1
|
Zhang Z, Zhou X, Xia L, Li N, Xu S, Dong X, Zhu L, Huang M, Wan G. Wenshen Xiaozheng Tang alleviates fibrosis in endometriosis by regulating differentiation and paracrine signaling of endometrium-derived mesenchymal stem cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118724. [PMID: 39181283 DOI: 10.1016/j.jep.2024.118724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wenshen Xiaozheng Tang (WXT), a traditional Chinese medicine (TCM) decoction, is effective for treating endometriosis. However, the effect of WXT on endometrium-derived mesenchymal stem cells (eMSCs) which play a key role in the fibrogenesis of endometriosis requires further elucidation. AIMS OF THE STUDY The aim of this study was to clarify the potential mechanism of WXT in improving fibrosis in endometriosis by investigating the regulation of WXT on differentiation and paracrine of eMSCs. MATERIALS AND METHODS The nude mice with endometriosis were randomly divided into model group, WXT group and mifepristone group. After 21 days of treatment, the lesion volume was calculated. Fibrosis in the lesions was evaluated by Masson staining and expression of fibrotic proteins. The differentiation of eMSCs in vivo was explored using a fate-tracking experiment. To further clarify the regulation of WXT on eMSCs, primary eMSCs from the ectopic lesions of endometriosis patients were isolated and characterized. The effect of WXT on the proliferation and differentiation of ectopic eMSCs was examined. To evaluate the role of WXT on the paracrine activity of ectopic eMSCs, the conditioned medium (CM) from ectopic eMSCs pretreated with WXT was collected and applied to treat ectopic endometrial stromal cells (ESCs), after which the expression of fibrotic proteins in ectopic ESCs was assessed. In addition, transcriptome sequencing was used to investigate the regulatory mechanism of WXT on ectopic eMSCs, and western blot and ELISA were employed to determine the key mediator. RESULTS WXT impeded the growth of ectopic lesions in nude mice with endometriosis and reduced collagen deposition and the expression of fibrotic proteins fibronectin, collagen I, α-SMA and CTGF in the endometriotic lesions. The fate-tracking experiment showed that WXT prevented human eMSCs from differentiating into myofibroblasts in the nude mice. We successfully isolated eMSCs from the lesions of patients with endometriosis and demonstrated that WXT suppressed proliferation and myofibroblast differentiation of ectopic eMSCs. Moreover, the expression of α-SMA, collagen I, fibronectin and CTGF in ectopic ESCs was significantly down-regulated by the CM of ectopic MSCs pretreated with WXT. Combining the results of RNA sequencing, western blot and ELISA, we found that WXT not only reduced thrombospondin 4 expression in ectopic eMSCs, but also decreased thrombospondin 4 secretion from ectopic eMSCs. Thrombospondin 4 concentration-dependently upregulated the expression of collagen I, fibronectin, α-SMA and CTGF in ectopic ESCs, indicating that thrombospondin 4 was a key mediator of WXT in inhibiting the fibrotic process in endometriosis. CONCLUSION WXT improved fibrosis in endometriosis by regulating differentiation and paracrine signaling of eMSCs. Thrombospondin 4, whose release from ectopic eMSCs is inhibited by WXT, may be a potential target for the treatment of endometriosis.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Xue Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Lu Xia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Nan Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Shihan Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Xiaohong Dong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Li Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Meihua Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Guiping Wan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| |
Collapse
|
2
|
Anchan MM, Kalthur G, Datta R, Majumdar K, P K, Dutta R. Unveiling the fibrotic puzzle of endometriosis: An overlooked concern calling for prompt action. F1000Res 2024; 13:721. [PMID: 39669683 PMCID: PMC11635194 DOI: 10.12688/f1000research.152368.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Endometriosis is a benign, estrogen-dependent, persistent chronic inflammatory heterogeneous condition that features fibrotic adhesions caused by periodic bleeding. The characteristic ectopic lesions are marked by a widely spread dense fibrotic interstitium comprising of fibroblasts, myofibroblasts, collagen fibers, extracellular proteins, inflammatory cells, and active angiogenesis. Fibrosis is now recognized as a critical component of endometriosis because of which current treatments, such as hormonal therapy and surgical excision of lesions are largely ineffective with severe side effects, high recurrence rates, and significant morbidity. The symptoms include dysmenorrhea (cyclic or noncyclic), dyspareunia, abdominal discomfort, and infertility. The significant lack of knowledge regarding the underlying root causes, etiology, and complex pathogenesis of this debilitating condition, hinders early diagnosis and implement effective therapeutic approaches with minimal side effects presenting substantial hurdles in endometriosis management. Emerging research offer a close relationship between endometriosis and fibrosis, which is believed to be tightly linked to pain, a primary contributor to the deterioration of the patient's quality of life. However, the underlying pathophysiological cellular and molecular signaling pathways behind endometriosis-associated fibrosis are poorly addressed. The available experimental disease models have tremendous challenges in reproducing the human characteristics of the disease limiting the treatment effectiveness. Future translational research on the topic has been hindered by the lack of an adequate fibrotic model of endometriosis emphasizing the necessity of etiological exploration. This review article focuses on recent developments in the field and highlight the necessity for novel fibrotic models for early diagnosis, a better understanding the disease's etiology and develop effective anti-fibrotic treatments. By addressing these knowledge gaps, we want to open fresh avenues for a thorough investigation and extended research in the field of endometriosis.
Collapse
Affiliation(s)
- Megha M Anchan
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | | - Kabita Majumdar
- Gauhati Medical College & Hospital IVF centre, Bhangagarh, Gauhati Medical College, Assam, 781032, India
| | - Karthikeyan P
- Department of General Surgery, Government Kallakurichi Medical College, Government Kallakurichi Medical College, Kallakurichi, Tamil Nadu, India
| | - Rahul Dutta
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
3
|
Vissers G, Giacomozzi M, Verdurmen W, Peek R, Nap A. The role of fibrosis in endometriosis: a systematic review. Hum Reprod Update 2024; 30:706-750. [PMID: 39067455 PMCID: PMC11532625 DOI: 10.1093/humupd/dmae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Fibrosis is an important pathological feature of endometriotic lesions of all subtypes. Fibrosis is present in and around endometriotic lesions, and a central role in its development is played by myofibroblasts, which are cells derived mainly after epithelial-to-mesenchymal transition (EMT) and fibroblast-to-myofibroblast transdifferentiation (FMT). Transforming growth factor-β (TGF-β) has a key role in this myofibroblastic differentiation. Myofibroblasts deposit extracellular matrix (ECM) and have contracting abilities, leading to a stiff micro-environment. These aspects are hypothesized to be involved in the origin of endometriosis-associated pain. Additionally, similarities between endometriosis-related fibrosis and other fibrotic diseases, such as systemic sclerosis or lung fibrosis, indicate that targeting fibrosis could be a potential therapeutic strategy for non-hormonal therapy for endometriosis. OBJECTIVE AND RATIONALE This review aims to summarize the current knowledge and to highlight the knowledge gaps about the role of fibrosis in endometriosis. A comprehensive literature overview about the role of fibrosis in endometriosis can improve the efficiency of fibrosis-oriented research in endometriosis. SEARCH METHODS A systematic literature search was performed in three biomedical databases using search terms for 'endometriosis', 'fibrosis', 'myofibroblasts', 'collagen', and 'α-smooth muscle actin'. Original studies were included if they reported about fibrosis and endometriosis. Both preclinical in vitro and animal studies, as well as research concerning human subjects were included. OUTCOMES Our search yielded 3441 results, of which 142 studies were included in this review. Most studies scored a high to moderate risk of bias according to the bias assessment tools. The studies were divided in three categories: human observational studies, experimental studies with human-derived material, and animal studies. The observational studies showed details about the histologic appearance of fibrosis in endometriosis and the co-occurrence of nerves and immune cells in lesions. The in vitro studies identified several pro-fibrotic pathways in relation to endometriosis. The animal studies mainly assessed the effect of potential therapeutic strategies to halt or regress fibrosis, for example targeting platelets or mast cells. WIDER IMPLICATIONS This review shows the central role of fibrosis and its main cellular driver, the myofibroblast, in endometriosis. Platelets and TGF-β have a pivotal role in pro-fibrotic signaling. The presence of nerves and neuropeptides is closely associated with fibrosis in endometriotic lesions, and is likely a cause of endometriosis-associated pain. The process of fibrotic development after EMT and FMT shares characteristics with other fibrotic diseases, so exploring similarities in endometriosis with known processes in diseases like systemic sclerosis, idiopathic pulmonary fibrosis or liver cirrhosis is relevant and a promising direction to explore new treatment strategies. The close relationship with nerves appears rather unique for endometriosis-related fibrosis and is not observed in other fibrotic diseases. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Guus Vissers
- Department of Obstetrics & Gynaecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maddalena Giacomozzi
- Department of Obstetrics & Gynaecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ron Peek
- Department of Obstetrics & Gynaecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemiek Nap
- Department of Obstetrics & Gynaecology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Luo X, Wen S, Zeng J, Liu J, Ye W, Wu J, Huang S, Xie W, Wen H, Sun Y, Cai J, Mo D, Lin Q, Chen M, Xia S, Song Y. AOPPs induces EMT and fibrosis by activating oxidative stress through ERK/p38 MAPK signaling pathway in endometriosis. Reprod Biol 2024; 24:100950. [PMID: 39241657 DOI: 10.1016/j.repbio.2024.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/28/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is known to play a crucial role in the development of endometriosis (EMs). However, the exact mechanisms involved in EMT regulation in EMs are not well understood. In this study, we performed comprehensive research using clinical samples, single-cell sequencing, and in vivo/in vitro models to investigate the effects of advanced oxidation protein products (AOPPs) on EMT and the underlying mechanisms in EMs. Combining bioinformatics analysis with experimental validation, our results show that AOPPs accumulate in EMs tissues, and their levels positively correlate with the expression of EMT markers in fibrotic lesions of EMs patients. Stimulation with AOPPs leads to a concentration- and time-dependent alteration of EMT markers expression in both in vitro and in vivo models. These effects are mainly mediated by the generation of reactive oxygen species and nitrite, along with the activation of the ERK and P38 signaling pathways. In chronic administration studies using normal rats, AOPPs induce EMT and enhance collagen deposition. These findings significantly contribute to our understanding of the molecular mechanisms of EMs and provide a foundation for future research and therapeutic development in this field.
