1
|
Yusuf ANM, Amri MF, Ugusman A, Hamid AA, Mokhtar MH. Supraphysiological Dose of Testosterone Impairs the Expression and Distribution of Sex Steroid Receptors during Endometrial Receptivity Development in Female Sprague-Dawley Rats. Int J Mol Sci 2024; 25:10202. [PMID: 39337689 PMCID: PMC11432676 DOI: 10.3390/ijms251810202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This study aims to investigate the effect of a supraphysiological dose of testosterone on the levels of sex steroid hormones and the expression and distribution of sex steroid receptors in the uterus during the endometrial receptivity development period. In this study, adult female Sprague-Dawley rats (n = 24) were subcutaneously administered 1 mg/kg/day of testosterone alone or in combination with the inhibitors (finasteride or anastrozole or both) from day 1 to day 3 post-coitus, while a group of six untreated rats served as a control group. The rats were sacrificed on the evening of post-coital day 4 of to measure sex steroid hormone levels by ELISA. Meanwhile, gene expression and protein distribution of sex steroid receptors were analysed by quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC), respectively. In this study, treatment with a supraphysiological dose of testosterone led to a significant reduction in oestrogen and progesterone levels compared to the control. The mRNA expression of the androgen receptor increased significantly in all treatment groups, while the mRNA expression of both the progesterone receptor and the oestrogen receptor-α decreased significantly in all treatment groups. The IHC findings of all sex steroid receptors were coherent with all mRNAs involved. This study shows that a supraphysiological dose of testosterone was able to interrupt the short period of the implantation window. This finding could serve as a basis for understanding the role of testosterone in endometrial receptivity in order to develop further therapeutic approaches targeting androgen-mediated disorders of endometrial receptivity.
Collapse
Affiliation(s)
- Allia Najmie Muhammad Yusuf
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Mohd Fariz Amri
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Adila A Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
2
|
Wilson RC, Link JM, Lee YZ, Oldan JD, Young SL, Slayden OD. Uterine Uptake of Estrogen and Progestogen-Based Radiotracers in Rhesus Macaques with Endometriosis. Mol Imaging Biol 2024; 26:334-343. [PMID: 38133866 PMCID: PMC11034810 DOI: 10.1007/s11307-023-01892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Endometriosis is an estrogen-dependent disorder of menstruating primates where tissues similar to the inner lining of the uterus exist "ectopically" outside of the uterus. The ectopic endometrium, like the endometrium within the uterus, expresses estrogen receptors (ER) and progesterone receptors (PR) and undergoes hormone-dependent cell proliferation and bleeding each menstrual cycle. The goal of this study was to conduct abdominopelvic positron emission tomography (PET) scans with computed tomography (CT) imaging of rhesus macaques (Macaca mulatta) using radiotracers that target ER and PR [16α-[18F]fluoroestradiol (FES) and 12-[18F]fluoro-furanyl-nor-progesterone (FFNP)] in individuals with and without endometriosis. We also aimed to determine if menstrual cycle phase and/or the presence of endometriosis affected the uptake of these radiotracers. PROCEDURES Rhesus macaques with either clinically diagnosed endometriosis (n = 6) or no endometriosis (n = 4) underwent PET/CT scans with FES. A subset of the animals also underwent PET/CT scans with FFNP. Standard uptake values corrected for body weight (SUVs) were obtained for each radiotracer in target and background tissues (e.g., intestinal). We performed repeated measure analysis of variance tests to determine how uterine and background uptake differed with scan time, phase of the menstrual cycle, and disease state. RESULTS Abdominopelvic PET/CT could not resolve small, individual endometriotic lesions. However, macaques with endometriosis displayed higher uterine uptake compared to those without the disorder. Radiotracer uptake differed by menstrual cycle phase with increased uterine uptake of both radiotracers in the proliferative phase of the menstrual cycle. Background intestinal uptake of FFNP increased over time after infusion, but only during the proliferative phase. CONCLUSIONS PET/CT with FES and FFNP support the concept that ER and PR levels are altered in individuals with endometriosis. This highlights the impact of the disease on typical reproductive tract function and may provide a novel pathway for the identification of individuals with endometriosis.
Collapse
Affiliation(s)
- Rachel C Wilson
- Department of Biology, Whitman College, Walla Walla, WA, USA.
| | - Jeanne M Link
- Center for Radiochemistry Research, Oregon Health & Science University, Portland, OR, USA
| | - Yueh Z Lee
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Jorge D Oldan
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Steven L Young
- Division of Reproduction Endocrinology and Infertility, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Raja NS, Rubin ES, Moravek MB. A Review of Animal Models Investigating the Reproductive Effects of Gender-Affirming Hormone Therapy. J Clin Med 2024; 13:1183. [PMID: 38398495 PMCID: PMC10889210 DOI: 10.3390/jcm13041183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Gender-affirming hormone therapy (GAHT) is an important component in the process of transitioning for many transgender and gender-diverse (TGD) individuals. Multiple medical organizations recommend fertility preservation counseling prior to initiation of GAHT; however, there remains little high-quality data regarding the impact of GAHT on fertility and reproductive function. A PubMed literature review was performed using Boolean search operators linking keywords or phrases such as "mouse", "rat", "primate", "animal model", "transgender", "gender", "estrogen", "testosterone", "fertility", and "fertility preservation". Recent research has produced a number of animal models of GAHT that utilize similar hormonal regimens and produce similar phenotypic results to those used and observed in human patients. Specific to testosterone(T)-containing GAHT, animals demonstrate loss of menstrual cyclicity with therapy, resumption of menses on cessation of therapy, suppression of gonadotropin levels, and physical changes such as clitoromegaly. Models mimicking GAHT for transmasculine individuals in the peripubertal period demonstrate that pretreatment with GnRHa therapy does not modify the effects of subsequent T administration, which were similar to those described in adult models. Both models suggest promising potential for future fertility with cessation of T. With estradiol (E)-containing GAHT, animals exhibit decreased size of testicles, epididymis, and seminal vesicles, as well as ongoing production of spermatocytes, and seminiferous tubule vacuolization. Given the ethical challenges of conducting human studies in this area, high-fidelity animal models represent a promising opportunity for investigation and could eventually transform clinical counseling about the necessity of fertility preservation. Future studies should better delineate the interactions (if any exist) between treatment attributes such as dosing and duration with the extent of reversibility of reproductive perturbations. The development of models of peripubertal feminizing GAHT is an additional area for future work.
Collapse
Affiliation(s)
- Nicholas S. Raja
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Elizabeth S. Rubin
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Molly B. Moravek
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Nichols AR, Chavarro JE, Oken E. Reproductive risk factors across the female lifecourse and later metabolic health. Cell Metab 2024; 36:240-262. [PMID: 38280383 PMCID: PMC10871592 DOI: 10.1016/j.cmet.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024]
Abstract
Metabolic health is characterized by optimal blood glucose, lipids, cholesterol, blood pressure, and adiposity. Alterations in these characteristics may lead to the development of type 2 diabetes mellitus or dyslipidemia. Recent evidence suggests that female reproductive characteristics may be overlooked as risk factors that contribute to later metabolic dysfunction. These reproductive traits include the age at menarche, menstrual irregularity, the development of polycystic ovary syndrome, gestational weight change, gestational dysglycemia and dyslipidemia, and the severity and timing of menopausal symptoms. These risk factors may themselves be markers of future dysfunction or may be explained by shared underlying etiologies that promote long-term disease development. Disentangling underlying relationships and identifying potentially modifiable characteristics have an important bearing on therapeutic lifestyle modifications that could ease long-term metabolic burden. Further research that better characterizes associations between reproductive characteristics and metabolic health, clarifies underlying etiologies, and identifies indicators for clinical application is warranted in the prevention and management of metabolic dysfunction.
