1
|
Ren L, Charbord J, Chu L, Kemas AM, Bertuzzi M, Mi J, Xing C, Lauschke VM, Andersson O. Adjudin improves beta cell maturation, hepatic glucose uptake and glucose homeostasis. Diabetologia 2024; 67:137-155. [PMID: 37843554 PMCID: PMC10709271 DOI: 10.1007/s00125-023-06020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/10/2023] [Indexed: 10/17/2023]
Abstract
AIMS/HYPOTHESIS Recovering functional beta cell mass is a promising approach for future diabetes therapies. The aim of the present study is to investigate the effects of adjudin, a small molecule identified in a beta cell screen using zebrafish, on pancreatic beta cells and diabetes conditions in mice and human spheroids. METHODS In zebrafish, insulin expression was examined by bioluminescence and quantitative real-time PCR (qPCR), glucose levels were examined by direct measurements and distribution using a fluorescent glucose analogue, and calcium activity in beta cells was analysed by in vivo live imaging. Pancreatic islets of wild-type postnatal day 0 (P0) and 3-month-old (adult) mice, as well as adult db/db mice (i.e. BKS(D)-Leprdb/JOrlRj), were cultured in vitro and analysed by qPCR, glucose stimulated insulin secretion and whole mount staining. RNA-seq was performed for islets of P0 and db/db mice. For in vivo assessment, db/db mice were treated with adjudin and subjected to analysis of metabolic variables and islet cells. Glucose consumption was examined in primary human hepatocyte spheroids. RESULTS Adjudin treatment increased insulin expression and calcium response to glucose in beta cells and decreased glucose levels after beta cell ablation in zebrafish. Adjudin led to improved beta cell function, decreased beta cell proliferation and glucose responsive insulin secretion by decreasing basal insulin secretion in in vitro cultured newborn mouse islets. RNA-seq of P0 islets indicated that adjudin treatment resulted in increased glucose metabolism and mitochondrial function, as well as downstream signalling pathways involved in insulin secretion. In islets from db/db mice cultured in vitro, adjudin treatment strengthened beta cell identity and insulin secretion. RNA-seq of db/db islets indicated adjudin-upregulated genes associated with insulin secretion, membrane ion channel activity and exocytosis. Moreover, adjudin promoted glucose uptake in the liver of zebrafish in an insulin-independent manner, and similarly promoted glucose consumption in primary human hepatocyte spheroids with insulin resistance. In vivo studies using db/db mice revealed reduced nonfasting blood glucose, improved glucose tolerance and strengthened beta cell identity after adjudin treatment. CONCLUSIONS/INTERPRETATION Adjudin promoted functional maturation of immature islets, improved function of dysfunctional islets, stimulated glucose uptake in liver and improved glucose homeostasis in db/db mice. Thus, the multifunctional drug adjudin, previously studied in various contexts and conditions, also shows promise in the management of diabetic states. DATA AVAILABILITY Raw and processed RNA-seq data for this study have been deposited in the Gene Expression Omnibus under accession number GSE235398 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE235398 ).
