd-induced toxicity. Curcumin with various beneficial effects and medical efficacy has been evaluated for its inhibitory activities against biological impairments caused by Cd. Thus, this article is intended to address the effectiveness of curcumin against toxicity following Cd entry. Curcumin can afford to attenuate lipid peroxidation, glutathione depletion, alterations in antioxidant enzyme, and so forth through scavenging and chelating activities or Nrf2/Keap1/ARE pathway induction. © 2017 BioFactors, 43(5):645-661, 2017.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Huang W, Jin A, Zhang J, Wang C, Tsang LL, Cai Z, Zhou X, Chen H, Chan HC. Upregulation of CFTR in patients with endometriosis and its involvement in NFκB-uPAR dependent cell migration. Oncotarget 2017; 8:66951-66959. [PMID: 28978008 PMCID: PMC5620148 DOI: 10.18632/oncotarget.16441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Endometriotic tissues exhibit high migration ability with the underlying mechanisms remain elusive. Our previous studies have demonstrated that cystic fibrosis transmembrane conductance regulator (CFTR) acts as a tumor suppressor regulating cell migration. In the present study, we explored whether CFTR plays a role in the development of human endometriosis. We found that both mRNA and protein expression levels of CFTR and urokinase-type plasminogen activator receptor (uPAR) were significantly increased in ectopic endometrial tissues from patients with endometriosis compared to normal endometrial tissues from women without endometriosis and positively correlated. In human endometrial Ishikawa (ISK) cells, overexpression of CFTR stimulated cell migration with upregulated NFκB p65 and uPAR. Knockdown of CFTR inhibited cell migration. Furthermore, inhibition of NFκB with its inhibitors (curcumin or Bay) significantly reduced the expression of uPAR and cell migration in the CFTR-overexpressing ISK cells. Collectively, the present results suggest that the CFTR-NFκB-uPAR signaling may contribute to the progression of human endometriosis, and indicate potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Wenqing Huang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, PR China.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Aihong Jin
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, PR China
| | - Jieting Zhang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, PR China.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Chaoqun Wang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, PR China.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Lai Ling Tsang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, PR China.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Zhiming Cai
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, PR China
| | - Xiaping Zhou
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, PR China
| | - Hao Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, PR China.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, PR China.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China.,Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
32
|
Xu XX, Zhang XH, Diao Y, Huang YX. Achyranthes bidentate saponins protect rat articular chondrocytes against interleukin-1β-induced inflammation and apoptosis in vitro. Kaohsiung J Med Sci 2017; 33:62-68. [DOI: 10.1016/j.kjms.2016.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 12/18/2022] Open
|
33
|
Abdelrazek HM, Helmy SA, Elsayed DH, Ebaid HM, Mohamed RM. Ameliorating effects of green tea extract on cadmium induced reproductive injury in male Wistar rats with respect to androgen receptors and caspase- 3. Reprod Biol 2016; 16:300-308. [DOI: 10.1016/j.repbio.2016.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 12/24/2022]
|
34
|
Breton S, Ruan YC, Park YJ, Kim B. Regulation of epithelial function, differentiation, and remodeling in the epididymis. Asian J Androl 2016; 18:3-9. [PMID: 26585699 PMCID: PMC4736353 DOI: 10.4103/1008-682x.165946] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The epididymis is a single convoluted tubule lined by a pseudostratified epithelium. Specialized epididymal epithelial cells, the so-called principal, basal, narrow, and clear cells, establish a unique luminal environment for the maturation and storage of spermatozoa. The epididymis is functionally and structurally divided into several segments and sub-segments that create regionally distinct luminal environments. This organ is immature at birth, and epithelial cells acquire their fully differentiated phenotype during an extended postnatal period, but the factors involved in this complex process remain incompletely characterized. In the adult epididymis, the establishment of an acidic luminal pH and low bicarbonate concentration in the epididymis contributes to preventing premature activation of spermatozoa during their maturation and storage. Clear cells are proton-secreting cells throughout the epididymis, but principal cells have distinct acid/base transport properties, depending on their localization within the epididymis. Basal cells are located in all epididymal segments, but they have a distinct morphology depending on the segment and species examined. How this structural plasticity of basal cells is regulated is discussed here. Also, the role of luminal factors and androgens in the regulation of epithelial cells is reviewed in relation to their respective localization in the proximal versus distal regions of the epididymis. Finally, we describe a novel role for CFTR in tubulogenesis and epithelial cell differentiation.
