1
|
Kai K, Joshi NR, Burns GW, Hrbek SM, Vegter EL, Ochoa-Bernal MA, Song Y, Moldovan GE, Sempere LF, Miyadahira EH, Serafini PC, Fazleabas AT. MicroRNA-210-3p Regulates Endometriotic Lesion Development by Targeting IGFBP3 in Baboons and Women with Endometriosis. Reprod Sci 2023; 30:2932-2944. [PMID: 37188982 PMCID: PMC10556147 DOI: 10.1007/s43032-023-01253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
MicroRNAs (miRs) play an important role in the pathophysiology of endometriosis; however, the role of miR-210 in endometriosis remains unclear. This study explores the role of miR-210 and its targets, IGFBP3 and COL8A1, in ectopic lesion growth and development. Matched eutopic (EuE) and ectopic (EcE) endometrial samples were obtained for analysis from baboons and women with endometriosis. Immortalized human ectopic endometriotic epithelial cells (12Z cells) were utilized for functional assays. Endometriosis was experimentally induced in female baboons (n = 5). Human matched endometrial and endometriotic tissues were obtained from women (n = 9, 18-45 years old) with regular menstrual cycles. Quantitative reverse transcript polymerase chain reaction (RT-qPCR) analysis was performed for in vivo characterization of miR-210, IGFBP3, and COL8A1. In situ hybridization and immunohistochemical analysis were performed for cell-specific localization. Immortalized endometriotic epithelial cell lines (12Z) were utilized for in vitro functional assays. MiR-210 expression was decreased in EcE, while IGFBP3 and COL8A1 expression was increased in EcE. MiR-210 was expressed in the glandular epithelium of EuE but attenuated in those of EcE. IGFBP3 and COL8A1 were expressed in the glandular epithelium of EuE and were increased compared to EcE. MiR-210 overexpression in 12Z cells suppressed IGFBP3 expression and attenuated cell proliferation and migration. MiR-210 repression and subsequent unopposed IGFBP3 expression may contribute to endometriotic lesion development by increasing cell proliferation and migration.
Collapse
Affiliation(s)
- Kentaro Kai
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Department of Obstetrics and Gynecology, Oita University Faculty of Medicine, Yufu, Japan
| | - Niraj R Joshi
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Gregory W Burns
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Samantha M Hrbek
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Erin L Vegter
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Maria Ariadna Ochoa-Bernal
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Yong Song
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Genna E Moldovan
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Lorenzo F Sempere
- Department of Radiology, Precision Health Program, Michigan State University, East Lansing, MI, USA
| | | | - Paulo C Serafini
- Department of Gynecology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Asgerally T Fazleabas
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
2
|
Wilson MR, Reske JJ, Chandler RL. AP-1 Subunit JUNB Promotes Invasive Phenotypes in Endometriosis. Reprod Sci 2022; 29:3266-3277. [PMID: 35616875 PMCID: PMC9669088 DOI: 10.1007/s43032-022-00974-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/15/2022] [Indexed: 01/06/2023]
Abstract
Endometriosis is a disease defined by the presence of abnormal endometrium at ectopic sites, causing pain and infertility in 10% of women. Mutations in the chromatin remodeling protein ARID1A (AT-rich interactive domain-containing protein 1A) have been identified in endometriosis, particularly in the more severe deep infiltrating endometriosis and ovarian endometrioma subtypes. ARID1A has been shown to regulate chromatin at binding sites of the Activator Protein 1 (AP-1) transcription factor, and AP-1 expression has been shown in multiple endometriosis models. Here, we describe a role for AP-1 subunit JUNB in promoting invasive phenotypes in endometriosis. Through a series of knockdown experiments in the 12Z endometriosis cell line, we show that JUNB expression in endometriosis promotes the expression of epithelial-to-mesenchymal transition genes co-regulated by ARID1A including transcription factors SNAI1 and SNAI2, cell adhesion molecules ICAM1 and VCAM1, and extracellular matrix remodelers LOX and LOXL2. In highly invasive ARID1A-deficient endometriotic cells, co-knockdown of JUNB is sufficient to suppress invasion. These results suggest that AP-1 plays an important role in the progression of invasive endometriosis, and that therapeutic inhibition of AP-1 could prevent the occurrence of deep infiltrating endometriosis.
Collapse
Affiliation(s)
- Mike R Wilson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Jake J Reske
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Ronald L Chandler
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
3
|
Bonavina G, Taylor HS. Endometriosis-associated infertility: From pathophysiology to tailored treatment. Front Endocrinol (Lausanne) 2022; 13:1020827. [PMID: 36387918 PMCID: PMC9643365 DOI: 10.3389/fendo.2022.1020827] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the clinically recognized association between endometriosis and infertility, the mechanisms implicated in endometriosis-associated infertility are not fully understood. Endometriosis is a multifactorial and systemic disease that has pleiotropic direct and indirect effects on reproduction. A complex interaction between endometriosis subtype, pain, inflammation, altered pelvic anatomy, adhesions, disrupted ovarian reserve/function, and compromised endometrial receptivity as well as systemic effects of the disease define endometriosis-associated infertility. The population of infertile women with endometriosis is heterogeneous, and diverse patients' phenotypes can be observed in the clinical setting, thus making difficult to establish a precise diagnosis and a single mechanism of endometriosis related infertility. Moreover, clinical management of infertility associated with endometriosis can be challenging due to this heterogeneity. Innovative non-invasive diagnostic tools are on the horizon that may allow us to target the specific dysfunctional alteration in the reproduction process. Currently the treatment should be individualized according to the clinical situation and to the suspected level of impairment. Here we review the etiology of endometriosis related infertility as well as current treatment options, including the roles of surgery and assisted reproductive technologies.
