1
|
Shen J, Mao Y, Zhang H, Lou H, Zhang L, Moreira JP, Jin F. Exposure of women undergoing in-vitro fertilization to per-and polyfluoroalkyl substances: Evidence on negative effects on fertilization and high-quality embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124474. [PMID: 38992828 DOI: 10.1016/j.envpol.2024.124474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
In April 2023, the World Health Organization (WHO) reported that 17.5% of the global adult population experience infertility. What may be the contribution of per-and polyfluoroalkyl (PFAS) to this global public health problem? This study explored the associations between in vitro fertilization (IVF) outcomes and plasma concentrations of individual PFAS and PFAS mixtures in women undergoing in vitro fertilization and embryo transfer (IVF-ET) and how these exposures might affect IVF outcomes. We analyzed 8 PFASs in plasma samples from women (N = 259) who underwent IVF treatment. In multivariable generalized linear mixed models, there were statistically significant associations of higher plasma concentrations of PFNA with reduced numbers of total retrieved oocytes [12.486 (95%CI: 0.446,25.418), p trend = 0.017], 2 PN zygotes [6.467(95%CI: 2.034,14.968), p trend = 0.007], and cleavage embryos [6.039(95%CI: 2.162,14.240), p trend = 0.008]. Similarly, there was a continuous decline in the numbers of retrieved 2 PN zygotes and cleavage embryos with increasing concentration of PFOS [6.467(95%CI: 2.034,14.968), p trend = 0.009 and 6.039(95%CI: 2.162,14.240), p trend = 0.031,respectively] and a negative association between PFHxS concentrations and clinical pregnancy during the initial cycles of frozen ET [0.525(95%CI:0.410,0.640), p trend = 0.021]. To investigate the joint effect of PFAS mixtures, a confounder-adjusted BKMR model analysis showed inverse relationship between PFAS mixtures and the number of high-quality embryos, 2 PN zygotes and cleavage embryos, to which the greatest contributors to the mixture effect are PFDeA and PFBS, respectively. It demonstrated that PFAS exposure might exert negative effects on oocyte yield, fertilization and high-quality embryo in women undergoing IVF. These findings suggest that exposure to PFAS may increase the risk of female infertility and further studies are needed to uncover the potential mechanisms underlying the reproductive effects associated with PFAS.
Collapse
Affiliation(s)
- Juan Shen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuchan Mao
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongyan Zhang
- Hangzhou Women's Hospital, 369 Kunpeng Road, Hangzhou, China
| | - Hangying Lou
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ling Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Joaquim Paulo Moreira
- International Healthcare Management Research and Development Center (IHM_RDC), The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong, Jinan, China; Henan Normal University, School of Social Affairs, Xinxiang, China; Atlantica Instituto Universitario, Gestao em Saude, Oeiras, Portugal.
| | - Fan Jin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Lohmann R, Abass K, Bonefeld-Jørgensen EC, Bossi R, Dietz R, Ferguson S, Fernie KJ, Grandjean P, Herzke D, Houde M, Lemire M, Letcher RJ, Muir D, De Silva AO, Ostertag SK, Rand AA, Søndergaard J, Sonne C, Sunderland EM, Vorkamp K, Wilson S, Weihe P. Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176274. [PMID: 39304148 DOI: 10.1016/j.scitotenv.2024.176274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014-2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.
Collapse
Affiliation(s)
- Rainer Lohmann
- University of Rhode Island, Graduate School of Oceanography, South Ferry Road, Narragansett, RI 02882, USA.
| | - Khaled Abass
- University of Sharjah, College of Health Sciences, Department of Environmental Health Sciences, The United Arab Emirates; University of Oulu, Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, Finland
| | - Eva Cecilie Bonefeld-Jørgensen
- Aarhus University, Center for Arctic Health and Molecular Epidemiology, Department of Public Health, DK-8000 Aarhus C, Denmark; University of Greenland, Greenland Center for Health Research, GL-3905 Nuuk, Greenland
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Steve Ferguson
- Fisheries and Oceans Canada, Arctic Region, Winnipeg, MB R3T 2N6, Canada
| | - Kim J Fernie
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | - Philippe Grandjean
- University of Rhode Island, College of Pharmacy, Kingston, RI 02881, USA; University of Southern Denmark, Department of Public Health, DK-5230 Odense, Denmark
| | - Dorte Herzke
- The Norwegian Institute of Public Health, Division of Climate and Environmental Health, P.O.Box 222, Skøyen 0213, Oslo, Norway; Norwegian Institute for Air Research, Hjalmar Johansen gt 14 9006 Tromsø, Norway
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Mélanie Lemire
- Université Laval, Centre de recherche du CHU de Québec, Département de médecine sociale et préventive & Institut de biologie intégrative et des systèmes, 1030 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Carleton University, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada
| | - Derek Muir
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Amila O De Silva
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Sonja K Ostertag
- University of Waterloo, School of Public Health, 200 University Ave W, Waterloo, Ontario, Canada
| | - Amy A Rand
- Carleton University, Department of Chemistry, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Jens Søndergaard
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Elsie M Sunderland
- Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United States
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606 Stakkevollan, 9296 Tromsø, Norway
| | - Pal Weihe
- The National Hospital of the Faroe Islands, Department of Research, Sigmundargøta 5, FO-100 Torshavn, The Faroe Islands; University of the Faroe Islands, Center of Health Science, Torshavn, The Faroe Islands.
| |
Collapse
|
3
|
Gaillard L, Barouki R, Blanc E, Coumoul X, Andréau K. Per- and polyfluoroalkyl substances as persistent pollutants with metabolic and endocrine-disrupting impacts. Trends Endocrinol Metab 2024:S1043-2760(24)00202-9. [PMID: 39181731 DOI: 10.1016/j.tem.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
The widespread use of per- and polyfluoroalkyl substances (PFASs), and their resistance to degradation, renders human exposure to them inevitable. PFAS exposure disturbs endocrine function, potentially affecting cognitive development in newborns through thyroid dysfunction during pregnancy. Recent studies reveal varying male and female reproductive toxicity across PFAS classes, with alternative analogs affecting sperm parameters and legacy PFASs correlating with conditions like endometriosis. Metabolically, PFASs exposure is linked to metabolic disorders, including obesity, type 2 diabetes mellitus (T2DM), dyslipidemia, and liver toxicity, particularly in early childhood. This review focuses on the endocrine-disrupting impact of PFASs, particularly on fertility, thyroid, and metabolic functions. We highlight the complexity of the PFAS issue, given the large number of molecules and their extremely diverse mixed effects.
Collapse
Affiliation(s)
- Lucas Gaillard
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Robert Barouki
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Etienne Blanc
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Xavier Coumoul
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France.
| | - Karine Andréau
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| |
Collapse
|
4
|
Huang G, Li J, Zhou L, Duan T, Deng L, Yang P, Gong Y. Perfluoroalkyl and Polyfluoroalkyl Substances in Relation to the Participant-Reported Total Pregnancy and Live Birth Numbers among Reproductive-Aged Women in the United States. TOXICS 2024; 12:613. [PMID: 39195715 PMCID: PMC11359323 DOI: 10.3390/toxics12080613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs), widely utilized in various industries, may pose potential reproductive well-being risks. However, the research on the impact of PFAS exposures on pregnancy and live birth rates remains scarce. To address this gap, we conducted a cross-sectional study using the data from the United States National Health and Nutrition Examination Survey (NHANES) collected between 2013 and 2018. We focused on six PFAS compounds measured in the serum of women aged 20 to 50 years, employing the Poisson regression, Quantile G-composition (Qgcomp), and Weighted Quantile Sum (WQS) regression models. Adjusting for age, racial/ethnic origin, educational level, marital status, family income, body mass index (BMI), menarche age, birth control pill use, and other female hormone consumption, the Poisson regression identified significant negative associations between the individual PFAS exposures and pregnancy and live birth numbers (p < 0.05 for all 24 null hypotheses for which the slope of the trend line is zero). The Qgcomp analysis indicated that a one-quartile increase in the mixed PFAS exposures was associated with reductions of 0.09 (95% CI: -0.15, -0.03) in the pregnancy numbers and 0.12 (95% CI: -0.19, -0.05) in the live birth numbers. Similarly, the WQS analysis revealed that a unit increase in the WQS index corresponded to decreases of 0.14 (95% CI: -0.20, -0.07) in the pregnancy numbers and 0.14 (95% CI: -0.21, -0.06) in the live birth numbers. Among the six specific PFAS compounds we studied, perfluorononanoic acid (PFNA) had the most negative association with the pregnancy and live birth numbers. In conclusion, our findings suggest that PFAS exposures are associated with lower pregnancy and live birth numbers among women of reproductive age.
Collapse
Affiliation(s)
- Guangtong Huang
- School of Medicine, Jinan University, Guangzhou 510632, China;
| | - Jiehao Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lixin Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tiantian Duan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Yajie Gong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
5
|
Ricolfi L, Vendl C, Bräunig J, Taylor MD, Hesselson D, Gregory Neely G, Lagisz M, Nakagawa S. A research synthesis of humans, animals, and environmental compartments exposed to PFAS: A systematic evidence map and bibliometric analysis of secondary literature. ENVIRONMENT INTERNATIONAL 2024; 190:108860. [PMID: 38968830 DOI: 10.1016/j.envint.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are a class of widely used anthropogenic chemicals. Concerns regarding their persistence and potential adverse effects have led to multiple secondary research publications. Here, we aim to assess the resulting evidence base in the systematic secondary literature by examining research gaps, evaluating the quality of reviews, and exploring interdisciplinary connections. METHODS This study employed a systematic evidence-mapping approach to assess the secondary literature on the biological, environmental, and medical aspects of exposure to 35 fluorinated compounds. The inclusion criteria encompassed systematic reviews published in peer-reviewed journals, pre-prints, and theses. Comprehensive searches across electronic databases and grey literature identified relevant reviews. Data extraction and synthesis involved mapping literature content and narrative descriptions. We employed a modified version of the AMSTAR2 checklist to evaluate the methodological rigour of the reviews. A bibliometric data analysis uncovered patterns and trends in the academic literature. A research protocol for this study was previously pre-registered (osf.io/2tpn8) and published (Vendl et al., Environment International 158 (2022) 106973). The database is freely accessible through the interactive and user-friendly web application of this systematic evidence map at https://hi-this-is-lorenzo.shinyapps.io/PFAS_SEM_Shiny_App/. RESULTS Our map includes a total of 175 systematic reviews. Over the years, there has been a steady increase in the annual number of publications, with a notable surge in 2021. Most reviews focused on human exposure, whereas environmental and animal-related reviews were fewer and often lacked a rigorous systematic approach to literature search and screening. Review outcomes were predominantly associated with human health, particularly with reproductive and children's developmental health. Animal reviews primarily focused on studies conducted in controlled laboratory settings, and wildlife reviews were characterised by an over-representation of birds and fish species. Recent reviews increasingly incorporated quantitative synthesis methodologies. The methodological strengths of the reviews included detailed descriptions of study selection processes and disclosure of potential conflicts of interest. However, weaknesses were observed in the critical lack of detail in reporting methods. A bibliometric analysis revealed that the most productive authors collaborate within their own country, leading to limited and clustered international collaborations. CONCLUSIONS In this overview of the available systematic secondary literature, we map literature content, assess reviews' methodological quality, highlight data gaps, and draw research network clusters. We aim to facilitate literature reviews, guide future research initiatives, and enhance opportunities for cross-country collaboration. Furthermore, we discuss how this systematic evidence map and its publicly available database benefit scientists, regulatory agencies, and other stakeholders by providing access to current systematic secondary literature on PFAS exposure.
Collapse
Affiliation(s)
- Lorenzo Ricolfi
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia.
| | - Catharina Vendl
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia; Dauphin Island Sea Lab, Dauphin Island, Al, USA.
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia; NSW Department of Climate Change, Energy, the Environment and Water, Environment Protection Science Branch, Sydney, Australia.
| | - Matthew D Taylor
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia; Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia; Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Nelson Bay, Australia.
| | - Daniel Hesselson
- Centenary Institute and Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia.