Collapse
Affiliation(s)
- Xiaoqing Luo
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Sixi Wen
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Junling Zeng
- Laboratory Animal Research Center of Nanfang Hospital Southern Medical University
| | - Jing Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenting Ye
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Jiangpeng Wu
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Songyu Huang
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Wuwei Xie
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haiping Wen
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Yan Sun
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Jing Cai
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Daidi Mo
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Qianxia Lin
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Mingwei Chen
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Siyu Xia
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China.
| | - Yali Song
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China.
| |
Collapse
|
5
|
Vissers G, Peek R, Verdurmen WPR, Nap AW. Endometriotic tissue fragments are viable after cryopreservation in an ex vivo tissue model recapitulating the fibrotic microenvironment. Hum Reprod 2024; 39:2067-2078. [PMID: 39025483 PMCID: PMC11373316 DOI: 10.1093/humrep/deae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
STUDY QUESTION Is it possible to establish an ex vivo endometriosis model using cryopreserved endometriotic tissue fragments? SUMMARY ANSWER Cryopreserved endometriotic tissue fragments remain viable after thawing and during at least 3 days of culture and can therefore be used to establish an ex vivo endometriosis model to efficiently test potential therapeutic agents. WHAT IS KNOWN ALREADY Endometriosis is the most prevalent benign gynecologic disease with an enormous societal burden; however, curative therapies are still lacking. To efficiently test potential new therapies, an ex vivo model based on previously cryopreserved endometriotic tissue that recapitulates the different endometriosis subtypes and their microenvironment is highly desirable. STUDY DESIGN, SIZE, DURATION Endometriotic tissue fragments of three different subtypes were obtained from 28 patients by surgical resection. After cryopreservation and thawing, viability and metabolic activity of these tissue fragments were assessed. Viability was compared with fresh fragments from 11 patients directly after surgical removal. Experimental intervention studies were performed in cryopreserved and thawed tissue fragments from two patients to confirm the usability of these tissues for ex vivo intervention studies. PARTICIPANTS/MATERIALS, SETTING, METHODS Endometriotic tissue fragments (n = 45) were cryopreserved according to three different protocols. After thawing, fragments were cultured for 24 h. A resazurin-based assay was performed to assess the metabolic activity of the tissue fragments. In addition, cell type-specific viability was analyzed by VivaFix, Hoechst 33342, and α-smooth muscle actin immunofluorescence staining and confocal microscopy. The presence of endometriosis was histologically confirmed based on hematoxylin-eosin staining. Cryopreserved and thawed tissue fragments were treated for 72 h with pirfenidone or metformin and COL1A1 and CEMIP gene expressions were assessed using RT-PCR and RT-qPCR, either in the whole tissue fragments or in myofibroblasts isolated by laser capture microdissection. MAIN RESULTS AND THE ROLE OF CHANCE Metabolic activity of endometriotic tissue fragments obtained from peritoneal (PER), ovarian (OMA), and deep (DE) endometriotic lesions was well preserved after cryopreservation in a dimethyl sulfoxide-based medium and was comparable with fresh tissue fragments. Relative metabolic activity compared to fresh tissue was 70% (CI: 92-47%) in PER, 43% (CI: 53-15%) in OMA and 94% (CI: 186-3%) in DE lesions. In fragments from PE lesions 92% (CI: 87-96%), from OMA lesions 95% (CI: 91-98%), and from DE lesions 88% (CI: 78-98%) of cells were viable after cryopreservation and thawing followed by a 24-h culture period. Differences in gene expression of fibrotic markers COL1A1 and CEMIP after 72-h treatment with pirfenidone or metformin could be detected in whole tissue fragments and in isolated myofibroblasts, indicating that cryopreserved and thawed endometriotic tissue fragments are suitable for testing anti-fibrotic interventions. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Viability and metabolic activity of the endometriotic tissue fragments may have been partially compromised by damage sustained during the surgical procedure, contributing to inter-sample variance. WIDER IMPLICATIONS OF THE FINDINGS The storage of viable endometriotic tissue fragments for later usage in an ex vivo model creates the possibility to efficiently test potential new therapeutic strategies and facilitates the exchange of viable endometriotic tissue between different research laboratories. STUDY FUNDING/COMPETING INTEREST(S) This study was not financially supported by external funding. The authors declare no competing interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- G Vissers
- Department of Obstetrics & Gynaecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R Peek
- Department of Obstetrics & Gynaecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A W Nap
- Department of Obstetrics & Gynaecology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Gong Y, Liu M, Zhang Q, Li J, Cai H, Ran J, Ma L, Ma Y, Quan S. Lysine acetyltransferase 14 mediates TGF-β-induced fibrosis in ovarian endometrioma via co-operation with serum response factor. J Transl Med 2024; 22:561. [PMID: 38867256 PMCID: PMC11167823 DOI: 10.1186/s12967-024-05243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/28/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Fibrogenesis within ovarian endometrioma (endometrioma), mainly induced by transforming growth factor-β (TGF-β), is characterized by myofibroblast over-activation and excessive extracellular matrix (ECM) deposition, contributing to endometrioma-associated symptoms such as infertility by impairing ovarian reserve and oocyte quality. However, the precise molecular mechanisms that underpin the endometrioma- associated fibrosis progression induced by TGF-β remain poorly understood. METHODS The expression level of lysine acetyltransferase 14 (KAT14) was validated in endometrium biopsies from patients with endometrioma and healthy controls, and the transcription level of KAT14 was further confirmed by analyzing a published single-cell transcriptome (scRNA-seq) dataset of endometriosis. We used overexpression, knockout, and knockdown approaches in immortalized human endometrial stromal cells (HESCs) or human primary ectopic endometrial stromal cells (EcESCs) to determine the role of KAT14 in TGF-β-induced fibrosis. Furthermore, an adeno-associated virus (AAV) carrying KAT14-shRNA was used in an endometriosis mice model to assess the role of KAT14 in vivo. RESULTS KAT14 was upregulated in ectopic lesions from endometrioma patients and predominantly expressed in activated fibroblasts. In vitro studies showed that KAT14 overexpression significantly promoted a TGF-β-induced profibrotic response in endometrial stromal cells, while KAT14 silencing showed adverse effects that could be rescued by KAT14 re-enhancement. In vivo, Kat14 knockdown ameliorated fibrosis in the ectopic lesions of the endometriosis mouse model. Mechanistically, we showed that KAT14 directly interacted with serum response factor (SRF) to promote the expression of α-smooth muscle actin (α-SMA) by increasing histone H4 acetylation at promoter regions; this is necessary for TGF-β-induced ECM production and myofibroblast differentiation. In addition, the knockdown or pharmacological inhibition of SRF significantly attenuated KAT14-mediating profibrotic effects under TGF-β treatment. Notably, the KAT14/SRF complex was abundant in endometrioma samples and positively correlated with α-SMA expression, further supporting the key role of KAT14/SRF complex in the progression of endometrioma-associated fibrogenesis. CONCLUSION Our results shed light on KAT14 as a key effector of TGF-β-induced ECM production and myofibroblast differentiation in EcESCs by promoting histone H4 acetylation via co-operating with SRF, representing a potential therapeutic target for endometrioma-associated fibrosis.
Collapse
Affiliation(s)
- Yi Gong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, 510515, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China
| | - Mian Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, 510515, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China
| | - Qianqian Zhang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523001, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinjing Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China
| | - Hong Cai
- Department of Obstetrics and Gynecology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, China
| | - Jing Ran
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, China
| | - Linna Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China.
| | - Song Quan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
7
|
Feng Y, Dong H, Tan B. Endometriotic mesenchymal stem cells promote the fibrosis process of endometriosis through paracrine TGF-β1 mediated RASAL1 inhibition. J Obstet Gynaecol Res 2024; 50:467-477. [PMID: 38113862 DOI: 10.1111/jog.15851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Endometrial-derived stem cells are key players in endometriosis (EMs) pathogenesis, while the mechanism involved is still unclear. Herein, the role and regulatory mechanism of endometriotic mesenchymal stem cells (ecto-MSCs) in regulating fibrosis during EMs progression were investigated. METHODS The mRNA and protein expressions were assessed using qRT-PCR, western blot, and immunofluorescence. Flow cytometry was adopted to analyze the markers of MSCs. Transwell assay was adopted to examine endometriotic stromal cells (ESCs) migration and invasion. The interactions between DNMT3A and RASAL1 were analyzed by ChIP assay. In addition, MSP was employed to detect RASAL1 promoter methylation level. RESULTS Ecto-MSCs promoted ESCs migration, invasion, and fibrosis process by TGF-β1 paracrine. It was subsequently revealed that TGF-β1 upregulated DNMT3A in ESCs in a SMAD3-dependent manner. As expected, DNMT3A knockdown abolished ecto-MSCs' facilitation on ESCs migration, invasion, and fibrosis process. DNMT3A, as a methyltransferase, reduced RASAL1 expression in TGF-β1-treated ESCs by increasing RASAL1 promoter methylation level. RASAL1, as an antifibrotic protein, was lowly expressed in TGF-β1-treated ESCs, and its overexpression ameliorated TGF-β1-induced increase in ESCs migration, invasion, and fibrosis process. CONCLUSION TGF-β1 secreted by ecto-MSCs facilitated fibrogenesis in EMs through SMAD3/DNMT3A-mediated RASAL1 inhibition.