Collapse
Affiliation(s)
- Amy R Nichols
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Emily Oken
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| |
Collapse
|
5
|
Burwitz BJ, Yusova S, Robino JJ, Takahashi D, Luo A, Slayden OD, Bishop CV, Hennebold JD, Roberts CT, Varlamov O. Western-style diet in the presence of elevated circulating testosterone induces adipocyte hypertrophy without proinflammatory responses in rhesus macaques. Am J Reprod Immunol 2023; 90:e13773. [PMID: 37766405 PMCID: PMC10544858 DOI: 10.1111/aji.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
PROBLEM Anovulatory infertility is commonly associated with hyperandrogenemia (elevated testosterone, T), insulin resistance, obesity, and white adipose tissue (WAT) dysfunction associated with adipocyte hypertrophy. However, whether hyperandrogenemia and adipocyte hypertrophy per se induce a proinflammatory response is unknown. METHOD OF STUDY Young adult female rhesus macaques were exposed to an obesogenic Western-style diet (WSD) in the presence of elevated circulating testosterone (T+WSD) or a low-fat control diet with no exogenous T. Immune cells residing in visceral omental white adipose tissue (OM-WAT), corpus luteum and the contralateral ovary, endometrium, lymph nodes, bone marrow, and peripheral blood mononuclear cells were characterized by flow cytometry during the luteal phase of the reproductive cycle. RESULTS Following one year of treatment, T+WSD animals became more insulin-resistant and exhibited increased body fat and adipocyte hypertrophy compared to controls. T+WSD treatment did not induce macrophage polarization toward a proinflammatory phenotype in the tissues examined. Additionally, T+WSD treatment did not affect TNFα production by bone marrow macrophages in response to toll-like receptor agonists. While the major lymphoid subsets were not significantly affected by T+WSD treatment, we observed a significant reduction in the frequency of effector memory CD8+ T-cells (Tem) in OM-WAT, but not in other tissues. Notably, OM-WAT Tem frequencies were negatively correlated with insulin resistance as assessed by the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). CONCLUSION This study shows that short-term T+WSD treatment induces weight gain, insulin resistance, and adipocyte hypertrophy, but does not have a significant effect on systemic and tissue-resident proinflammatory markers, suggesting that adipocyte hypertrophy and mild hyperandrogenemia alone are not sufficient to induce a proinflammatory response.
Collapse
Affiliation(s)
- Benjamin J. Burwitz
- Divisions of Pathobiology and Immunology
- Divisions of Metabolic Health and Disease
| | | | | | | | - Addie Luo
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | - Ov D. Slayden
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | - Cecily V. Bishop
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Jon D. Hennebold
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | - Charles T. Roberts
- Divisions of Metabolic Health and Disease
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | | |
Collapse
|
6
|
Wilson RC, Link JM, Lee YZ, Oldan JD, Young SL, Slayden OD. Uterine uptake of estrogen and progestogen-based radiotracers in rhesus macaques with endometriosis. RESEARCH SQUARE 2023:rs.3.rs-3311162. [PMID: 37720028 PMCID: PMC10503868 DOI: 10.21203/rs.3.rs-3311162/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Purpose Few investigations have examined the uptake of radiotracers that target the prominent sex-steroid receptors in the uterus across the menstrual cycle and with disease state. We aimed to determine if uptake of the radiotracers that target estrogen and progesterone receptors (ER and PR) differ with the presence of endometriosis and/or across the menstrual cycle. We performed PET and computed tomography (CT) imaging procedures on rhesus macaques (Macaca mulatta) using 16α-[18F]fluoroestradiol (FES) and 21-[18F]fluoro-furanyl-nor-progesterone (FFNP) in individuals with and without endometriosis in the proliferative and secretory phases of the menstrual cycle. Procedures Macaques with either clinically diagnosed endometriosis (n = 6) or no endometriosis (n = 4) underwent abdominopelvic PET/CT scans with FES. A subset of these animals also underwent PET/CT scans with FFNP. Standard uptake values corrected for body weight (SUVbw) were obtained for each radiotracer in target and background tissues (i.e., intestinal and muscle). We performed repeated measure analysis of variance tests to determine how uterine and background uptake differed with scan time, phase of the menstrual cycle, and disease state. Results PET/CT could not resolve small, individual endometriotic lesions. However, uterine uptake of both radiotracers was elevated in the proliferative phase compared to the secretory phase of the menstrual cycle. Intestinal uptake exhibited greater variation during the proliferative phase compared to the secretory phase. Further, intestinal uptake of FFNP increases as the scan progresses, but only during the proliferative phase. Muscle uptake did not differ with menstrual phase or radiotracer type. Lastly, macaques with endometriosis displayed higher uterine uptake of FES compared to those without endometriosis. Conclusions PET/CT with FES and FFNP support the concept that ER and PR levels are altered in individuals with endometriosis. This highlights the impact of the disease on typical reproductive tract function and may provide a novel pathway for the identification of individuals with endometriosis.
Collapse
Affiliation(s)
| | | | - Yueh Z Lee
- The University of North Carolina at Chapel Hill
| | | | | | | |
Collapse
|
7
|
Ma Data Analysis C, Xu H, Zhang X, Feng Data Analysis G, Shi L, Su Y, Yang L, Zhao R, Qiao J. Association of classic and 11-oxygenated androgens with polycystic ovaries and menstrual cycle prolongation in infertile women with PCOS. Clin Chim Acta 2023:117440. [PMID: 37311505 DOI: 10.1016/j.cca.2023.117440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS The etiology of polycystic ovary syndrome (PCOS) is unclear. This study aimed to evaluate the role of classic and 11-oxygenated (11oxyC19) androgens in two typical signs of PCOS, polycystic ovary morphology (PCOM) and menstrual cycle prolongation. MATERIALS AND METHODS A total of 462 infertile women with diagnosed PCOS and/or commonly accompanied metabolic disorders were recruited. Classic and 11oxyC19 androgens were determined with a sensitive high-performance liquid chromatography-differential mobility spectrometry tandem mass spectrometry apparatus. Least absolute shrinkage and selection operator logistic regression with fivefold cross-validation was applied to construct prediction models. RESULTS For PCOM, the most significant contributing androgen was testosterone (T), with the weight of 51.6%. The AUC of the prediction model was 0.824 in validation set. For menstrual cycle prolongation, androstenedione (A4) was the most significant contributing androgen with weights of 77.5%. The AUC the prediction model was less than 0.75. When including other variables, the most significant variable turned to be AMH both in PCOM and in menstrual cycle prolongation. CONCLUSION Androgens had more contribution in PCOM than in menstrual cycle prolongation. The classic androgen T or A4 contributed more than 11oxyC19 androgens. However, their contributions were diminished when other factors were considered, especially AMH.
Collapse
Affiliation(s)
- Congcong Ma Data Analysis
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Huiyu Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Xianhua Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China
| | - Guoshuang Feng Data Analysis
- Big Data Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Li Shi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yuan Su
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Li Yang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; Beijing Advanced Innovation Center for Genomics, Beijing 100871, People's Republic of China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Wilson RC, Lo JO, Romero Jimenez G, Lindner JR, Slayden OD, Roberts VHJ. Utilizing Contrast-Enhanced Ultrasonography with Phosphatidylserine Microbubbles to Detect Placental Inflammation in Rhesus Macaques. Molecules 2023; 28:2894. [PMID: 37049657 PMCID: PMC10096139 DOI: 10.3390/molecules28072894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The ability to comprehensively monitor physiological and detect pathophysiologic processes early during pregnancy can reduce maternal and fetal morbidity and mortality. Contrast-enhanced ultrasound (CEUS) is a non-invasive imaging technology that utilizes the acoustic detection of microbubbles to examine vascular spaces. Furthermore, microbubbles conjugated to specific compounds can focus studies on precise physiological pathways. We hypothesized that CEUS with phosphatidylserine microbubbles (MB-PS) could be employed to monitor placental inflammation. We tested this hypothesis in rhesus macaques (Macaca mulatta), a translational and relevant animal model of human placental health. As placental inflammation impacts many at-risk pregnancies, we performed CEUS with MB-PS in pregnant macaques fed a high-fat diet (e.g., a western-style diet, WSD) in the presence or absence of testosterone (T) to mimic the increased risk of polycystic ovary syndrome and subfertility. We have previously demonstrated a placental inflammation phenotype in this model, and, thus, we related the MB-PS CEUS signal intensity to placental inflammation markers: selectin p and angiopoietins. Testosterone exposure increased the MB-PS signal in the placental microcirculation on the maternal side compared to control animals. We found that T increased placental weight and decreased angiopoietin 2 (ANGPT2) immunoreactivity. Furthermore, a significant inverse correlation was found between MB-PS signal and ANGPT2. This indicated that CEUS with MB-PS can be used to monitor placental parameters. We propose that CEUS with MB-PS could aid in the identification of pregnancies at risk of placental vascular compromise.