Collapse
Affiliation(s)
- Giulia Bonavina
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Roles of microRNAs in Regulating Apoptosis in the Pathogenesis of Endometriosis. Life (Basel) 2022; 12:life12091321. [PMID: 36143357 PMCID: PMC9500848 DOI: 10.3390/life12091321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Endometriosis is a gynecologic disorder characterized by the presence of endometrial tissues outside the uterine cavity affecting reproductive-aged women. Previous studies have shown that microRNAs and their target mRNAs are expressed differently in endometriosis, suggesting that this molecule may play a role in the development and persistence of endometriotic lesions. microRNA (miRNA), a small non-coding RNA fragment, regulates cellular functions such as cell proliferation, differentiation, and apoptosis by the post-transcriptional modulation of gene expression. In this review, we focused on the dysregulated miRNAs in women with endometriosis and their roles in the regulation of apoptosis. The dysregulated miRNAs and their target genes in this pathophysiology were highlighted. Circulating miRNAs as potential biomarkers for the diagnosis of endometriosis have also been identified. As shown by various studies, miRNAs were reported to be a potent regulator of gene expression in endometriosis; thus, identifying the dysregulated miRNAs and their target genes could help discover new therapeutic targets for treating this disease. The goal of this review is to draw attention to the functions that miRNAs play in the pathophysiology of endometriosis, particularly those that govern cell death.
Collapse
|
5
|
Nothnick WB, Graham A. Dissecting the miR-451a-Mif Pathway in Endometriosis Pathophysiology Using a Syngeneic Mouse Model: Temporal Expression of Lesion Mif Receptors, Cd74 and Cxcr4. Biomedicines 2022; 10:1699. [PMID: 35885004 PMCID: PMC9313350 DOI: 10.3390/biomedicines10071699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 01/08/2023] Open
Abstract
Endometriosis is an enigmatic disease characterized by pain and infertility in which endometrial tissue grows in ectopic locations, predominantly the pelvic cavity. The pathogenesis and pathophysiology of endometriosis is complex and postulated to involve alterations in inflammatory, cell proliferation and post-transcriptional regulatory pathways among others. Our understanding on the pathogenesis and pathophysiology of endometriosis is further complicated by the fact that endometriosis can only be diagnosed by laparoscopy only after the disease has manifested. This makes it difficult to understand the true pathogenesis as a cause-and-effect relationship is difficult to ascertain. To aid in our understanding on endometriosis pathogenesis and pathophysiology, numerous rodent models have been developed. In this case, we discuss further assessment of a miR-451a-macrophage migration inhibitory factor (Mif) pathway which contributes to lesion survival. Specifically, we evaluate the temporal expression of lesion Mif receptors, Cd74 and Cxcr4 using host mice which express wild-type or miR-451a deficient lesions. Similar to that observed in humans and a non-human primate model of endometriosis, Cd74 expression is elevated in lesion tissue in a temporal fashion while that of Cxcr4 shows minimal increase during initial lesion establishment but is reduced later during the lifespan. Absence of miR-451a during initial lesion establishment is associated with an augmentation of Cd74, but no Cxcr4 expression. The data obtained in this study provide further support for a role of Mif receptors, Cd74 and Cxcr4 in the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Warren B. Nothnick
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Reproductive Sciences, Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Amanda Graham
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
6
|
Wang L, Zhang J, Sun H, Ji X, Zhang S. Effect of miR-451 on IVF/ICSI-ET outcome in patient with endometriosis and infertility. Am J Transl Res 2021; 13:13051-13058. [PMID: 34956523 PMCID: PMC8661151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/27/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE This study aimed to explore the effect of miR-451 on IVF/ICSI-ET outcome in endometriosis patients with infertility. METHODS Eighty patients with endometriosis and infertility who came to our hospital for IVF/ICSI-ET from February 2018 to November 2019 were collected as the research participants, and 66 healthy women at the same time were selected as the control group. The miR-451 and MIF expression levels in serum, tissues and cell lines of patients with endometriosis and infertility were quantitatively detected by qRT-PCR. Correlation between miR-451 and endometriosis complicated with infertility was analyzed. The effect of miR-451 on IVF/ICSI-ET outcome in those patients was assessed. RESULTS The miR-451 and MIF expression levels in endometriosis complicated with infertility tissues and cell lines were quantitatively detected by qRT-PCR. Compared with normal people, miR-451 was abnormally low in endometriosis complicated with infertility tissues and cell lines (P<0.001), while MIF was abnormally high (P<0.001), and the miR-451 expression was dramatically down-regulated and the MIF expression was markedly up-regulated in serum of endometriosis patients complicated with infertility. ROC analysis identified that the area under the miR-451 curve (AUC=0.9078) was >0.8, and the AUC (0.8606) of MIF was >0.8. Correlation analysis showed that the expression of miR-451 and MIF was negatively correlated in endometriosis complicated with infertility. According to miR-451 expression in endometriotic lesions, the subjects were divided into the miR-451 high expression group and miR-451 low expression group, with 40 cases in each group. The pregnancy rate after IVF/ICSI-ET in patients with endometriosis and infertility with high expression of miR-451 was higher than that in those with low expression (P>0.05). The incidence of complications during pregnancy after IVF/ICSI-ET in patients with endometriosis and infertility with high expression of miR-451 was lower than that in those with low expression (P>0.05). The pregnancy outcome after IVF/ICSI-ET in the miR-451 high expression group was better than that in the miR-451 low expression group (P<0.05). CONCLUSION miR-451 was down-regulated in endometriosis patients complicated with infertility, and low expression of miR-451 after IVF/ICSI-ET indicated a poor outcome.