Collapse
Affiliation(s)
- Ying Feng
- The Second Affiliated Hospital of Nanchang University, The Department of Obstetrics and Gynecology, Nanchang, Jiangxi, China
| | - Han Dong
- Gynecology Women and Children's Hospital of Jinzhou, The Department of Obstetrics and Gynecology, Jinzhou, Liaoning, China
| | - Buzhen Tan
- The Second Affiliated Hospital of Nanchang University, The Department of Obstetrics and Gynecology, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Yin W, Li X, Liu P, Li Y, Liu J, Yu S, Tai S. Digestive system deep infiltrating endometriosis: What do we know. J Cell Mol Med 2023; 27:3649-3661. [PMID: 37632165 PMCID: PMC10718155 DOI: 10.1111/jcmm.17921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Digestive system infiltrating endometriosis (DSIE) is an uncommon form of endometriosis in the digestive system. DSIE often occurs in the intestines (especially the sigmoid rectum), liver, gallbladder and pancreas. Clinically, DSIE presents with the same symptoms as endometriosis, including cyclic pain, bleeding and infertility, in addition to specific biliary/intestinal obstruction and gastrointestinal bleeding. Compared to general endometriosis, DSIE has unique biological behaviour and pathophysiological mechanisms. Most DSIEs are deep invasive endometrioses, characterized by metastasis to the lymph nodes and lymphatic vessels, angiogenesis, peripheral nerve recruitment, fibrosis and invasion of surrounding tissues. DSIE-related peripheral angiogenesis is divided into three patterns: angiogenesis, vasculogenesis and inosculation. These patterns are regulated by interactions between multiple hypoxia-hormone cytokines. The nerve growth factors regulate the extensive neurofibril recruitment in DSIE lesions, which accounts for severe symptoms of deep pain. They are also associated with fibrosis and the aggressiveness of DSIE. Cyclic changes in DSIE lesions, recurrent inflammation and oxidative stress promote repeated tissue injury and repair (ReTIAR) mechanisms in the lesions, accelerating fibril formation and cancer-related mutations. Similar to malignant tumours, DSIE can also exhibit aggressiveness derived from collective cell migration mediated by E-cadherin and N-cadherin. This often makes DSIE misdiagnosed as a malignant tumour of the digestive system in clinical practice. In addition to surgery, novel treatments are urgently required to effectively eradicate this lesion.
Collapse
Affiliation(s)
- Wenze Yin
- Department of Hepatic SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xiaoqing Li
- Department of PathologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Peng Liu
- Laboratory of Medical GeneticsHarbin Medical UniversityHarbinChina
| | - Yingjie Li
- Department of PathologySix Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jin Liu
- Department of PathologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shan Yu
- Department of PathologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Sheng Tai
- Department of Hepatic SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
9
|
Garcia Garcia JM, Vannuzzi V, Donati C, Bernacchioni C, Bruni P, Petraglia F. Endometriosis: Cellular and Molecular Mechanisms Leading to Fibrosis. Reprod Sci 2023; 30:1453-1461. [PMID: 36289173 PMCID: PMC10160154 DOI: 10.1007/s43032-022-01083-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
Endometriosis is a chronic inflammatory condition affecting women of reproductive age. A relevant feature of endometriosis is the presence of fibrotic tissue inside and around the lesions, thus contributing to the classic endometriosis-related symptoms, pain, and infertility. The molecular mechanisms responsible for the development of fibrosis in endometriosis are not yet defined. The present review aimed to examine the biological mechanisms and signalling pathways involved in fibrogenesis of endometriotic lesions, highlighting the difference between deep infiltrating and ovarian endometriosis. The main cell types involved in the development of fibrosis are platelets, myofibroblasts, macrophages, and sensory nerve fibers. Members of the transforming growth factor (TGF) -β family, as well as the receptor Notch, or the bioactive sphingolipid sphingosine 1-phosphate (S1P), play a role in the development of tissue fibrosis, resulting in their metabolism and/or their signalling pathways altered in endometriotic lesions. It is relevant the knowledge of the molecular mechanisms that guide and support fibrosis in endometriosis, to identify new drug targets and provide new therapeutic approaches to patients.
Collapse
Affiliation(s)
- Jose Manuel Garcia Garcia
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Valentina Vannuzzi
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Chiara Donati
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Caterina Bernacchioni
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Paola Bruni
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Felice Petraglia
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy.
| |
Collapse
|
10
|
Yang M, Li L, Huang X, Xing H, Hong L, Jiang C. The DNA demethylation-regulated SFRP2 dictates the progression of endometriosis via activation of the Wnt/β-catenin signaling pathway. BMC Mol Cell Biol 2023; 24:12. [PMID: 36991319 PMCID: PMC10053136 DOI: 10.1186/s12860-023-00470-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
Endometriosis cause decreases in life quality and pelvic pain in reproductive-age women. Methylation abnormalities played a functional role in the progression of endometriosis, this study aimed to explore the mechanisms mediated by abnormal methylation in the development of EMS.
Materials and methods
Next-generation sequencing dataset and methylation profiling dataset were used to screen out the key gene SFRP2. Western bolt, Real-time PCR, Aza-2?deoxycytidine treatment, luciferase reporter assay, Methylation-specific PCR , Bisulfite sequencing PCR and lentivirus infection were carried out to detect the methylation status and signaling pathway with the primary epithelial cells. Transwell assay and wound scratch assay were implemented to observe the differences of migration ability with the intervening with the expression of SFRP2.
Results
To define the role of the DNA methylation-regulated genes in the pathogenesis of EMS, we performed both DNA methylomic and expression analyses of ectopic endometrium and ectopic endometrium epithelial cells(EEECs) and found that SFRP2 is demethylated/upregulated in ectopic endometrium and EEECs. The expression of lentivirus carrying SFRP2 cDNA up-regulates the activity of Wnt signaling and the protein expression of ?-catenin in EEECs. SFRP2 impact on the invasion and migration of ectopic endometrium by modulating the activities of the Wnt/?-catenin signaling pathway. The invasion and migration ability of EEECs were significantly strengthened after demethylation treatment including 5-Aza and the knockdown of DNMT1.
Conclusion
In summary, the increased SFRP2 expression-induced Wnt/?-catenin signaling due to the demethylation of the SFRP2 promoter plays an important role in the pathogenesis of EMS, suggesting that SFRP2 might be a therapeutic target for EMS treatment.
Collapse
|
11
|
Tsuji S, Mukai T, Tsuchiya H, Iwatani C, Nakamura A, Nagamura‐Inoue T, Murakami T. Impact of administering umbilical cord-derived mesenchymal stem cells to cynomolgus monkeys with endometriosis. Reprod Med Biol 2023; 22:e12540. [PMID: 37693240 PMCID: PMC10491929 DOI: 10.1002/rmb2.12540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose This study aimed to explore whether umbilical cord-derived mesenchymal stem cells (UC-MSCs) could be used as a therapeutic resource for endometriosis. Methods Of seven cynomolgus monkeys with endometriosis, five were administered UC-MSCs (intervention group) and two were administered saline (control group). First, intravenous US-MSC treatment was administered for three months. Second, weekly intravenous US-MSC administration combined with monthly intraperitoneal US-MSC administration was conducted for 3 months. Finally, weekly intraperitoneal US-MSC administration was conducted for 3 months. The dose of UC-MSCs was set to 2 × 106 cells/kg for all administration routes. Laparoscopic findings and serum cancer antigen 125 (CA125) levels were also evaluated. The Revised American Society for Reproductive Medicine classification was used for laparoscopic evaluation. Results Laparoscopic findings showed exacerbation of endometriosis after intraperitoneal UC-MSC administration, although no changes were observed in the control group. Intravenous UC-MSC administration decreased the level of CA125 in all monkeys; however, the difference was not significant. Intraperitoneal UC-MSC administration significantly exacerbated endometriosis compared with intravenous administration (p = 0.02). Conclusions This study revealed that intraperitoneal UC-MSC administration exacerbates endometriosis in a nonhuman primate model of the disease.
Collapse
Affiliation(s)
- Shunichiro Tsuji
- Department of Obstetrics and GynecologyShiga University of Medical ScienceOtsuJapan
| | - Takeo Mukai
- Department of PediatricsThe University of Tokyo HospitalBunkyo‐ku, TokyoJapan
| | - Hideaki Tsuchiya
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Chizuru Iwatani
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Akiko Nakamura
- Department of Obstetrics and GynecologyShiga University of Medical ScienceOtsuJapan
| | - Tokiko Nagamura‐Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical ScienceThe University of TokyoMinato‐ku, TokyoJapan
| | - Takashi Murakami
- Department of Obstetrics and GynecologyShiga University of Medical ScienceOtsuJapan
| |
Collapse
|
12
|
Xin L, Wei C, Tong X, Dai Y, Huang D, Chen J, Ma L, Zhang S. In situ delivery of apoptotic bodies derived from mesenchymal stem cells via a hyaluronic acid hydrogel: A therapy for intrauterine adhesions. Bioact Mater 2022; 12:107-119. [PMID: 35087967 PMCID: PMC8777284 DOI: 10.1016/j.bioactmat.2021.10.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell-based and stem cell-derived exosome-based therapies have shown promising potential for endometrial regeneration and the clinical treatment of intrauterine adhesions (IUAs). Evidence shows that apoptosis occurs in a majority of grafted stem cells, and apoptotic bodies (ABs) play a critical role in compensatory tissue regeneration. However, the therapeutic potential of AB-based therapy and its mechanism have not been explored in detail. Here, a cell-free therapeutic strategy was developed by incorporating mesenchymal stem cell-derived ABs into a hyaluronic acid (HA) hydrogel to achieve endometrial regeneration and fertility restoration. Specifically, we found that the ABs could induce macrophage immunomodulation, cell proliferation, and angiogenesis in vitro. The HA hydrogel promoted the retention of ABs and facilitated their continuous release. In a murine model of acute endometrial damage and a rat model of IUAs, in situ injection of the AB-laden HA hydrogel could efficiently reduce fibrosis and promote endometrial regeneration, resulting in the fertility restoration. Consequently, ABs show good potential as therapeutic vesicles, and the AB-laden HA hydrogel appears to be a clinically feasible and cell-free alternative for endometrial regeneration and IUA treatment. Human umbilical cord derived apoptotic bodies induce macrophage immunomodulation, cell proliferation and angiogenesis A strategy of apoptotic bodies associated with hyaluronic acid hydrogel promotes apoptotic bodies retention and continuous release The implantation of the apoptotic body-laden hyaluronic acid hydrogel into uterine cavity effectively promoted endometrial regeneration and fertility restoration in a rodent model of intrauterine adhesion
Collapse
|
13
|
TGF-β1 in Seminal Plasma Promotes Endometrial Mesenchymal Stem Cell Growth via p42/44 and Akt Pathway in Patients With or Without Endometriosis. Reprod Sci 2022; 29:723-733. [PMID: 34981457 DOI: 10.1007/s43032-021-00562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/28/2021] [Indexed: 10/19/2022]
Abstract
The cause of endometriosis, which is characterized by the existence of functional endometrial tissue outside the uterine cavity, is poorly understood. Seminal plasma (SP) is rich in multiple cytokines that may promote endometrial tissue survival. Here, we evaluated the effect of SP on growth of endometrial mesenchymal stem cells (MSCs) from women with endometriosis (E-MSCs) and women without endometriosis (NE-MSCs). Proliferation, cell foci formation, cell cycle progression, and growth marker expression of E- and NE-MSCs were promoted by SP. These effects may be mediated through activation of transforming growth factor beta 1 (TGF-β1), Akt, and p42/44 signaling, which enhances CDK2 and CDK6 expression and accelerates cell cycle progression. Xenografts exposed to SP exhibited a three-fold increase in volume and four-fold increase in weight after 14 days. Our findings demonstrate that TGF-β1 in SP may promote endometrial tissue survival which will allow us to understand the pathogenesis and develop novel approaches for prevention and therapies of endometriosis.