Collapse
Affiliation(s)
- Sylvie Breton
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, MA 02114 and Harvard Medical School, Boston, MA 02115, USA,
| | | | | | | |
Collapse
|
35
|
Huang Q, Luo L, Alamdar A, Zhang J, Liu L, Tian M, Eqani SAMAS, Shen H. Integrated proteomics and metabolomics analysis of rat testis: Mechanism of arsenic-induced male reproductive toxicity. Sci Rep 2016; 6:32518. [PMID: 27585557 PMCID: PMC5009432 DOI: 10.1038/srep32518] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/10/2016] [Indexed: 01/05/2023] Open
Abstract
Arsenic is a widespread metalloid in environment, whose exposure has been associated with a broad spectrum of toxic effects. However, a global view of arsenic-induced male reproductive toxicity is still lack, and the underlying mechanisms remain largely unclear. Our results revealed that arsenic exposure decreased testosterone level and reduced sperm quality in rats. By conducting an integrated proteomics and metabolomics analysis, the present study aims to investigate the global influence of arsenic exposure on the proteome and metabolome in rat testis. The abundance of 70 proteins (36 up-regulated and 34 down-regulated) and 13 metabolites (8 increased and 5 decreased) were found to be significantly altered by arsenic treatment. Among these, 19 proteins and 2 metabolites were specifically related to male reproductive system development and function, including spermatogenesis, sperm function and fertilization, fertility, internal genitalia development, and mating behavior. It is further proposed that arsenic mainly impaired spermatogenesis and fertilization via aberrant modulation of these male reproduction-related proteins and metabolites, which may be mediated by the ERK/AKT/NF-κB-dependent signaling pathway. Overall, these findings will aid our understanding of the mechanisms responsible for arsenic-induced male reproductive toxicity, and from such studies useful biomarkers indicative of arsenic exposure could be discovered.
Collapse
Affiliation(s)
- Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.,Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, PR China
| | - Lianzhong Luo
- Department of Pharmacy, Xiamen Medical College, Xiamen 361008, PR China
| | - Ambreen Alamdar
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Jie Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Liangpo Liu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| |
Collapse
|
36
|
Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43. Sci Rep 2016; 6:29667. [PMID: 27436542 PMCID: PMC4951654 DOI: 10.1038/srep29667] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.
Collapse
|
37
|
Gao Y, Lui WY, Lee WM, Cheng CY. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep 2016; 6:28589. [PMID: 27358069 PMCID: PMC4928075 DOI: 10.1038/srep28589] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
Crumbs homolog 3 (or Crumbs3, CRB3) is a polarity protein expressed by Sertoli and germ cells at the basal compartment in the seminiferous epithelium. CRB3 also expressed at the blood-testis barrier (BTB), co-localized with F-actin, TJ proteins occludin/ZO-1 and basal ES (ectoplasmic specialization) proteins N-cadherin/β-catenin at stages IV-VII only. The binding partners of CRB3 in the testis were the branched actin polymerization protein Arp3, and the barbed end-capping and bundling protein Eps8, illustrating its possible role in actin organization. CRB3 knockdown (KD) by RNAi in Sertoli cells with an established tight junction (TJ)-permeability barrier perturbed the TJ-barrier via changes in the distribution of TJ- and basal ES-proteins at the cell-cell interface. These changes were the result of CRB3 KD-induced re-organization of actin microfilaments, in which actin microfilaments were truncated, and extensively branched, thereby destabilizing F-actin-based adhesion protein complexes at the BTB. Using Polyplus in vivo-jetPEI as a transfection medium with high efficiency for CRB3 KD in the testis, the CRB3 KD testes displayed defects in spermatid and phagosome transport, and also spermatid polarity due to a disruption of F-actin organization. In summary, CRB3 is an actin microfilament regulator, playing a pivotal role in organizing actin filament bundles at the ES.