Collapse
Affiliation(s)
- Lei Wang
- Department of Reproductive Medicine, Hengshui People's Hospital Hengshui 053000, Hebei Province, China
| | - Jing Zhang
- Department of Reproductive Medicine, Hengshui People's Hospital Hengshui 053000, Hebei Province, China
| | - Hairu Sun
- Department of Reproductive Medicine, Hengshui People's Hospital Hengshui 053000, Hebei Province, China
| | - Xuexia Ji
- Department of Reproductive Medicine, Hengshui People's Hospital Hengshui 053000, Hebei Province, China
| | - Shuzhen Zhang
- Department of Reproductive Medicine, Hengshui People's Hospital Hengshui 053000, Hebei Province, China
| |
Collapse
|
7
|
Joshi NR, Kohan-Ghadr HR, Roqueiro DS, Yoo JY, Fru K, Hestermann E, Yuan L, Ho SM, Jeong JW, Young SL, Lessey BA, Fazleabas AT. Genetic and epigenetic changes in the eutopic endometrium of women with endometriosis: association with decreased endometrial αvβ3 integrin expression. Mol Hum Reprod 2021; 27:6163298. [PMID: 33693877 DOI: 10.1093/molehr/gaab018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/09/2021] [Indexed: 01/10/2023] Open
Abstract
About 40% of women with infertility and 70% of women with pelvic pain suffer from endometriosis. The pregnancy rate in women undergoing IVF with low endometrial integrin αvβ3 (LEI) expression is significantly lower compared to the women with high endometrial integrin αvβ3 (HEI). Mid-secretory eutopic endometrial biopsies were obtained from healthy controls (C; n=3), and women with HEI (n=4) and LEI (n=4) and endometriosis. Changes in gene expression were assessed using human gene arrays and DNA methylation data were derived using 385 K Two-Array Promoter Arrays. Transcriptional analysis revealed that LEI and C groups clustered separately with 396 differentially expressed genes (DEGs) (P<0.01: 275 up and 121 down) demonstrating that transcriptional and epigenetic changes are distinct in the LEI eutopic endometrium compared to the C and HEI group. In contrast, HEI vs C and HEI vs LEI comparisons only identified 83 and 45 DEGs, respectively. The methylation promoter array identified 1304 differentially methylated regions in the LEI vs C comparison. The overlap of gene and methylation array data identified 14 epigenetically dysregulated genes and quantitative RT-PCR analysis validated the transcriptomic findings. The analysis also revealed that aryl hydrocarbon receptor (AHR) was hypomethylated and significantly overexpressed in LEI samples compared to C. Further analysis validated that AHR transcript and protein expression are significantly (P<0.05) increased in LEI women compared to C. The increase in AHR, together with the altered methylation status of the 14 additional genes, may provide a diagnostic tool to identify the subset of women who have endometriosis-associated infertility.
Collapse
Affiliation(s)
- Niraj R Joshi
- Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | | | | | - Jung Yoon Yoo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Karenne Fru
- Coastal Reproductive Endocrinology and Infertility, Wilmington, NC, USA
| | | | - Lingwen Yuan
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Shuk-Mei Ho
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jae-Wook Jeong
- Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Steven L Young
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | |
Collapse
|
8
|
Luo J, Zhu L, Zhou N, Zhang Y, Zhang L, Zhang R. Construction of Circular RNA-MicroRNA-Messenger RNA Regulatory Network of Recurrent Implantation Failure to Explore Its Potential Pathogenesis. Front Genet 2021; 11:627459. [PMID: 33664765 PMCID: PMC7924221 DOI: 10.3389/fgene.2020.627459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Many studies on circular RNAs (circRNAs) have recently been published. However, the function of circRNAs in recurrent implantation failure (RIF) is unknown and remains to be explored. This study aims to determine the regulatory mechanisms of circRNAs in RIF. Methods: Microarray data of RIF circRNA (GSE147442), microRNA (miRNA; GSE71332), and messenger RNA (mRNA; GSE103465) were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed circRNA, miRNA, and mRNA. The circRNA–miRNA–mRNA network was constructed by Cytoscape 3.8.0 software, then the protein–protein interaction (PPI) network was constructed by STRING database, and the hub genes were identified by cytoHubba plug-in. The circRNA–miRNA–hub gene regulatory subnetwork was formed to understand the regulatory axis of hub genes in RIF. Finally, the Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the hub genes were performed by clusterProfiler package of Rstudio software, and Reactome Functional Interaction (FI) plug-in was used for reactome analysis to comprehensively analyze the mechanism of hub genes in RIF. Results: A total of eight upregulated differentially expressed circRNAs (DECs), five downregulated DECs, 56 downregulated differentially expressed miRNAs (DEmiRs), 104 upregulated DEmiRs, 429 upregulated differentially expressed genes (DEGs), and 1,067 downregulated DEGs were identified regarding RIF. The miRNA response elements of 13 DECs were then predicted. Seven overlapping miRNAs were obtained by intersecting the predicted miRNA and DEmiRs. Then, 56 overlapping mRNAs were obtained by intersecting the predicted target mRNAs of seven miRNAs with 1,496 DEGs. The circRNA–miRNA–mRNA network and PPI network were constructed through six circRNAs, seven miRNAs, and 56 mRNAs; and four hub genes (YWHAZ, JAK2, MYH9, and RAP2C) were identified. The circRNA–miRNA–hub gene regulatory subnetwork with nine regulatory axes was formed in RIF. Functional enrichment analysis and reactome analysis showed that these four hub genes were closely related to the biological functions and pathways of RIF. Conclusion: The results of this study provide further understanding of the potential pathogenesis from the perspective of circRNA-related competitive endogenous RNA network in RIF.