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia; Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia; Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| |
Collapse
|
6
|
González-Alvarez ME, Antwi-Boasiako C, Keating AF. Effects of Per- and Polyfluoroalkylated Substances on Female Reproduction. TOXICS 2024; 12:455. [PMID: 39058107 PMCID: PMC11280844 DOI: 10.3390/toxics12070455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
Per- and poly-fluoroalkylated substances (PFAS) are a large group of chemicals that persist both in the environment and in the body. Legacy PFAS, e.g., perfluorooctanoic acid and perfluorooctane sulfonic acid, are implicated as endocrine disruptors and reproductive and developmental toxicants in epidemiological and animal model studies. This review describes female reproductive outcomes of reported studies and includes where associative relationships between PFAS exposures and female reproductive outcomes have been observed as well as where those are absent. In animal models, studies in which PFAS are documented to cause toxicity and where effects are lacking are described. Discrepancies exist in both human and animal studies and are likely attributable to human geographical contamination, developmental status, duration of exposure, and PFAS chemical identity. Similarly, in animal investigations, the model used, exposure paradigm, and developmental status of the female are important and vary widely in documented studies. Taken together, support for PFAS as reproductive and developmental toxicants exists, although the disparity in study conditions and human exposures contribute to the variation in effects noted.
Collapse
Affiliation(s)
| | | | - Aileen F. Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Butler AE, Sathyapalan T, Das P, Brennan E, Atkin SL. Association of Vitamin D with Perfluorinated Alkyl Acids in Women with and without Non-Obese Polycystic Ovary Syndrome. Biomedicines 2024; 12:1255. [PMID: 38927462 PMCID: PMC11201284 DOI: 10.3390/biomedicines12061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Perfluorinated alkyl acids (PFAAs) are persistent organic pollutants affected by BMI and ethnicity, with contradictory reports of association with vitamin D deficiency. METHODS Twenty-nine Caucasian women with non-obese polycystic ovary syndrome (PCOS) and age- and BMI-matched Caucasian control women (n = 30) were recruited. Paired serum samples were analyzed for PFAAs (n = 13) using high-performance liquid chromatography-tandem mass spectrometry. Tandem mass spectrometry determined levels of 25(OH)D3 and the active 1,25(OH)2D3. RESULTS Women with and without PCOS did not differ in age, weight, insulin resistance, or systemic inflammation (C-reactive protein did not differ), but the free androgen index was increased. Four PFAAs were detected in all serum samples: perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS). Serum PFOS was higher in PCOS versus controls (geometric mean [GM] 3.9 vs. 3.1 ng/mL, p < 0.05). Linear regression modeling showed that elevated PFHxS had higher odds of a lower 25(OH)D3 (OR: 2.919, 95% CI 0.82-5.75, p = 0.04). Vitamin D did not differ between cohorts and did not correlate with any PFAAs, either alone or when the groups were combined. When vitamin D was stratified into sufficiency (>20 ng/mL) and deficiency (<20 ng/mL), no correlation with any PFAAs was seen. CONCLUSIONS While the analyses and findings here are exploratory in light of relatively small recruitment numbers, when age, BMI, and insulin resistance are accounted for, the PFAAs do not appear to be related to 25(OH)D3 or the active 1,25(OH)2D3 in this Caucasian population, nor do they appear to be associated with vitamin D deficiency, suggesting that future studies must account for these factors in the analysis.
Collapse
Affiliation(s)
- Alexandra E. Butler
- Research Department, Royal College of Surgeons of Ireland, Busaiteen 15503, Bahrain; (P.D.); (E.B.); (S.L.A.)
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull HU6 7RU, UK;
| | - Priya Das
- Research Department, Royal College of Surgeons of Ireland, Busaiteen 15503, Bahrain; (P.D.); (E.B.); (S.L.A.)
| | - Edwina Brennan
- Research Department, Royal College of Surgeons of Ireland, Busaiteen 15503, Bahrain; (P.D.); (E.B.); (S.L.A.)
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons of Ireland, Busaiteen 15503, Bahrain; (P.D.); (E.B.); (S.L.A.)
| |
Collapse
|
8
|
Kikanme KN, Dennis NM, Orikpete OF, Ewim DRE. PFAS in Nigeria: Identifying data gaps that hinder assessments of ecotoxicological and human health impacts. Heliyon 2024; 10:e29922. [PMID: 38694092 PMCID: PMC11061687 DOI: 10.1016/j.heliyon.2024.e29922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
This review examines the extensive use and environmental consequences of Per- and Polyfluoroalkyl Substances (PFAS) on a global scale, specifically emphasizing their potential impact in Nigeria. Recognized for their resistance to water and oil, PFAS are under increased scrutiny for their persistent nature and possible ecotoxicological risks. Here, we consolidate existing knowledge on the ecological and human health effects of PFAS in Nigeria, focusing on their neurological effects and the risks they pose to immune system health. We seek to balance the advantages of PFAS with their potential ecological and health hazards, thereby enhancing understanding of PFAS management in Nigeria and advocating for more effective policy interventions and the creation of safer alternatives. The review concludes with several recommendations: strengthening regulatory frameworks, intensifying research into the ecological and health impacts of PFAS, developing new methodologies and longitudinal studies, fostering collaborative efforts for PFAS management, and promoting public awareness and education to support sustainable environmental practices and healthier communities in Nigeria.
Collapse
Affiliation(s)
| | - Nicole M. Dennis
- Department of Environmental Sciences, University of California, Riverside, USA
| | - Ochuko Felix Orikpete
- Centre for Occupational Health, Safety and Environment (COHSE), University of Port Harcourt, Choba, Rivers State, Nigeria
| | | |
Collapse
|
9
|
Premranjith P, King W, Ashley-Martin J, Borghese MM, Bouchard M, Foster W, Arbuckle TE, Velez MP. Maternal exposure to metals and time-to-pregnancy: The MIREC cohort study. BJOG 2024; 131:589-597. [PMID: 38239019 DOI: 10.1111/1471-0528.17759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 03/07/2024]
Abstract
OBJECTIVE To study the association between maternal exposure to arsenic, cadmium, lead, manganese and mercury, time-to-pregnancy (TTP) and infertility. DESIGN Pregnancy-based retrospective TTP cohort study. SETTING Hospitals and clinics from ten cities across Canada. POPULATION A total of 1784 pregnant women. METHODS Concentrations of arsenic, cadmium, lead, manganese and mercury were measured in maternal whole blood during the first trimester of pregnancy as a proxy of preconception exposure. Discrete-time Cox proportional hazards models generated fecundability odds ratios (FOR) for the association between metals and TTP. Logistic regression generated odds ratios (OR) for the association between metals and infertility. Models were adjusted for maternal age, pre-pregnancy body mass index, education, income, recruitment site and plasma lipids. MAIN OUTCOME MEASURES TTP was self-reported as the number of months of unprotected intercourse to become pregnant. Infertility was defined as TTP longer than 12 months. RESULTS A total of 1784 women were eligible for the analysis. Mean ± SD maternal age and gestational age at interview were 32.2 ± 5.0 years, and 11.6 ± 1.6 weeks, respectively. Exposure to arsenic, cadmium, manganese or mercury was not associated with TTP or infertility. Increments of one standard deviation of lead concentrations resulted in a shorter TTP (adjusted FOR 1.09, 95% CI 1.02-1.16); however, the association was not linear when exposure was modelled in tertiles. CONCLUSION Blood concentrations of metals at typical levels of exposure among Canadian pregnant women were not associated with TTP or infertility. Further studies are needed to assess the role of lead, if any, on TTP.
Collapse
Affiliation(s)
- Priya Premranjith
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Will King
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Michael M Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Maryse Bouchard
- Department of Environmental and Occupational Health, Université de Montréal, Montreal, Quebec, Canada
| | - Warren Foster
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, Ontario, Canada
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Maria P Velez
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Obstetrics and Gynaecology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
10
|
Pavan A, Cendron L, Di Nisio A, Pedrucci F, Sabovic I, Scarso A, Ferlin A, Angelini A, Foresta C, De Toni L. In vitro binding analysis of legacy-linear and new generation-cyclic perfluoro-alkyl substances on sex hormone binding globulin and albumin, suggests low impact on serum hormone kinetics of testosterone. Toxicology 2023; 500:153664. [PMID: 37931871 DOI: 10.1016/j.tox.2023.153664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
In humans, serum testosterone (T) is largely bound to the sex hormone binding globulin (SHBG) and human serum albumin (hSA), resulting in a 2-3 % of unbound or "free" active quote (FT). Endocrine-disrupting chemicals, including perfluoro-alkyl substances (PFAS), are recognized to interfere with the hormonal axes, but the possible impact on the FT quote has not been addressed so far. Here we investigated the possible competition of two acknowledged PFAS molecules on T binding to SHBG and hSA. In particular, perfluoro-octanoic acid (PFOA) and acetic acid, 2,2-difluoro-2-((2,2,4,5-tetrafluoro-5(trifluoromethoxy)-1,3-dioxolan-4-yl)oxy)-ammonium salt (1:1) (C6O4) were used as, respectively, legacy-linear and new-generation-cyclic PFASs. Human recombinant SHBG 30-234 domain (SHBG30-234), produced in HEK293-F cells, and delipidated recombinant hSA were used as in vitro protein models. Isothermal Titration Calorimetry (ITC) and tryptophan fluorescence quencing (TFQ) were used to evaluate the binding modes of T and PFAS to SHBG30-234 and hSA. ITC revealed the binding of T to SHBG30-234 with a Kd of 44 ± 2 nM whilst both PFOA and C6O4 showed no binding activity. Results were confirmed by TFQ, since only T modified the fluorescence profile of SHBG30-234. In hSA, TFQ confirmed the binding of T on FA6 site of the protein. A similar binding mode was observed for PFOA but not for C6O4, as further verified by displacement experiments with T. Although both PFASs were previously shown to bind hSA, only PFOA is predicted to possibly compete with T for the binding to hSA. However, on the base of the binding stoichiometry and affinity of PFOA for hSA, this appears unlikely at the blood concentrations of the chemical documented to date.
Collapse
Affiliation(s)
- Angela Pavan
- Department of Biology, University of Padova, Padova, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Andrea Di Nisio
- Deparment of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Federica Pedrucci
- Deparment of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Iva Sabovic
- Deparment of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Alessandro Scarso
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Venezia, Venezia, Italy
| | - Alberto Ferlin
- Deparment of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Venezia, Venezia, Italy; European Centre for Living Technology (ECLT), Ca' Bottacin, Venice, Italy
| | - Carlo Foresta
- Deparment of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy.
| | - Luca De Toni
- Deparment of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Wee SY, Aris AZ. Environmental impacts, exposure pathways, and health effects of PFOA and PFOS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115663. [PMID: 37976959 DOI: 10.1016/j.ecoenv.2023.115663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that have been widely utilized in various industries since the 1940s, and have now emerged as environmental contaminants. In recent years, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been restricted and replaced with several alternatives. The high persistence, bioaccumulation, and toxicity of these substances have contributed to their emergence as environmental contaminants, and several aspects of their behavior remain largely unknown and require further investigation. The trace level of PFAS makes the development of a monitoring database challenging. Additionally, the potential health issues associated with PFAS are not yet fully understood due to ongoing research and inadequate evidence (experimental and epidemiological studies), especially with regard to the combined effects of exposure to PFAS mixtures and human health risks from drinking water consumption. This in-depth review offers unprecedented insights into the exposure pathways and toxicological impacts of PFAS, addressing critical knowledge gaps in their behaviors and health implications. It presents a comprehensive NABC-Needs, Approach, Benefits, and Challenges-analysis to guide future strategies for the sustainable monitoring and management of these pervasive environmental contaminants.