Collapse
|
14
|
Singh P, Metkari SM, Bhartiya D. Mice Uterine Stem Cells are Affected by Neonatal Endocrine Disruption & Initiate Uteropathies in Adult Life Independent of Circulatory Ovarian Hormones. Stem Cell Rev Rep 2021; 18:1686-1701. [PMID: 34750780 DOI: 10.1007/s12015-021-10279-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/22/2022]
Abstract
It is generally believed that ovarian hormones regulate uterine functions and their altered levels result in various uteropathies like non-receptive uterus, endometrial hyperplasia, adenomyosis, endometriosis, leiomyomas and cancer. Uterus harbors two populations of stem cells including pluripotent, very small embryonic-like stem cells (VSELs) and tissue-specific progenitors (endometrial stem cells, EnSCs). Unlike endometrial mesenchymal stem/ stromal cells, VSELs/EnSCs express ERα, ERβ and PR which makes them directly vulnerable to perinatal endocrine insults. Present study was undertaken to evaluate whether uteropathies occur due to altered hormones and/or intrinsic changes in stem/progenitor cells. Mice pups, exposed to estradiol (20 µg/pup/day) on postnatal days 3-7 or vehicle, were subjected to bilateral ovariectomy on day 30 and later exposed sequentially to estradiol and progesterone resulting in receptive uterus in control mice. Despite similar hormonal exposure, endocrine disruption resulted in non-receptive uterus with noticeable endometrial and myometrial hyperplasia and up-regulation of stem cell markers (Oct-4A, Oct-4, Sox2, Nanog). Glands were poorly formed and 'defective' epithelial progenitors were found disseminated into myometrium and blood vessels revealing how adenomyosis and endometriosis possibly initiate. Progesterone resistance and estradiol dominance due to downregulation of Erα & Pr and upregulation of Erβ transcripts was observed in both intact uterus and stem cells enriched from uterus. Transcripts specific for DNA mismatch repair axis (Pcna, NP95 and Dnmt1), repair enzymes (Brca-1, Rad51 and Mlh1) were dysregulated whereas Ki67 was ten-folds increased suggestive of genomic instability. Study reveals role of stem cells in initiating uteropathies during adult life independent of circulatory ovarian hormones. Endocrine disruption affects tissue resident stem/progenitor cells (VSELs/EnSCs) in both endometrium and myometrium, result in epithelial cells hyperplasia, non-receptive endometrium, adenomyosis and defective stem cells and epithelial progenitors were detected in the perimetrium from where they can mobilize to ectopic sites to initiate endometriosis. Study shows stem cell basis for various uteropathies. VSEL: Very small embryonic like stem cell; EnSC: Endometrial stem cell; E + P: Estradiol + Progesterone; E: Endometrium; P: Perimetrium; M: Myometrium; ACD: Asymmetrical cell division; SCD: Symmetrical cell division; CE: Clonal expansion; G: Gland; S: Stromal cell; US: Undifferentiated stromal cell; LE: Luminal epithelium; GE: Glandular epithelium; EP: Epithelial progenitors; SMC: Spindle-shaped myometrial cell; OMC: Oval-shaped myometrial cell.
Collapse
Affiliation(s)
- Pushpa Singh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Siddhanath M Metkari
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| |
Collapse
|
15
|
Liu Y, Zhang Z, Yang F, Wang H, Liang S, Wang H, Yang J, Lin J. The role of endometrial stem cells in the pathogenesis of endometriosis and their application to its early diagnosis†. Biol Reprod 2021; 102:1153-1159. [PMID: 31965165 DOI: 10.1093/biolre/ioaa011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/21/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Pelvic pain, infertility, and a high postoperative recurrence rate are associated with endometriosis and adversely affect the physical and mental health of patients. Moreover, these factors place a heavy burden on families and society. The identification of endometrial stem cells (EnSCs) in the eutopic endometrium, menstrual blood, and ectopic lesions of women with endometriosis not only provides new research objects in the context of endometriosis but also promotes and improves our understanding of its pathogenesis. Furthermore, based on previous studies, we reasonably suppose that dysfunctions of eutopic EnSCs play a critical role in the onset of endometriosis and directly cause abnormalities in the endometrium; subsequently, retrograde menstruation facilitates the delivery of abnormal endometrial tissues to the ovaries and pelvic cavity, where they ectopically implant, grow, and form ectopic lesions. Additionally, as a chronically progressive disease, there is a delay (3-11 years) from the first onset of symptoms to the diagnosis of endometriosis. Therefore, the development of a method for early diagnosis with high sensitivity and specificity is essential for endometriosis patients and has the potential to enable early treatment, prevent endometriosis progression, and relieve pain in patients. Thus, focusing on EnSCs will contribute to clarifying the potential pathogenesis of endometriosis and provide support for the application of EnSCs as therapeutic and early diagnostic targets in endometriosis treatment. SUMMARY SENTENCE Focusing on endometrial stem cells (EnSCs) will contribute to clarifying the potential pathogenesis of endometriosis and provide support for the application of EnSCs as therapeutic and early diagnostic targets in endometriosis treatment.
Collapse
Affiliation(s)
- Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Zhiqin Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Fen Yang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Hongmei Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shengying Liang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Huiling Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jun Yang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
16
|
Circulating miRNAs Related to Epithelial-Mesenchymal Transitions (EMT) as the New Molecular Markers in Endometriosis. Curr Issues Mol Biol 2021; 43:900-916. [PMID: 34449536 PMCID: PMC8929046 DOI: 10.3390/cimb43020064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
Endometriosis is a chronic gynecological disease defined by the presence of endometrial-like tissue found outside the uterus, most commonly in the peritoneal cavity. Endometriosis lesions are heterogenous but usually contain endometrial stromal cells and epithelial glands, immune cell infiltrates and are vascularized and innervated by nerves. The complex etiopathogenesis and heterogenity of the clinical symptoms, as well as the lack of a specific non-invasive diagnostic biomarkers, underline the need for more advanced diagnostic tools. Unfortunately, the contribution of environmental, hormonal and immunological factors in the disease etiology is insufficient, and the contribution of genetic/epigenetic factors is still fragmentary. Therefore, there is a need for more focused study on the molecular mechanisms of endometriosis and non-invasive diagnostic monitoring systems. MicroRNAs (miRNAs) demonstrate high stability and tissue specificity and play a significant role in modulating a range of molecular pathways, and hence may be suitable diagnostic biomarkers for the origin and development of endometriosis. Of these, the most frequently studied are those related to endometriosis, including those involved in epithelial–mesenchymal transition (EMT), whose expression is altered in plasma or endometriotic lesion biopsies; however, the results are ambiguous. Specific miRNAs expressed in endometriosis may serve as diagnostics markers with prognostic value, and they have been proposed as molecular targets for treatment. The aim of this review is to present selected miRNAs associated with EMT known to have experimentally confirmed significance, and discuss their utility as biomarkers in endometriosis.
Collapse
|
17
|
Kuang Q, Wu S, Xue N, Wang X, Ding X, Fang Y. Selective Wnt/β-Catenin Pathway Activation Concomitant With Sustained Overexpression of miR-21 is Responsible for Aristolochic Acid-Induced AKI-to-CKD Transition. Front Pharmacol 2021; 12:667282. [PMID: 34122087 PMCID: PMC8193720 DOI: 10.3389/fphar.2021.667282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is increasingly recognized as a cumulative risk factor for chronic kidney disease (CKD) progression. However, the underlying mechanisms remain unclear. Using an aristolochic acid (AA)-induced mouse model of AKI-to-CKD transition, we found that the development of tubulointerstitial fibrosis following AKI was accompanied with a strong activation of miR-21 and canonical Wnt signaling, whereas inhibition of miR-21 or selective silencing of Wnt ligands partially attenuated AKI-to-CKD transition. To explore the interaction between miR-21 and Wnt/β-catenin signaling, we examined the effects of genetic absence or pharmacologic inhibition of miR-21 on Wnt/β-catenin pathway expression. In miR-21-/- mice and in wild-type mice treated with anti-miR21 oligos, Wnt1 and Wnt4 canonical signaling in the renal tissue was significantly reduced, with partial reversal of renal interstitial fibrosis. Although the renal abundance of miR-21 remained unchanged after inhibition or activation of Wnt/β-catenin signaling, early intervention with ICG-001, a β-catenin inhibitor, significantly attenuated renal interstitial fibrosis. Moreover, early (within 24 h), but not late β-catenin inhibition after AA administration attenuated AA-induced apoptosis and inflammation. In conclusion, inhibition of miR-21 or β-catenin signaling may be an effective approach to prevent AKI-to-CKD progression.