Collapse
Affiliation(s)
- Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, New York, USA
| | - Wing-Yee Lui
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, New York, USA
| |
Collapse
|
38
|
Regulators in the apoptotic pathway during spermatogenesis: Killers or guards? Gene 2016; 582:97-111. [DOI: 10.1016/j.gene.2016.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/19/2016] [Accepted: 02/03/2016] [Indexed: 01/24/2023]
|
39
|
Hou Y, Guan X, Yang Z, Li C. Emerging role of cystic fibrosis transmembrane conductance regulator - an epithelial chloride channel in gastrointestinal cancers. World J Gastrointest Oncol 2016; 8:282-288. [PMID: 26989463 PMCID: PMC4789613 DOI: 10.4251/wjgo.v8.i3.282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/21/2015] [Accepted: 12/21/2015] [Indexed: 02/05/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), a glycoprotein with 1480 amino acids, has been well established as a chloride channel mainly expressed in the epithelial cells of various tissues and organs such as lungs, sweat glands, gastrointestinal system, and reproductive organs. Although defective CFTR leads to cystic fibrosis, a common genetic disorder in the Caucasian population, there is accumulating evidence that suggests a novel role of CFTR in various cancers, especially in gastroenterological cancers, such as pancreatic cancer and colon cancer. In this review, we summarize the emerging findings that link CFTR with various cancers, with focus on the association between CFTR defects and gastrointestinal cancers as well as the underlying mechanisms. Further study of CFTR in cancer biology may help pave a new way for the diagnosis and treatment of gastrointestinal cancers.
Collapse
|
40
|
Li N, Mruk DD, Lee WM, Wong CKC, Cheng CY. Is toxicant-induced Sertoli cell injury in vitro a useful model to study molecular mechanisms in spermatogenesis? Semin Cell Dev Biol 2016; 59:141-156. [PMID: 26779951 DOI: 10.1016/j.semcdb.2016.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 12/25/2022]
Abstract
Sertoli cells isolated from rodents or humans and cultured in vitro are known to establish a functional tight junction (TJ)-permeability barrier that mimics the blood-testis barrier (BTB) in vivo. This model has been widely used by investigators to study the biology of the TJ and the BTB. Studies have shown that environmental toxicants (e.g., perfluorooctanesulfonate (PFOS), bisphenol A (BPA) and cadmium) that exert their disruptive effects to induce Sertoli cell injury using this in vitro model are reproducible in studies in vivo. Thus, this in vitro system provides a convenient approach to probe the molecular mechanism(s) underlying toxicant-induced testis injury but also to provide new insights in understanding spermatogenesis, such as the biology of cell adhesion, BTB restructuring that supports preleptotene spermatocyte transport, and others. Herein, we provide a brief and critical review based on studies using this in vitro model of Sertoli cell cultures using primary cells isolated from rodent testes vs. humans to monitor environmental toxicant-mediated Sertoli cell injury. In short, recent findings have shown that environmental toxicants exert their effects on Sertoli cells to induce testis injury through their action on Sertoli cell actin- and/or microtubule-based cytoskeleton. These effects are mediated via their disruptive effects on actin- and/or microtubule-binding proteins. Sertoli cells also utilize differential spatiotemporal expression of these actin binding proteins to confer plasticity to the BTB to regulate germ cell transport across the BTB.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
41
|
Dong ZW, Chen J, Ruan YC, Zhou T, Chen Y, Chen Y, Tsang LL, Chan HC, Peng YZ. CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury. Sci Rep 2015; 5:15946. [PMID: 26515683 PMCID: PMC4626762 DOI: 10.1038/srep15946] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/30/2015] [Indexed: 12/17/2022] Open
Abstract