Collapse
Affiliation(s)
- Lipeng Ren
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jérémie Charbord
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lianhe Chu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Bertuzzi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jiarui Mi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chen Xing
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- Tübingen University, Tübingen, Germany
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Cheng X, Xie H, Xiong Y, Sun P, Xue Y, Li K. Lipidomics profiles of human spermatozoa: insights into capacitation and acrosome reaction using UPLC-MS-based approach. Front Endocrinol (Lausanne) 2023; 14:1273878. [PMID: 38027124 PMCID: PMC10660817 DOI: 10.3389/fendo.2023.1273878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Lipidomics elucidates the roles of lipids in both physiological and pathological processes, intersecting with many diseases and cellular functions. The maintenance of lipid homeostasis, essential for cell health, significantly influences the survival, maturation, and functionality of sperm during fertilization. While capacitation and the acrosome reaction, key processes before fertilization, involve substantial lipidomic alterations, a comprehensive understanding of the changes in human spermatozoa's lipidomic profiles during these processes remains unknown. This study aims to explicate global lipidomic changes during capacitation and the acrosome reaction in human sperm, employing an untargeted lipidomic strategy using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Methods Twelve semen specimens, exceeding the WHO reference values for semen parameters, were collected. After discontinuous density gradient separation, sperm concentration was adjusted to 2 x 106 cells/ml and divided into three groups: uncapacitated, capacitated, and acrosome-reacted. UPLC-MS analysis was performed after lipid extraction from these groups. Spectral peak alignment and statistical analysis, using unsupervised principal component analysis (PCA), bidirectional orthogonal partial least squares discriminant analysis (O2PLS-DA) analysis, and supervised partial least-squares-latent structure discriminate analysis (PLS-DA), were employed to identify the most discriminative lipids. Results The 1176 lipid peaks overlapped across the twelve individuals in the uncapacitated, capacitated, and acrosome-reacted groups: 1180 peaks between the uncapacitated and capacitated groups, 1184 peaks between the uncapacitated and acrosome-reacted groups, and 1178 peaks between the capacitated and acrosome-reacted groups. The count of overlapping peaks varied among individuals, ranging from 739 to 963 across sperm samples. Moreover, 137 lipids had VIP values > 1.0 and twenty-two lipids had VIP > 1.5, based on the O2PLS-DA model. Furthermore, the identified twelve lipids encompassed increases in PI 44:10, LPS 20:4, LPA 20:5, and LPE 20:4, and decreases in 16-phenyl-tetranor-PGE2, PC 40:6, PS 35:4, PA 29:1, 20-carboxy-LTB4, and 2-oxo-4-methylthio-butanoic acid. Discussion This study has been the first time to investigate the lipidomics profiles associated with acrosome reaction and capacitation in human sperm, utilizing UPLC-MS in conjunction with multivariate data analysis. These findings corroborate earlier discoveries on lipids during the acrosome reaction and unveil new metabolites. Furthermore, this research highlights the effective utility of UPLC-MS-based lipidomics for exploring diverse physiological states in sperm. This study offers novel insights into lipidomic changes associated with capacitation and the acrosome reaction in human sperm, which are closely related to male reproduction.
Collapse
Affiliation(s)
- Xiaohong Cheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haifeng Xie
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yuping Xiong
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yamei Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Cavarocchi E, Whitfield M, Saez F, Touré A. Sperm Ion Transporters and Channels in Human Asthenozoospermia: Genetic Etiology, Lessons from Animal Models, and Clinical Perspectives. Int J Mol Sci 2022; 23:ijms23073926. [PMID: 35409285 PMCID: PMC8999829 DOI: 10.3390/ijms23073926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022] Open
Abstract
In mammals, sperm fertilization potential relies on efficient progression within the female genital tract to reach and fertilize the oocyte. This fundamental property is supported by the flagellum, an evolutionarily conserved organelle that provides the mechanical force for sperm propulsion and motility. Importantly several functional maturation events that occur during the journey of the sperm cells through the genital tracts are necessary for the activation of flagellar beating and the acquisition of fertilization potential. Ion transporters and channels located at the surface of the sperm cells have been demonstrated to be involved in these processes, in particular, through the activation of downstream signaling pathways and the promotion of novel biochemical and electrophysiological properties in the sperm cells. We performed a systematic literature review to describe the currently known genetic alterations in humans that affect sperm ion transporters and channels and result in asthenozoospermia, a pathophysiological condition defined by reduced or absent sperm motility and observed in nearly 80% of infertile men. We also present the physiological relevance and functional mechanisms of additional ion channels identified in the mouse. Finally, considering the state-of-the art, we discuss future perspectives in terms of therapeutics of asthenozoospermia and male contraception.