Collapse
Affiliation(s)
- Qing Kuang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sheng Wu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Nephrology, Suzhou Dushuhu Public Hospital, Suzhou, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xiaoyan Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqianq Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| |
Collapse
|
18
|
Xin L, Lin X, Zhou F, Li C, Wang X, Yu H, Pan Y, Fei H, Ma L, Zhang S. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation. Acta Biomater 2020; 113:252-266. [PMID: 32574858 DOI: 10.1016/j.actbio.2020.06.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Endometrial traumas may cause intrauterine adhesions (IUAs), leading to infertility. Conventional methods in clinic have not solved the problem of endometrial regeneration in severe cases. Umbilical cord-derived mesenchymal stem cell (UC-MSC)-based therapies have shown some promising achievements in the treatment of IUAs. However, the limitations of potential tumorigenicity, low infusion and low retention are still controversial and restricted the clinical application of MSCs. In contrast, UC-MSC-derived exosomes exhibit a similar function to their source cells and are expected to overcome these limitations. Therefore, a novel and viable cell-free therapeutic strategy by UC-MSC-derived exosomes was proposed in this study. Here, we designed a construct of exosomes and collagen scaffold (CS/Exos) for endometrial regeneration in a rat endometrium-damage model, and investigated the regeneration mechanism through macrophage immunomodulation. The CS/Exos transplantation potently induced (i) endometrium regeneration, (ii) collagen remodeling, (iii) increased the expression of the estrogen receptor α/progesterone receptor, and (iv) restored fertility. Mechanistically, CS/Exos facilitated CD163+ M2 macrophage polarization, reduced inflammation, and increased anti-inflammatory responses in vivo and in vitro. By RNA-seq, miRNAs enriched in exosomes were the main mediator for exosomes-induced macrophage polarization. Overall, we demonstrated that CS/Exos treatment facilitated endometrium regeneration and fertility restoration by immunomodulatory functions of miRNAs. Our research highlights the therapeutic prospects of CS/Exos for the management of IUAs. STATEMENT OF SIGNIFICANCE: Severe endometrial traumas always result in intrauterine adhesions (IUAs) and infertility. The limited outcomes by conventional methods in the clinic make it very important to develop new strategies for endometrium regeneration and fertility restoration. In this study, an exosome-laden scaffold (CS/Exos) was designed and the transplantation of CS/Exos potently induced (i) endometrium regeneration, (ii) collagen remodeling, (iii) increased the expression of the estrogen receptor α/progesterone receptor, and (iv) restored fertility. In mechanism, the construct of CS/Exos facilitated M2 macrophage polarization, reduced inflammation, and increased anti-inflammatory responses. Furthermore, miRNAs enriched in exosomes were the main mediator for exosome-induced macrophage polarization. This study highlights the therapeutic prospects of CS/Exos and the translational application for the management of severe IUAs.
Collapse
|
19
|
Liu Y, Liang S, Yang F, Sun Y, Niu L, Ren Y, Wang H, He Y, Du J, Yang J, Lin J. Biological characteristics of endometriotic mesenchymal stem cells isolated from ectopic lesions of patients with endometriosis. Stem Cell Res Ther 2020; 11:346. [PMID: 32771033 PMCID: PMC7414689 DOI: 10.1186/s13287-020-01856-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Research into the pathogenesis of endometriosis (EMs) would substantially promote its effective treatment and early diagnosis. However, the aetiology of EMs is poorly understood and controversial despite the progress in EMs research in the last several decades. Currently, accumulating evidence has shed light on the importance of endometrial stem cells (EnSCs) residing in the basal layer of endometrium in the establishment and progression of endometriotic lesions. Therefore, we aimed to identify the differences between EnSCs isolated from the ectopic lesions of EMs patients (EnSC-EM-EC) and EnSCs isolated from eutopic endometrium of control group (EnSC-Control). We further performed preliminary exploration of the potential signalling pathways involved in the above abnormalities. METHODS EnSC-EM-EC (n = 12) and EnSC-Control (n = 13) were successfully isolated. Then, the proliferative capacity, migratory capacity and angiogenic potential of EnSCs were evaluated by conventional MTT assay, flow cytometry, wound healing assay, transwell assay, tube formation assay and chick embryo chorioallantoic membrane assay respectively. The expression of 11 angiogenesis-associated biological factors and 11 cytokines secreted by EnSCs and 17 adhesion molecules expressed on EnSCs were determined by protein array assays respectively. Differentially expressed genes (DEGs) between EnSC-EM-EC and EnSC-Control were analysed by RNA-sequence. RESULTS EnSC-EM-EC exhibited unique biological characteristics, including prolonged mitosis, enhanced migratory capacity and enhanced angiogenic potential. Greater amounts of angiogenic factors (especially VEGF and PDGF) were secreted by EnSC-EM-EC than by EnSC-Control; however, the distinct profiles of cytokines secreted by EnSC-EM-EC and adhesion molecules expressed by EnSC-EM-EC require further investigation. A total of 523 DEGs between EnSC-EM-EC and EnSC-Control were identified and analysed using the KEGG and Gene Ontology databases. CONCLUSIONS Our results not only improve the understanding of EMs but also contribute to the development of EnSC-EM-EC as a tool for EMs drug discovery. These cells could be of great help in exploiting promising therapeutic targets and new biomarkers for EMs treatment and prognosis.
Collapse
Affiliation(s)
- Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China
| | - Shengying Liang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China
| | - Fen Yang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuliang Sun
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lidan Niu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yakun Ren
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China
| | - Hongmei Wang
- The First Affiliated Hospital of Xinxiang Medical University, NO 88, JianKang Road, Weihui, Xinxiang City, 453100, Henan Province, China
| | - Yanan He
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jiang Du
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jun Yang
- The First Affiliated Hospital of Xinxiang Medical University, NO 88, JianKang Road, Weihui, Xinxiang City, 453100, Henan Province, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China. .,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China.
| |
Collapse
|
20
|
Viganò P, Ottolina J, Bartiromo L, Bonavina G, Schimberni M, Villanacci R, Candiani M. Cellular Components Contributing to Fibrosis in Endometriosis: A Literature Review. J Minim Invasive Gynecol 2019; 27:287-295. [PMID: 31785417 DOI: 10.1016/j.jmig.2019.11.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Endometriosis-related fibrosis represents a complex phenomenon with underlying mechanisms yet to be clarified. Fibrosis is consistently present in all disease forms and contributes to classic endometriosis-related symptoms of pain and infertility. The purpose of this literature review was to examine the role of various cellular populations and biologic mechanisms and signaling pathways in inducing fibrogenesis of endometriotic lesions. A search was performed through PubMed and MEDLINE for animal and human studies published in English in the last 23 years that examined fibrosis in superficial, ovarian, and deep infiltrating endometriosis. The main cell types found to be involved in the development of fibrosis were platelets, macrophages, ectopic endometrial cells, and sensory nerve fibers. Interactions among each of the cell types contribute to the production of fibrosis through the production of soluble factors, mostly transforming growth factor-β but also other cytokines and neuropeptides. Cell types known to be critical to the pathophysiology of endometriosis also contribute to fibrogenesis, thus supporting the theory that fibrosis is an inherent part of endometriosis.
Collapse
Affiliation(s)
- Paola Viganò
- Reproductive Sciences Lab, Division of Genetics and Cell Biology (Dr. Vigano).
| | - Jessica Ottolina
- Gynecology/Obstetrics Unit (Drs. Ottolina, Bartiromo, Bonavina, Schimberni, Villanacci, and Candiani), San Raffaele Scientific Institute, Milan, Italy
| | - Ludovica Bartiromo
- Gynecology/Obstetrics Unit (Drs. Ottolina, Bartiromo, Bonavina, Schimberni, Villanacci, and Candiani), San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Bonavina
- Gynecology/Obstetrics Unit (Drs. Ottolina, Bartiromo, Bonavina, Schimberni, Villanacci, and Candiani), San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Schimberni
- Gynecology/Obstetrics Unit (Drs. Ottolina, Bartiromo, Bonavina, Schimberni, Villanacci, and Candiani), San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Villanacci
- Gynecology/Obstetrics Unit (Drs. Ottolina, Bartiromo, Bonavina, Schimberni, Villanacci, and Candiani), San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Candiani
- Gynecology/Obstetrics Unit (Drs. Ottolina, Bartiromo, Bonavina, Schimberni, Villanacci, and Candiani), San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
21
|
Xin L, Lin X, Pan Y, Zheng X, Shi L, Zhang Y, Ma L, Gao C, Zhang S. A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility. Acta Biomater 2019; 92:160-171. [PMID: 31075515 DOI: 10.1016/j.actbio.2019.05.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022]
Abstract
In women of reproductive age, severe injuries to the endometrium are often accompanied by endometrial scar formation or intrauterine adhesions (IUAs), which can result in infertility or miscarriage. Although many approaches have been used to treat severe IUAs, high recurrence rates and endometrial thinning have limited therapeutic efficiency. In this study, a collagen scaffold (CS) loaded with human umbilical cord-derived mesenchymal stem cells (UC-MSCs) was fabricated and applied for endometrial regeneration. The CS/UC-MSCs promoted human endometrial stromal cell proliferation and inhibited apoptosis in vitro through paracrine effects. In a model of endometrial damage, transplantation with the CS/UC-MSCs maintained normal luminal structure, promoted endometrial regeneration and collagen remodeling, induced intrinsic endometrial cell proliferation and epithelium recovery, and enhanced the expression of estrogen receptor α and progesterone receptor. An improved ability of the regenerated endometrium to receive embryos was confirmed. Together, our results indicate that the CS/UC-MSCs promoted endometrial structural reconstruction and functional recovery. Topical administration of the CS/UC-MSCs after trans-cervical resection of adhesions might prevent re-adhesion, promote endometrium regeneration and improve pregnancy outcomes for patients with severe IUAs. STATEMENT OF SIGNIFICANCE: Intrauterine adhesions due to severe endometrium injuries happen frequently in clinic and become one of the crucial reasons for women's infertility or miscarriage. Therefore, how to regenerate the damaged endometrium is a big challenge. In this study, a collagen scaffold (CS) loaded with human umbilical cord-derived mesenchymal stem cells (UC-MSCs) was fabricated and applied for endometrium regeneration. Herein, UC-MSCs, known for low immunogenicity and high proliferative potential, exhibit promising potential for endometrium regeneration; and collagen scaffolds provide suitable physical support. It was proved that transplantation with CS/UC-MSCs promoted endometrial regeneration and fertility restoration. It suggested that topical administration of CS/UC-MSCs in uterus could be a promising strategy for patients suffering severe intrauterine adhesion and infertility.