Collapse
Affiliation(s)
- Rachel C. Wilson
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jamie O. Lo
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Gabriel Romero Jimenez
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jonathan R. Lindner
- Cardiovascular Division, University of Virginia Medical Center, Charlottesville, VA 22903, USA
| | - Ov D. Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Victoria H. J. Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
9
|
Oldfield AL, Vanden Brink H, Carter FE, Jarrett BY, Lujan ME. Obesity is associated with alterations in antral follicle dynamics in eumenorrheic women. Hum Reprod 2023; 38:459-470. [PMID: 36708012 PMCID: PMC9977134 DOI: 10.1093/humrep/dead007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/23/2022] [Indexed: 01/29/2023] Open
Abstract
STUDY QUESTION Are ovarian antral follicle dynamics altered in women with obesity and regular ovulatory cycles? SUMMARY ANSWER Eumenorrheic women with obesity display evidence of suppressed antral follicle dynamics as judged by fewer recruitment events, selectable follicles, and anovulatory dominant follicles, as well as lower anti-Müllerian hormone (AMH) concentrations and an increased prevalence of luteal phase defects. WHAT IS KNOWN ALREADY Ovarian antral follicle development is a dynamic process involving distinct follicular and endocrine events that are critical for the occurrence of regular monthly ovulations. Follicle dynamics have not been prospectively evaluated in eumenorrheic women with obesity despite the known impact of obesity on gonadotropin production, ovarian steroid hormone concentrations, and fecundity. STUDY DESIGN, SIZE, DURATION This was a prospective, longitudinal study of 42 women conducted over one inter-ovulatory interval (IOI). PARTICIPANTS/MATERIALS, SETTING, METHODS A group of 21 women with obesity (total percent body fat ≥35%) and a group of 21 women without obesity (total percent body fat <35%) underwent transvaginal ultrasonography and venipuncture every-other-day for one IOI at an academic clinical research unit. Participants were aged 19-38 years and had a history of self-reported regular menstrual cycles (21-35 days). Follicle number and diameter (≥2 mm) were quantified at each visit. Individual growth profiles for all follicles that grew to ≥7 mm were assessed. Blood samples were assayed for gonadotropins, AMH, estradiol, and progesterone. MAIN RESULTS AND THE ROLE OF CHANCE Women with obesity exhibited fewer recruitment events (mean ± SD, 1 ± 1 vs 2 ± 1 events; P = 0.010) and fewer selectable follicles (4 ± 3 vs 8 ± 6 follicles per participant; P = 0.022) during an IOI compared to women without obesity. AMH levels were lower in women with obesity (4.40 ± 3.01 vs 5.94 ± 2.49 ng/ml; P = 0.023), while gonadotropin profiles were similar between groups, across the IOI. Of the individual follicles tracked, fewer follicles progressed to >10 mm in the cohort with obesity (30 vs 40 follicles; P = 0.04) and fewer anovulatory follicles achieved dominance (9 vs 18 follicles; P = 0.041). Ovulatory follicles were selected at smaller diameters in women with compared to those without obesity (7.5 ± 1.6 vs 9.5 ± 1.9 mm; P = 0.001). Luteal phase defects were also more common in women with compared to those without obesity, as defined by either integrated (76 vs 29%, P = 0.002) or maximum (71 vs 24%, P = 0.002) luteal progesterone. LIMITATIONS, REASONS FOR CAUTION This study was limited to an assessment of antral follicle dynamics and cannot inform on earlier stages of folliculogenesis. This study was observational and cannot address causation between obesity and altered antral follicle dynamics. Lastly, the data cannot be extrapolated to account for reduced fecundity and fertility in obesity. WIDER IMPLICATIONS OF THE FINDINGS The increasing global prevalence of obesity necessitates an understanding of the mechanisms that underlie obesity-related adverse reproductive health outcomes. Eumenorrheic women with obesity demonstrate altered ovarian antral follicle and endocrine dynamics compared to their counterparts without obesity. The degree to which abnormal granulosa cell assembly and/or activity underlie the suboptimal luteinization and subfertility requires further investigation. STUDY FUNDING/COMPETING INTEREST(S) Funding was provided by Cornell University, President's Council of Cornell Women, United States Department of Agriculture (grant no. 8106), and National Institutes of Health (R01-HD0937848). B.Y.J. and H.V.B. were supported by doctoral training awards from the National Institutes of Health (T32-DK007158) and Canadian Institutes of Health Research (grant no. 146182), respectively. TRIAL REGISTRATION NUMBER NCT01927432, NCT01785719.
Collapse
Affiliation(s)
- Alexis L Oldfield
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Faith E Carter
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Marla E Lujan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
10
|
Vanden Brink H, Jarrett BY, Pereira N, Spandorfer SD, Hoeger KM, Lujan ME. Diagnostic Performance of Ovarian Morphology on Ultrasonography across Anovulatory Conditions-Impact of Body Mass Index. Diagnostics (Basel) 2023; 13:diagnostics13030374. [PMID: 36766481 PMCID: PMC9914229 DOI: 10.3390/diagnostics13030374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The study objectives were to determine whether ovarian morphology can distinguish between women with regular menstrual cycles, normo-androgenic anovulation (NA-Anov), and PCOS and whether body mass index (BMI)-specific thresholds improved diagnostic potential. Women with PCOS (biochemical and/or clinical hyperandrogenism and irregular cycles; N = 66), NA-Anov (irregular cycles without clinical and/or biochemical hyperandrogenism; N = 64), or regular cycles (controls; cycles every 21-35 days in the absence of clinical or biochemical hyperandrogenism; N = 51) were evaluated. Participants underwent a reproductive history, physical exam, transvaginal ultrasound, and a fasting blood sample. Linear regression analyses were used to assess the impact of BMI on ovarian morphology across groups. The diagnostic performance of ovarian morphology for anovulatory conditions, and by BMI (lean: <25 kg/m2; overweight: ≥25 kg/m2), was tested using Receiver Operating Characteristic (ROC) curves. Follicle number per ovary (FNPO) and ovarian volume (OV), but not follicle number per cross-section (FNPS), increased across controls, NA-Anov, and PCOS. Overall, FNPO had the best diagnostic performance for PCOS versus controls (AUCROC = 0.815) and NA-Anov and controls (AUCROC = 0.704), and OV to differentiate between PCOS and NA-Anov (AUCROC = 0.698). In lean women, FNPO best differentiated between PCOS and controls (AUCROC = 0.843) and PCOS versus NA-Anov (AUCROC = 0.710). FNPS better distinguished between NA-Anov and controls (AUCROC = 0.687), although diagnostic performance was lower than when thresholds were generated using all participants. In women with overweight and obesity, OV persisted as the best diagnostic feature across all analyses (PCOS versus control, AUCROC = 0.885; PCOS versus NA-Anov, AUCROC = 0.673; NA-Anov versus controls, AUCROC = 0.754). Ovarian morphology holds diagnostic potential to distinguish between NA-Anov and PCOS, with marginal differences in diagnostic potential when participants were stratified by BMI suggesting that follicle number may provide better diagnostic performance in lean women and ovarian size in those with overweight.