Collapse
Affiliation(s)
- Emma Cavarocchi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France; (E.C.); (M.W.)
| | - Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France; (E.C.); (M.W.)
| | - Fabrice Saez
- UMR GReD Institute (Génétique Reproduction & Développement) CNRS 6293, INSERM U1103, Team «Mécanismes de L’Infertilité Mâle Post-Testiculaire», Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Correspondence: (F.S.); (A.T.)
| | - Aminata Touré
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France; (E.C.); (M.W.)
- Correspondence: (F.S.); (A.T.)
| |
Collapse
|
4
|
Wu H, Yu X, Wang Q, Zeng Q, Chen Y, Lv J, Wu Y, Zhou H, Zhang H, Liu M, Zheng M, Zhao Q, Guo P, Feng W, Zhang X, Tian L. Beyond the mean: Quantile regression to differentiate the distributional effects of ambient PM 2.5 constituents on sperm quality among men. CHEMOSPHERE 2021; 285:131496. [PMID: 34329140 DOI: 10.1016/j.chemosphere.2021.131496] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 02/05/2023]
Abstract
Ambient PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter) constituents have been related to mean changes in semen quality, but focusing on the mean response may not well capture distributional and heterogeneous effects of PM2.5 constituents on semen quality. In this study, 2314 semen samples of 622 men between Jan 1, 2019 and Dec 31, 2019 from Guangdong Human Sperm Bank were subjected to semen quality analysis. Daily average concentrations of PM2.5 constituents including 4 water-soluble ions and 15 metals/metalloid were measured for 7 days per month at 3 fixed atmospheric pollutant monitoring stations. We used quantile regression for longitudinal data to examine whether the associations between PM2.5 constituents and quality indicators of semen varied across quantiles of outcome distribution. Heterogeneous associations were found between PM2.5 constituents and sperm quality across different quantiles. An interquartile range (14.0 μg/m3) increase in PM2.5 mass was negatively associated with lower tails of sperm concentration and upper tails of sperm count distribution. PM2.5 vanadium exposure was significantly related to the 90th percentile of sperm count distribution, but not to the lower quantiles. In addition, those subjects with relatively high sperm motility were more susceptible to sulfate, chromium, and manganese constituents in PM2.5. Our results indicate that PM2.5 and certain constituents were associated with sperm quality, especially sperm motility, and the associations are more pronounced in men with relatively high or low sperm motility.
Collapse
Affiliation(s)
- Haisheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Xiaolin Yu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Qiling Wang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, 510600, China; Department of Andrology, Family Planning Special Hospital of Guangdong Province, Guangzhou, 510600, China; Human Sperm Bank of Guangdong Province, Guangzhou, 510600, China
| | - Qinghui Zeng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Yuliang Chen
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Jiayun Lv
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Yan Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Hongwei Zhou
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Hongfeng Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Miao Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Murui Zheng
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Qingguo Zhao
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, 510600, China
| | - Pi Guo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, China.
| | - Wenru Feng
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China.
| | - Xinzong Zhang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, 510600, China; Department of Andrology, Family Planning Special Hospital of Guangdong Province, Guangzhou, 510600, China; Human Sperm Bank of Guangdong Province, Guangzhou, 510600, China.
| | - Linwei Tian
- Division of Epidemiology and Biostatistics, School of Public Health, The University of Hong Kong, Hong Kong
| |
Collapse
|
5
|
Li N, Kang H, Peng Z, Wang HF, Weng SQ, Zeng XH. Physiologically detectable bisphenol A impairs human sperm functions by reducing protein-tyrosine phosphorylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112418. [PMID: 34146982 DOI: 10.1016/j.ecoenv.2021.112418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol A (BPA), a widely used plastic monomer and plasticizer, is detectable in blood, urine and semen of a healthy people, with concentrations ranging from 0.1 nM to 10 nM. It has been shown that in vitro exposure of BPA as low as 0.001 nM could significantly inhibited mouse sperm motility and acrosome reaction. However, it is still unclear whether BPA at those physiologically detectable concentration affects human sperm. METHODS The effects of different concentrations of BPA (0, 10-3, 10-2, 10-1, 10, 103 nM) on sperm functions were examined, including human sperm viability, kinematic parameters, hyperactivation and capacitation. RESULTS BPA caused a remarkable decline in human sperm viability, motility and progressive motility, hyperactivation, capacitation and progesterone-induced acrosome reaction. Mechanism studies showed that BPA could suppress the protein tyrosine phosphorylation level of human sperm, but had no effect on sperm calcium signaling. CONCLUSIONS Physiologically detectable concentrations of BPA may impair human sperm functions via suppressing protein tyrosine phosphorylation of human sperm, implying that environmental pollution of BPA might be a factor contributing to male infertility.