The mechanism underlying pulmonary inflammation in thermal inhalation injury remains elusive. Cystic fibrosis, also hallmarked with pulmonary inflammation, is caused by mutations in CFTR, the expression of which is temperature-sensitive. We investigated whether CFTR is involved in heat-induced pulmonary inflammation. We applied heat-treatment in 16HBE14o- cells with CFTR knockdown or overexpression and heat-inhalation in rats in vivo. Heat-treatment caused significant reduction in CFTR and, reciprocally, increase in COX-2 at early stages both in vitro and in vivo. Activation of ERK/JNK, NF-κB and COX-2/PGE2 were detected in heat-treated cells, which were mimicked by knockdown, and reversed by overexpression of CFTR or VX-809, a reported CFTR mutation corrector. JNK/ERK inhibition reversed heat-/CFTR-knockdown-induced NF-κB activation, whereas NF-κB inhibitor showed no effect on JNK/ERK. IL-8 was augmented by heat-treatment or CFTR-knockdown, which was abolished by inhibition of NF-κB, JNK/ERK or COX-2. Moreover, in vitro or in vivo treatment with curcumin, a natural phenolic compound, significantly enhanced CFTR expression and reversed the heat-induced increases in COX-2/PGE2/IL-8, neutrophil infiltration and tissue damage in the airway. These results have revealed a CFTR-regulated MAPK/NF-κB pathway leading to COX-2/PGE2/IL-8 activation in thermal inhalation injury, and demonstrated therapeutic potential of curcumin for alleviating heat-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Zhi Wei Dong
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Jing Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Ye Chun Ruan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Tao Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Yu Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - YaJie Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Lai Ling Tsang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yi Zhi Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, Chongqing, China
| |
Collapse
|
42
|
Li N, Mruk DD, Wong CKC, Han D, Lee WM, Cheng CY. Formin 1 Regulates Ectoplasmic Specialization in the Rat Testis Through Its Actin Nucleation and Bundling Activity. Endocrinology 2015; 156:2969-83. [PMID: 25901598 PMCID: PMC4511136 DOI: 10.1210/en.2015-1161] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During spermatogenesis, developing spermatids and preleptotene spermatocytes are transported across the adluminal compartment and the blood-testis barrier (BTB), respectively, so that spermatids line up near the luminal edge to prepare for spermiation, whereas preleptotene spermatocytes enter the adluminal compartment to differentiate into late spermatocytes to prepare for meiosis I/II. These cellular events involve actin microfilament reorganization at the testis-specific, actin-rich Sertoli-spermatid and Sertoli-Sertoli cell junction called apical and basal ectoplasmic specialization (ES). Formin 1, an actin nucleation protein known to promote actin microfilament elongation and bundling, was expressed at the apical ES but limited to stage VII of the epithelial cycle, whereas its expression at the basal ES/BTB stretched from stage III to stage VI, diminished in stage VII, and was undetectable in stage VIII tubules. Using an in vitro model of studying Sertoli cell BTB function by RNA interference and biochemical assays to monitor actin bundling and polymerization activity, a knockdown of formin 1 in Sertoli cells by approximately 70% impeded the tight junction-permeability function. This disruptive effect on the tight junction barrier was mediated by a loss of actin microfilament bundling and actin polymerization capability mediated by changes in the localization of branched actin-inducing protein Arp3 (actin-related protein 3), and actin bundling proteins Eps8 (epidermal growth factor receptor pathway substrate 8) and palladin, thereby disrupting cell adhesion. Formin 1 knockdown in vivo was found to impede spermatid adhesion, transport, and polarity, causing defects in spermiation in which elongated spermatids remained embedded into the epithelium in stage IX tubules, mediated by changes in the spatiotemporal expression of Arp3, Eps8, and palladin. In summary, formin 1 is a regulator of ES dynamics.