Collapse
Affiliation(s)
- Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
12
|
Currie SD, Doherty JP, Xue KS, Wang JS, Tang L. The stage-specific toxicity of per- and polyfluoroalkyl substances (PFAS) in nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122429. [PMID: 37619695 DOI: 10.1016/j.envpol.2023.122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) are a diverse class of industrial chemicals that have been used for decades in industrial and commercial applications. Due to their widespread usages, persistence in the environment, and bioaccumulation in animals and humans, great public health concerns have been raised on adverse health risks of PFAS. In this study, ten PFAS were selected according to their occurrence in different water bodies. The wild-type worms were exposed to individual PFAS at 0, 0.1, 1,10, 100, and 200 μM, and the toxic effects of PFAS on growth, development, fecundity, and behavior at different life stages were investigated using a high-throughput screening (HTS) platform. Our results showed that perfluorooctanesulfonic acid (PFOS), 1H,1H, 2H, 2H-perfluorooctanesulfonamidoacetic acid (NEtFOSAA), perfluorobutanesulfonic (PFBS), and perfluorohexanesulfonic acid (PFHxS) exhibited significant inhibitive effects on the growth in the L4 larva and later stages of worms with concentrations ranging from 0.1 to 200 μmol/L. PFOS and PFBS significantly decreased the brood size of worms across all tested concentrations (p < 0.05), and the most potent PFAS is PFOS with BMC of 0.02013 μM (BMCL, 1.6e-06 μM). During adulthood, all PFAS induced a significant reduction in motility (p < 0.01), while only PFOS can significantly induce behavior alteration at the early larvae stage. Furthermore, the adverse effects occurred in larval stages were found to be the most susceptible to the PFAS exposure. These findings provide valuable insights into the potential adverse effects associated with PFAS exposure and show the importance of considering developmental stages in toxicity assessments.
Collapse
Affiliation(s)
- Seth D Currie
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Joseph Patrick Doherty
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Lili Tang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
13
|
Huang S, Li X, Deng L, Xie J, Huang G, Zeng C, Wu N, Zhu S, Liu C, Mei H, Xiao H, Chen D, Yang P. Exposure to per- and polyfluoroalkyl substances in women with twin pregnancies: Patterns and variability, transplacental transfer, and predictors. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132432. [PMID: 37688869 DOI: 10.1016/j.jhazmat.2023.132432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
The extensive exposure to per- and polyfluoroalkyl substances (PFASs) has raised public health concerns. The issue of PFAS exposures in women with twin pregnancies remains unresolved. To determine exposure profiles, the transplacental transfer efficiencies (TTEs) of PFASs and predictors were estimated. We found that serum PFASs were widely detected, with detection rates of over 50% for 12 PFASs in maternal serum throughout pregnancy. The majority of PFAS levels exhibited fair to good reproducibility (ICCs > 0.40). Moderate to low correlations were observed for most PFASs between twin cord serum and maternal serum at three trimesters (rs = 0.13-0.77, p values < 0.01). We first presented a U-shaped trend for TTEs with increasing chain length for perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in twins, even in twin sex subgroups. Further, we found that PC4 and PC5 (indicators of exposure to PFHxS and 6:2 Cl-PFESA) were positively associated with age (β = 0.85, 1.30, and 1.36, respectively). Our findings suggested that there is moderate variability among certain PFASs and that these PFASs have the ability to cross the placental barrier. Exposure patterns were found to be associated with maternal age.
Collapse
Affiliation(s)
- Songyi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Jinying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Guangtong Huang
- School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Chenyan Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Nanxin Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Chaoqun Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Da Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, PR China.
| |
Collapse
|
14
|
Chang MC, Chung SM, Kwak SG. Exposure to perfluoroalkyl and polyfluoroalkyl substances and risk of stroke in adults: a meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 0:reveh-2023-0021. [PMID: 37656598 DOI: 10.1515/reveh-2023-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/18/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION Evidence of the adverse metabolic health effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) is increasing. However, the impact of PFAS on cardiovascular diseases remains controversial. This meta-analysis aimed to analyze the impact of PFAS on the stroke risk. CONTENT Databases were searched for studies published up to November 1, 2022, which report the association between stroke and exposure to at least one of four main PFAS (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS], perfluorononanoic acid [PFNA], and perfluorohexane sulfonic acid [PFHxS]). Data extraction and quality assessment were performed according to the Newcastle-Ottawa scale. SUMMARY AND OUTLOOK Four studies were included in this systematic review. Multivariate adjusted odds ratios (ORs) for incident stroke per 1-log unit increment in each serum PFAS were combined in the meta-analysis. The risk of development of stroke was not significantly associated with PFOA, PFOS, or PFNA exposure (PFOA: pooled odds ratio [OR]=1.001, 95 % confidence interval [CI]=0.975-1.028, p=0.934; PFOS: pooled OR=0.994, 95 % CI=0.972-1.017, p=0.601; PFNA: pooled OR=1.016, 95 % CI=0.920-1.123, p=0.752), whereas a moderately lower risk was associated with PFHxS exposure without statistical significance (pooled OR=0.953, 95 % CI=0.908-1.001, p=0.054). PFOA, PFOS, and PFNA exposure showed a neutral association, while PFHxS showed a possible inverse association with the risk of stroke. Therefore, this finding should be interpreted with caution. Further prospective observational studies with PFAS mixture analyses are warranted.
Collapse
Affiliation(s)
- Min Cheol Chang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Seung Min Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Sang Gyu Kwak
- Department of Medical Statistics, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| |
Collapse
|
15
|
González-Alvarez ME, Keating AF. Hepatic and ovarian effects of perfluorooctanoic acid exposure differ in lean and obese adult female mice. Toxicol Appl Pharmacol 2023; 474:116614. [PMID: 37422089 DOI: 10.1016/j.taap.2023.116614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Obesity and overweight cause poor oocyte quality, miscarriage, infertility, polycystic ovarian syndrome, and offspring birth defects and affects 40% and 20% of US women and girls, respectively. Perfluorooctanoic acid (PFOA), a per- and poly-fluoroalkyl substance (PFAS), is environmentally persistent and has negative female reproductive effects including endocrine disruption, oxidative stress, altered menstrual cyclicity, and decreased fertility in humans and animal models. PFAS exposure is associated with non-alcoholic fatty liver disease which affects ∼24-26% of the US population. This study investigated the hypothesis that PFOA exposure impacts hepatic and ovarian chemical biotransformation and alters the serum metabolome. At 7 weeks of age, female lean, wild type (KK.Cg-a/a) or obese (KK.Cg-Ay/J) mice received saline (C) or PFOA (2.5 mg/Kg) per os for 15 d. Hepatic weight was increased by PFOA exposure in both lean and obese mice (P < 0.05) and obesity also increased liver weight (P < 0.05) compared to lean mice. The serum metabolome was also altered (P < 0.05) by PFOA exposure and differed between lean and obese mice. Exposure to PFOA altered (P < 0.05) the abundance of ovarian proteins with roles in xenobiotic biotransformation (lean - 6; obese - 17), metabolism of fatty acids (lean - 3; obese - 9), cholesterol (lean - 8; obese - 11), amino acids (lean - 18; obese - 19), glucose (lean - 7; obese - 10), apoptosis (lean - 18; obese - 13), and oxidative stress (lean - 3; obese - 2). Use of qRT-PCR determined that exposure to PFOA increased (P < 0.05) hepatic Ces1 and Chst1 in lean but Ephx1 and Gstm3 in obese mice. Also, obesity basally increased (P < 0.05) Nat2, Gpi and Hsd17b2 mRNA levels. These data identify molecular changes resultant from PFOA exposure that may cause liver injury and ovotoxicity in females. In addition, differences in toxicity induced by PFOA exposure occurs in lean and obese mice.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, United States of America
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
16
|
González-Alvarez ME, Roach CM, Keating AF. Scrambled eggs-Negative impacts of heat stress and chemical exposures on ovarian function in swine. Mol Reprod Dev 2023; 90:503-516. [PMID: 36652419 DOI: 10.1002/mrd.23669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
Exposure to environmental toxicants and hyperthermia can hamper reproduction in female mammals including swine. Phenotypic manifestations include poor quality oocytes, endocrine disruption, infertility, lengthened time to conceive, pregnancy loss, and embryonic defects. The ovary has the capacity for toxicant biotransformation, regulated in part by the phosphatidylinositol-3 kinase signaling pathway. The impacts of exposure to mycotoxins and pesticides on swine reproduction and the potential for an emerging chemical class of concern, the per- and polyfluoroalkylated substances, to hamper porcine reproduction are reviewed. The negative impairments of heat stress (HS) on swine reproductive outcomes are also described and the cumulative effect of environmental exposures, such as HS, when present in conjunction with a toxicant is considered.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Crystal M Roach
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
17
|
Cohen NJ, Yao M, Midya V, India-Aldana S, Mouzica T, Andra SS, Narasimhan S, Meher AK, Arora M, Chan JKY, Chan SY, Loy SL, Minguez-Alarcon L, Oulhote Y, Huang J, Valvi D. Exposure to perfluoroalkyl substances and women's fertility outcomes in a Singaporean population-based preconception cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162267. [PMID: 36801327 PMCID: PMC10234267 DOI: 10.1016/j.scitotenv.2023.162267] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVES Experimental models have demonstrated a link between exposure to perfluoroalkyl substances (PFAS) and decreased fertility and fecundability; however, human studies are scarce. We assessed the associations between preconception plasma PFAS concentrations and fertility outcomes in women. METHODS In a case-control study nested within the population-based Singapore Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO), we measured PFAS in plasma collected in 2015-2017 from 382 women of reproductive age trying to conceive. Using Cox proportional hazards regression (fecundability ratios [FRs]) and logistic regression (odds ratios [ORs]) models, we assessed the associations of individual PFAS with time-to-pregnancy (TTP), and the likelihoods of clinical pregnancy and live birth, respectively, over one year of follow-up, adjusting for analytical batch, age, education, ethnicity, and parity. We used Bayesian weighted quantile sum (BWQS) regression to assess the associations of the PFAS mixture with fertility outcomes. RESULTS We found a 5-10 % reduction in fecundability per quartile increase of exposure to individual PFAS (FRs [95 % CIs] for clinical pregnancy = 0.90 [0.82, 0.98] for PFDA; 0.88 [0.79, 0.99] for PFOS; 0.95 [0.86, 1.06] for PFOA; 0.92 [0.84, 1.00] for PFHpA). We observed similar decreased odds of clinical pregnancy (ORs [95 % CIs] = 0.74 [0.56, 0.98] for PFDA; 0.76 [0.53, 1.09] for PFOS; 0.83 [0.59, 1.17] for PFOA; 0.92 [0.70, 1.22] for PFHpA) and live birth per quartile increases of individual PFAS and the PFAS mixture (ORs [95 % CIs] = 0.61 [0.37, 1.02] for clinical pregnancy, and 0.66 [0.40, 1.07] for live birth). Within the PFAS mixture, PFDA followed by PFOS, PFOA, and PFHpA were the biggest contributors to these associations. We found no evidence of association for PFHxS, PFNA, and PFHpS and the fertility outcomes examined. CONCLUSIONS Higher PFAS exposures may be associated with decreased fertility in women. The potential impact of ubiquitous PFAS exposures on infertility mechanisms requires further investigation.