Collapse
Affiliation(s)
- Na Li
- Clinical Medical Research Center, Yichun People's Hospital, Yichun, Jiangxi 336000, PR China; Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China; Laboratory Department, Affiliated Reproductive Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330031, PR China
| | - Hang Kang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen Peng
- Clinical Medical Research Center, Yichun People's Hospital, Yichun, Jiangxi 336000, PR China; Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Hua-Feng Wang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shi-Qi Weng
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Xu-Hui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226000, PR China; Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
6
|
Huang JH, Han TT, Li LX, Qu T, Zhang XY, Liao X, Zhong Y. Host microRNAs regulate expression of hepatitis B virus genes during transmission from patients' sperm to embryo. Reprod Toxicol 2021; 100:1-6. [PMID: 33338580 DOI: 10.1016/j.reprotox.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 09/21/2020] [Accepted: 11/06/2020] [Indexed: 02/05/2023]
Abstract
Human sperm nucleus contains diverse RNA populations. This study aimed to screen and identify host microRNAs (miRs) that regulate gene expression of hepatitis B virus (HBV) during transmission from patients' sperm to sperm-derived embryos. Using microarrays, 336 miRs were found to be differentially expressed. After validation using real-time quantitative RT-PCR (RT-qPCR), four miRs were selected as targets. Using RT-qPCR and enzyme-linked immunosorbent assays, when patients' sperm were treated with mimics (or inhibitors) specific for hsa-miR-19a-3p and hsa-miR-29c-3p, the S gene transcription in sperm and translation in sperm-derived embryos was downregulated (or upregulated). There were significant differences in transcriptional and translational levels of the S gene between the test and control groups. These findings suggest that hsa-miR-19a-3p and hsa-miR-29c-3p significantly suppressed expression of the S gene, offering potential therapeutic targets for treating patients with HBV infection, and further reducing the negative impact of HBV infection on sperm fertilizing capacity.
Collapse
Affiliation(s)
- Ji-Hua Huang
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, China.
| | - Ting-Ting Han
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, China; Research Center for Reproductive Medicine, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China.
| | - Ling-Xiao Li
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, China.
| | - Ting Qu
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, China.
| | - Xin-Yue Zhang
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, China.
| | - Xue Liao
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, China.
| | - Ying Zhong
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, China.
| |
Collapse
|
7
|
Li K, Sun P, Wang Y, Gao T, Zheng D, Liu A, Ni Y. Hsp90 interacts with Cdc37, is phosphorylated by PKA/PKC, and regulates Src phosphorylation in human sperm capacitation. Andrology 2020; 9:185-195. [PMID: 32656999 DOI: 10.1111/andr.12862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heat shock protein 90 (Hsp90) signaling pathways participate in protein phosphorylation during sperm capacitation. However, the underlying mechanism is largely unknown. OBJECTIVE The aim of this study was to explore the interaction between Hsp90 and its co-chaperone protein, cell division cycle protein Cdc37 (Cdc37), in human spermatozoa. MATERIALS AND METHODS We examined the effects of H-89 (a protein kinase A [PKA] inhibitor) and Go6983 (a protein kinase C [PKC] inhibitor) on the phosphorylation of serine, threonine, and tyrosine residues in Hsp90; the effect of 17-allylamino-17-demethoxygeldanamycin (17-AAG, Hsp90 inhibitor) on Y416-Src phosphorylation; and the effects of 17-AAG and geldanamycin on threonine phosphorylation during human sperm capacitation. RESULTS Hsp90 co-localized and interacted with Cdc37. During human sperm capacitation, Hsp90 phosphorylation at serine, threonine, and tyrosine residues was inhibited by H-89 and Go6983. In addition, phosphorylation of residue Y416 in the tyrosine kinase Src (its active site) was inhibited by 17-AAG, and the threonine phosphorylation levels of some proteins were decreased by 17-AAG and geldanamycin. DISCUSSION AND CONCLUSION Taken together, our data showed that the interaction of Hsp90 with Cdc37 regulates total protein threonine phosphorylation and Src phosphorylation via its serine, threonine, and tyrosine phosphorylation, which are controlled by PKA and PKC during human sperm capacitation. The results of this study help understand the mechanism underlying Hsp90 regulation of sperm function.