Collapse
Affiliation(s)
- Nan Li
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - Dolores D Mruk
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - Chris K C Wong
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - Daishu Han
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - Will M Lee
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - C Yan Cheng
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
Xie C, Sun X, Chen J, Ng CF, Lau KM, Cai Z, Jiang X, Chan HC. Down-regulated CFTR During Aging Contributes to Benign Prostatic Hyperplasia. J Cell Physiol 2015; 230:1906-15. [PMID: 25546515 DOI: 10.1002/jcp.24921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/18/2014] [Indexed: 01/27/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a hyper-proliferative disease of the aging prostate; however, the exact mechanism underlying the development of BPH remains incompletely understood. The present study investigated the possible involvement of the cystic fibrosis transmembrane conductance regulator (CFTR), which has been previously shown to negatively regulate nuclear factor-κB (NF-κB)/cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2) pathway, in the pathogenesis of BPH. Our results showed decreasing CFTR and increasing COX2 expression in rat prostate tissues with aging. Furthermore, suppression of CFTR led to increased expression of COX2 and over-production of PGE2 in a normal human prostate epithelial cell line (PNT1A) with elevated NF-κB activity. PGE2 stimulated the proliferation of primary rat prostate stromal cells but not epithelial cells, with increased PCNA expression. In addition, the condition medium from PNT1A cells after inhibition or knockdown of CFTR promoted cell proliferation of prostate stromal cells which could be reversed by COX2 or NF-κB inhibitor. More importantly, the involvement of CFTR in BPH was further demonstrated by the down-regulation of CFTR and up-regulation of COX2/NF-κB in human BPH samples. The present results suggest that CFTR may be involved in regulating PGE2 production through its negative regulation on NF-κB/COX2 pathway in prostate epithelial cells, which consequently stimulates cell growth of prostate stromal cells. The overstimulation of prostate stromal cell proliferation by down-regulation of CFTR-enhanced PGE2 production and release during aging may contribute to the development of BPH.
Collapse
Affiliation(s)
- Chen Xie
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Shatin, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mok KW, Chen H, Lee WM, Cheng CY. rpS6 regulates blood-testis barrier dynamics through Arp3-mediated actin microfilament organization in rat sertoli cells. An in vitro study. Endocrinology 2015; 156:1900-13. [PMID: 25714812 PMCID: PMC4398761 DOI: 10.1210/en.2014-1791] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the seminiferous epithelium of rat testes, preleptotene spermatocytes residing in the basal compartment are transported across the blood-testis barrier (BTB) to enter the adluminal compartment at stage VIII of the epithelial cycle. This process involves redistribution of tight junction (TJ) proteins via reorganization of actin cytoskeleton in Sertoli cells that serves as attachment site for adhesion protein complexes. Ribosomal protein S6 (rpS6), a downstream molecule of mTORC1 (mammalian target of rapamycin complex 1), participates in this process via a yet-to-be defined mechanism. Here, we constructed an rpS6 quadruple phosphomimetic mutant by converting Ser residues at 235, 236, 240, and 244 to Glu via site-directed mutagenesis, making this mutant constitutively active. When this rpS6 mutant was overexpressed in Sertoli cells cultured in vitro with an established TJ barrier mimicking the BTB in vivo, it perturbed the TJ permeability by down-regulating and redistributing TJ proteins at the cell-cell interface. These changes are mediated by a reorganization of actin microfilaments, which was triggered by a redistribution of activated actin-related protein 3 (Arp3) as well as changes in Arp3-neuronal Wiskott-Aldrich Syndrome protein (N-WASP) interaction. This in turn induced reorganization of actin microfilaments, converting them from a "bundled" to an "unbundled/branched" configuration, concomitant with a reduced actin bundling activity, thereby destabilizing the TJ-barrier function. These changes were mediated by Akt (transforming oncogene of v-akt), because an Akt knockdown by RNA interference was able to mimic the phenotypes of rpS6 mutant overexpression at the Sertoli cell BTB. In summary, this study illustrates a mechanism by which mTORC1 signal complex regulates BTB function through rpS6 downstream by modulating actin organization via the Arp2/3 complex, which may be applicable to other tissue barriers.