Collapse
Affiliation(s)
- Jiahuan Luo
- Clinical Medical College, Dali University, Dali, China
| | - Li Zhu
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China.,Institute of Reproductive Medicine, Dali University, Dali, China
| | - Ning Zhou
- Clinical Medical College, Dali University, Dali, China
| | | | - Lirong Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China.,Institute of Reproductive Medicine, Dali University, Dali, China
| | - Ruopeng Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China.,Institute of Reproductive Medicine, Dali University, Dali, China
| |
Collapse
|
9
|
D'Hooghe TM, Vanhie A, Flores VA, Taylor HS. Macrophage depletion: a potential immunomodulator treatment of endometriosis-associated pain? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1534. [PMID: 33313279 PMCID: PMC7729336 DOI: 10.21037/atm-2020-98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Thomas M D'Hooghe
- Research Group Reproductive Medicine, Department of Development and Regeneration, Organ Systems, Group Biomedical Sciences, KU Leuven (University of Leuven), Belgium.,Department of Obstetrics, Gynecology and Reproductive Sciences Yale School of Medicine, New Haven, CT, USA.,Vice-President and Head, Global Medical Affairs Fertility, Research and Development, Merck Healthcare KGaA, Darmstadt, Germany
| | - Arne Vanhie
- Research Group Reproductive Medicine, Department of Development and Regeneration, Organ Systems, Group Biomedical Sciences, KU Leuven (University of Leuven), Belgium.,Leuven University Fertility Center and Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - Valerie A Flores
- Department of Obstetrics, Gynecology and Reproductive Sciences Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Bjorkman S, Taylor HS. MicroRNAs in endometriosis: biological function and emerging biomarker candidates†. Biol Reprod 2020; 100:1135-1146. [PMID: 30721951 DOI: 10.1093/biolre/ioz014] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/21/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small noncoding RNA molecules, have been recognized as key post-transcriptional regulators associated with a multitude of human diseases. Global expression profiling studies have uncovered hundreds of miRNAs that are dysregulated in several diseases, and yielded many candidate biomarkers. This review will focus on miRNAs in endometriosis, a common chronic disease affecting nearly 10% of reproductive-aged women, which can cause pelvic pain, infertility, and a myriad of other symptoms. Endometriosis has delayed time to diagnosis when compared to other chronic diseases, as there is no current accurate, easily accessible, and noninvasive tool for diagnosis. Specific miRNAs have been identified as potential biomarkers for this disease in multiple studies. These and other miRNAs have been linked to target genes and functional pathways in disease-specific pathophysiology. Highlighting investigations into the roles of tissue and circulating miRNAs in endometriosis, published through June 2018, this review summarizes new connections between miRNA expression and the pathophysiology of endometriosis, including impacts on fertility. Future applications of miRNA biomarkers for precision medicine in diagnosing and managing endometriosis treatment are also discussed.
Collapse
Affiliation(s)
- Sarah Bjorkman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Ochoa-Bernal MA, Fazleabas AT. Physiologic Events of Embryo Implantation and Decidualization in Human and Non-Human Primates. Int J Mol Sci 2020; 21:E1973. [PMID: 32183093 PMCID: PMC7139778 DOI: 10.3390/ijms21061973] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Reproduction is a fundamental process for the preservation of the human species. This process requires a sequence of orchestrated events that are necessary for a successful pregnancy. Two of the most critical steps in the establishment of human pregnancy are implantation and decidualization, which are required for maternal interactions with the developing embryo. This review primarily highlights the physiological aspects of these two events and the adverse pregnancy outcomes from defective implantation and decidualization. The focus of this review is to provide a general concept of the mechanisms involved during the window of implantation, description of components involved in the process and possible pathologies that could disrupt the embryo implantation and decidualization and specifically as it applies to women and non-human primates.
Collapse
Affiliation(s)
- Maria Ariadna Ochoa-Bernal
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA;
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA;
| |
Collapse
|
12
|
Li X, Zhang W, Fu J, Xu Y, Gu R, Qu R, Li L, Sun Y, Sun X. MicroRNA-451 is downregulated in the follicular fluid of women with endometriosis and influences mouse and human embryonic potential. Reprod Biol Endocrinol 2019; 17:96. [PMID: 31744497 PMCID: PMC6862852 DOI: 10.1186/s12958-019-0538-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Previous work demonstrated that there are numerous miRNAs in human follicular fluids, some of which are associated with reproductive diseases. In the current study, we sought to determine whether microRNAs (miRNAs) in the follicular fluid (FF) are differentially expressed between women with and without endometriosis and to uncover the association of miRNAs with the oocyte and embryonic development potential. METHODS FF was harvested from 30 women with endometriosis and 30 women without who underwent in vitro fertilization treatment at the University Hospital between February and December 2016. The FF samples were subjected to miRNA profiling and validation via quantitative reverse transcription polymerase chain reaction analysis. Mouse/human metaphase-I (MI) oocytes were harvested and micro-injected with an miR-451 inhibitor, and the effects of miR-451 knockdown on Wnt/WNT signalling genes were investigated. RESULTS Oocyte number, fertilization rate, and number of available embryos were decreased significantly in women with endometriosis relative to those without endometriosis. Hsa-miR-451 in FF was downregulated in endometriosis patients relative to control subjects (P < 0.01). Moreover, the proportions of mouse/human MI oocytes that developed into 2-pronuclei (2PN), 2-cell, 8-10-cell and blastocyst-stage embryos were affected by miR-451 knockdown in mouse/human oocytes. Components of the Wnt signalling pathway were aberrantly expressed in the mouse/human oocytes and embryos in the miR-451 inhibitor-injected group. CONCLUSIONS miR-451 was downregulated in FF samples from endometriosis patients and was modestly effective in distinguishing endometriosis patients from non-endometriosis patients. miR-451 downregulation in mouse and human oocytes affected pre-implantation embryogenesis by suppressing the Wnt signalling pathway. This miRNA might serve as a novel biomarker of oocyte and embryo quality in assisted reproductive treatment.
Collapse
Affiliation(s)
- Xiong Li
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Wenbi Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jing Fu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Yan Xu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Ruihuan Gu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Ronggui Qu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Lu Li
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Yijuan Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
- Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
13
|
Gao S, Liu S, Gao ZM, Deng P, Wang DB. Reduced microRNA-451 expression in eutopic endometrium contributes to the pathogenesis of endometriosis. World J Clin Cases 2019; 7:2155-2164. [PMID: 31531311 PMCID: PMC6718782 DOI: 10.12998/wjcc.v7.i16.2155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Endometriosis (EMs) is a chronic and recurrent, but benign, disease in women of reproductive age, and EMs patients have a high risk of developing gynecological tumors and autoimmune disorders. The etiology of EMs is not clear. Certain genetic markers in the eutopic endometrium are key in the pathogenesis of EMs. MicroRNAs (miRNAs) are implicated in several biological processes, such as cell proliferation, differentiation, and apoptosis. MiR-451 is interesting, as it acts as a tumor suppressor and is relevant to the poor prognosis of cancers.