Collapse
Affiliation(s)
- Nathan J Cohen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Vishal Midya
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Sandra India-Aldana
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Tomer Mouzica
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Syam S Andra
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Srinivasan Narasimhan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Anil K Meher
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore; Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - See Ling Loy
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore; Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore
| | - Lidia Minguez-Alarcon
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, United States of America
| | - Youssef Oulhote
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts at Amherst, United States of America
| | - Jonathan Huang
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore; Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, United States of America.
| |
Collapse
|
18
|
Thacharodi A, Hassan S, Hegde TA, Thacharodi DD, Brindhadevi K, Pugazhendhi A. Water a major source of endocrine-disrupting chemicals: An overview on the occurrence, implications on human health and bioremediation strategies. ENVIRONMENTAL RESEARCH 2023; 231:116097. [PMID: 37182827 DOI: 10.1016/j.envres.2023.116097] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are toxic compounds that occur naturally or are the output of anthropogenic activities that negatively impact both humans and wildlife. A number of diseases are associated with these disruptors, including reproductive disorders, cardiovascular disorders, kidney disease, neurological disorders, autoimmune disorders, and cancer. Due to their integral role in pharmaceuticals and cosmetics, packaging companies, agro-industries, pesticides, and plasticizers, the scientific awareness on natural and artificial EDCs are increasing. As these xenobiotic compounds tend to bioaccumulate in body tissues and may also persist longer in the environment, the concentrations of these organic compounds may increase far from their original point of concentrations. Water remains as the major sources of how humans and animals are exposed to EDCs. However, these toxic compounds cannot be completely biodegraded nor bioremediated from the aqueous medium with conventional treatment strategies thereby requiring much more efficient strategies to combat EDC contamination. Recently, genetically engineered microorganism, genome editing, and the knowledge of protein and metabolic engineering has revolutionized the field of bioremediation thereby helping to breakdown EDCs effectively. This review shed lights on understanding the importance of aquatic mediums as a source of EDCs exposure. Furthermore, the review sheds light on the consequences of these EDCs on human health as well as highlights the importance of different remediation and bioremediation approaches. Particular attention is paid to the recent trends and perspectives in order to attain sustainable approaches to the bioremediation of EDCs. Additionally, rigorous restrictions to preclude the discharge of estrogenic chemicals into the environment should be followed in efforts to combat EDC pollution.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand; Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Saqib Hassan
- Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA; Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Thanushree A Hegde
- Civil Engineering Department, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - Dhanya Dilip Thacharodi
- Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Kathirvel Brindhadevi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
19
|
Adyeni BS, Carlos U, Tatiana HM, Luisa G, Jessica T, Eduardo C, Miguel B, Fahiel C, Alma L, Edmundo B, Ivan BO. Perfluorohexane sulfonate (PFHxS) disturbs the estrous cycle, ovulation rate, oocyte cell communication and calcium homeostasis in mice. Reprod Biol 2023; 23:100768. [PMID: 37163972 DOI: 10.1016/j.repbio.2023.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Perfluoroalkyl substances are man-made chemicals with ample consumer and industrial applications. They are widely used and are resistant to environmental and metabolic degradation. Several studies have evaluated the effects of Perfluorohexane sulfonate on reproduction. However, there are few reports exploring the cell and molecular mechanisms of its toxicity in the ovary. The aim of this study was to investigate the effects of PFHxS exposure on the estrous cycle, ovulation rate, and the underlying mechanisms of action in female mice in vivo. The animals received a single sub-lethal dose of PFHxS (25.1 mg/kg, 62.5 mg/kg) or vehicle and were stimulated to obtain immature cumulus cell-oocyte complexes (COCs) from the ovaries, or superovulated to develop mature COCs. To evaluate oocyte physiology, Gap-junction intercellular communication (GJIC) was analyzed in immature COCs and calcium homeostasis was evaluated in mature oocytes. PFHxS exposure prolonged the estrous cycle and decreased ovulation rate in female mice. Connexins, Cx43 and Cx37, were downregulated and GJIC was impaired in immature COCs, providing a possible mechanism for the alterations in the estrous cycle and ovulation. No morphological abnormalities were observed in the mature PFHxS-exposed oocytes, but calcium homeostasis was affected. This effect is probably due, at least partially, to deregulation of the endoplasmic reticulum calcium modulator, Stim1. These mechanisms of ovarian injury could explain the reported correlation among PFHxS levels and subfertility in women undergoing fertility treatments.
Collapse
Affiliation(s)
- Barajas Salinas Adyeni
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Urrutia Carlos
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Huerta Maldonado Tatiana
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Gonzalez Luisa
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Tellez Jessica
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Casas Eduardo
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Betancourt Miguel
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Casillas Fahiel
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Lopez Alma
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Bonilla Edmundo
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Bahena Ocampo Ivan
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico.
| |
Collapse
|
20
|
Panagopoulos P, Mavrogianni D, Christodoulaki C, Drakaki E, Chrelias G, Panagiotopoulos D, Potiris A, Drakakis P, Stavros S. Effects of endocrine disrupting compounds on female fertility. Best Pract Res Clin Obstet Gynaecol 2023:102347. [PMID: 37244786 DOI: 10.1016/j.bpobgyn.2023.102347] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/29/2023]
Abstract
Endocrine Disrupting Compounds or Chemicals (EDCs) constitute an extensive and varied group of mostly non-natural chemicals that have the ability to imitate any aspect of hormone action, perturbing many physiological functions in humans and animals. As for female fertility, several EDCs are associated with adverse effects in the regulation of steroidogenesis, higher miscarriage rates as well as lower fertilization and embryo implantation rates and some of them are considered to decrease the number of high-quality embryos in assisted reproductive technology (ART) pregnancy. The most common EDCs are pesticides, hexachlorobenzene (HCB), hexachlorocyclohexane (HCH) and especially phthalates and bisphenols which are used in thousands of products as plasticizers. Among all, Bisphenol A (BPA) is one of the most permeating and well-studied EDCs. BPA's action resembles that of estradiol affecting negatively the female reproductive system in various ways. This review summarizes the most recent literature on the impact of EDCs in female fertility.
Collapse
Affiliation(s)
- Periklis Panagopoulos
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| | - Despina Mavrogianni
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School of the National and Kapodistrian University of Athens, Greece.
| | | | - Eirini Drakaki
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School of the National and Kapodistrian University of Athens, Greece
| | - Georgios Chrelias
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| | - Dimitrios Panagiotopoulos
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| | - Peter Drakakis
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece; First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School of the National and Kapodistrian University of Athens, Greece
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| |
Collapse
|
21
|
Kaur K, Lesseur C, Chen L, Andra SS, Narasimhan S, Pulivarthi D, Midya V, Ma Y, Ibroci E, Gigase F, Lieber M, Lieb W, Janevic T, De Witte LD, Bergink V, Rommel AS, Chen J. Cross-sectional associations of maternal PFAS exposure on SARS-CoV-2 IgG antibody levels during pregnancy. ENVIRONMENTAL RESEARCH 2023; 219:115067. [PMID: 36528042 PMCID: PMC9747685 DOI: 10.1016/j.envres.2022.115067] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Perfluoroalkylated substances (PFAS) are man-made, persistent organic compounds with immune-modulating potentials. Given that pregnancy itself represents an altered state of immunity, PFAS exposure-related immunotoxicity is an important environmental factor to consider in SARS-CoV-2 infection during pregnancy as it may further affect humoral immune responses. AIM To investigate the relationship between maternal plasma PFAS concentrations and SARS-CoV-2 antibody levels in a NYC-based pregnancy cohort. METHODS Maternal plasma was collected from 72 SARS-CoV-2 IgG + participants of the Generation C Study, a birth cohort established at the beginning of the COVID-19 pandemic in New York City. Maternal SARS-CoV-2 anti-spike IgG antibody levels were measured using ELISA. A panel of 16 PFAS congeners were measured in maternal plasma using a targeted UHPLC-MS/MS-based assay. Spearman correlations and linear regressions were employed to explore associations between maternal IgG antibody levels and plasma PFAS concentrations. Weighted quantile sum (WQS) regression was also used to evaluate mixture effects of PFAS. Models were adjusted for maternal age, gestational age at which SARS-CoV-2 IgG titer was measured, COVID-19 vaccination status prior to IgG titer measurement, maternal race/ethnicity, parity, type of insurance and pre-pregnancy BMI. RESULTS Our study population is ethnically diverse with an average maternal age of 32 years. Of the 16 PFAS congeners measured, nine were detected in more than 60% samples. Importantly, all nine congeners were negatively correlated with SARS-CoV-2 anti-spike IgG antibody levels; n-PFOA and PFHxS, PFHpS, and PFHxA reached statistical significance (p < 0.05) in multivariable analyses. When we examined the mixture effects using WQS, a quartile increase in the PFAS mixture-index was significantly associated with lower maternal IgG antibody titers (beta [95% CI] = -0.35 [-0.52, -0.17]). PFHxA was the top contributor to the overall mixture effect. CONCLUSIONS Our study results support the notion that PFAS, including short-chain emerging PFAS, act as immunosuppressants during pregnancy. Whether such compromised immune activity leads to downstream health effects, such as the severity of COVID-19 symptoms, adverse obstetric outcomes or neonatal immune responses remains to be investigated.
Collapse
Affiliation(s)
- Kirtan Kaur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lixian Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Syam S Andra
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Srinivasan Narasimhan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Pulivarthi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vishal Midya
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yula Ma
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erona Ibroci
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Frederieke Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Lieber
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Whitney Lieb
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Janevic
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Population Health Science & Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lotje D De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Ao J, Qiu W, Huo X, Wang Y, Wang W, Zhang Q, Liu Z, Zhang J. Paraben exposure and couple fecundity: a preconception cohort study. Hum Reprod 2023; 38:726-738. [PMID: 36749105 DOI: 10.1093/humrep/dead016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/22/2022] [Indexed: 02/08/2023] Open
Abstract
STUDY QUESTION Is pre-conception exposure to parabens associated with fecundity in couples of childbearing age? SUMMARY ANSWER Paraben exposure in female partners was associated with reduced couple fecundity and anti-Müllerian hormone (AMH) might be one of the possible mediators. WHAT IS KNOWN ALREADY The reproductive toxicity of parabens, a class of widely used preservatives, has been suggested but evidence regarding their effects on couple fecundity is scarce. STUDY DESIGN, SIZE, DURATION In this couple-based prospective cohort study, a total of 884 pre-conception couples who participated in the Shanghai Birth Cohort between 2013 and 2015 were included. PARTICIPANTS/MATERIALS, SETTING, METHODS Concentrations of six parabens were measured in urine samples collected from couples. Malondialdehyde, C-reactive protein, and AMH were assessed in female partners. The outcomes included couple fecundability (time-to-pregnancy, TTP) and infertility (TTP > 12 menstrual cycles). Partner-specific and couple-based models were applied to estimate the associations. The joint effect of paraben mixture on couple fecundity was estimated by quantile-based g-computation (q-gcomp). Mediation analysis was used to assess the mediating roles of oxidative stress, inflammation and ovarian reserve. MAIN RESULTS AND THE ROLE OF CHANCE A total of 525 couples (59.4%) conceived spontaneously. In the partner-specific model, propyl paraben (PrP), butyl paraben (BuP), and heptyl paraben (HeP) in female partners were associated with reduced fecundability (fecundability odds ratio (95% CI): 0.96 (0.94-0.98) for PrP; 0.90 (0.87-0.94) for BuP; 0.42 (0.28-0.65) for HeP) and increased risk of infertility (rate ratio (95% CI): 1.06 (1.03-1.10) for PrP; 1.14 (1.08-1.21) for BuP; 1.89 (1.26-2.83) for HeP). Similar associations were observed in the couple-based model. AMH played a significant mediation role in the association (average causal mediation effect (95% CI): 0.001 (0.0001-0.003)). Paraben exposure in male partners was not associated with couple fecundity. The joint effect of paraben mixture on couple fecundity was non-significant. LIMITATIONS, REASONS FOR CAUTION Self-reported pregnancy and single urine sample may lead to misclassification. The mediation analysis is limited in that levels of sex hormones were not measured. The inclusion of women with irregular menstrual cycles might affect the results. It is possible that the observed association was due to reverse causation. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to assess the effects of paraben exposure on couple fecundity in Asians. Given the widespread exposure to parabens in couples of childbearing age, the present findings may have important public health implications. STUDY FUNDING/COMPETING INTEREST(S) This study was supported in part by the National Natural Science Foundation of China (41991314), the Shanghai Science and Technology Development Foundation (22YF1426700), the Science and Technology Commission of Shanghai Municipality (21410713500), and the Shanghai Municipal Health Commission (2020CXJQ01). All authors declare no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Qiu
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaona Huo
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Wang
- Department of Reproductive Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Public Health, Shanghai Jiao Tong University, Shanghai, China.,International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Wang W, Hong X, Zhao F, Wu J, Wang B. The effects of perfluoroalkyl and polyfluoroalkyl substances on female fertility: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 216:114718. [PMID: 36334833 DOI: 10.1016/j.envres.2022.114718] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The reproductive toxicity of perfluoroalkyl and polyfluoroalkyl substances (PFAS) has been verified in both animal and in vitro experiments, however, the association between PFAS and female fertility remains contradictory in population studies. Therefore, in this systematic review and meta-analysis, we evaluated the effects of PFAS on female fertility based on population evidence. METHODS Electronic searches of the Web of Science, PubMed, The Cochrane Library, and Embase databases were conducted (from inception to March 2022) to collect observational studies related to PFAS and female fertility. Two evaluators independently screened the literature, extracted information and evaluated the risk of bias for the included studies, meta-analysis was performed using R software. RESULTS A total of 5468 records were searched and 13 articles fully met the inclusion criteria. Meta-analysis showed that perfluorooctanoic acid (PFOA) exposure was negatively associated with the female fecundability odds ratio (FOR = 0.88, 95% confidence interval (Cl) [0.78; 0.98]) and positively associated with the odds ratio for infertility (OR = 1.33, 95%Cl [1.03; 1.73]). Perfluorooctane sulfonate (PFOS) exposure was negatively associated with the fecundability odds ratio (FOR = 0.94, 95% CI [0.90; 0.98]). Pooled effect values for perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorohexane sulfonate (PFHxS) exposure did not find sufficient evidence for an association with female fertility. CONCLUSION Based on the evidence provided by the current study, increased levels of PFAS exposure are associated with reduced fertility in women, this was characterized by a reduction in fecundability odds ratio and an increase in odds ratio for infertility. This finding could partially explain the decline in female fertility and provide insight into risk assessment when manufacturing products containing PFAS.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Fanqi Zhao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Jingying Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
24
|
Ao Y, Nian M, Tang W, Zhang J, Zhang Q, Ao J. A sensitive and robust method for the simultaneous determination of thirty-three legacy and emerging per- and polyfluoroalkyl substances in human plasma and serum. Anal Bioanal Chem 2023; 415:457-470. [PMID: 36383228 DOI: 10.1007/s00216-022-04426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Legacy and emerging per- and polyfluoroalkyl substances (PFAS) have attracted growing attention due to their potential adverse effects on humans. We developed a method to simultaneously determine thirty-three PFAS (legacy PFAS, precursors, and alternatives) in human plasma and serum using solid phase extraction coupled to ultra-performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS). The method yielded good linearity (>0.995) and excellent limits of detection (LODs) (0.0005~0.012 ng mL-1 in plasma and 0.002~0.016 ng mL-1 in serum). The relative recoveries ranged from 80.1 to 116%, with intra- and inter-day precision less than 14.3%. The robustness of this method has been tested continuously for 10 months (coefficients of variation <14.9%). Our method was successfully applied to the PFAS analysis of 42 real human plasma and serum samples collected from women. The proposed method is attractive for the biomonitoring of multi-class PFAS in human health risk assessment and epidemiological studies.