Collapse
Affiliation(s)
- Ka-Wai Mok
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (K.-W.M., H.C., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
45
|
Frungieri MB, Calandra RS, Mayerhofer A, Matzkin ME. Cyclooxygenase and prostaglandins in somatic cell populations of the testis. Reproduction 2015; 149:R169-80. [DOI: 10.1530/rep-14-0392] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostaglandins (PGs) are synthesized through the action of the rate-limiting enzyme cyclooxygenase (COX) and further specific enzymes. The development ofCox-deficient mice in the 1990s gave insights into the reproductive roles of PGs. FemaleCox-knockout mice were subfertile or infertile. Interestingly, fertility was not affected in male mice deficient inCox, suggesting that PGs may not be critical for the functioning of the testis. However, this conclusion has recently been challenged by observations of important roles for PGs in both physiological and pathological processes in the testis. The two key somatic cell types in the testis, Leydig and Sertoli cells, express the inducible isoenzyme COX2 and produce PGs. Testicular COX2 expression in these somatic cells is regulated by hormonal input (FSH, prolactin (PRL), and testosterone) as well as by IL1β. PGs modulate steroidogenesis in Leydig cells and glucose uptake in Sertoli cells. Hence, the COX2/PG system in Leydig and Sertoli cells acts as a local modulator of testicular activity, and consequently may regulate spermatogenic efficiency. In addition to its expression in Leydig and Sertoli cells, COX2 has been detected in the seminiferous tubule wall, and in testicular macrophages and mast cells of infertile patients. These observations highlight the possible relevance of PGs in testicular inflammation associated with idiopathic infertility. Collectively, these data indicate that the COX2/PG system plays crucial roles not only in testicular physiology (i.e., development, steroidogenesis, and spermatogenesis), but more importantly in the pathogenesis or maintenance of infertility status in the male gonad. Further studies of these actions could lead to new therapeutic approaches to idiopathic male infertility.Free German abstractA German translation of this abstract is freely available athttp://www.reproduction-online.org/content/149/4/R169/suppl/DC1.Free Spanish abstractA Spanish translation of this abstract is freely available athttp://www.reproduction-online.org/content/149/4/R169/suppl/DC2.
Collapse
|
46
|
Tang EI, Mok KW, Lee WM, Cheng CY. EB1 regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: an in vitro study. Endocrinology 2015; 156:680-93. [PMID: 25456071 PMCID: PMC4298315 DOI: 10.1210/en.2014-1720] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During spermatogenesis, developing germ cells are transported across the seminiferous epithelium. Studies propose that because microtubules (MTs) serve as the tracks for transporting cell organelles, they may also serve a similar function in the transport of developing germ cells. Polarized MTs may provide the tracks along which polarized actin microfilaments, which act as vehicles to transport cargo, such as preleptotene spermatocytes through the blood-testis barrier (BTB) and spermatids across the epithelium. Yet the molecular mechanism(s) underlying these events remain unknown. Using an established in vitro Sertoli cell system to study BTB function, we demonstrated herein that a MT regulatory protein end-binding protein 1 (EB1) regulates the MT- and also the actin-based cytoskeleton of the Sertoli cell BTB in the rat. EB1 serves as a coordinator between the two cytoskeletons by regulating MT polymerization and actin filament bundling to modulate germ cell transport at the Sertoli cell BTB. A knockdown of EB1 by RNA interference was found to perturb the tight junction (TJ)-permeability barrier, as evidenced by mislocalization of junctional proteins critical for barrier function to facilitate spermatocyte transport, which was likely achieved by two coordinated events. First, EB1 knockdown resulted in changes in MT polymerization, thereby perturbing MT organization in Sertoli cells in which polarized MT no longer stretched properly across the cell cytosol to serve as the tracks. Second, EB1 knockdown perturbed actin organization via its effects on the branched actin polymerization-inducing protein called Arp3 (actin-related protein 3), perturbing microfilament bundling capability based on a biochemical assay, thereby causing microfilament truncation and misorganization, disrupting the function of the vehicle. This reduced actin microfilament bundling capability thus perturbed TJ-protein distribution and localization at the BTB, destabilizing the TJ barrier, leading to its remodeling to facilitate spermatocyte transport. In summary, EB1 provides a functional link between tubulin- and actin-based cytoskeletons to confer spermatocyte transport at the BTB.