AIM To evaluate the expression levels and role of miR-451 in the eutopic endometrium and predict possible targets of miR-451 and related signaling pathways.
METHODS Quantitative real-time polymerase chain reaction was used to evaluate miR-451 expression in cultured cell lines as well as in pathologic tissues from 40 patients with EMs and 20 donors with no history of the disease (controls). Cell Counting Kit-8 and flow cytometric assays were performed to determine cell proliferation and survival rates after transfection with miR-451 mimics and siRNAs. MiR-451 targets were predicted using miRDB and miRcode target-predicting databases.
RESULTS We observed lower miR-451 levels in eutopic endometrial tissues from patients with EMs than in control tissues, and this difference was not related to the American Society for Reproductive Medicine stage. Ectopic overexpression of miR-451 in eutopic cells induced apoptosis and inhibited cell proliferation. SiRNA-mediated miR-451 knockdown reversed these effects. Using miRDB and miRcode, we identified 12 potential miR-451 target genes. We hypothesize that the expression of YWHAZ, OSR1, TTN, and CDKN2D may be regulated by miR-451 and be involved in disease pathogenesis.
CONCLUSION Reduced miR-451 expression in the eutopic endometrium contributes to the pathogenesis of EMs by promoting cell proliferation and reducing apoptosis. Thus, miR-451 is a novel biomarker for EMs. YWHAZ, OSR1, TTN, and CDKN2D are potential target genes of miR-451 and may have key roles in this disease.
Collapse
Affiliation(s)
- Shan Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110042, Liaoning Province, China
| | - Shuang Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110042, Liaoning Province, China
| | - Zi-Ming Gao
- Department of Surgical Oncology and General Surgery, First Affiliated Hospital of China Medical University, Shenyang 110042, Liaoning Province, China
| | - Peng Deng
- Department of Surgical Oncology and General Surgery, First Affiliated Hospital of China Medical University, Shenyang 110042, Liaoning Province, China
| | - Dan-Bo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, Liaoning Province, China
| |
Collapse
|
14
|
Nothnick WB, Swan K, Flyckt R, Falcone T, Graham A. Human endometriotic lesion expression of the miR-144-3p/miR-451a cluster, its correlation with markers of cell survival and origin of lesion content. Sci Rep 2019; 9:8823. [PMID: 31217548 PMCID: PMC6584560 DOI: 10.1038/s41598-019-45243-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
Abstract
Endometriosis is an inflammatory condition in which endometrial tissue grows in ectopic locations. Survival and growth of these ectopic lesions is associated with pain and infertility. MicroRNAs (miRNAs) have been postulated to play a role in the pathophysiology of the disease and we have previously demonstrated expression of miR-451 in human endometriotic lesion tissue. Here we report elevated expression of the miR-144-3p/miR-451a cluster in human endometriotic lesion tissue. Use of an endometriotic epithelial cell line (12Z) in which the miRNA processing enzyme, DROSHA, was knocked down resulted in an enrichment in the primary (pri) form of miR-144-3p but not that of pri-miR-451a. Using an experimental mouse model of endometriosis in which ectopic endometriotic lesions were deficient for both of these miRNAs revealed that miR-451a, but not miR-144-3p may be derived from exogenous sources such as the circulation/erythrocytes. Together, these data suggest that the miR-144-3p/miR-451a cluster is expressed in human endometriotic lesion tissue, the level of expression correlates with survival status of the lesion tissue and that miR-451a, but not miR-144-3p may be derived from exogenous sources such as erythrocytes.
Collapse
Affiliation(s)
- Warren B Nothnick
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Center for Reproductive Sciences, Institute of Reproductive and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Kimberly Swan
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Rebecca Flyckt
- Department of Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Tommaso Falcone
- Department of Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Amanda Graham
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
15
|
Trattnig C, Üçal M, Tam-Amersdorfer C, Bucko A, Zefferer U, Grünbacher G, Absenger-Novak M, Öhlinger KA, Kraitsy K, Hamberger D, Schaefer U, Patz S. MicroRNA-451a overexpression induces accelerated neuronal differentiation of Ntera2/D1 cells and ablation affects neurogenesis in microRNA-451a-/- mice. PLoS One 2018; 13:e0207575. [PMID: 30462722 PMCID: PMC6248975 DOI: 10.1371/journal.pone.0207575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/02/2018] [Indexed: 12/22/2022] Open
Abstract
MiR-451a is best known for its role in erythropoiesis and for its tumour suppressor features. Here we show a role for miR-451a in neuronal differentiation through analysis of endogenous and ectopically expressed or silenced miR-451a in Ntera2/D1 cells during neuronal differentiation. Furthermore, we compared neuronal differentiation in the dentate gyrus of hippocampus of miR-451a-/- and wild type mice. MiR-451a overexpression in lentiviral transduced Ntera2/D1 cells was associated with a significant shifting of mRNA expression of the developmental markers Nestin, βIII Tubulin, NF200, DCX and MAP2 to earlier developmental time points, compared to control vector transduced cells. In line with this, accelerated neuronal network formation in AB.G.miR-451a transduced cells, as well as an increase in neurite outgrowth both in number and length was observed. MiR-451a targets genes MIF, AKT1, CAB39, YWHAZ, RAB14, TSC1, OSR1, POU3F2, TNS4, PSMB8, CXCL16, CDKN2D and IL6R were, moreover, either constantly downregulated or exhibited shifted expression profiles in AB.G.miR-451a transduced cells. Lentiviral knockdown of endogenous miR-451a expression in Ntera2/D1 cells resulted in decelerated differentiation. Endogenous miR-451a expression was upregulated during development in the hippocampus of wildtype mice. In situ hybridization revealed intensively stained single cells in the subgranular zone and the hilus of the dentate gyrus of wild type mice, while genetic ablation of miR-451a was observed to promote an imbalance between proliferation and neuronal differentiation in neurogenic brain regions, suggested by Ki67 and DCX staining. Taken together, these results provide strong support for a role of miR-451a in neuronal maturation processes in vitro and in vivo.