Collapse
Affiliation(s)
- Yan Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Min Nian
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200082, China
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China.,School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| | - Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
25
|
Abdoli S, Masoumi SZ, Kazemi F. Environmental and occupational factors and higher risk of couple infertility: a systematic review study. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Infertility is a global health problem that represents an increasing trend due to new lifestyles following technological advances since individuals are facing more risk factors than before. The present systematic review study aimed to investigate the impact of environmental and occupational factors on reproductive parameters and increased risk of couple infertility.
Main body
Scopus, PubMed, SID, and Web of Science databases were searched for the available observational (i.e., cohort, case-control, and cross-sectional) systematic review, meta-analysis, and clinical trial studies between 2007 and 2019. To this end, keywords such as ‘Environmental exposure’, ‘Occupational exposure’, ‘Environmental pollutants’, ‘Environmental pollution’, ‘Couple infertility’, ‘Sterility’, and ‘Sub-fertility’ were used. The retrieved investigations examined the impact of environmental and occupational risk factors on reproductive indices and increased infertility risk. Totally, 66 out of 9519 papers were evaluated after considering the inclusion and exclusion criteria. The reported risk factors in the reviewed studies were heavy metals, cigarette smoking, and exposure to chemicals through consumer goods, urban life, and proximity to main roads. In addition, occupational factors included heavy physical activity, prolonged sitting, exposure to a hot environment, contact with formaldehyde, pesticides, insecticides, mechanical vibration, and contact with ionizing radiation, all of which affected the reproductive parameters. However, some researchers found no significant associations in this regard.
Short conclusion
In general, individuals with known impairments in reproductive parameters were more exposed to risk factors. Nonetheless, more studies are needed to determine the risk of infertility in the population.
Collapse
|
26
|
Land KL, Miller FG, Fugate AC, Hannon PR. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol Reprod Dev 2022; 89:608-631. [PMID: 36580349 PMCID: PMC10100123 DOI: 10.1002/mrd.23652] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is unavoidable, which represents a public health concern given the ability of EDCs to target the ovary. However, there is a large gap in the knowledge about the impact of EDCs on ovarian function, including the process of ovulation. Defects in ovulation are the leading cause of infertility in women, and EDC exposures are contributing to the prevalence of infertility. Thus, investigating the effects of EDCs on the ovary and ovulation is an emerging area for research and is the focus of this review. The effects of EDCs on gametogenesis, uterine function, embryonic development, and other aspects of fertility are not addressed to focus on ovarian- and ovulation-related fertility issues. Herein, findings from epidemiological and basic science studies are summarized for several EDCs, including phthalates, bisphenols, per- and poly-fluoroalkyl substances, flame retardants, parabens, and triclosan. Epidemiological literature suggests that exposure is associated with impaired fecundity and in vitro fertilization outcomes (decreased egg yield, pregnancies, and births), while basic science literature reports altered ovarian follicle and corpora lutea numbers, altered hormone levels, and impaired ovulatory processes. Future directions include identification of the mechanisms by which EDCs disrupt ovulation leading to infertility, especially in women.
Collapse
Affiliation(s)
- Katie L. Land
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Frances G. Miller
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Ava C. Fugate
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Patrick R. Hannon
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
27
|
Estefanía González-Alvarez M, Severin A, Sayadi M, Keating AF. PFOA-Induced Ovotoxicity Differs Between Lean and Obese Mice With Impacts on Ovarian Reproductive and DNA Damage Sensing and Repair Proteins. Toxicol Sci 2022; 190:173-188. [PMID: 36214631 PMCID: PMC9789752 DOI: 10.1093/toxsci/kfac104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is an environmentally persistent perfluoroalkyl substance that is widely used in consumer products. Exposure to PFOA is associated with reproductive and developmental effects including endocrine disruption, delayed puberty in girls, and decreased fetal growth. In the United States, obesity affects 40% of women and 20% of girls, with higher rates in minority females. Obesity causes infertility, poor oocyte quality, miscarriage, and offspring defects. This study proposed that PFOA exposure would impact estrous cyclicity, ovarian steroid hormones, and the ovarian proteome and further hypothesized that obesity would impact PFOA-induced ovotoxicity. Female wild type (KK.Cg-a/a; lean) or KK.Cg-Ay/J mice (obese) received saline (CT) or PFOA (2.5 mg/kg) per os for 15 days beginning at 7 weeks of age. There were no effects on food intake, body weight, estrous cyclicity, serum progesterone, and heart, spleen, kidney, or uterus weight (p > .05). Ovary weight was decreased (p < .05) by PFOA exposure relative to vehicle control-treated mice in lean but not obese mice. Liquid chromatography-tandem mass spectrometry was performed on isolated ovarian protein and PFOA exposure altered the ovarian abundance of proteins involved in DNA damage sensing and repair pathways and reproduction pathways (p < .05) differentially in lean and obese mice. The data suggest that PFOA exposure alters ovary weight and differentially targets ovarian proteins in lean and obese females in ways that might reduce female fecundity.
Collapse
Affiliation(s)
| | - Andrew Severin
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| | - Maryam Sayadi
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
28
|
Li J, Yang L, He G, Wang B, Miao M, Ji H, Wen S, Cao W, Yuan W, Liang H. Association between prenatal exposure to perfluoroalkyl substances and anogenital distance in female neonates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114130. [PMID: 36182800 DOI: 10.1016/j.ecoenv.2022.114130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) have been reported to exert reproductive toxicity. Anogenital distance (AGD) is a biomarker of intrauterine androgen exposure and an indicator of genital development. An animal study reported that female neonatal rats exposed to perfluorooctanoic acid or perfluorooctane sulfonate (PFOS) during postnatal days 1-5 exhibited a longer AGD, while epidemiological studies have shown inconsistent results. This study aimed to examine the effects of prenatal exposure to PFASs on the AGD in female neonates. METHODS PFAS levels were measured in plasma samples obtained from pregnant women at 12-16 gestational weeks using high-performance liquid chromatography/mass spectrometry. The AGD of each female neonate was measured within 3 days after delivery. The anogenital index (AGI), calculated as AGD divided by weight, was also determined. A total of 362 motherinfant pairs were included in this study. A multivariate linear regression model was used to examine the association between prenatal ln-transformed concentrations of PFASs and AGD/AGI. In addition, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) models were used to assess the overall effects of a mixture of PFASs on the AGD/AGI and to identify important contributors to the overall effect. RESULTS There was a consistent pattern of association between maternal PFAS concentrations and increased AGDanus to posterior fourchette (AF), AGDanus to clitoris (AC), and AGIAF lengths at birth. Statistical significance was found between maternal ln-transformed concentrations of perfluorohexane sulfonate (PFHxS), perfluorododecanoic acid, and perfluorotridecanoic acid and AGDAF, with β values (95% confidence interval [CI]) of 0.83 (0.16, 1.51), 0.32 (0.05, 0.59), and 0.25 (0.00, 0.51) mm, respectively; between PFOS and AGDAC, with a β value (95% CI) of 0.63 (0.04, 1.21) mm; and between PFHxS and AGIAF, with a β value (95% CI) of 0.22 (0.02, 0.43) mm/kg. Similarly, the WQSR and BKMR models showed that an increase in the AGDAF/AGIAF at birth was associated with co-exposure to a mixture of PFASs. CONCLUSION High maternal concentrations of PFASs were associated with increased AGD in female neonates, indicating that PFASs may impair reproductive development in female offspring in early life.
Collapse
Affiliation(s)
- Jincan Li
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Limei Yang
- The First People's Hospital of Jiashan, Jiaxing Zhejiang Province 314199, China
| | - Gengsheng He
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, Beijing 100081, China
| | - Maohua Miao
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Honglei Ji
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Wencheng Cao
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Wei Yuan
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Hong Liang
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China.
| |
Collapse
|
29
|
Silva EL, Walker DI, Coates Fuentes Z, Pinto-Pacheco B, Metz CN, Gregersen PK, Mahalingaiah S. Untargeted metabolomics reveals that multiple reproductive toxicants are present at the endometrium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157005. [PMID: 35772554 PMCID: PMC10989715 DOI: 10.1016/j.scitotenv.2022.157005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Recent epidemiologic research shows many environmental chemicals exhibit endocrine disrupting effects on the female reproductive system. Few studies have examined exposure at reproductive organs. Our aim was to perform a preliminary untargeted metabolomic characterization of menstrual blood, a novel biofluid, to identify environmental toxins present in the endometrium and evaluate the suitability of this sample type for exposome research. METHODS Whole blood menstrual samples were collected from four women using a menstrual cup. Samples were analyzed for small molecules that include both environmental chemicals and endogenous metabolites using untargeted liquid chromatography with high-resolution mass spectrometry (LC-HRMS). Principal component analysis (PCA) and ANOVA was used to identify differences within and between individuals' menstrual blood metabolomic profiles, and the influence of the sample processing method. To assess the presence of environmental exposures, LC-HRMS chemical profiles were matched to the ToxCast chemical database, which includes 4557 commonly used commercial chemicals. Select compounds were confirmed by comparison to reference standards. RESULTS PCA of metabolome profiles showed analysis of menstrual blood samples were highly reproducible, with high variability in detected metabolites between participants and low variability between analytical replicates of an individual's sample. Endogenous metabolites detected in menstrual blood samples achieved good coverage of the human blood metabolome. We found 1748 annotations for environmental chemicals, including suspected reproductive toxicants such as phenols, parabens, phthalates, and organochlorines. Storage temperature for the first 24 h did not significantly influence global metabolomic profiles. CONCLUSION Our results show chemical exposures linked to reproductive toxicity and endocrine disruption are present in menstrual blood, a sampling medium for the endometrium.