Collapse
Affiliation(s)
- Heidi Vanden Brink
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
- Department of Nutrition, Texas A&M University, College Station, TX 77840, USA
| | | | - Nigel Pereira
- Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Steven D. Spandorfer
- Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kathy M. Hoeger
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY 14620, USA
| | - Marla E. Lujan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
- Correspondence:
| |
Collapse
|
11
|
Bishop CV, Takahashi DL, Luo F, Sidener H, Martin LD, Gao L, Fei SS, Hennebold JD, Slayden OD. The combined impact of testosterone and Western-style diet on endometriosis severity and progression in rhesus macaques†. Biol Reprod 2023; 108:72-80. [PMID: 36173894 PMCID: PMC9843674 DOI: 10.1093/biolre/ioac183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/14/2022] [Accepted: 09/23/2022] [Indexed: 01/21/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is associated with irregular menstrual cycles, hyperandrogenemia, and obesity. It is currently accepted that women with PCOS are also at risk for endometriosis, but the effect of androgen and obesity on endometriosis has been underexplored. The goal of this study was to determine how testosterone (T) and an obesogenic diet impact the progression of endometriosis in a nonhuman primate (NHP) model. Female rhesus macaques were treated with T (serum levels approximately 1.35 ng/ml), Western-style diet (WSD; 36% of calories from fat compared to 16% in standard monkey chow) or the combination (T + WSD) at the time of menarche as part of a longitudinal study for ~7 years. Severity of endometriosis was determined based on American Society for Reproductive Medicine (ASRM) revised criteria, and staged 1-4. Stages 1 and 2 were associated with extent of abdominal adhesions, while stages 3 and 4 were associated with presence of chocolate cysts. The combined treatment of T + WSD resulted in earlier onset of endometriosis and more severe types associated with large chocolate cysts compared to all other treatments. There was a strong correlation between glucose clearance, homeostatic model assessment for insulin resistance (HOMA-IR), and total percentage of body fat with presence of cysts, indicating possible indirect contribution of hyperandrogenemia via metabolic dysfunction. An RNA-seq analysis of omental adipose tissue revealed significant impacts on a number of inflammatory signaling pathways. The interactions between obesity, hyperandrogenemia, and abdominal inflammation deserve additional investigation in NHP model species.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Fangzhou Luo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Heather Sidener
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Lauren Drew Martin
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Lina Gao
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Suzanne S Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
12
|
Sureshchandra S, Chan CN, Robino JJ, Parmelee LK, Nash MJ, Wesolowski SR, Pietras EM, Friedman JE, Takahashi D, Shen W, Jiang X, Hennebold JD, Goldman D, Packwood W, Lindner JR, Roberts CT, Burwitz BJ, Messaoudi I, Varlamov O. Maternal Western-style diet remodels the transcriptional landscape of fetal hematopoietic stem and progenitor cells in rhesus macaques. Stem Cell Reports 2022; 17:2595-2609. [PMID: 36332628 PMCID: PMC9768582 DOI: 10.1016/j.stemcr.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Maternal obesity adversely impacts the in utero metabolic environment, but its effect on fetal hematopoiesis remains incompletely understood. During late development, the fetal bone marrow (FBM) becomes the major site where macrophages and B lymphocytes are produced via differentiation of hematopoietic stem and progenitor cells (HSPCs). Here, we analyzed the transcriptional landscape of FBM HSPCs at single-cell resolution in fetal macaques exposed to a maternal high-fat Western-style diet (WSD) or a low-fat control diet. We demonstrate that maternal WSD induces a proinflammatory response in FBM HSPCs and fetal macrophages. In addition, maternal WSD consumption suppresses the expression of B cell development genes and decreases the frequency of FBM B cells. Finally, maternal WSD leads to poor engraftment of fetal HSPCs in nonlethally irradiated immunodeficient NOD/SCID/IL2rγ-/- mice. Collectively, these data demonstrate for the first time that maternal WSD impairs fetal HSPC differentiation and function in a translationally relevant nonhuman primate model.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, Institute for Immunology, Center for Virus Research, University of California-Irvine, Irvine, CA 92697, USA
| | - Chi N Chan
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Jacob J Robino
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Lindsay K Parmelee
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Michael J Nash
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric M Pietras
- Department of Immunology and Microbiology, Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob E Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Diana Takahashi
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Weining Shen
- Department of Statistics, University of California-Irvine, Irvine, CA 92697, USA
| | - Xiwen Jiang
- Department of Statistics, University of California-Irvine, Irvine, CA 92697, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Devorah Goldman
- Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jonathan R Lindner
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006; Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin J Burwitz
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR 97006; Vaccine & Gene Therapy Institute, Beaverton, OR 97006, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, Institute for Immunology, Center for Virus Research, University of California-Irvine, Irvine, CA 92697, USA; Department of Immunology, Microbiology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006.
| |
Collapse
|
13
|
Poojary PS, Nayak G, Panchanan G, Rao A, Kundapur SD, Kalthur SG, Mutalik S, Adiga SK, Zhao Y, Bakkum-Gamez J, Chang AY, DeStephano C, Sherman M, Kannan N, Kalthur G. Distinctions in PCOS Induced by Letrozole Vs Dehydroepiandrosterone With High-fat Diet in Mouse Model. Endocrinology 2022; 163:6625847. [PMID: 35776497 DOI: 10.1210/endocr/bqac097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/19/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a complex health condition associated with metabolic disturbances and infertility. Recent data suggest that the prevalence of PCOS is increasing among women globally, although the etiology of these trends is undefined. Consequently, preclinical models that better reflect the biology of PCOS are urgently needed to facilitate research that can lead to the discovery of prevention strategies or improved management. The existing animal models have several limitations as they do not reflect all the PCOS features metabolically and/or phenotypically. Therefore, there is no clear consensus on the use of appropriate animal model and selection of the most appropriate PCOS-inducing agent. To that end, we have established a Swiss albino mouse model of PCOS based on 3 weeks of daily treatment with letrozole (50 μg/day; intraperitoneal) and dehydroepiandrosterone (DHEA, 6 mg/100 g body weight; subcutaneous) in 5-week-old female mice fed on normal or high-fat diet (HFD). Mice were regularly assessed for body weight, blood glucose, and estrous cycle. Three weeks after drug administration, mice were sacrificed and assessed for blood-based metabolic parameters as well as ovarian function. Our results indicate that DHEA combined with HFD produces changes mimicking those of clinical PCOS, including elevated serum testosterone and luteinizing hormone, dyslipidemia, poor ovarian microenvironment, and development of multiple ovarian cysts, recapitulating cardinal features of PCOS. In comparison, normal diet and/or letrozole produced fewer features of PCOS. The data from the experimental models presented here can improve our understanding of PCOS, a growing concern in women's health.
Collapse
Affiliation(s)
- Pooja Suresh Poojary
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Guruprasad Nayak
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Gangotri Panchanan
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Arpitha Rao
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sanjna Das Kundapur
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Yulian Zhao
- Department of Obstetrics and Gynecology and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Jamie Bakkum-Gamez
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Alice Y Chang
- Division of Gynecologic Oncology Surgery, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 55902, USA
| | - Christopher DeStephano
- Division of Endocrinology, Diabetes, Metabolism, Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Mark Sherman
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN 55902, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
14
|
Ravisankar S, Murphy MJ, Redmayne-Titley N, Davis B, Luo F, Takahashi D, Hennebold JD, Chavez SL. Long-term Hyperandrogenemia and/or Western-style Diet in Rhesus Macaque Females Impairs Preimplantation Embryogenesis. Endocrinology 2022; 163:bqac019. [PMID: 35192701 PMCID: PMC8962721 DOI: 10.1210/endocr/bqac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/19/2022]
Abstract
Hyperandrogenemia and obesity are common in women with polycystic ovary syndrome, but it is currently unclear how each alone or in combination contribute to reproductive dysfunction and female infertility. To distinguish the individual and combined effects of hyperandrogenemia and an obesogenic diet on ovarian function, prepubertal female rhesus macaques received a standard control (C) diet, testosterone (T) implants, an obesogenic Western-style diet (WSD), or both (T + WSD). After 5 to 6 years of treatment, the females underwent metabolic assessments and controlled ovarian stimulations. Follicular fluid (FF) was collected for steroid and cytokine analysis and the oocytes fertilized in vitro. Although the T + WSD females exhibited higher insulin resistance compared to the controls, there were no significant differences in metabolic parameters between treatments. Significantly higher concentrations of CXCL-10 were detected in the FF from the T group, but no significant differences in intrafollicular steroid levels were observed. Immunostaining of cleavage-stage embryos revealed multiple nuclear abnormalities in the T, WSD, and T + WSD groups. Single-cell DNA sequencing showed that while C embryos contained primarily euploid blastomeres, most cells in the other treatment groups were aneuploid. Despite yielding a higher number of mature oocytes, T + WSD treatment resulted in significantly reduced blastocyst formation rates compared to the T group. RNA sequencing analysis of individual blastocysts showed differential expression of genes involved in critical implantation processes between the C group and other treatments. Collectively, we show that long-term WSD consumption reduces the capacity of fertilized oocytes to develop into blastocysts and that the addition of T further impacts gene expression and embryogenesis.