Collapse
Affiliation(s)
- Christa Trattnig
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Muammer Üçal
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | | | - Angela Bucko
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Ulrike Zefferer
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Gerda Grünbacher
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | | | | | - Klaus Kraitsy
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Daniel Hamberger
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Ute Schaefer
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
- * E-mail:
| | - Silke Patz
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| |
Collapse
|
16
|
Li J, Guan L, Zhang H, Gao Y, Sun J, Gong X, Li D, Chen P, Liang X, Huang M, Bi H. Endometrium metabolomic profiling reveals potential biomarkers for diagnosis of endometriosis at minimal-mild stages. Reprod Biol Endocrinol 2018; 16:42. [PMID: 29712562 PMCID: PMC5928574 DOI: 10.1186/s12958-018-0360-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sensitivity and specificity of non-invasive diagnostic methods for endometriosis, especially at early stages, are not optimal. The clinical diagnostic indicator cancer antigen 125 (CA125) performs poorly in the diagnosis of minimal endometriosis, with a sensitivity of 24%. Therefore, it is urgent to explore novel diagnostic biomarkers. We evaluated the metabolomic profile variation of the eutopic endometrium between minimal-mild endometriosis patients and healthy women by ultra-high-performance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (UHPLC-ESI-HRMS). METHODS Our study comprised 29 patients with laparoscopically confirmed endometriosis at stages I-II and 37 infertile women who underwent diagnostic laparoscopy combined with hysteroscopy from January 2014 to January 2015. Eutopic endometrium samples were collected by pipelle endometrial biopsy. The metabolites were quantified by UHPLC-ESI-HRMS. The best combination of biomarkers was then selected by performing step-wise logistic regression analysis with backward elimination. RESULTS Twelve metabolites were identified as endometriosis-associated biomarkers. The eutopic endometrium metabolomic profile of the endometriosis patients was characterized by a significant increase in the concentration of hypoxanthine, L-arginine, L-tyrosine, leucine, lysine, inosine, omega-3 arachidonic acid, guanosine, xanthosine, lysophosphatidylethanolamine and asparagine. In contrast, the concentration of uric acid was decreased. Metabolites were filtered by step-wise logistic regression with backward elimination, and a model containing uric acid, hypoxanthine, and lysophosphatidylethanolamine was constructed. Receiver-operating characteristic (ROC) analysis confirmed the prognostic value of these parameters for the diagnosis of minimal/mild endometriosis with a sensitivity of 66.7% and a specificity of 90.0%. CONCLUSIONS Metabolomics analysis of the eutopic endometrium in endometriosis was effectively characterized by UHPLC-ESI-HRMS-based metabolomics. Our study supports the importance of purine and amino acid metabolites in the pathophysiology of endometriosis and provides potential biomarkers for semi-invasive diagnosis of early-stage endometriosis.
Collapse
Affiliation(s)
- Jingjie Li
- Center of Reproductive Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lihuan Guan
- School of Pharmaceutical Sciences in Sun Yat-sen University, 132# Waihuandong Road, Guangzhou, University City, Guangzhou, 510006, People's Republic of China
| | - Huizhen Zhang
- School of Pharmaceutical Sciences in Sun Yat-sen University, 132# Waihuandong Road, Guangzhou, University City, Guangzhou, 510006, People's Republic of China
| | - Yue Gao
- School of Pharmaceutical Sciences in Sun Yat-sen University, 132# Waihuandong Road, Guangzhou, University City, Guangzhou, 510006, People's Republic of China
| | - Jiahong Sun
- School of Pharmaceutical Sciences in Sun Yat-sen University, 132# Waihuandong Road, Guangzhou, University City, Guangzhou, 510006, People's Republic of China
| | - Xiao Gong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongshun Li
- School of Pharmaceutical Sciences in Sun Yat-sen University, 132# Waihuandong Road, Guangzhou, University City, Guangzhou, 510006, People's Republic of China
| | - Pan Chen
- Pharmacy Department, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Liang
- Center of Reproductive Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences in Sun Yat-sen University, 132# Waihuandong Road, Guangzhou, University City, Guangzhou, 510006, People's Republic of China
| | - Huichang Bi
- School of Pharmaceutical Sciences in Sun Yat-sen University, 132# Waihuandong Road, Guangzhou, University City, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
17
|
Zhao Y, Zhang K, Zou M, Sun Y, Peng X. gga-miR-451 Negatively Regulates Mycoplasma gallisepticum (HS Strain)-Induced Inflammatory Cytokine Production via Targeting YWHAZ. Int J Mol Sci 2018; 19:ijms19041191. [PMID: 29652844 PMCID: PMC5979595 DOI: 10.3390/ijms19041191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is the most economically significant mycoplasma pathogen of poultry that causes chronic respiratory disease (CRD) in chickens. Although miRNAs have been identified as a major regulator effect on inflammatory response, it is largely unclear how they regulate MG-induced inflammation. The aim of this study was to investigate the functional roles of gga-miR-451 and identify downstream targets regulated by gga-miR-451 in MG infection of chicken. We found that the expression of gga-miR-451 was significantly up-regulated during MG infection of chicken embryo fibroblast cells (DF-1) and chicken embryonic lungs. Overexpression of gga-miR-451 decreased the MG-induced inflammatory cytokine production, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), whereas inhibition of gga-miR-451 had the opposite effect. Gene expression data combined with luciferase reporter assays demonstrated that tyrosine3-monooxygenase/tryptophan5-monooxygenase activation protein zeta (YWHAZ) was identified as a direct target of gga-miR-451 in the context of MG infection. Furthermore, upregulation of gga-miR-451 significantly inhibited the MG-infected DF-1 cells proliferation, induced cell-cycle arrest, and promoted apoptosis. Collectively, our results demonstrate that gga-miR-451 negatively regulates the MG-induced production of inflammatory cytokines via targeting YWHAZ, inhibits the cell cycle progression and cell proliferation, and promotes cell apoptosis. This study provides a better understanding of the molecular mechanisms of MG infection.