Collapse
|
22
|
Zhou WJ, Yang HL, Shao J, Mei J, Chang KK, Zhu R, Li MQ. Anti-inflammatory cytokines in endometriosis. Cell Mol Life Sci 2019; 76:2111-2132. [PMID: 30826860 PMCID: PMC11105498 DOI: 10.1007/s00018-019-03056-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Although the pathogenesis of endometriosis is not fully understood, it is often considered to be an inflammatory disease. An increasing number of studies suggest that differential expression of anti-inflammatory cytokines (e.g., interleukin-4 and -10, and transforming growth factor-β1) occurs in women with endometriosis, including in serum, peritoneal fluid and ectopic lesions. These anti-inflammatory cytokines also have indispensable roles in the progression of endometriosis, including by promoting survival, growth, invasion, differentiation, angiogenesis, and immune escape of the endometriotic lesions. In this review, we provide an overview of the expression, origin, function and regulation of anti-inflammatory cytokines in endometriosis, with brief discussion and perspectives on their future clinical implications in the diagnosis and therapy of the disease.
Collapse
Affiliation(s)
- Wen-Jie Zhou
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
| | - Jun Shao
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Reproductive Medicine Center, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People's Republic of China
| | - Kai-Kai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, 215008, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
23
|
Zhang Z, Wang J, Chen Y, Suo L, Chen H, Zhu L, Wan G, Han X. Activin a promotes myofibroblast differentiation of endometrial mesenchymal stem cells via STAT3-dependent Smad/CTGF pathway. Cell Commun Signal 2019; 17:45. [PMID: 31101053 PMCID: PMC6525394 DOI: 10.1186/s12964-019-0361-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Background Endometriosis, characterized by the presence of functional endometrial tissues outside the uterus, is one of the most common gynecological disorders. Endometrial mesenchymal stem cells (MSCs) are crucial for the occurrence and development of endometriosis. Ectopic endometrial MSCs exist in the peritoneal cavity. Thus, the bioactive factors in endometriotic peritoneal fluid may regulate the biological behaviors of endometrial MSCs. Methods In this study, after assessing the concentration of Activin A in peritoneal fluid using ELISA, we isolated and cultured endometrial MSCs and investigated whether Activin A stimulated endometrial MSCs to differentiate into myofibroblasts and clarified the underlying mechanisms by quantitative real-time PCR, Western blot analysis, immunofluorescent staining, RNA interference and Chromatin immunoprecipitation. We also employed the inhibitors of Activin A to explore the possibility of suppressing the development of fibrosis in endometriosis using primary endometrial MSCs cultures and a mouse model of endometriosis. Results Here, we revealed that Activin A significantly elevated in endometriotic peritoneal fluid and activin receptor-like kinase (ALK4), the specific receptor for Activin A, obviously enhanced in ectopic endometrial MSCs compared with eutopic endometrial MSCs from women with or without endometriosis. Next, we found that Activin A drived myofibroblast differentiation of endometrial MSCs, with extremely enhanced expression of connective tissue growth factor (CTGF). CTGF was shown to be required for Activin A-induced expression of ACTA2, COL1A1 and FN1 in endometrial MSCs. CTGF induction by Activin A in endometrial MSCs involved the activation of Smad2/3, as evidenced by the phosphorylation and nuclear translocation of Smad2/3 as well as the binding of Smad2/3 to CTGF promoter. Furthermore, Smad/CTGF pathway in endometrial MSCs required activation of STAT3 while independent of PI3K, JNK and p-38 pathways. In addition, we also demonstrated that inhibition of Activin A pathway impeded myofibroblast differentiation of endometrial MSCs and ameliorated fibrosis in endometriosis mice. Conclusions Activin A promotes myofibroblast differentiation of endometrial mesenchymal stem cells via STAT3-dependent Smad/CTGF pathway. The results provided the first evidence that STAT3 acted as a crucial Activin A downstream mediator to regulate CTGF production. Our data may supplement the stem cell theory of endometriosis and provide the experimental basis to treat endometriosis-associated fibrosis by manipulating Activin A signaling. Electronic supplementary material The online version of this article (10.1186/s12964-019-0361-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Luxuan Suo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Huixian Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Li Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Guiping Wan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
24
|
Modulation of tumor stem cell characteristics by 17β-estradiol in human mesenchymal stem cells derived from ovarian endometrioma. Taiwan J Obstet Gynecol 2019; 58:338-344. [DOI: 10.1016/j.tjog.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
|
25
|
Du J, Zhu X, Guo R, Xu Z, Cheng FF, Liu Q, Yang F, Guan L, Liu Y, Lin J. Autophagy induces G0/G1 arrest and apoptosis in menstrual blood-derived endometrial stem cells via GSK3-β/β-catenin pathway. Stem Cell Res Ther 2018; 9:330. [PMID: 30486857 PMCID: PMC6262950 DOI: 10.1186/s13287-018-1073-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS Menstrual blood-derived endometrial stem cells (MenSCs) emerge as an ideal source for cell-based treatment in regenerative medicine and immunotherapy. However, the major obstacle is the low survival rate in tissues and the limited expansion number. Autophagy is an intracellular metabolic self-degradative process which plays important roles in normal cellular division and survival, and the present study aimed to explore the related mechanisms between autophagy and survival of MenSCs in vitro and in vivo. METHODS The MenSCs were obtained from menstrual blood procured from healthy female donors. In vitro, MenSCs were exposed to rapamycin and Earle's balanced salts solution (EBSS). We evaluated the MenSCs immunophenotypic cell cycle distribution by propidium iodide (PI) staining and cell apoptosis by Annexin V/PI staining as well as their proliferative potential by the MTT assay. We also assessed the expression of genes associated with the cell cycle and Gsk3β signaling pathway by western blot analysis. We depressed Atg5 and Gsk3β expression by short hairpin RNA (shRNA) and undertook the experiments. Moreover, the labeled MenSCs were observed and counted with DiI after transplantation into the mice via the tail vein by microscopy in vivo. RESULTS In vitro, rapamycin and starvation induced autophagy of MenSCs. Hyperactive autophagy significantly induced G0/G1 arrest and slightly promoted apoptosis of MenSCs. Meanwhile, autophagy could stimulate p-GSK3β expression in MenSCs. Further, knockdown GSK3β can accelerate the proliferation of MenSCs by shRNA and CHIR99021. Moreover, the shGSK3β MenSCs showed strong proliferative activity in vitro and in vivo. CONCLUSIONS Our results indicate that autophagy induced G0/G1 arrest and apoptosis of MenSCs via GSK3β/β-catenin pathway. Inhibiting autophagy or reduced GSK3β levels may improve survival rate in vivo, thus playing roles in MenSCs therapy.
Collapse
Affiliation(s)
- Jiang Du
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003 China
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang, 453003 Henan China
| | - Xinxing Zhu
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003 China
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang, 453003 Henan China
| | - Rui Guo
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003 China
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang, 453003 Henan China
| | - Zhihao Xu
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang, 453003 Henan China
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Fang Fang Cheng
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang, 453003 Henan China
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Qing Liu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
- Henan Key Lab of Biological Psyshiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003 China
| | - Fen Yang
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003 China
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang, 453003 Henan China
| | - Lihong Guan
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Yanli Liu
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang, 453003 Henan China
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Juntang Lin
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003 China
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang, 453003 Henan China
| |
Collapse
|
26
|
Guo S. Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reprod Med Biol 2018; 17:369-397. [PMID: 30377392 PMCID: PMC6194252 DOI: 10.1002/rmb2.12221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/03/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One recent study reports cancer driver mutations in deep endometriosis, but its biological/clinical significance remains unclear. Since the natural history of endometriosis is essentially gradual progression toward fibrosis, it is thus hypothesized that the six driver genes reported to be mutated in endometriosis (the RP set) may play important roles in fibrogenesis but not necessarily malignant transformation. METHODS Extensive PubMed search to see whether RP and another set of driver genes not yet reported (NR) to be mutated in endometriosis have any roles in fibrogenesis. All studies reporting on the role of fibrogenesis of the genes in both RP and NR sets were retrieved and evaluated in this review. RESULTS All six RP genes were involved in various aspects of fibrogenesis as compared with only three NR genes. These nine genes can be anchored in networks linking with their upstream and downstream genes that are known to be aberrantly expressed in endometriosis, piecing together seemingly unrelated findings. CONCLUSIONS Given that somatic driver mutations can and do occur frequently in physiologically normal tissues, it is argued that these mutations in endometriosis are not necessarily synonymous with malignancy or premalignancy, but the result of enormous pressure for fibrogenesis.