Collapse
Affiliation(s)
- Sweta Ravisankar
- Department of Cell, Developmental & Cancer Biology; Graduate Program in Molecular & Cellular Biosciences; Oregon Health & Science University School of Medicine; Portland, OR, USA
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center; Beaverton, OR, USA
| | - Melinda J Murphy
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center; Beaverton, OR, USA
| | - Nash Redmayne-Titley
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center; Beaverton, OR, USA
| | - Brett Davis
- Knight Cardiovascular Institute; Oregon Health & Science University, Portland, OR, USA
| | - Fangzhou Luo
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center; Beaverton, OR, USA
| | - Diana Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center; Beaverton, OR, USA
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center; Beaverton, OR, USA
- Department of Obstetrics & Gynecology; Oregon Health & Science University School of Medicine; Portland, OR, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center; Beaverton, OR, USA
- Department of Obstetrics & Gynecology; Oregon Health & Science University School of Medicine; Portland, OR, USA
- Department of Molecular & Medical Genetics; Oregon Health & Science University School of Medicine; Portland, OR, USA
| |
Collapse
|
15
|
Jachter SL, Simmons WP, Estill C, Xu J, Bishop CV. Matrix-free three-dimensional culture of bovine secondary follicles to antral stage: Impact of media formulation and epidermal growth factor (EGF). Theriogenology 2022; 181:89-94. [PMID: 35066368 PMCID: PMC8871473 DOI: 10.1016/j.theriogenology.2022.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022]
Abstract
Disrupted/disordered ovarian steroidogenesis is associated with several fertility disorders such as polycystic ovary syndrome in humans and cystic ovarian disease in cattle. Methods to interrogate theca cell processes as part of follicular development are necessary to further research into treatments for these types of disorders. Multilayer follicles of dairy-breed cows were placed into culture in a novel matrix-free 3D system using round bottom low-attachment plates. Follicles were first cultured in the presence of two types of media previously used for in vitro follicle maturation (basal α-MEM and basal T-199). After the optimal media was identified, impact of supplementation of epidermal growth factor (EGF) on growth and survival of bovine secondary follicles to antral stage was evaluated. No differences were observed in growth and survival of follicles cultured in basal α-MEM media or basal T-199 media, although T-199 media's high phenol red content made assessment of follicles difficult. Further studies were then performed with α-MEM media. Three cohorts of follicles were observed based on time to antrum formation: ≤ 5 days (fast), 6-19 days (slow), or survived but did not form an antrum by 21 days (no). Supplementation of EGF to the basal α-MEM media dramatically improved follicle survival rates in culture (defined as follicles that either formed an antrum or did not form an antrum but did not die during 21 day culture period) from 29% to 95.7% (Chi-square p < 0.0001). However, in follicles that survived to form an antrum there were no differences in proportion of fast, slow and no antrum follicles after addition of EGF (Chi-square p > 0.7). Fast antrum follicles treated with EGF plateaued in size earlier in culture compared to controls (p = 0.013). Slow and no antrum follicles were larger in diameter during EGF culture than controls (p's < 0.0001). Many follicles cultured in this matrix-free system that formed an antrum approached 1.5-2 mm in size, an improvement from previous single follicle culture methods used for bovine pre-antral follicles in vitro. In addition, follicles displayed functional steroidogenesis in vitro producing measureable levels of estradiol and androstenedione. This matrix-free 3D culture system provides an excellent in vitro model to explore processes associated with folliculogenesis in cattle.
Collapse
Affiliation(s)
- Shaina L Jachter
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA, 97331
| | - Wilson P Simmons
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA, 97331
| | - Charles Estill
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA, 97331; Department of Clinical and Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Jing Xu
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Cecily V Bishop
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA, 97331; Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA.
| |
Collapse
|
16
|
Beetch M, Alejandro EU. Placental mTOR Signaling and Sexual Dimorphism in Metabolic Health across the Lifespan of Offspring. CHILDREN 2021; 8:children8110970. [PMID: 34828683 PMCID: PMC8619510 DOI: 10.3390/children8110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022]
Abstract
Robust evidence of fetal programming of adult disease has surfaced in the last several decades. Human and preclinical investigations of intrauterine insults report perturbations in placental nutrient sensing by the mechanistic target of rapamycin (mTOR). This review focuses on pregnancy complications associated with placental mTOR regulation, such as fetal growth restriction (FGR), fetal overgrowth, gestational diabetes mellitus (GDM), polycystic ovarian syndrome (PCOS), maternal nutrient restriction (MNR), preeclampsia (PE), maternal smoking, and related effects on offspring birthweight. The link between mTOR-associated birthweight outcomes and offspring metabolic health trajectory with a focus on sexual dimorphism are discussed. Both human physiology and animal models are summarized to facilitate in depth understanding. GDM, PCOS and fetal overgrowth are associated with increased placental mTOR, whereas FGR, MNR and maternal smoking are linked to decreased placental mTOR activity. Generally, birth weight is reduced in complications with decreased mTOR (i.e., FGR, MNR, maternal smoking) and higher with increased mTOR (GDM, PCOS). Offspring display obesity or a higher body mass index in childhood and adulthood, impaired glucose and insulin tolerance in adulthood, and deficiencies in pancreatic beta-cell mass and function compared to offspring from uncomplicated pregnancies. Defining causal players in the fetal programming of offspring metabolic health across the lifespan will aid in stopping the vicious cycle of obesity and type II diabetes.
Collapse
|
17
|
Hawkins Bressler L, Fritz MA, Wu SP, Yuan L, Kafer S, Wang T, DeMayo FJ, Young SL. Poor Endometrial Proliferation After Clomiphene is Associated With Altered Estrogen Action. J Clin Endocrinol Metab 2021; 106:2547-2565. [PMID: 34058008 PMCID: PMC8372647 DOI: 10.1210/clinem/dgab381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Indexed: 12/25/2022]
Abstract
CONTEXT Suboptimal endometrial thickening is associated with lower pregnancy rates and occurs in some infertile women treated with clomiphene. OBJECTIVE To examine cellular and molecular differences in the endometrium of women with suboptimal vs optimal endometrial thickening following clomiphene. METHODS Translational prospective cohort study from 2018 to 2020 at a university-affiliated clinic. Reproductive age women with unexplained infertility treated with 100 mg of clomiphene on cycle days 3 to 7 who developed optimal (≥8mm; n = 6, controls) or suboptimal (<6mm; n = 7, subjects) endometrial thickness underwent preovulatory blood and endometrial sampling. The main outcome measures were endometrial tissue architecture, abundance and location of specific proteins, RNA expression, and estrogen receptor (ER) α binding. RESULTS The endometrium of suboptimal subjects compared with optimal controls was characterized by a reduced volume of glandular epithelium (16% vs 24%, P = .01), decreased immunostaining of markers of proliferation (PCNA, ki67) and angiogenesis (PECAM-1), increased immunostaining of pan-leukocyte marker CD45 and ERβ, but decreased ERα immunostaining (all P < .05). RNA-seq identified 398 differentially expressed genes between groups. Pathway analysis of differentially expressed genes indicated reduced proliferation (Z-score = -2.2, P < .01), decreased angiogenesis (Z-score = -2.87, P < .001), increased inflammation (Z-score = +2.2, P < .01), and ERβ activation (Z-score = +1.6, P < .001) in suboptimal subjects. ChIP-seq identified 6 genes bound by ERα that were differentially expressed between groups (P < .01), some of which may play a role in implantation. CONCLUSION Women with suboptimal endometrial thickness after clomiphene exhibit aberrant ER expression patterns, architectural changes, and altered gene and protein expression suggesting reduced proliferation and angiogenesis in the setting of increased inflammation.