Collapse
Affiliation(s)
- Kun Li
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Peibei Sun
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Yayan Wang
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Tian Gao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Dongwang Zheng
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Ajuan Liu
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Ya Ni
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
8
|
Reynolds-Wright JJ, Anderson R. Male contraception: where are we going and where have we been? BMJ SEXUAL & REPRODUCTIVE HEALTH 2019; 45:bmjsrh-2019-200395. [PMID: 31537614 PMCID: PMC6892591 DOI: 10.1136/bmjsrh-2019-200395] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/13/2019] [Accepted: 08/30/2019] [Indexed: 05/22/2023]
Abstract
Progress in developing new reversible male contraception has been slow. While the hormonal approach has been clearly shown to be capable of providing effective and reversible contraception, there remains no product available. Currently, trials of a self-administered gel combination of testosterone and the progestogen Nestorone® are under way, complementing the largely injectable methods previously investigated. Novel long-acting steroids with both androgenic and progestogenic activity are also in early clinical trials. The non-hormonal approach offers potential advantages, with potential sites of action on spermatogenesis, and sperm maturation in the epididymis or at the vas, but remains in preclinical testing. Surveys indicate the willingness of men, and their partners, to use a new male method, but they continue to lack that opportunity.
Collapse
Affiliation(s)
- John Joseph Reynolds-Wright
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Richard Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Research update and opportunity of non-hormonal male contraception: Histone demethylase KDM5B-based targeting. Pharmacol Res 2019; 141:1-20. [DOI: 10.1016/j.phrs.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 12/28/2022]
|
10
|
Abstract
INTRODUCTION Although only a minority of contracepting women rely solely on spermicides, they may soon be the only ongoing female method available without a prescription in the United States. Spermicides are also combined with other methods for additional pregnancy protection and/or lubrication. Nonoxynol-9 (N-9), the active ingredient in most spermicides, is cytotoxic and may increase risk of transmission of HIV and other sexually transmitted infections, especially in high-risk women. Amphora (previously called Acidform) is a noncytotoxic spermicide composed of a series of generally regarded as safe compounds, which maintains the acidity of the vagina following coitus to immobilize and kill sperm. Amphora is currently Food and Drug Administration-approved as a vaginal lubricant. Amphora is currently being tested in a multicenter Phase III contraceptive trial. AREAS COVERED This paper describes key properties of Amphora, including its acid-buffering abilities, viscosity, stability, bioadhesiveness, and tolerability. EXPERT OPINION Amphora is a nontoxic spermicide that maintains the pH within the vagina at levels less than 5.0 for hours, which immobilizes and kills sperm as well as many sexually transmitted pathogens. If the current clinical trial demonstrates safety, efficacy, and tolerability of Amphora as a contraceptive, it would represent a viable alternative to N-9. Its potential as a microbicide warrants further investigation.