Collapse
Affiliation(s)
- Sun‐Wei Guo
- Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiChina
| |
Collapse
|
27
|
Chronic Niche Inflammation in Endometriosis-Associated Infertility: Current Understanding and Future Therapeutic Strategies. Int J Mol Sci 2018; 19:ijms19082385. [PMID: 30104541 PMCID: PMC6121292 DOI: 10.3390/ijms19082385] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease that affects up to 10% of women of reproductive age and accounts for up to 50% of female infertility cases. It has been highly associated with poorer outcomes of assisted reproductive technology (ART), including decreased oocyte retrieval, lower implantation, and pregnancy rates. A better understanding of the pathogenesis of endometriosis-associated infertility is crucial for improving infertility treatment outcomes. Current theories regarding how endometriosis reduces fertility include anatomical distortion, ovulatory dysfunction, and niche inflammation-associated peritoneal or implantation defects. This review will survey the latest evidence on the role of inflammatory niche in the peritoneal cavity, ovaries, and uterus of endometriosis patients. Nonhormone treatment strategies that target these inflammation processes are also included. Furthermore, mesenchymal stem cell-based therapies are highlighted for potential endometriosis treatment because of their immunomodulatory effects and tropism toward inflamed lesion foci. Potential applications of stem cell therapy in treatment of endometriosis-associated infertility in particular for safety and efficacy are discussed.
Collapse
|
28
|
Zhu H, Jiang Y, Pan Y, Shi L, Zhang S. Human menstrual blood-derived stem cells promote the repair of impaired endometrial stromal cells by activating the p38 MAPK and AKT signaling pathways. Reprod Biol 2018; 18:274-281. [PMID: 29941287 DOI: 10.1016/j.repbio.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 06/07/2018] [Accepted: 06/16/2018] [Indexed: 01/21/2023]
Abstract
Multiple studies have confirmed that human menstrual blood-derived stem cells (MenSCs) have potential applications in regenerative medicine or cell therapy. However, the contribution of MenSCs to endometrial repair is currently unknown. We evaluated the protective effects of MenSCs on impaired endometrial stromal cells (ESCs), as well as the signaling pathways involved in this process. Mifepristone was used to damage human ESCs, which were subsequently cocultured with MenSCs. The proliferation, apoptosis, and migration of ESCs were assessed, together with the expression of related signaling proteins including total p38 mitogen-activated protein kinase, P-p38, total protein kinase B (AKT), P-AKT, β-catenin, and vascular endothelial growth factor (VEGF). MenSCs significantly recovered the proliferation and migration ability of impaired ESCs, inhibited ESC apoptosis, and upregulated protein expression of P-AKT, P-p38, VEGF, and β-catenin. Our findings suggest that MenSC-based therapies could be promising strategies for the treatment of endometrial injury, and that AKT and p38 signaling pathways may be involved in this process.
Collapse
Affiliation(s)
- Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinshen Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Libing Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
29
|
Lin X, Dai Y, Xu W, Shi L, Jin X, Li C, Zhou F, Pan Y, Zhang Y, Lin X, Zhang S. Hypoxia Promotes Ectopic Adhesion Ability of Endometrial Stromal Cells via TGF-β1/Smad Signaling in Endometriosis. Endocrinology 2018; 159:1630-1641. [PMID: 29438550 DOI: 10.1210/en.2017-03227] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/31/2018] [Indexed: 12/31/2022]
Abstract
Hypoxia plays a vital role in the progression of endometriosis. Additionally, integrin-mediated aberrant adhesion is also essential for establishment of endometriotic lesions. In this study, we sought to determine the function of hypoxia in integrin-mediated adhesion of endometrial stromal cells (ESCs) in endometriosis. The expressions of adhesion molecule integrins (integrin α5, integrin αV, integrin β3, and integrin β5) were determined in 15 normal endometria and 15 paired eutopic and ectopic endometria by immunohistochemistry. Thirteen primary ESCs from patients with peritoneal endometriosis in the proliferative phase were cultured under a hypoxic (1% O2) or normoxic (21% O2) environment, and the expression levels of hypoxia-inducible factor (HIF)-1α, transforming growth factor (TGF)-β1, and integrins were detected by quantitative reverse transcription polymerase chain reaction and western blot. The alteration of integrins in endometriotic mouse models were also explored. Our results demonstrated that HIF-1α and integrins were highly expressed in ESCs of endometriotic lesions compared with ESCs of eutopic and normal endometrium. Hypoxia treatment significantly increased ESC adhesion abilities and integrin expression, which were positively correlated with TGF-β1 expression. Both TGF-β1 and hypoxia enhanced ESC adhesion properties, whereas hypoxia combined with TGF-β1 receptor inhibitor inhibited ESC adhesion. Knockdown of HIF-1α attenuated TGF-β1/Smad signaling activation and integrin expression and reduced ESC adhesion. Higher expression levels of HIF-1α, TGF-β1, and integrins were detected in endometriotic cysts from mice models. Our findings provide a novel insight of endometriosis that the hypoxic microenvironment stimulates ESCs to produce excessive TGF-β1 and activates the TGF-β1/Smad signaling pathway, thus enhancing integrin expression and the adhesion ability of ESCs.
Collapse
Affiliation(s)
- Xiang Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Wenzhi Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Libing Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Feng Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
30
|
Cousins FL, O DF, Gargett CE. Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis. Best Pract Res Clin Obstet Gynaecol 2018; 50:27-38. [PMID: 29503126 DOI: 10.1016/j.bpobgyn.2018.01.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/23/2018] [Indexed: 01/10/2023]
Abstract
Human endometrium regenerates on a cyclical basis each month, likely mediated by endometrial stem/progenitor cells. Several types of stem/progenitor cells have been identified: CD140b+CD146+ or SUSD2+ endometrial mesenchymal stem cells (eMSCs), N-cadherin+ endometrial epithelial progenitor cells (eEPs), and side population (SP) cells, a heterogeneous population predominantly comprising endothelial cells. eMSCs reside in a perivascular niche and likely mediate angiogenesis and stromal regeneration. Human eEPs are located in the bases of glands in the basalis and are likely more primitive than SSEA-1+ basalis epithelial cells. Endometrial stem/progenitor cells may contribute to the pathogenesis of endometriosis by their retrograde shedding into the pelvic cavity, either after menarche or as a result of neonatal uterine bleeding. eMSCs may have a role in the generation of progesterone-resistant phenotype of endometrial stromal fibroblasts (eSFs) in endometriosis. In future clinical practice, endometrial stem/progenitor cells may be used to establish diagnosis of endometriosis or as therapeutic targets.
Collapse
Affiliation(s)
- Fiona L Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, 3800, Australia
| | - Dorien F O
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia; KU Leuven-University of Leuven, University Hospitals Leuven, Department of Development and Regeneration, Organ Systems, B-3000, Leuven, Belgium
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
31
|
Abstract
Endometriosis is an inflammatory disease marked by ectopic growth of endometrial cells. Mesenchymal stromal cells (MSC) have immunosuppressive properties that have been suggested as a treatment for inflammatory diseases. Therefore, the aim herein was to examine effects of allogeneic MSC on endometriosis-derived cells in vitro as a potential therapy for endometriosis. MSC from allogeneic adipose tissue (Ad-MSC) and stromal cells from endometrium (ESCendo) and endometriotic ovarian cysts (ESCcyst) from women with endometriosis were isolated. The effects of Ad-MSC on ESCendo and ESCcyst were investigated using in vitro proliferation, apoptosis, adhesion, tube formation, migration, and invasion assays. Ad-MSC significantly increased proliferation of ESC compared to untreated controls. Moreover, Ad-MSC significantly decreased apoptosis and increased survival of ESC. Ad-MSC significantly increased adhesion of ESCendo and not ESCcyst on fibronectin. Conditioned medium from cocultures of Ad-MSC and ESC significantly increased tube formation of human umbilical vein endothelial cells on matrigel. Ad-MSC may significantly increase migration of ESCcyst and did not increase invasion of both cell types. The data suggest that allogeneic Ad-MSC should not be considered as a potential therapy for endometriosis, because they may support the pathology by maintaining and increasing growth of ectopic endometrial tissue.
Collapse
|
32
|
Kim MK, Lee SK, Park JH, Lee JH, Yun BH, Park JH, Seo SK, Cho S, Choi YS. Ginsenoside Rg3 Decreases Fibrotic and Invasive Nature of Endometriosis by Modulating miRNA-27b: In Vitro and In Vivo Studies. Sci Rep 2017; 7:17670. [PMID: 29247225 PMCID: PMC5732249 DOI: 10.1038/s41598-017-17956-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/04/2017] [Indexed: 01/25/2023] Open
Abstract
This research aimed to evaluate the potential therapeutic effects of Rg3 on endometriosis and identify target miRNAs. We designed an in vitro study using human endometrial stromal cells (HESCs) obtained from patients with endometriosis and an in vivo study using mouse models. HESCs were treated with Rg3-enhanced red ginseng extract (Rg3E); real-time PCR and microarray profiling, transfection, and western blot were performed. Mouse endometriosis models were developed and supplemented with Rg3E for 8 weeks. Gross lesion size and fibrotic character were analyzed in the mouse models. RNA levels of Ki-67, col-1, CTGF, fibronectin, TGF-β1, MMP2 and MMP9 significantly decreased in HESCs after Rg3E treatment. Microarray analysis revealed downregulation of miR-27b-3p, which is related to fibrosis modulation. Expression of miR-27b-3p was significantly higher in HESCs from patients with endometriosis than that of controls, and Rg3E treatment significantly decreased its expression; the contraction and migration assay revealed significant reductions in both fibrosis and migration potential in Rg3E-treated HESCs from endometriosis patients. A decrease in size and fibrotic character of endometrial lesions from the Rg3E groups was observed in vivo. In conclusion, Rg3 effectively altered fibrotic properties of HESCs from patients with endometriosis, which is likely associated with miR-27b-3p modulation.