Collapse
Affiliation(s)
- Leah Hawkins Bressler
- Department of Obstetrics & Gynecology, Division of Reproductive Endocrinology & Infertility, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marc A Fritz
- Department of Obstetrics & Gynecology, Division of Reproductive Endocrinology & Infertility, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lingwen Yuan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Suzanna Kafer
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Steven L Young
- Department of Obstetrics & Gynecology, Division of Reproductive Endocrinology & Infertility, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Wang L, Luo X, Wang Q, Lv Q, Wu P, Liu W, Chen X. Fertility-preserving treatment outcome in endometrial cancer or atypical hyperplasia patients with polycystic ovary syndrome. J Gynecol Oncol 2021; 32:e70. [PMID: 34132069 PMCID: PMC8362812 DOI: 10.3802/jgo.2021.32.e70] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Objective This study aimed to investigate the impact of polycystic ovary syndrome (PCOS) on fertility-sparing treatment in young patients with atypical endometrial hyperplasia (AEH) or endometrioid endometrial cancer (EEC). Methods A total of 285 patients with EEC (n=76, FIGO stage IA, without myometrium invasion) or AEH (n=209) who received progestin-based fertility-sparing treatment were evaluated retrospectively. Among the 285 patients, 103 (36.1%), including 70 AEH cases and 33 EEC cases, were diagnosed with PCOS. General characteristics, cumulative 16- and 32-week complete response (CR) rate, pregnancy outcome and recurrence were compared between patients with or without PCOS. Results The cumulative 16-week CR rate was lower in the PCOS group than in the non-PCOS group (18.4% vs. 33.8%, p=0.006). Patients with PCOS took longer treatment duration to achieve CR (7.0 months vs. 5.4 months, p=0.006) and shorter time to relapse after CR (9.6 months vs. 17.6 months, p=0.040) compared with non-PCOS group. After adjusting for patient age, body mass index, PCOS, homeostasis model assessment-insulin resistance index, and serum testosterone levels, we found that body mass index ≥25 kg/m2 (HR=0.583; 95% CI=0.365–0.932; p=0.024) and PCOS (HR=0.545; 95% CI=0.324–0.917; p=0.022) were significantly correlated with lower 16-week CR rate. Conclusion PCOS was associated with lower 16-week CR rate, longer treatment duration and shorter recurrence interval in patients with AEH or EEC receiving fertility-preserving treatment.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xuezhen Luo
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Qian Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qiaoying Lv
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Pengfei Wu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wei Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| |
Collapse
|
19
|
Roberts VHJ, Streblow AD, Gaffney JE, Rettke SP, Frias AE, Slayden OD. Placental Glucose Uptake in a Nonhuman Primate Model of Western-Style Diet Consumption and Chronic Hyperandrogenemia Exposure. Reprod Sci 2021; 28:2574-2581. [PMID: 33721298 DOI: 10.1007/s43032-021-00526-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/01/2021] [Indexed: 11/24/2022]
Abstract
We reported that consumption of a western-style diet (WSD) with and without hyperandrogenemia perturbed placental perfusion and altered levels of glucose transporter proteins in rhesus macaques. Based on that result, we hypothesized that placental glucose uptake would be dysregulated in this model. In this study, female rhesus macaques were assigned at puberty to one of four groups: subcutaneous cholesterol implants + standard chow diet (controls, C); testosterone implants + chow (T); cholesterol implants + a high-fat, WSD; and T+WSD. After ~6 years of treatment, animals were mated, and pregnancies were delivered by cesarean section at gestational day (G) 130 (the term is G168). Placental villous explants were immediately prepared for radiolabeled glucose assay. Linear glucose uptake was observed between 0 and 30 s. At 20 s, glucose uptake in placental villous explants did not differ across the four treatment groups with values as follows: C: 25.5 ± 6.33, T: 22.9 ± 0.404, WSD: 26.9.0 ± 3.71, and T+WSD: 33.0 ± 3.12 (mean ± SD expressed in pmol/mg). Unlike our prior experiment, glucose transporter expression was reduced in WSD placentas, and our in vitro functional assay did not demonstrate a difference in glucose uptake across the transporting epithelium of the placenta. Notably, maternal blood glucose levels were significantly elevated in animals chronically fed a WSD. This disparity may indicate differences in glucose utilization and metabolism by the placenta itself, as glucose transporter expression and circulating fetal glucose concentrations were comparable across all four groups in this pregnancy cohort.
Collapse
Affiliation(s)
- Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University (OHSU), Beaverton, OR, USA.
| | - Aaron D Streblow
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University (OHSU), Beaverton, OR, USA
| | - Jessica E Gaffney
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University (OHSU), Beaverton, OR, USA
| | - Samantha P Rettke
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University (OHSU), Beaverton, OR, USA
| | - Antonio E Frias
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University (OHSU), Beaverton, OR, USA.,Department of Obstetrics and Gynecology, OHSU, Portland, OR, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University (OHSU), Beaverton, OR, USA
| |
Collapse
|
20
|
Ravisankar S, Ting AY, Murphy MJ, Redmayne N, Wang D, McArthur CA, Takahashi DL, Kievit P, Chavez SL, Hennebold JD. Short-term Western-style diet negatively impacts reproductive outcomes in primates. JCI Insight 2021; 6:138312. [PMID: 33616080 PMCID: PMC7934943 DOI: 10.1172/jci.insight.138312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
A maternal Western-style diet (WSD) is associated with poor reproductive outcomes, but whether this is from the diet itself or underlying metabolic dysfunction is unknown. Here, we performed a longitudinal study using regularly cycling female rhesus macaques (n = 10) that underwent 2 consecutive in vitro fertilization (IVF) cycles, one while consuming a low-fat diet and another 6–8 months after consuming a high-fat WSD. Metabolic data were collected from the females prior to each IVF cycle. Follicular fluid (FF) and oocytes were assessed for cytokine/steroid levels and IVF potential, respectively. Although transition to a WSD led to weight gain and increased body fat, no difference in insulin levels was observed. A significant decrease in IL-1RA concentration and the ratio of cortisol/cortisone was detected in FF after WSD intake. Despite an increased probability of isolating mature oocytes, a 44% reduction in blastocyst number was observed with WSD consumption, and time-lapse imaging revealed delayed mitotic timing and multipolar divisions. RNA sequencing of blastocysts demonstrated dysregulation of genes involved in RNA binding, protein channel activity, mitochondrial function and pluripotency versus cell differentiation after WSD consumption. Thus, short-term WSD consumption promotes a proinflammatory intrafollicular microenvironment that is associated with impaired preimplantation development in the absence of large-scale metabolic changes.
Collapse
Affiliation(s)
- Sweta Ravisankar
- Department of Cell, Developmental & Cancer Biology, Graduate Program in Molecular & Cellular Biosciences, Oregon Health & Science University School of Medicine, Portland, Oregon, USA.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Alison Y Ting
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,21st Century Medicine Inc., Fontana, California, USA
| | - Melinda J Murphy
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Nash Redmayne
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Dorothy Wang
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Carrie A McArthur
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Department of Molecular & Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University School of Medicine, Portland, Oregon, USA
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University School of Medicine, Portland, Oregon, USA
| |
Collapse
|
21
|
Bishop CV, Takahashi D, Mishler E, Slayden OD, Roberts CT, Hennebold J, True C. Individual and combined effects of 5-year exposure to hyperandrogenemia and Western-style diet on metabolism and reproduction in female rhesus macaques. Hum Reprod 2021; 36:444-454. [PMID: 33313720 PMCID: PMC7829549 DOI: 10.1093/humrep/deaa321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION What is the impact of prolonged exposure to hyperandrogenemia (T), Western-style diet (WSD) and the combination on metabolic and reproductive function in female rhesus macaques, particularly in the post-partum period? SUMMARY ANSWER Combined T + WSD worsened measures of insulin sensitivity and parameters of cyclicity following prolonged (5 years) exposure, but there was no effect on post-partum metabolic function. WHAT IS KNOWN ALREADY Women with hyperandrogenemia due to polycystic ovary syndrome are at higher risk for gestational diabetes and Type 2 diabetes post-partum, but it is unknown if this is related to hyperandrogenemia. Hyperandrogenemia in the presence of a WSD worsens metabolic function in female nonhuman primates. STUDY DESIGN, SIZE, DURATION Female rhesus macaques began treatment near menarche (roughly 2.5 years of age) consisting of either cholesterol (control; C) or testosterone (T) implants (average serum levels 1.4 ng/ml) and exposure to standard monkey chow or a WSD (15 vs 36% of calories from fat, respectively). The four groups were maintained on treatment for 3 years, underwent a fertility trial in Year 4 and continued with treatments through Year 5. PARTICIPANTS/MATERIALS, SETTING, METHODS Metabolic measurements (glucose tolerance tests and double X-ray absorptiometry scans) were performed yearly, and results from 5 years of treatment are reported for all animals. Animals were bled daily for 30 days at 5 years to capture changes in ovarian cycle hormones, and ultrasound measurements were performed during the early follicular and luteal phase. MAIN RESULTS AND THE ROLE OF CHANCE After 5 years of treatment, WSD exposure moderately increased body weight and body fat, although control animals also had a high body mass index due to ad libitum feeding. Animals in the T + WSD group had increased fasting insulin and insulin secretion during an intravenous glucose tolerance test. WSD exposure also altered ovarian cycles, delaying the time to the E2 surge, decreasing progesterone and anti-Müllerian hormone levels and increasing the number of antral follicles present by ultrasound. Longitudinal assessment of metabolic function for only those animals that became pregnant in Year 4 of treatment revealed no differences in post-partum metabolism between groups, although WSD resulted in overall elevated weights, body fat and measures of insulin resistance. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION The small sample size and heterogeneity in metabolic effects observed in the T + WSD group are limitations of the current study, with only a subset of animals in this group showing impaired insulin resistance relative to controls. In addition, obesity in the C group prevented comparisons to lean animals. WIDER IMPLICATIONS OF THE FINDINGS Hyperandrogenemia combined with WSD had a greater impact on insulin sensitivity and ovarian function than either treatment alone. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by NIH grant P50 HD071836 to C.T.R., J.H. and C.T. and P51 OD011092 for support of the Oregon National Primate Research Center. All authors declare no competing interests.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | - Diana Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Emily Mishler