Collapse
Affiliation(s)
- Emily L Silva
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, 665 Huntington Avenue Building 1, Boston, MA 02115, USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zoe Coates Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brismar Pinto-Pacheco
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christine N Metz
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA; Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Peter K Gregersen
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA; Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Shruthi Mahalingaiah
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, 665 Huntington Avenue Building 1, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Jain RB, Ducatman A. Serum concentrations of selected perfluoroalkyl substances for US females compared to males as they age. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156891. [PMID: 35753482 DOI: 10.1016/j.scitotenv.2022.156891] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Ram B Jain
- Independent Researcher, Loganville, GA, USA.
| | - Alan Ducatman
- West Virginia University School of Public Health, Morgantown, WV, USA
| |
Collapse
|
31
|
Wang S, Zhang B, Zhai Y, Tang Y, Lou Y, Zhu Y, Wang Y, Ge RS, Li H. Structure-activity relationship analysis of perfluoroalkyl carbonic acids on human and rat placental 3β-hydroxysteroid dehydrogenase activity. Toxicology 2022; 480:153334. [PMID: 36122607 DOI: 10.1016/j.tox.2022.153334] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
Placenta contains 3β-hydroxysteroid dehydrogenase/steroid Δ5,4-isomerase (HSD3B), which catalyzes pregnenolone to progesterone for maintaining pregnancy. Perfluoroalkyl carbonic acids (PFC) are subclass of perfluoroalkyl substances containing 4-14 carbons (C4-C14) in the carbon backbone and are potential endocrine disruptors. Whether PFC inhibit HSD3B and structure-activity relationship (SAR) remains unclear. Herein, we screened 11 PFC for inhibiting human type I HSD3B (HSD3B1) and rat type IV HSD3B (HSD3B4) activities and determined SAR and mode of inhibition. HSD3B was measured by converting pregnenolone to progesterone assisted by NAD+ in placental microsomes. Of the 11 PFC, C9-C14 significantly inhibited human HSD3B1 activity at 100 μM. Half-maximal inhibitory concentration (IC50) values of C9-C14 compounds were 363.56 ± 12.14, 12.78 ± 0.69, 6.54 ± 0.65, 20.88 ± 0.41, 118.35 ± 0.16, and 149.26 ± 21.67 μM, respectively. We determined Ki values and mode of inhibition of three most potent PFC (C10-C12), and found that they were mixed inhibitors against pregnenolone, with Ki values of 5.57 ± 4.37, 2.04 ± 2.26, and 9.93 ± 7.71, respectively. Docking analysis showed that they bound steroid-binding site. Effects of PFC on rat placental HSD3B4 were performed. Of the 11 PFC, C10-C12 significantly inhibited rat HSD3B4 activity at 100 μM. IC50 values of C10-C12 compounds were 45.85 ± 1.49, 36.08 ± 1.50, and 88.74 ± 1.99 µM, respectively. Ki values and inhibition modes of the three most potent PFC (C10-C12) were studied. It was found that they were mixed inhibitors against pregnenolone, with Ki values of 48.16 ± 20.44, 36.28 ± 53.07, and 91.79 ± 21.75 μM, respectively. Docking analysis showed that they bound steroid-binding site of rat HSD3B4. In conclusion, PFC showed significant SAR differences. The potency of inhibiting HSD3B activity increased from C9 to C11, and then declined. Human HSD3B1 was more sensitive to the inhibition of rat HSD3B4.
Collapse
Affiliation(s)
- Shaowei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Bingru Zhang
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yingna Zhai
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuzhen Lou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China.
| | - Huitao Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
32
|
Multi- and Transgenerational Effects of Developmental Exposure to Environmental Levels of PFAS and PFAS Mixture in Zebrafish ( Danio rerio). TOXICS 2022; 10:toxics10060334. [PMID: 35736942 PMCID: PMC9228135 DOI: 10.3390/toxics10060334] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in the environment and are tied to myriad health effects. Despite the phasing out of the manufacturing of two types of PFASs (perfluorosulfonic acid (PFOS) and perfluorooctanoic acid (PFOA)), chemical composition renders them effectively indestructible by ambient environmental processes, where they thus remain in water. Exposure via water can affect both human and aquatic wildlife. PFASs easily cross the placenta, exposing the fetus at critical windows of development. Little is known about the effects of low-level exposure during this period; even less is known about the potential for multi- and transgenerational effects. We examined the effects of ultra-low, very low, and low-level PFAS exposure (7, 70, and 700 ng/L PFOA; 24, 240, 2400 ng/L PFOS; and stepwise mixtures) from 0–5 days post-fertilization (dpf) on larval zebrafish (Danio rerio) mortality, morphology, behavior and gene expression and fecundity in adult F0 and F1 fish. As expected, environmentally relevant PFAS levels did not affect survival. Morphological abnormalities were not observed until the F1 and F2 generations. Behavior was affected differentially by each chemical and generation. Gene expression was increasingly perturbed in each generation but consistently showed lipid pathway disruption across all generations. Dysregulation of behavior and gene expression is heritable, even in larvae with no direct or indirect exposure. This is the first report of the transgenerational effects of PFOA, PFOS, and their mixture in terms of zebrafish behavior and untargeted gene expression.
Collapse
|
33
|
Mario T, Yvonne D, Veronica S, Alejandro D, Juan RM, Diana F, Edmundo B, Eduardo C, Mario A, Alma L, Ivan B, Concepcion G, Fahiel C, Miguel B. Effects of perfluorooctanoic acid in oxidative stress generation, DNA damage in cumulus cells, and its impact on in vitro maturation of porcine oocytes. ENVIRONMENTAL TOXICOLOGY 2022; 37:1394-1403. [PMID: 35187785 DOI: 10.1002/tox.23492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/22/2021] [Accepted: 02/05/2022] [Indexed: 05/23/2023]
Abstract
Perfluorooctanoic acid is a synthetic compound mostly used in a wide range of consumer products with several adverse effects on somatic cells and gametes. It has been linked to hepatotoxic and carcinogenic effects, alterations in the immune system, endocrine, and reproductive alterations. In vivo studies show an increase in reactive oxygen species and DNA damage. However, the mechanisms by which this compound affects fertility, remain contradictory. Therefore, the aim of the present study was to evaluate the effect of perfluorooctanoic acid on oocyte viability and maturation, as well as the viability, generation of oxidative stress, and genotoxic damage in the cumulus cells exposed during in vitro maturation. This compound had a negative effect on oocyte viability (lethal concentration, LC50 = 269 μM) and maturation (inhibition maturation concentration IM50 = 75 μM), while in cumulus cells the LC50 was 158 μM. The generation of reactive oxygen species evaluated in cumulus cells, protein carbonylation, and DNA damage, was significantly increased at 40 μM perfluorooctanoic acid. This study provides evidence that perfluorooctanoic acid causes reactive oxygen species generation, protein oxidation, and DNA damage in cumulus cells, compromising the maturation and viability of porcine oocyte, which may affect fertility.
Collapse
Affiliation(s)
- Teteltitla Mario
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Ducolomb Yvonne
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Souza Veronica
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Domínguez Alejandro
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Rodríguez-Mercado Juan
- Research Unit in Genetics and Environmental Toxicology, Faculty of Superior Studies Zaragoza, UNAM, Mexico City, Mexico
| | - Flores Diana
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Bonilla Edmundo
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Casas Eduardo
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Altamirano Mario
- Research Unit in Genetics and Environmental Toxicology, Faculty of Superior Studies Zaragoza, UNAM, Mexico City, Mexico
| | - López Alma
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Bahena Ivan
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Gutierrez Concepcion
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Casillas Fahiel
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Betancourt Miguel
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| |
Collapse
|
34
|
Rickard BP, Tan X, Fenton SE, Rizvi I. Select Per- and Polyfluoroalkyl Substances (PFAS) Induce Resistance to Carboplatin in Ovarian Cancer Cell Lines. Int J Mol Sci 2022; 23:5176. [PMID: 35563566 PMCID: PMC9104343 DOI: 10.3390/ijms23095176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants associated with adverse reproductive outcomes including reproductive cancers in women. PFAS can alter normal ovarian function, but the effects of PFAS on ovarian cancer progression and therapy response remain understudied. Ovarian cancer is the most lethal gynecologic malignancy, and a major barrier to effective treatment is resistance to platinum-based chemotherapy. Platinum resistance may arise from exposure to external stimuli such as environmental contaminants. This study evaluated PFAS and PFAS mixture exposures to two human ovarian cancer cell lines to evaluate the ability of PFAS exposure to affect survival fraction following treatment with carboplatin. This is the first study to demonstrate that, at sub-cytotoxic concentrations, select PFAS and PFAS mixtures increased survival fraction in ovarian cancer cells following carboplatin treatment, indicative of platinum resistance. A concomitant increase in mitochondrial membrane potential, measured by the JC-1 fluorescent probe, was observed in PFAS-exposed and PFAS + carboplatin-treated cells, suggesting a potential role for altered mitochondrial function that requires further investigation.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.P.R.); (S.E.F.)
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina School of Public Health, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Suzanne E. Fenton
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.P.R.); (S.E.F.)
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Imran Rizvi
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.P.R.); (S.E.F.)
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
35
|
Adsorption of perfluorooctanoic acid from water by pH-modulated Brönsted acid and base sites in mesoporous hafnium oxide ceramics. iScience 2022; 25:104138. [PMID: 35402881 PMCID: PMC8987376 DOI: 10.1016/j.isci.2022.104138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are increasingly appearing in drinking water sources globally. Our work focuses specifically on the adsorption of the legacy perfluorooctanoic acid (PFOA) using mesoporous hafnium oxide (MHO) ceramic synthesized via a sol-gel process. Experiments were performed at varying pH to determine the effect of surface charge on adsorption capacity of PFOA by MHO, and to postulate adsorption behavior. At pH 2.3, the adsorption capacity of PFOA on MHO was 20.9 mg/g, whereas at a higher pH of 6.3, it was much lower at 9.2 mg/g. This was due to increased coulombic attractions at lower pH between the positively charged conjugate acid active sites on MHO surface and negatively charged deprotonated PFOA anion in solution. After adsorption, the solid MHO was regenerated via calcination, reducing the amount of toxic solid waste to be disposed since the adsorbent is regenerated, and the PFOA is completely removed. The adsorption capacity of PFOA by MHO was determined to be 20.9 mg/g at pH 2.3 As pH increased, the adsorption capacity of MHO decreased due to Coulombic repulsions MHO could be regenerated via calcination to limit the amount of toxic waste produced
Collapse
|
36
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
37
|
Rawn DFK, Ménard C, Feng SY. Method development and evaluation for the determination of perfluoroalkyl and polyfluoroalkyl substances in multiple food matrices. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:752-776. [PMID: 35119964 DOI: 10.1080/19440049.2021.2020913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A method for the determination of 21 perfluorinated and 10 polyfluorinated alkyl substances (PFAS) was developed for application in different food matrices. Acetonitrile was used as the extraction solvent with solid phase extraction weak anion-exchange (SPE-WAX) clean up, with LC-MS/MS analysis using both surrogate and performance standards to correct for losses during sample preparation and matrix effects. The method has been evaluated in four different matrices (fish, pizza, chicken nuggets and spinach). Originally, the focus was to develop a method for foods commonly thought to be a source of PFASs (e.g. fish). It was expanded to include foods where PFAS exposure would be possible through their presence in grease-proof food packaging (e.g. pizza, chicken nuggets). Vegetables (lettuce) and fruit (tomato) have recently been considered as part of proficiency testing programmes, so the inclusion of some testing in a vegetable matrix (i.e. spinach) was also added to the testing. Limits of quantification ranged from 0.018 ng g-1 (L-PFDS) to 5.28 ng g-1 (FHEA), although method quantification limits for PFBA (12.4 ng g-1), 6:2 PAP (8.96 ng g-1) and 8:2 PAP (3.49 ng g-1) were elevated above instrumental limits owing to their consistent detection in reagent blank samples. PFAS analyses were strongly impacted by matrix, therefore the use of isotopically labelled internal standards was critical to the development of accurate results. The accuracy of the method using numerous proficiency testing schemes or interlaboratory comparison studies has shown the developed method to be successful with z-scores for all concerned analytes in all test matrices remaining within ±2.0, with the exception of PFBA in wheat flour which was -2.4.