Collapse
Affiliation(s)
- Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (E.I.T., K.-W.M., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
47
|
Noveski P, Madjunkova S, Mircevska M, Plaseski T, Filipovski V, Plaseska-Karanfilska D. SNaPshot assay for the detection of the most common CFTR mutations in infertile men. PLoS One 2014; 9:e112498. [PMID: 25386751 PMCID: PMC4227699 DOI: 10.1371/journal.pone.0112498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/19/2014] [Indexed: 12/20/2022] Open
Abstract
Congenital bilateral absence of vas deferens (CBAVD) is the most common CFTR-related disorder (CFTR-RD) that explains about 1-2% of the male infertility cases. Controversial data have been published regarding the involvement of CFTR mutations in infertile men with non-obstructive azoospermia and oligozoospermia. Here, we describe single base extension (SNaPshot) assay for detection of 11 common CFTR mutations: F508del, G542X, N1303K, 621+1G->T, G551D, R553X, R1162X, W1282X, R117H, 2184insA and 1717-1G->A and IVS8polyT variants. The assay was validated on 50 previously genotyped samples and was used to screen a total of 369 infertile men with different impairment of spermatogenesis and 136 fertile controls. Our results show that double heterozygosity of cystic fibrosis (CF) and CFTR-related disorder (CFTR-RD) mutations are found in a high percentage (22.7%) of infertile men with obstructive azoospermia, but not in other studied groups of infertile men. The SNaPshot assay described here is an inexpensive, fast and robust method for primary screening of the most common CFTR mutations both in patients with classical CF and CFTR-RD. It can contribute to better understanding of the role of CFTR mutations in impaired spermatogenesis, ultimately leading to improved management of infertile men.
Collapse
Affiliation(s)
- Predrag Noveski
- Macedonian Academy of Sciences and Arts, Research Center for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’, Skopje, Republic of Macedonia
| | - Svetlana Madjunkova
- Macedonian Academy of Sciences and Arts, Research Center for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’, Skopje, Republic of Macedonia
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marija Mircevska
- Macedonian Academy of Sciences and Arts, Research Center for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’, Skopje, Republic of Macedonia
| | - Toso Plaseski
- Faculty of Medicine, Clinic of Endocrinology and Metabolic Disorders, Skopje, Republic of Macedonia
| | - Vanja Filipovski
- Clinical Hospital ‘Acibadem Sistina’, Skopje, Republic of Macedonia
| | - Dijana Plaseska-Karanfilska
- Macedonian Academy of Sciences and Arts, Research Center for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’, Skopje, Republic of Macedonia
- * E-mail:
| |
Collapse
|
48
|
Wong EWP, Cheng CY. NC1 domain of collagen α3(IV) derived from the basement membrane regulates Sertoli cell blood-testis barrier dynamics. SPERMATOGENESIS 2014; 3:e25465. [PMID: 23885308 PMCID: PMC3710226 DOI: 10.4161/spmg.25465] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/19/2022]
Abstract
The blood-testis barrier (BTB) is an important ultrastructure for spermatogenesis. Delay in BTB formation in neonatal rats or its irreversible damage in adult rats leads to meiotic arrest and failure of spermatogonial differentiation beyond type A. While hormones, such as testosterone and FSH, are crucial to BTB function, little is known if there is a local regulatory mechanism in the seminiferous epithelium that modulates BTB function. Herein, we report that collagen α3(IV) chain, a component of the basement membrane in the rat testis, could generate a noncollagenous (NC1) domain peptide [Colα3(IV) NC1] via limited proteolysis by matrix metalloproteinase-9 (MMP-9), and that the expression of MMP-9 was upregulated by TNFα. While recombinant Colα3(IV) NC1 protein produced in E. coli failed to perturb Sertoli cell tight junction (TJ)-permeability barrier function, possibly due to the lack of glycosylation, Colα3(IV) NC1 recombinant protein produced in mammalian cells and purified to apparent homogeneity by affinity chromatography was found to reversibly perturb the Sertoli cell TJ-barrier function. Interestingly, Colα3(IV) NC1 recombinant protein did not perturb the steady-state levels of several TJ- (e.g., occludin, CAR, JAM-A, ZO-1) and basal ectoplasmic specialization- (e.g., N-cadherin, α-catenin, β-catenin) proteins at the BTB but induced changes in protein localization and/or distribution at the Sertoli cell-cell interface in which these proteins moved from the cell surface into the cell cytosol, thereby destabilizing the TJ function. These findings illustrate the presence of a local regulatory axis known as the BTB-basement membrane axis that regulates BTB restructuring during spermatogenesis.