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Ov D Slayden
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Charles T Roberts
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jon Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Cadence True
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, USA
| |
Collapse
|
22
|
Rosenfield RL, Cooke DW, Radovick S. Puberty in the Female and Its Disorders. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:528-626. [DOI: 10.1016/b978-0-323-62520-3.00016-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Heterogeneity of Endocrinologic and Metabolic Parameters in Reproductive Age Polycystic Ovary Syndrome (PCOS) Women Concerning the Severity of Hyperandrogenemia-A New Insight on Syndrome Pathogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249291. [PMID: 33322590 PMCID: PMC7763600 DOI: 10.3390/ijerph17249291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 01/19/2023]
Abstract
Background: Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, anovulation, infertility, obesity, and insulin resistance, which results in increased concentrations of testosterone (T), which disturbs follicular growth and ovulation. This study aimed to assess PCOS women’s clinical, endocrinological, and metabolic parameters concerning hyperandrogenism severity. Results: 314 women (mean age 27.3 ± 4.6; mean body mass index (BMI) 25.7 ± 5.6) with PCOS, were divided into terciles according to T concentrations: <0.64 ng/mL (group 1), 0.64 to 0.84 ng/mL (Group 2) and >0.84 ng/mL (group 3). The mean concentration of T in all women was 0.59 ng/mL and correlated negatively with the number of menstrual cycles per year (MPY) (r = −0.36; p < 0.0001) and positively with Ferriman-Gallway score (FG) (r = 0.33; p < 0.0001), luteinizing hormone (LH) (r = 0.19; p < 0.0001) and dehydroepiandrosterone sulfate (DHEAS) (r = 0.52; p < 0.0001). Positive correlation between BMI and hirsutism (r = 0.16; p < 0.0001), total cholesterol (TC) (r = 0.18; p < 0.0001), low-density lipoprotein (LDL) (r = 0.29; p < 0.0001), and triglycerides (TG) (r = 0.40; p < 0.0001) was demonstrated. The division into subgroups confirmed the lowest MPY, highest LH, and hirsutism in group 3. BMI, insulin sensitivity indices, and lipid profile parameters were not different between the three T subgroups. Conclusions: We found no correlation between testosterone levels and insulin sensitivity or dyslipidemia in women with PCOS. Metabolic abnormalities may contribute more significantly than hyperandrogenemia to PCOS development.
Collapse
|
24
|
Palomba S, Piltonen TT, Giudice LC. Endometrial function in women with polycystic ovary syndrome: a comprehensive review. Hum Reprod Update 2020; 27:584-618. [PMID: 33302299 DOI: 10.1093/humupd/dmaa051] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility. An endometrial component has been suggested to contribute to subfertility and poor reproductive outcomes in affected women. OBJECTIVE AND RATIONALE The aim of this review was to determine whether there is sufficient evidence to support that endometrial function is altered in women with PCOS, whether clinical features of PCOS affect the endometrium, and whether there are evidence-based interventions to improve endometrial dysfunction in PCOS women. SEARCH METHODS An extensive literature search was performed from 1970 up to July 2020 using PubMed and Web of Science without language restriction. The search included all titles and abstracts assessing a relationship between PCOS and endometrial function, the role played by clinical and biochemical/hormonal factors related to PCOS and endometrial function, and the potential interventions aimed to improve endometrial function in women with PCOS. All published papers were included if considered relevant. Studies having a specific topic/hypothesis regarding endometrial cancer/hyperplasia in women with PCOS were excluded from the analysis. OUTCOMES Experimental and clinical data suggest that the endometrium differs in women with PCOS when compared to healthy controls. Clinical characteristics related to the syndrome, alone and/or in combination, may contribute to dysregulation of endometrial expression of sex hormone receptors and co-receptors, increase endometrial insulin-resistance with impaired glucose transport and utilization, and result in chronic low-grade inflammation, immune dysfunction, altered uterine vascularity, abnormal endometrial gene expression and cellular abnormalities in women with PCOS. Among several interventions to improve endometrial function in women with PCOS, to date, only lifestyle modification, metformin and bariatric surgery have the highest scientific evidence for clinical benefit. WIDER IMPLICATIONS Endometrial dysfunction and abnormal trophoblast invasion and placentation in PCOS women can predispose to miscarriage and pregnancy complications. Thus, patients and their health care providers should advise about these risks. Although currently no intervention can be universally recommended to reverse endometrial dysfunction in PCOS women, lifestyle modifications and metformin may improve underlying endometrial dysfunction and pregnancy outcomes in obese and/or insulin resistant patients. Bariatric surgery has shown its efficacy in severely obese PCOS patients, but a careful evaluation of the benefit/risk ratio is warranted. Large scale randomized controlled clinical trials should address these possibilities.
Collapse
Affiliation(s)
- Stefano Palomba
- Unit of Obstetrics and Gynecology, Grande Ospedale Metropolitano of Reggio Calabria, Reggio Calabria, Italy
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
25
|
Vanden Brink H, Pea J, Lujan ME. Ultrasonographic features of ovarian morphology capture nutritional and metabolic influences on the reproductive axis: implications for biomarker development in ovulatory disorders. Curr Opin Biotechnol 2020; 70:42-47. [PMID: 33248350 DOI: 10.1016/j.copbio.2020.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022]
Abstract
Ultrasonographic imaging of ovarian morphology is used widely to inform reproductive health status in women. Metabolic disturbances induced by a negative energy balance (e.g. undernutrition) or positive energy balance (e.g. overnutrition, obesity) are known to drive or exacerbate reproductive dysfunction. Whether the utility of ultrasonographic metrics of ovarian morphology could be extended as biomarkers that detect and monitor the integration of metabolic and reproductive dysfunction is an emerging research area, and recent evidence is discussed. We note that unique variations in ovarian morphology emerge across the adiposity spectrum and highlight the potential for reproductive and metabolic 'tipping points' upon which such morphological variations may be detected on ultrasonography.
Collapse
Affiliation(s)
| | - Jeffrey Pea
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Marla E Lujan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
26
|
Bishop CV, Luo F, Gao L, Fei SS, Slayden OD. Mild hyperandrogenemia in presence/absence of a high-fat, Western-style diet alters secretory phase endometrial transcriptome in nonhuman primates. F&S SCIENCE 2020; 1:172-182. [PMID: 33554152 PMCID: PMC7861567 DOI: 10.1016/j.xfss.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To identify novel transcriptomic changes to eutopic endometrium by exposure to chronic mild hypernadrogenemia (testosterone [T]) with/without exposure to an obesogenic Western-style diet (WSD). DESIGN Two-by-two factorial arrangement of treatments. SETTING National primate research center. ANIMALS Rhesus macaque females were chronically exposed to T and/or consumed a WSD from menarche through adulthood. After 4.5 years of treatment, Tru-Cut endometrial biopsies were obtained at the midsecretory phase (n = 6-4/group), and paired-end sequencing of RNA was performed. Several females in the T, WSD, and T+WSD cohorts developed endometriosis within 6 months of biopsy; a separate analysis was performed contrasting diagnosis of endometriosis stage 0-2 versus stages 3 and 4 (American Society for Reproductive Medicine revised criteria). INTERVENTIONS Chronic exposure to mild elevation of T (~five-fold elevation) and/or WSD from menarche until adulthood. MAIN OUTCOME MEASURES Limma voom empirical Bayes pipeline was performed to detect differentially expressed RNAs (DEs) significantly impacted by treatments and endometriosis severity. Differentially expressed RNAs were then interrogated by Ingenuity Pathway Analyses and Protein Analysis through Evolutionary Relationships. RESULTS Total DEs included C versus T, 469; C versus WSD, 525; C versus T+WSD, 549; and T versus T+WSD, 1,505. The majority of DEs mapped to the ontology pathways: heterotrimeric G-protein signaling pathways Gi alpha and Gs alpha (C vs. T), WNT signaling (C vs. WSD and T vs. T+WSD), and Huntington disease (C vs. T+WSD). A total of 2,171 DEs from eutopic endometrium were altered by the presence of stage 3 and 4 endometriosis lesions. CONCLUSIONS The present global transcriptomic analyses demonstrate that the greatest magnitude of changes occurred in contrasts of C and T versus T+WSD, adding to the evidence that these two insults have a synergistic effect on female physiology. These data also support the concept that prior alterations to the function of eutopic endometrium increase the risk for endometriosis.