Collapse
Affiliation(s)
- Anita L Nelson
- a Department of Obstetrics and Gynecology , Western University of Health Sciences , Pomona , CA , USA
| |
Collapse
|
11
|
Li K, Li R, Ni Y, Sun P, Liu Y, Zhang D, Huang H. Novel distance-progesterone-combined selection approach improves human sperm quality. J Transl Med 2018; 16:203. [PMID: 30029659 PMCID: PMC6053761 DOI: 10.1186/s12967-018-1575-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023] Open
Abstract
Background Sperm selection is essential for the health of offspring conceived via assistive reproductive technology (ART). Various methods of sperm preparation for in vitro fertilization and intracytoplasmic sperm injection have been developed to acquire sperm with better quality and to avoid potential genetic disorders. However, current sperm processing and selection techniques bypass the natural selection that occurs during fertilization in vivo. The aim of this study was to present a novel distance-progesterone-combined selection approach with an original device based on the human female reproductive tract, and to report on its effectiveness based on sperm progressive motility, as well as chemotaxis. Methods A novel device with long distance channels which mimicked the female human reproductive system was designed and fabricated. This ready-to-be-used device was developed using a progesterone gradient and human tube fluid media. Sperm swam for 150 min in the device under conditions of 37 °C air temperature with 5% CO2 after separation from seminal plasma via discontinuous Percoll gradient treatment. The selected sperm were assessed for normal morphology using Diff-Quik staining. A chromatin diffusion assay assessed sperm for DNA fragments and apoptosis was assessed using annexin V-fluorescein isothiocyanate/propidium iodide fluorescent staining. Results Our distance-progesterone-combined sperm selection method was successfully established. After sperm were selected, the percentage of sperm with normal morphology increased (before vs. after selection, 11.2 ± 1.3% vs. 40.3 ± 6.6%, P = 0.000), the percentage of sperm with DNA fragmentation decreased (before vs. after selection, 15.4 ± 4.0% vs. 6.8 ± 3.3%, P = 0.001), and the percentage of sperm with apoptosis did not change significantly. Conclusions Our newly-developed method is capable of successfully selecting sperm of high quality. The method will be benefit clinical ART practice as it can reduce sperm-related genetic risks. Electronic supplementary material The online version of this article (10.1186/s12967-018-1575-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kun Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.,Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China.,Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, 310006, China
| | - Rui Li
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Ya Ni
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Peibei Sun
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Ye Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.,Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Dan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.,Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, 310006, China
| | - Hefeng Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China. .,Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, 310006, China. .,International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China. .,Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
12
|
Chen SM, Chen XM, Lu YL, Liu B, Jiang M, Ma YX. Cofilin is correlated with sperm quality and influences sperm fertilizing capacity in humans. Andrology 2016; 4:1064-1072. [PMID: 27369112 DOI: 10.1111/andr.12239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 02/05/2023]
Affiliation(s)
- S. M. Chen
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
- Human Sperm Bank; West China Second University Hospital; Sichuan University; Chengdu Sichuan China
| | - X. M. Chen
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
- Department of Laboratory Medicine; Sichuan Provincial Hospital for Women and Children; Chengdu Sichuan China
| | - Y. L. Lu
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
| | - B. Liu
- Human Sperm Bank; West China Second University Hospital; Sichuan University; Chengdu Sichuan China
| | - M. Jiang
- Human Sperm Bank; West China Second University Hospital; Sichuan University; Chengdu Sichuan China
| | - Y. X. Ma
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
| |
Collapse
|
13
|
Li K, Xue Y, Chen A, Jiang Y, Xie H, Shi Q, Zhang S, Ni Y. Heat shock protein 90 has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-responsive sperm function in human sperm. PLoS One 2014; 9:e115841. [PMID: 25541943 PMCID: PMC4277372 DOI: 10.1371/journal.pone.0115841] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/29/2014] [Indexed: 11/18/2022] Open
Abstract
Heat shock protein 90 plays critical roles in client protein maturation, signal transduction, protein folding and degradation, and morphological evolution; however, its function in human sperm is not fully understood. Therefore, our objective in this study was to elucidate the mechanism by which heat shock protein 90 exerts its effects on human sperm function. By performing indirect immunofluorescence staining, we found that heat shock protein 90 was localized primarily in the neck, midpiece, and tail regions of human sperm, and that its expression increased with increasing incubation time under capacitation conditions. Geldanamycin, a specific inhibitor of heat shock protein 90, was shown to inhibit this increase in heat shock protein 90 expression in western blotting analyses. Using a multifunctional microplate reader to examine Fluo-3 AM-loaded sperm, we observed for the first time that inhibition of heat shock protein 90 by using geldanamycin significantly decreased intracellular calcium concentrations during capacitation. Moreover, western blot analysis showed that geldanamycin enhanced tyrosine phosphorylation of several proteins, including heat shock protein 90, in a dose-dependent manner. The effects of geldanamycin on human sperm function in the absence or presence of progesterone was evaluated by performing chlortetracycline staining and by using a computer-assisted sperm analyzer. We found that geldanamycin alone did not affect sperm capacitation, hyperactivation, and motility, but did so in the presence of progesterone. Taken together, these data suggest that heat shock protein 90, which increases in expression in human sperm during capacitation, has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-stimulated sperm function. In this study, we provide new insights into the roles of heat shock protein 90 in sperm function.