Collapse
Affiliation(s)
- Elissa W P Wong
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council; New York, NY USA
| | | |
Collapse
|
49
|
Xiao X, Mruk DD, Wong EWP, Lee WM, Han D, Wong CKC, Cheng CY. Differential effects of c-Src and c-Yes on the endocytic vesicle-mediated trafficking events at the Sertoli cell blood-testis barrier: an in vitro study. Am J Physiol Endocrinol Metab 2014; 307:E553-62. [PMID: 25117412 PMCID: PMC4187029 DOI: 10.1152/ajpendo.00176.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. However, it undergoes cyclic restructuring during the epithelial cycle of spermatogenesis in which the "old" BTB located above the preleptotene spermatocytes being transported across the immunological barrier is "disassembled," whereas the "new" BTB found behind these germ cells is rapidly "reassembled," i.e., mediated by endocytic vesicle-mediated protein trafficking events. Thus, the immunological barrier is maintained when preleptotene spermatocytes connected in clones via intercellular bridges are transported across the BTB. Yet the underlying mechanism(s) in particular the involving regulatory molecules that coordinate these events remains unknown. We hypothesized that c-Src and c-Yes might work in contrasting roles in endocytic vesicle-mediated trafficking, serving as molecular switches, to effectively disassemble and reassemble the old and the new BTB, respectively, to facilitate preleptotene spermatocyte transport across the BTB. Following siRNA-mediated specific knockdown of c-Src or c-Yes in Sertoli cells, we utilized biochemical assays to assess the changes in protein endocytosis, recycling, degradation and phagocytosis. c-Yes was found to promote endocytosed integral membrane BTB proteins to the pathway of transcytosis and recycling so that internalized proteins could be effectively used to assemble new BTB from the disassembling old BTB, whereas c-Src promotes endocytosed Sertoli cell BTB proteins to endosome-mediated protein degradation for the degeneration of the old BTB. By using fluorescence beads mimicking apoptotic germ cells, Sertoli cells were found to engulf beads via c-Src-mediated phagocytosis. A hypothetical model that serves as the framework for future investigation is thus proposed.
Collapse
Affiliation(s)
- Xiang Xiao
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
| | - Dolores D Mruk
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
| | - Elissa W P Wong
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Daishu Han
- Department of Cell Biology, School of Basic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Beijing, China; and
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - C Yan Cheng
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York;
| |
Collapse
|
50
|
Fouad AA, Jresat I. Thymoquinone therapy abrogates toxic effect of cadmium on rat testes. Andrologia 2014; 47:417-26. [DOI: 10.1111/and.12281] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
- A. A. Fouad
- Pharmacology Division; Department of Biomedical Sciences; College of Medicine; King Faisal University; Al-Ahsa Saudi Arabia
| | - I. Jresat
- Pathology Division; Department of Biomedical Sciences; College of Medicine; King Faisal University; Al-Ahsa Saudi Arabia
| |
Collapse
|