Collapse
Affiliation(s)
- Dorothea F K Rawn
- Food Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Ontario, Canada
| | - Cathie Ménard
- Food Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Ontario, Canada
| | - Sherry Yu Feng
- Food Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
38
|
Hallberg I, Persson S, Olovsson M, Moberg M, Ranefall P, Laskowski D, Damdimopoulou P, Sirard MA, Rüegg J, Sjunnesson YC. Bovine oocyte exposure to perfluorohexane sulfonate (PFHxS) induces phenotypic, transcriptomic, and DNA methylation changes in resulting embryos in vitro. Reprod Toxicol 2022; 109:19-30. [DOI: 10.1016/j.reprotox.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
39
|
Rickard BP, Rizvi I, Fenton SE. Per- and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease. Toxicology 2022; 465:153031. [PMID: 34774661 PMCID: PMC8743032 DOI: 10.1016/j.tox.2021.153031] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/29/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are widespread environmental contaminants frequently detected in drinking water supplies worldwide that have been linked to a variety of adverse reproductive health outcomes in women. Compared to men, reproductive health effects in women are generally understudied while global trends in female reproduction rates are declining. Many factors may contribute to the observed decline in female reproduction, one of which is environmental contaminant exposure. PFAS have been used in home, food storage, personal care and industrial products for decades. Despite the phase-out of some legacy PFAS due to their environmental persistence and adverse health effects, alternative, short-chain and legacy PFAS mixtures will continue to pollute water and air and adversely influence women's health. Studies have shown that both long- and short-chain PFAS disrupt normal reproductive function in women through altering hormone secretion, menstrual cyclicity, and fertility. Here, we summarize the role of a variety of PFAS and PFAS mixtures in female reproductive tract dysfunction and disease. Since these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption, the role of PFAS in breast, thyroid, and hypothalamic-pituitary-gonadal axis function are also discussed as the interplay between these tissues may be critical in understanding the long-term reproductive health effects of PFAS in women. A major research gap is the need for mechanism of action data - the targets for PFAS in the female reproductive and endocrine systems are not evident, but the effects are many. Given the global decline in female fecundity and the ability of PFAS to negatively impact female reproductive health, further studies are needed to examine effects on endocrine target tissues involved in the onset of reproductive disorders of women.
Collapse
Affiliation(s)
- Brittany P Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC 27599, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Suzanne E Fenton
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Rm E121A, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
40
|
Priya K, Setty M, Babu UV, Pai KSR. Implications of environmental toxicants on ovarian follicles: how it can adversely affect the female fertility? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67925-67939. [PMID: 34628616 PMCID: PMC8718383 DOI: 10.1007/s11356-021-16489-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/07/2021] [Indexed: 05/06/2023]
Abstract
The pool of primordial follicles formed in the ovaries during early development determines the span and quality of fertility in the reproductive life of a woman. As exposure to occupational and environmental toxicants (ETs) has become inevitable, consequences on female fertility need to be established. This review focuses on the ETs, especially well-studied prototypes of the classes endocrine disrupting chemicals (EDCs), heavy metals, agrochemicals, cigarette smoke, certain chemicals used in plastic, cosmetic and sanitary product industries etc that adversely affect the female fertility. Many in vitro, in vivo and epidemiological studies have indicated that these ETs have the potential to affect folliculogenesis and cause reduced fertility in women. Here, we emphasize on four main conditions: polycystic ovary syndrome, primary ovarian insufficiency, multioocytic follicles and meiotic defects including aneuploidies which can be precipitated by ETs. These are considered main causes for reduced female fertility by directly altering the follicular recruitment, development and oocytic meiosis. Although substantial experimental evidence is drawn with respect to the detrimental effects, it is clear that establishing the role of one ET as a risk factor in a single condition is difficult as multiple conditions have common risk factors. Therefore, it is important to consider this as a matter of public and wildlife health.
Collapse
Affiliation(s)
- Keerthi Priya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manjunath Setty
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Uddagiri Venkanna Babu
- Phytochemistry Department, R & D Centre, The Himalaya Drug Company, Makali, Tumkur Road, Bangalore, Karnataka, 562162, India
| | - Karkala Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
41
|
Wang B, Fu J, Gao K, Liu Q, Zhuang L, Zhang G, Long M, Na J, Ren M, Wang A, Liang R, Shen G, Li Z, Lu Q. Early pregnancy loss: Do Per- and polyfluoroalkyl substances matter? ENVIRONMENT INTERNATIONAL 2021; 157:106837. [PMID: 34454360 DOI: 10.1016/j.envint.2021.106837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Per- and poly-fluorinated substances (PFASs) with endocrine disrupting effect can efficiently transfer across the blood-follicle barrier. However, it is still controversial and attracting extensive public concern that whether PFASs can affect the human fertility potential. Therefore, we aimed to analyze the associations of women's exposure to PFASs with pregnancy loss, the relevant processes of fertilization, zygote implantation, and embryo development by using a prospective cohort study. The women undergoing in vitro fertilization-embryo transfer (IVF-ET) treatment were recruited in Beijing City (Beijing Center) and Yantai City (Yantai Center) in China during 2015-2017. A total of 305 women were recruited before the IVF-ET treatment. Twelve PFASs were measured in their serum samples collected in the day before the IVF-ET treatment, as well as in the human chorionic gonadotropin (hCG) day. The three IVF-ET outcomes were included, i.e. hCG test negative, clinical pregnancy failure (CPF), and preclinical spontaneous abortion. Nine serum PFASs had detection rate of >70% in Beijing and Yantai centers. The exposure patterns to PFASs between these two centers were overall different. For Beijing Center, we only found a positive association of perflurodecanoic acid (PFDA) with the risk of CPF [RR = 2.28 (95 %CI: 1.02-5.11)], but there is a reverse trend in Yantai Center with [RR = 0.45 (95 %CI: 0.23-0.85)]. However, the serum concentration of PFDA in Beijing Center was relatively lower than that of Yantai Center. Other significant associations of the detected PFASs with the IVF-ET outcomes, or with the relevant clinical processes, were not found. The multi-pollutant regression model of the Bayesian kernel machine regression suggested that there were no joint effects between various PFASs on the concerned outcomes. Overall, we suggest that most PFAS were not associated with early pregnancy loss at the current exposure levels. As for the PFDA, there may exist susceptibility of different populations.
Collapse
Affiliation(s)
- Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China.
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ke Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Lili Zhuang
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Guohuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China
| | - Manman Long
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China
| | - Jigen Na
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China
| | - Mengyuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China
| | - Anni Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Rong Liang
- Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhiwen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China
| | - Qun Lu
- Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
42
|
Abdulhasan M, Ruden X, You Y, Harris SM, Ruden DM, Awonuga AO, Alvero A, Puscheck EE, Rappolee DA. Using Live Imaging and FUCCI Embryonic Stem Cells to Rank DevTox Risks: Adverse Growth Effects of PFOA Compared With DEP Are 26 Times Faster, 1,000 Times More Sensitive, and 13 Times Greater in Magnitude. FRONTIERS IN TOXICOLOGY 2021; 3:709747. [PMID: 35295126 PMCID: PMC8915856 DOI: 10.3389/ftox.2021.709747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Fluorescent ubiquitination-based cell cycle indicator (FUCCI) embryonic stem cells (ESCs), which fluoresce green during the S-G2-M phases, generate an S-shaped curve for the accumulation of cells during normal stemness (NS) culture with leukemia-inhibitory factor (LIF). Since it was hypothesized that a culture of ESCs was heterogeneous in the cell cycle, it was expected that increased S-G2-M-phases of the cell cycle would make an S-shaped curve parallel to the accumulation curve. Unexpectedly, it was observed that the fraction of FUCCI ESCs in green decreases over time to a nadir at ∼24 h after previous feeding and then rapidly enters S-G2-M-phases after medium change. G1 delay by infrequent medium change is a mild stress, as it does not affect growth significantly when frequency is increased to 12 h. Perfluoro-octanoic acid (PFOA) and diethyl phthalate (DEP) were used as examples of members of the per- and polyfluoroalkyl substances (PFAS) and phthalate families of chemicals, respectively. Two adverse outcomes were used to compare dose- and time-dependent effects of PFOA and DEP. The first was cell accumulation assay by time-lapse confluence measurements, largely at Tfinal/T74 h. The second was by quantifying dominant toxicant stress shown by the suppression of mild stress that creates a green fed/unfed peak. In terms of speed, PFOA is 26 times faster than DEP for producing a time-dependent LOAEL dose at 100 uM (that is, 2 h for PFOA and 52 h for DEP). PFOA has 1000-fold more sensitive LOAEL doses than DEP for suppressing ESC accumulation (confluence) at day 3 and day 2. There were two means to compare the magnitude of the growth suppression of PFOA and DEP. For the suppression of the accumulation of cells measured by confluence at Tfinal/T74h, there was a 13-fold suppression at the highest dose of PFOA > the highest dose of DEP. For the suppression of entry into the cell cycle after the G1 phase by stress on day 1 and 2, there is 10-fold more suppression by PFOA than DEP. The data presented here suggest that FUCCI ESCs can assay the suppression of accumulated growth or predict the suppression of future growth by the suppression of fed/unfed green fluorescence peaks and that PFOA's adverse effects are faster and larger and can occur at more sensitive lower doses than DEP.
Collapse
Affiliation(s)
- Mohammed Abdulhasan
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Detroit, MI, United States
| | - Ximena Ruden
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuan You
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sean M. Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Douglas M. Ruden
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Awoniyi O. Awonuga
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ayesha Alvero
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Elizabeth E. Puscheck
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Detroit, MI, United States
- Invia Fertility Clinics, IL, Chicago, United States
| | - Daniel A. Rappolee
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Detroit, MI, United States
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biology, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
43
|
Hallberg I, Persson S, Olovsson M, Sirard MA, Damdimopoulou P, Rüegg J, Sjunnesson YCB. Perfluorooctane sulfonate (PFOS) exposure of bovine oocytes affects early embryonic development at human-relevant levels in an in vitro model. Toxicology 2021; 464:153028. [PMID: 34762985 DOI: 10.1016/j.tox.2021.153028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 02/02/2023]
Abstract
Perfluorooctane sulfonate (PFOS) has been added to Stockholm Convention for global phase out, but will continue to contribute to the chemical burden in humans for a long time to come due to extreme persistence in the environment. In the body, PFOS is transferred into to the ovarian follicular fluid that surrounds the maturing oocyte. In the present study, bovine cumulus oocyte complexes were exposed to PFOS during 22 h in vitro maturation. Concentrations of 2 ng g-1 (PFOS-02) representing average human exposure and 53 ng g-1 (PFOS-53) relevant to highly exposed groups were used. After exposure, developmental competence was recorded until day 8 after fertilisation. Blastocysts were fixed and either stained to evaluate blastomere number and lipid distribution using confocal microscopy or frozen and pooled for microarray-based gene expression and DNA methylation analyses. PFOS-53 delayed the first cleavage to two-cell stage and beyond at 44 h after fertilisation (p < .01). No reduction of proportion blastocysts were seen at day 8 in either of the groups, but PFOS-53 exposure resulted in delayed development into more advanced stages of blastocysts seen as both reduced developmental stage (p = .001) and reduced number of blastomeres (p = .04). Blastocysts showed an altered lipid distribution that was more pronounced after exposure to PFOS-53 (increased total lipid volume, p=.0003, lipid volume/cell p < .0001) than PFOS-02, where only decreased average lipid droplet size (p=.02) was observed. Gene expression analyses revealed pathways differently regulated in the PFOS-treated groups compared to the controls, which were related to cell death and survival through e.g., P38 mitogen-activated protein kinases and signal transducer and activator of transcription 3, which in turn activates tumour protein 53 (TP53). Transcriptomic changes were also associated with metabolic stress response, differentiation and proliferation, which could help to explain the phenotypic changes seen in the blastocysts. The gene expression changes were more pronounced after exposure to PFOS-53 compared to PFOS-02. DNA-methylation changes were associated with similar biological functions as the transcriptomic data, with the most significantly associated pathway being TP53. Collectively, these results reveal that brief PFOS exposure during oocyte maturation alters the early embryo development at concentrations relevant to humans. This study adds to the evidence that PFOS has the potential to affect female fertility.