Collapse
Affiliation(s)
- Kun Li
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Yamei Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Aijun Chen
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Youfang Jiang
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Haifeng Xie
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Qixian Shi
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Songying Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- * E-mail: (SZ); (YN)
| | - Ya Ni
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
- * E-mail: (SZ); (YN)
| |
Collapse
|
14
|
Battistone MA, Da Ros VG, Salicioni AM, Navarrete FA, Krapf D, Visconti PE, Cuasnicú PS. Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. Mol Hum Reprod 2013; 19:570-80. [PMID: 23630234 DOI: 10.1093/molehr/gat033] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In all mammalian species studied so far, sperm capacitation correlates with an increase in protein tyrosine (Tyr) phosphorylation mediated by a bicarbonate-dependent cAMP/protein kinase A (PKA) pathway. Recent studies in mice revealed, however, that a Src family kinase (SFK)-induced inactivation of serine/threonine (Ser/Thr) phosphatases is also involved in the signaling pathways leading to Tyr phosphorylation. In view of these observations and with the aim of getting a better understanding of the signaling pathways involved in human sperm capacitation, in the present work we investigated the involvement of both the cAMP/PKA and SFK/phosphatase pathways in relation to the capacitation state of the cells. For this purpose, different signaling events and sperm functional parameters were analyzed as a function of capacitation time. Results revealed a very early bicarbonate-dependent activation of PKA indicated by the rapid (1 min) increase in both phospho-PKA substrates and cAMP levels (P < 0.05). However, a complete pattern of Tyr phosphorylation was detected only after 6-h incubation at which time sperm exhibited the ability to undergo the acrosome reaction (AR) and to penetrate zona-free hamster oocytes. Sperm capacitated in the presence of the SFK inhibitor SKI606 showed a decrease in both PKA substrate and Tyr phosphorylation levels, which was overcome by exposure of sperm to the Ser/Thr phosphatase inhibitor okadaic acid (OA). However, OA was unable to induce phosphorylation when sperm were incubated under PKA-inhibitory conditions (i.e. in the absence of bicarbonate or in the presence of PKA inhibitor). Moreover, the increase in PKA activity by exposure to a cAMP analog and a phosphodiesterase inhibitor did not overcome the inhibition produced by SKI606. Whereas the presence of SKI606 during capacitation produced a negative effect (P < 0.05) on sperm motility, progesterone-induced AR and fertilizing ability, none of these inhibitions were observed when sperm were exposed to SKI606 and OA. Interestingly, different concentrations of inhibitors were required to modulate human and mouse capacitation revealing the species specificity of the molecular mechanisms underlying this process. In conclusion, our results describe for the first time the involvement of both PKA activation and Ser/Thr phosphatase down-regulation in functional human sperm capacitation and provide convincing evidence that early PKA-dependent phosphorylation is the convergent regulatory point between these two signaling pathways.
Collapse
Affiliation(s)
- M A Battistone
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Ciudad Autónoma de Buenos Aires, C1428ADN Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|