Collapse
Affiliation(s)
- Min Kyoung Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, 06125, Republic of Korea
| | - Seung Kyun Lee
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Ji Hyun Park
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Jae Hoon Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Bo Hyon Yun
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Joo Hyun Park
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - SiHyun Cho
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
33
|
Uder C, Brückner S, Winkler S, Tautenhahn HM, Christ B. Mammalian MSC from selected species: Features and applications. Cytometry A 2017; 93:32-49. [PMID: 28906582 DOI: 10.1002/cyto.a.23239] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal/stem cells (MSC) are promising candidates for cellular therapy of different diseases in humans and in animals. Following the guidelines of the International Society for Cell Therapy, human MSC may be identified by expression of a specific panel of cell surface markers (CD105+, CD73+, CD90+, CD34-, CD14-, or CD11b-, CD79- or CD19-, HLA-DR-). In addition, multiple differentiation potential into at least the osteogenic, adipogenic, and chondrogenic lineage is a main criterion for MSC definition. Human MSC and MSC of a variety of mammals isolated from different tissues meet these criteria. In addition to the abovementioned, they express many more cell surface markers. Yet, these are not uniquely expressed by MSC. The gross phenotypic appearance like marker expression and differentiation potential is similar albeit not identical for MSC from different tissues and species. Similarly, MSC may feature different biological characteristics depending on the tissue source and the isolation and culture procedures. Their versatile biological qualities comprising immunomodulatory, anti-inflammatory, and proregenerative capacities rely largely on the migratory and secretory capabilities of MSC. They are attracted to sites of tissue lesion and secrete factors to promote self-repair of the injured tissue. This is a big perspective for clinical MSC applications in both veterinary and human medicine. Phase I/II clinical trials have been initiated to assess safety and feasibility of MSC therapies in acute and chronic disease settings. Yet, since the mode of MSC action in a specific disease environment is still unknown at large, it is mandatory to unravel the response of MSC from a given source onto a specific disease environment in suitable animal models prior to clinical applications. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Christiane Uder
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Brückner
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Winkler
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Hans-Michael Tautenhahn
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | | |
Collapse
|
34
|
Marcellin L, Santulli P, Chouzenoux S, Cerles O, Nicco C, Dousset B, Pallardy M, Kerdine-Römer S, Just PA, Chapron C, Batteux F. Alteration of Nrf2 and Glutamate Cysteine Ligase expression contribute to lesions growth and fibrogenesis in ectopic endometriosis. Free Radic Biol Med 2017; 110:1-10. [PMID: 28457937 DOI: 10.1016/j.freeradbiomed.2017.04.362] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 01/24/2023]
Abstract
The redox-sensitive nuclear factor erythroid-derived 2-like 2 (NRF2) controls endogenous antioxidant enzymes' transcription and protects against oxidative damage which is triggered by inflammation and known to favor progression of endometriosis. Glutamate Cysteine Ligase (GCL), a target gene of NRF2, is the first enzyme in the synthesis cascade of glutathione, an important endogenous antioxidant. Sixty-one patients, with thorough surgical examination of the abdominopelvic cavity, were recruited for the study: 31 with histologically-proven endometriosis and 30 disease-free women taken as controls. Expressions of NRF2 and GCL were investigated by quantitative RT-PCR and immunohistochemistry in eutopic and ectopic endometria from endometriosis-affected women and in endometrium of disease-free women. Ex vivo stromal and epithelial cells were extracted and purified from endometrial and endometriotic biopsies to explore expression of NRF2 and GCL in both stromal and epithelial compartments by western blot. Finally, in order to strengthen the role of NRF2 in endometriosis pathogenesis, we evaluated the drop of NRF2 expression in a mouse model of endometriosis using NRF2 knockout (NRF2-/-) mice. The mRNA levels of NRF2 and GCL were significantly lower in ectopic endometria of endometriosis-affected women compared to eutopic endometria of disease-free women. The immunohistochemical analysis confirmed the decreased expression of both NRF2 and GCL in ectopic endometriotic tissues compared to eutopic endometria of endometriosis-affected and disease-free women. Immunoblotting revealed a significant decreased of NRF2 and GCL expression in epithelial and stroma cells from ectopic lesions of endometriosis-affected women compared to eutopic endometria from controls. Using a murine model of endometriosis, NRF2-/- implants were more fibrotic compared to wild-type with an increased weight and volume. These findings indicate that expression of the transcription factor NRF2 and its effector GCL are both profoundly deregulated in endometriotic lesions towards increased growth and fibrogenetic processes.
Collapse
Affiliation(s)
- L Marcellin
- Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Inserm Unité de Recherche U1016, Institut Cochin, CNRS (UMR 8104), 75679 Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine, 75679 Paris, France.
| | - P Santulli
- Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Inserm Unité de Recherche U1016, Institut Cochin, CNRS (UMR 8104), 75679 Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine, 75679 Paris, France
| | - S Chouzenoux
- Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Inserm Unité de Recherche U1016, Institut Cochin, CNRS (UMR 8104), 75679 Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Laboratoire d'Immunologie, 75679 Paris, France
| | - O Cerles
- Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Inserm Unité de Recherche U1016, Institut Cochin, CNRS (UMR 8104), 75679 Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Laboratoire d'Immunologie, 75679 Paris, France
| | - C Nicco
- Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Inserm Unité de Recherche U1016, Institut Cochin, CNRS (UMR 8104), 75679 Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Laboratoire d'Immunologie, 75679 Paris, France
| | - B Dousset
- Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Service de Chirurgie Digestive, 75679 Paris, France
| | - M Pallardy
- UMR996 - Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France; Université Paris Sud, INSERM UMR 996, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry 92290, France
| | - S Kerdine-Römer
- UMR996 - Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France; Université Paris Sud, INSERM UMR 996, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry 92290, France
| | - P A Just
- Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Service de pathologie, CAncer Research for PErsonalized Medicine (CARPEM), Paris, France
| | - C Chapron
- Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine, 75679 Paris, France
| | - F Batteux
- Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Inserm Unité de Recherche U1016, Institut Cochin, CNRS (UMR 8104), 75679 Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Laboratoire d'Immunologie, 75679 Paris, France
| |
Collapse
|
35
|
Adult Stem Cells in the Pathogenesis and Treatment of Endometriosis. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2017. [DOI: 10.5301/jeppd.5000310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human endometrium is a dynamic tissue that undergoes approximately 400 cyclical episodes of proliferation, differentiation, shedding, and regeneration in a woman's reproductive lifespan. The regenerative capacity of human endometrium is likely mediated by adult stem cells. At the cellular level, endometrial mesenchymal stem/stromal cells, located in both the functionalis and basalis layers, support regeneration of the stromal vascular compartment and epithelial progenitor cells, postulated to reside in the basalis epithelium, likely regenerate the glands. Bone marrow adult stem cells, including endothelial progenitor cells, may also participate. Endometriosis can be considered an endometrial proliferative disorder due to dysregulation of the cellular and molecular regenerative processes. Endometriosis is primarily thought to occur via retrograde menstruation of endometrial debris. It is postulated that endometrial stem/progenitor cells, which have been identified in menstrual blood, are shed into the peritoneal cavity where they adhere to pelvic organs and initiate endometriotic lesions. The homing of bone-marrow-derived adult stem cells to endometriotic lesions is thought to drive progression of the disease. New drug therapies are urgently required for the treatment of endometriosis due to frequent disease recurrence with current surgical or medical treatments. Medications directly targeting endometrial stem/progenitor cells during menstruation, or following surgery, or targeting bone marrow cell trafficking, are potential targets for future therapies to manage disease initiation and progression. In this review, we will summarize the current literature on adult stem cell contributions to the development of endometriosis and will then examine the current potential therapies that may target endometrial stem/progenitor cells.
Collapse
|
36
|
Benagiano G, Guo SW, Bianchi P, Puttemans P, Gordts S, Petraglia F, Brosens I. Pharmacologic treatment of the ovarian endometrioma. Expert Opin Pharmacother 2016; 17:2019-31. [PMID: 27615386 DOI: 10.1080/14656566.2016.1229305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Treatment of ovarian endometriomas is commonly achieved through laparoscopic surgery and this can be effective in eliminating the disease, although a majority of recent trials documented an adverse effect of surgery on ovarian reserve markers. With the advancement in imaging techniques, ovarian endometriomas are increasingly diagnosed at an earlier stage when the endometrioma may be smaller, less fibrotic and more responsive to medical treatment, making an evaluation of medical options critically important. AREAS COVERED The review focuses on currently utilized pharmacologic therapies for endometrioma (oral contraceptives, the levonorgestrel-releasing IUS, the hormone-releasing subdermal implant, Implanon); experimental and future treatments are also mentioned (GnRH antagonists, progesterone receptor modulators, antioestrogens, newer subdermal implants and intracystic administration of pharmacologic agents). Finally, the usefulness of post-operative adjuvant medical treatments is discussed Expert opinion: Today, reliable, non-invasive diagnostic procedures of an ovarian endometrioma are available and should be utilized to identify its presence and type of pathology. In a young patient, classic medical therapies such as oral contraceptives and synthetic progestins should be tried first to alleviate symptoms. Only when these regimens fail, should a minimally invasive surgery be envisaged. Following endoscopic surgery, adjuvant medical treatment may reduce recurrence of both symptoms and the lesion.
Collapse
Affiliation(s)
- Giuseppe Benagiano
- a Department of Gynaecology, Obstetrics and Urology , Sapienza University of Rome , Rome , Italy
| | - Sun-Wei Guo
- b Department of Gynecology, Shanghai Obstetrics and Gynecology Hospital , Fudan University , Shanghai , People's Republic of China
| | - Paola Bianchi
- c Department of Surgical and Medical Sciences and Traslational Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology , Sapienza University of Rome , Rome , Italy
| | | | - Stephan Gordts
- d Leuven Institute for Fertility and Embryology , Leuven , Belgium
| | - Felice Petraglia
- e Department of Molecular and Developmental Medicine, Obstetrics and Gynecology , University of Siena , Siena , Italy
| | - Ivo Brosens
- f Department of Obstetrics and Gynaecology , Catholic University of Leuven , Leuven , Belgium
| |
Collapse
|