Collapse
Affiliation(s)
- Ida Hallberg
- Department of Clinical Sciences, Division of Reproduction, The Centre for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden.
| | - Sara Persson
- Department of Clinical Sciences, Division of Reproduction, The Centre for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Marc-André Sirard
- Department of Animal Sciences, Laval University, QC G1V 0A6, Quebec, Canada
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-141 86, Stockholm, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Program of Environmental Toxicology, Uppsala University, SE-752 36, Uppsala, Sweden
| | - Ylva C B Sjunnesson
- Department of Clinical Sciences, Division of Reproduction, The Centre for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| |
Collapse
|
44
|
Natural and engineered clays and clay minerals for the removal of poly- and perfluoroalkyl substances from water: State-of-the-art and future perspectives. Adv Colloid Interface Sci 2021; 297:102537. [PMID: 34624725 DOI: 10.1016/j.cis.2021.102537] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Poly- and perfluoroalkyl substances (PFAS) present globally in drinking-, waste-, and groundwater sources are contaminants of emerging concern due to their long-term environmental persistence and toxicity to organisms, including humans. Here we review PFAS occurrence, behavior, and toxicity in various water sources, and critically discuss their removal via mineral adsorbents, including natural aluminosilicate clay minerals, oxidic clays (Al, Fe, and Si oxides), organoclay minerals, and clay-polymer and clay‑carbon (biochar and graphene oxide) composite materials. Among the many remediation technologies, such as reverse osmosis, adsorption, advanced oxidation and biologically active processes, adsorption is the most suitable for PFAS removal in aquatic systems. Treatment strategies using clay minerals and oxidic clays are inexpensive, eco-friendly, and efficient for bulk PFAS removal due to their high surface areas, porosity, and high loading capacity. A comparison of partition coefficient values calculated from extracted data in published literature indicate that organically-modified clay minerals are the best-performing adsorbent for PFAS removal. In this review, we scrutinize the corresponding plausible mechanisms, factors, and challenges affecting the PFAS removal processes, demonstrating that modified clay minerals (e.g., surfactant, amine), including some commercially available products (e.g., FLUORO-SORB®, RemBind®, matCARE™), show good efficacy in PFAS remediation in contaminated media under field conditions. Finally, we propose future research to focus on the challenges of using clay-based adsorbents for PFAS removal from contaminated water due to the regeneration and safe-disposal of spent clay adsorbents is still a major issue, whilst enhancing the PFAS removal efficiency should be an ongoing scientific effort.
Collapse
|
45
|
Hallberg I, Plassmann M, Olovsson M, Holte J, Damdimopoulou P, Sjunnesson YCB, Benskin JP, Persson S. Suspect and non-target screening of ovarian follicular fluid and serum - identification of anthropogenic chemicals and investigation of their association to fertility. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1578-1588. [PMID: 34581388 DOI: 10.1039/d1em00211b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, ultra-high performance liquid chromatography-high resolution (Orbitrap) mass spectrometry-based suspect and non-target screening was applied to follicular fluid (n = 161) and serum (n = 116) from women undergoing in vitro fertilization in order to identify substances that may be associated with decreased fertility. Detected features were prioritized for identification based on (i) hazard/exposure scores in a database of chemicals on the Swedish market and an in-house database on per- and polyfluoroalkyl substances (PFAS); (ii) enrichment in follicular fluid relative to serum; and (iii) association with treatment outcomes. Non-target screening detected 20 644 features in follicular fluid and 13 740 in serum. Two hundred and sixty-two features accumulated in follicular fluid (follicular fluid: serum ratio >20) and another 252 features were associated with embryo quality. Standards were used to confirm the identities of 21 compounds, including 11 PFAS. 6-Hydroxyindole was associated with lower embryo quality and 4-aminophenol was associated with higher embryo quality. Overall, we show the complexity of follicular fluid and the applicability of suspect and non-target screening for discovering both anthropogenic and endogenous substances, which may play a role in fertility in women.
Collapse
Affiliation(s)
- Ida Hallberg
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, The Centre for Reproductive Biology in Uppsala, SE-750 07 Uppsala, Sweden.
| | - Merle Plassmann
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Matts Olovsson
- Department of Womeńs and Childreńs Health, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Jan Holte
- Department of Womeńs and Childreńs Health, Uppsala University, SE-751 85 Uppsala, Sweden
- Carl von Linnékliniken, SE-751 83 Uppsala, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Ylva C B Sjunnesson
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, The Centre for Reproductive Biology in Uppsala, SE-750 07 Uppsala, Sweden.
| | - Jonathan P Benskin
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sara Persson
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, The Centre for Reproductive Biology in Uppsala, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
46
|
Junk food-induced obesity- a growing threat to youngsters during the pandemic. ACTA ACUST UNITED AC 2021; 26:100364. [PMID: 34580647 PMCID: PMC8459649 DOI: 10.1016/j.obmed.2021.100364] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022]
Abstract
Introduction Obesity has been declared an epidemic that does not discriminate based on age, gender, or ethnicity and thus needs urgent containment and management. Since the third wave of COVID-19 is expected to affect children the most, these children and adolescents should be more cautious while having junk foods, during covid situations due to the compromise of Immunity in the individuals and further exacerbating the organ damage. Methodology A PAN India survey organized by the Centre for Science and Environment (CSE) among 13,274 children between the ages 9–14 years reported that 93% of the children ate packed food and 68% consumed packaged sweetened beverages more than once a week, and 53% ate these products at least once in a day. Almost 25% of the School going children take ultra-processed food with high levels of sugar, salt, fat, such as pizza and burgers, from fast food outlets more than once a week. Children and adolescents who consume more junk food or addicted to such consumption might be even more vulnerable during the third wave, which will significantly affect the younger category. Conclusion There is an urgent need to spread awareness among children and young adults about these adverse effects of junk food. There is no better time than now to build a supportive environment nurturing children and young adults in society and promising good health.
Collapse
|
47
|
Luo D, Wu W, Pan Y, Du B, Shen M, Zeng L. Associations of Prenatal Exposure to Per- and Polyfluoroalkyl Substances with the Neonatal Birth Size and Hormones in the Growth Hormone/Insulin-Like Growth Factor Axis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11859-11873. [PMID: 34378915 DOI: 10.1021/acs.est.1c02670] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Toxicological data suggest a significant developmental toxicity of per- and polyfluoroalkyl substances (PFASs); however, evidence in humans remains inconclusive. Furthermore, the effects of prenatal exposure to PFASs on hormones in the growth hormone (GH)/insulin-like growth factor (IGF) axis of newborns remain largely unclear. We aimed to investigate the associations of prenatal exposure to PFASs with the neonatal birth size, GH, IGF-1, and IGF-binding protein 3 (IGFBP-3). The concentrations of 22 PFASs were measured in the plasma of 224 pregnant women collected within 3 days before delivery (39.3 weeks) in Guangzhou, China, and the anthropometric data were gathered from medical records. Paired cord blood was collected at delivery to determine GH, IGF-1, and IGFBP-3 levels. Multivariable linear regression models revealed the inverse associations of several long-chain PFASs with birth weight and ponderal index as well as the significant associations of perfluorobutanoic acid and perfluorooctanoic acid (PFOA) with IGFBP-3 levels. The Bayesian kernel machine regression confirmed the association of perfluorooctane sulfonate with birth weight and ponderal index and of PFOA with IGFBP-3 and identified an inverse joint effect of exposure to a mixture of multiple PFASs on birth weight. The findings provide the first comprehensive evidence on the individual and joint effects of multiple PFASs on the neonatal birth size and hormones in the GH/IGF axis, which requires further confirmation.
Collapse
Affiliation(s)
- Dan Luo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Weixiang Wu
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou 511443, China
| | - Yanan Pan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Mingjie Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| |
Collapse
|
48
|
Du Y, Cai Z, Zhang H, Liang W, Wang H, Man Q, Wang W. Nitric oxide mediates disruption of human placental trophoblast invasion induced by perfluorobutane sulfonate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117137. [PMID: 33866218 DOI: 10.1016/j.envpol.2021.117137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Perfluorobutane sulfonate (PFBS), an emerging pollutant, is associated with disruption of placental functions and adverse birth outcomes. However, the precise mechanism of this disruption remains unclear. Extravillous trophoblasts make up the majority of cells in the placenta, and have invasive abilities, which plays a critical role in a successful pregnancy. It has been reported that inducible nitric oxide (iNOS) and nitric oxide (NO) signaling is associated with trophoblast migration and invasion. In this study, PFBS exposure was found to enhance trophoblast invasion and increase matrix metalloproteinase 9 (MMP-9) levels. Additionally, PFBS upregulated iNOS levels and stimulated NO generation. iNOS inhibitor treatment attenuated the increased invasion of trophoblasts and MMP-9 expression induced by PFBS. Extracellular signal-regulated kinase (ERK) phosphorylation was also enhanced by PFBS exposure. In the presence of an ERK pathway inhibitor, however, the increases in trophoblast invasion, the induction of NO production, iNOS expression and MMP-9 expression induced by PFBS were attenuated. Taken together, these results suggest that iNOS/NO signaling is triggered by activation of the ERK signaling pathway, and that iNOS/NO signaling mediates PFBS-induced stimulation of trophoblast invasion.
Collapse
Affiliation(s)
- Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Huihui Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Liang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Hui Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, 200434, China
| | - Weiye Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China.
| |
Collapse
|
49
|
Stone J, Sutrave P, Gascoigne E, Givens MB, Fry RC, Manuck TA. Exposure to toxic metals and per- and polyfluoroalkyl substances and the risk of preeclampsia and preterm birth in the United States: a review. Am J Obstet Gynecol MFM 2021; 3:100308. [PMID: 33444805 PMCID: PMC8144061 DOI: 10.1016/j.ajogmf.2021.100308] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 01/09/2023]
Abstract
Preeclampsia and preterm birth are among the most common pregnancy complications and are the leading causes of maternal and fetal morbidity and mortality in the United States. Adverse pregnancy outcomes are multifactorial in nature and increasing evidence suggests that the pathophysiology behind preterm birth and preeclampsia may be similar-specifically, both of these disorders may involve abnormalities in placental vasculature. A growing body of literature supports that exposure to environmental contaminants in the air, water, soil, and consumer and household products serves as a key factor influencing the development of adverse pregnancy outcomes. In pregnant women, toxic metals have been detected in urine, peripheral blood, nail clippings, and amniotic fluid. The placenta serves as a "gatekeeper" between maternal and fetal exposures, because it can reduce or enhance fetal exposure to various toxicants. Proposed mechanisms underlying toxicant-mediated damage include disrupted placental vasculogenesis, an up-regulated proinflammatory state, oxidative stressors contributing to prostaglandin production and consequent cervical ripening, uterine contractions, and ruptured membranes and epigenetic changes that contribute to disrupted regulation of endocrine and immune system signaling. The objective of this review is to provide an overview of studies examining the relationships between environmental contaminants in the US setting, specifically inorganic (eg, cadmium, arsenic, lead, and mercury) and organic (eg, per- and polyfluoroalkyl substances) toxicants, and the development of preeclampsia and preterm birth among women in the United States.
Collapse
Affiliation(s)
- Juliana Stone
- Division of Maternal-Fetal Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Pragna Sutrave
- Division of Maternal-Fetal Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Emily Gascoigne
- Division of Maternal-Fetal Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew B Givens
- Department of Obstetrics and Gynecology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC; Institute for Environmental Health Solutions, Chapel Hill, NC
| | - Tracy A Manuck
- Division of Maternal-Fetal Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; Institute for Environmental Health Solutions, Chapel Hill, NC.
| |
Collapse
|
50
|
Bilal M, Bagheri AR, Vilar DS, Aramesh N, Eguiluz KIB, Ferreira LFR, Ashraf SS, Iqbal HMN. Oxidoreductases as a versatile biocatalytic tool to tackle pollutants for clean environment – a review. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY 2021. [DOI: 10.1002/jctb.6743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering Huaiyin Institute of Technology Huaian 223003 China
| | | | - Débora S Vilar
- Graduate Program in Process Engineering Tiradentes University (UNIT) Av. Murilo Dantas, 300, Farolândia Aracaju‐Sergipe 49032‐490 Brazil
| | - Nahal Aramesh
- Department of Chemistry Yasouj University Yasouj Iran
| | - Katlin Ivon Barrios Eguiluz
- Graduate Program in Process Engineering Tiradentes University (UNIT) Av. Murilo Dantas, 300, Farolândia Aracaju‐Sergipe 49032‐490 Brazil
| | - Luiz Fernando Romanholo Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP) Tiradentes University (UNIT) Av. Murilo Dantas, 300, Farolândia Aracaju‐Sergipe 49032‐490 Brazil
| | - Syed Salman Ashraf
- Department of Chemistry College of Arts and Sciences, Khalifa University Abu Dhabi United Arab Emirates
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey School of Engineering and Sciences Monterrey 64849 Mexico
| |
Collapse
|