Collapse
Affiliation(s)
- Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Kang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Li J, Gao Y, Guan L, Zhang H, Sun J, Gong X, Li D, Chen P, Ma Z, Liang X, Huang M, Bi H. Discovery of Phosphatidic Acid, Phosphatidylcholine, and Phosphatidylserine as Biomarkers for Early Diagnosis of Endometriosis. Front Physiol 2018; 9:14. [PMID: 29410629 PMCID: PMC5787104 DOI: 10.3389/fphys.2018.00014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/08/2018] [Indexed: 11/21/2022] Open
Abstract
The sensitivity and specificity of clinical diagnostic indicators and non-invasive diagnostic methods for endometriosis at early stage is not optimal. Previous studies demonstrated that abnormal lipid metabolism was involved in the pathological development of endometriosis. Our cross-sectional study included 21 patients with laparoscopically confirmed endometriosis at stage I–II and 20 infertile women who underwent diagnostic laparoscopy combined with hysteroscopy from January 2014 to January 2015. Eutopic endometrium was collected by pipelle endometrial biopsy. Lipid metabolites were quantified by ultra-high performance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (UHPLC-ESI-HRMS). Lipid profiles of endometriosis patients at early stage (I–II) was characterized by a decreased concentration of phosphatidylcholine (18:1/22:6), (20:1/14:1), (20:3/20:4), and phosphatidylserine (20:3/23:1) and an increased concentration of phosphatidic acid (25:5/22:6) compared with control. The synthesized predicting strategy with 5 biomarkers has a specificity of 75.0% and a sensitivity of 90.5%. Lipid profile of eutopic endometrium in endometriosis was effectively characterized by UHPLC-ESI-HRMS-based metabolomics. Our study demonstrated the alteration of phosphatidic acid, phosphatidylcholine, phosphatidylserine metabolites in endometriosis and provided potential biomarkers for semi-invasive diagnose of endometriosis at early stage.
Collapse
Affiliation(s)
- Jingjie Li
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lihuan Guan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huizhen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiahong Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao Gong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongshun Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pan Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zheng Ma
- Institute of Population Research, Peking University, Beijing, China
| | - Xiaoyan Liang
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Stouffer RL, Woodruff TK. Nonhuman Primates: A Vital Model for Basic and Applied Research on Female Reproduction, Prenatal Development, and Women's Health. ILAR J 2017; 58:281-294. [PMID: 28985318 PMCID: PMC5886348 DOI: 10.1093/ilar/ilx027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
The comparative biology of reproduction and development in mammalian species is remarkable. Hence, because of similarities in environmental and neuroendocrine control of the reproductive axis, the cyclic function of the ovary and reproductive tract, establishment and control of the maternal-fetal-placental unit during pregnancy, and reproductive aging from puberty through menopause, nonhuman primates (NHPs) are valuable models for research related to women's reproductive health and its disorders. This chapter provides examples of research over the past 10+ years using Old World monkeys (notably macaque species), baboons, and to a lesser extent New World monkeys (especially marmosets) that contributed to our understanding of the etiology and therapies or prevention of: (1) ovarian disorders, e.g., polycystic ovary syndrome, mitochondrial DNA-based diseases from the oocyte; (2) uterine disorders, for example, endometriosis and uterine transplantation; and (3) pregnancy disorders, for example, preterm labor and delivery, environmental factors. Also, emerging opportunities such as viral (e.g., Zika) induced fetal defects and germline genomic editing to generate valuable primate models of human diseases (e.g., Huntington and muscular dystrophy) are addressed. Although the high costs, specialized resources, and ethical debate challenge the use of primates in biomedical research, their inclusion in fertility and infertility research is vital for continued improvements in women's reproductive health.
Collapse
Affiliation(s)
- Richard L Stouffer
- Richard L. Stouffer, Ph.D., is Professor in the Division of Reproductive and Developmental Sciences at the Oregon National Primate Research Center in Beaverton, Oregon and Professor in the Department of Obstetrics and Gynecology at Oregon Health & Sciences University in Portland, Oregon. Teresa K. Woodruff, Ph.D., is Thomas J. Watkins Professor of Obstetrics and Gynecology, Vice Chair of Research (OB/GYN), and Chief of the Division of Reproductive Science in Medicine at the Feinberg School of Medicine, and Professor of Molecular Biosciences at Weinberg College of Arts and Sciences, Northwestern University in Chicago, Illinois.
| | - Teresa K Woodruff
- Richard L. Stouffer, Ph.D., is Professor in the Division of Reproductive and Developmental Sciences at the Oregon National Primate Research Center in Beaverton, Oregon and Professor in the Department of Obstetrics and Gynecology at Oregon Health & Sciences University in Portland, Oregon. Teresa K. Woodruff, Ph.D., is Thomas J. Watkins Professor of Obstetrics and Gynecology, Vice Chair of Research (OB/GYN), and Chief of the Division of Reproductive Science in Medicine at the Feinberg School of Medicine, and Professor of Molecular Biosciences at Weinberg College of Arts and Sciences, Northwestern University in Chicago, Illinois.
| |
Collapse
|
20
|
Nothnick WB. MicroRNAs and Endometriosis: Distinguishing Drivers from Passengers in Disease Pathogenesis. Semin Reprod Med 2017; 35:173-180. [PMID: 28212593 DOI: 10.1055/s-0037-1599089] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endometriosis is a disease common in women of reproductive age, characterized by pelvic pain and infertility. Despite its prevalence, the factors and mechanisms which contribute to the development and survival of ectopic lesions remain uncertain. MicroRNAs (miRNAs) are small RNA molecules that regulate posttranscriptional gene regulation which have been proposed to contribute to the pathogenesis of many diseases including that of endometriosis. This review summarizes the results of initial studies describing differentially expressed miRNAs between endometriotic lesion tissue and eutopic endometrium. Focus then moves toward discussion of studies on examining function of differentially expressed miRNAs to determine if they play a permissive role (driver of the disease) in events conducive to endometriosis progression/survival. Included in this discussion are the potential targets of these miRNAs and how their mis-expression may contribute to the disease. Limitations and challenges faced in studying miRNAs and endometriosis pathogenesis and recommendations to overcome these hurdles are presented at the end.
Collapse
Affiliation(s)
- Warren B Nothnick
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
21
|
Joshi NR, Miyadahira EH, Afshar Y, Jeong JW, Young SL, Lessey BA, Serafini PC, Fazleabas AT. Progesterone Resistance in Endometriosis Is Modulated by the Altered Expression of MicroRNA-29c and FKBP4. J Clin Endocrinol Metab 2017; 102:141-149. [PMID: 27778641 PMCID: PMC5413101 DOI: 10.1210/jc.2016-2076] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/21/2016] [Indexed: 01/21/2023]
Abstract
CONTEXT Endometriosis results in aberrant gene expression in the eutopic endometrium (EuE) and subsequent progesterone resistance. MicroRNA (miR) microarray data in a baboon model of endometriosis showed an increased expression of miR-29c. OBJECTIVES To explore the role of miR-29c in progesterone resistance in a subset of women with endometriosis. DESIGN MiR-29c expression was analyzed in the endometrium of baboons and women with or without endometriosis. The role in progesterone resistance and decidualization was analyzed by transfecting human uterine fibroblast cells with miR-29c. PATIENTS Subjects diagnosed with deep infiltrative endometriosis (DIE) by transvaginal ultrasound with bowel preparation underwent surgical excision of endometriosis. Eutopic secretory endometrium was collected pre- and postoperatively. Women with normal EuE and without DIE served as controls. RESULTS Quantitative reverse transcription polymerase chain reaction demonstrated that miR-29c expression increased, while the transcript levels of its target, FK506-binding protein 4 (FKBP4), decreased in the EuE of baboons following the induction of endometriosis. FKBP4 messenger RNA and decidual markers were statistically significantly decreased in decidualized human uterine fibroblast cells transfected with a miR-29c mimic compared with controls. Human data corroborated our baboon data and demonstrated higher expression of miR-29c in endometriosis EuE compared with normal EuE. MiR-29c was significantly decreased in endometriosis EuE postoperatively compared with preoperative tissues, and FKBP4 showed an inverse trend following radical laparoscopic resection surgery. CONCLUSIONS We demonstrate that miR-29c expression is increased in EuE of baboons and women with endometriosis, which might contribute to a compromised progesterone response by diminishing the levels of FKBP4. Resection of DIE is likely to reverse the progesterone resistance associated with endometriosis in women.
Collapse
Affiliation(s)
- Niraj R. Joshi
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan 49503;
| | | | - Yalda Afshar
- Department of Obstetrics and Gynecology, University of California, Los Angeles, California 90095;
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan 49503;
| | - Steven L. Young
- Department of Obstetrics and Gynecology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | - Bruce A. Lessey
- Greenville Hospital System, University of South Carolina School of Medicine, Greenville, South Carolina 29605; and
| | - Paulo C. Serafini
- Discipline of Gynecology, Department of Obstetrics and Gynecology, Hospital das clinicas, faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan 49503;
| |
Collapse
|
22
|
Nothnick WB, Falcone T, Joshi N, Fazleabas AT, Graham A. Serum miR-451a Levels Are Significantly Elevated in Women With Endometriosis and Recapitulated in Baboons ( Papio anubis) With Experimentally-Induced Disease. Reprod Sci 2016; 24:1195-1202. [PMID: 27920341 DOI: 10.1177/1933719116681519] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that human microRNA-451a (miR-451a) endometriotic lesion expression is significantly higher compared to that of the corresponding eutopic endometrium. The objective of the current study was to examine the relationship between lesion and serum content of miR-451a and to determine the utility of serum miR-451a in distinguishing between women with and without visible signs of endometriosis. Eighty-one participants were enrolled in this study, 41 with confirmed endometriosis and 40 without visible signs of endometriosis at laparoscopy (n = 20) or symptoms of endometriosis (pain, infertility n = 20). Experimental endometriosis was also induced in 8 baboons. Blood, endometriotic lesions, and eutopic endometrial samples were collected from women undergoing laparoscopy for surgical removal of endometriosis. Blood was also collected from control participants with no signs and symptoms associated with the disease as well as from baboons prior to, and then 1, 3, 6, 9, and 15 months postinduction of endometriosis. MicroRNA-451a was assessed by quantitative real-time polymerase chain reaction in all samples. In humans, serum miR-451a levels positively correlated with endometriotic lesion miR-451a content, and sera levels were significantly higher in these participants compared to controls. The area under the curve (AUC) for miR-451a was 0.8599. In baboons, serum miR-451a reached statistically significant peak levels at 6 months postinduction of endometriosis. We conclude from this study that sera miR-451a levels positively correlated with endometriotic lesion content and are significantly greater compared to sera levels in women without visible signs or symptoms of endometriosis. MicroRNA-451a may serve as a serum diagnostic marker for endometriosis.
Collapse
Affiliation(s)
- Warren B Nothnick
- 1 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,2 Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tommaso Falcone
- 3 Department of Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Niraj Joshi
- 4 Department of Obstetrics and Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Asgerally T Fazleabas
- 4 Department of Obstetrics and Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Amanda Graham
- 1 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
23
|
Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nat Genet 2016; 48:1462-1472. [PMID: 27798627 PMCID: PMC5695684 DOI: 10.1038/ng.3698] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022]
Abstract
The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits.
Collapse
|