Collapse
Affiliation(s)
- Cecily V. Bishop
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton
- Department of Animal and Rangeland Sciences, College of Agriculture, Oregon State University, Corvallis
| | - Fangzhou Luo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton
| | - Lina Gao
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Beaverton
| | - Suzanne S. Fei
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Beaverton
| | - Ov D. Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
27
|
Rodriguez Paris V, Solon-Biet SM, Senior AM, Edwards MC, Desai R, Tedla N, Cox MJ, Ledger WL, Gilchrist RB, Simpson SJ, Handelsman DJ, Walters KA. Defining the impact of dietary macronutrient balance on PCOS traits. Nat Commun 2020; 11:5262. [PMID: 33067453 PMCID: PMC7568581 DOI: 10.1038/s41467-020-19003-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/15/2020] [Indexed: 02/05/2023] Open
Abstract
Lifestyle, mainly dietary, interventions are first-line treatment for women with polycystic ovary syndrome (PCOS), but the optimal diet remains undefined. We combined a hyperandrogenized PCOS mouse model with a systematic macronutrient approach, to elucidate the impact of dietary macronutrients on the development of PCOS. We identify that an optimum dietary macronutrient balance of a low protein, medium carbohydrate and fat diet can ameliorate key PCOS reproductive traits. However, PCOS mice display a hindered ability for their metabolic system to respond to diet variations, and varying macronutrient balance did not have a beneficial effect on the development of metabolic PCOS traits. We reveal that PCOS traits in a hyperandrogenic PCOS mouse model are ameliorated selectively by diet, with reproductive traits displaying greater sensitivity than metabolic traits to dietary macronutrient balance. Hence, providing evidence to support the development of evidence-based dietary interventions as a promising strategy for the treatment of PCOS, especially reproductive traits.
Collapse
Affiliation(s)
- Valentina Rodriguez Paris
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | | | - Alistair M Senior
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Melissa C Edwards
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, NSW, 2139, Australia
| | - Reena Desai
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, NSW, 2139, Australia
| | - Nicodemus Tedla
- School of Medical Sciences, Department of Pathology, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Madeleine J Cox
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - William L Ledger
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Robert B Gilchrist
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - David J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, NSW, 2139, Australia
| | - Kirsty A Walters
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, NSW, 2052, Australia.
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, NSW, 2139, Australia.
| |
Collapse
|
28
|
Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020; 41:bnaa010. [PMID: 32310267 PMCID: PMC7279705 DOI: 10.1210/endrev/bnaa010] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
More than 1 out of 10 women worldwide are diagnosed with polycystic ovary syndrome (PCOS), the leading cause of female reproductive and metabolic dysfunction. Despite its high prevalence, PCOS and its accompanying morbidities are likely underdiagnosed, averaging > 2 years and 3 physicians before women are diagnosed. Although it has been intensively researched, the underlying cause(s) of PCOS have yet to be defined. In order to understand PCOS pathophysiology, its developmental origins, and how to predict and prevent PCOS onset, there is an urgent need for safe and effective markers and treatments. In this review, we detail which animal models are more suitable for contributing to our understanding of the etiology and pathophysiology of PCOS. We summarize and highlight advantages and limitations of hormonal or genetic manipulation of animal models, as well as of naturally occurring PCOS-like females.
Collapse
Affiliation(s)
| | - Vasantha Padmanabhan
- Departments of Pediatrics, Obstetrics and Gynecology, and Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Kirsty A Walters
- Fertility & Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences and Education, University of Skövde, Skövde, Sweden
| | - Paolo Giacobini
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, California
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
29
|
Synergistic Effects of Hyperandrogenemia and Obesogenic Western-style Diet on Transcription and DNA Methylation in Visceral Adipose Tissue of Nonhuman Primates. Sci Rep 2019; 9:19232. [PMID: 31848372 PMCID: PMC6917716 DOI: 10.1038/s41598-019-55291-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a major reproductive disorder that is responsible for 80% of anovulatory infertility and that is associated with hyperandrogenemia, increased risk of obesity, and white adipose tissue (WAT) dysfunction. We have previously demonstrated that the combination of chronic testosterone (T) treatment and an obesogenic Western-style diet (WSD) exerts synergistic functional effects on WAT, leading to increased lipid accumulation in visceral adipocytes by an unknown mechanism. In this study, we examined the whole-genome transcriptional response in visceral WAT to T and WSD, alone and in combination. We observed a synergistic effect of T and WSD on gene expression, resulting in upregulation of lipid storage genes concomitant with adipocyte hypertrophy. Because DNA methylation is known to be associated with body fat distribution and the etiology of PCOS, we conducted whole-genome DNA methylation analysis of visceral WAT. While only a fraction of differentially expressed genes also exhibited differential DNA methylation, in silico analysis showed that differentially methylated regions were enriched in transcription factor binding motifs, suggesting a potential gene regulatory role for these regions. In summary, this study demonstrates that hyperandrogenemia alone does not induce global transcriptional and epigenetic response in young female macaques unless combined with an obesogenic diet.
Collapse
|
30
|
Abbott DH, Rogers J, Dumesic DA, Levine JE. Naturally Occurring and Experimentally Induced Rhesus Macaque Models for Polycystic Ovary Syndrome: Translational Gateways to Clinical Application. Med Sci (Basel) 2019; 7:medsci7120107. [PMID: 31783681 PMCID: PMC6950671 DOI: 10.3390/medsci7120107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/16/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022] Open
Abstract
Indian rhesus macaque nonhuman primate models for polycystic ovary syndrome (PCOS) implicate both female hyperandrogenism and developmental molecular origins as core components of PCOS etiopathogenesis. Establishing and exploiting macaque models for translational impact into the clinic, however, has required multi-year, integrated basic-clinical science collaborations. Paradigm shifting insight has accrued from such concerted investment, leading to novel mechanistic understanding of PCOS, including hyperandrogenic fetal and peripubertal origins, epigenetic programming, altered neural function, defective oocytes and embryos, adipogenic constraint enhancing progression to insulin resistance, pancreatic decompensation and type 2 diabetes, together with placental compromise, all contributing to transgenerational transmission of traits likely to manifest in adult PCOS phenotypes. Our recent demonstration of PCOS-related traits in naturally hyperandrogenic (High T) female macaques additionally creates opportunities to employ whole genome sequencing to enable exploration of gene variants within human PCOS candidate genes contributing to PCOS-related traits in macaque models. This review will therefore consider Indian macaque model contributions to various aspects of PCOS-related pathophysiology, as well as the benefits of using macaque models with compellingly close homologies to the human genome, phenotype, development and aging.
Collapse
Affiliation(s)
- David H. Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
- Correspondence: ; Tel.: +1-608-698-1953
| | - Jeffrey Rogers
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Jon E. Levine
- Department of Neuroscience, Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA;
| |
Collapse
|
31
|
Kuo K, Roberts VHJ, Gaffney J, Takahashi DL, Morgan T, Lo JO, Stouffer RL, Frias AE. Maternal High-Fat Diet Consumption and Chronic Hyperandrogenemia Are Associated With Placental Dysfunction in Female Rhesus Macaques. Endocrinology 2019; 160:1937-1949. [PMID: 31180495 PMCID: PMC6656425 DOI: 10.1210/en.2019-00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/04/2019] [Indexed: 01/25/2023]
Abstract
The risk of adverse perinatal outcomes with maternal polycystic ovary syndrome may differ among hyperandrogenic and nonhyperandrogenic phenotypes and is likely modulated by maternal obesity and diet. The relative contribution of maternal hyperandrogenism and nutritional status to placental dysfunction is unknown. Female rhesus macaques (N = 39) were assigned at puberty to one of four treatment groups: subcutaneous cholesterol implants and a standard chow diet (controls); testosterone (T) implants and a normal diet; cholesterol implants and a high-fat, Western-style diet (WSD); and testosterone implants in combination with a high-fat diet. After 3.5 years of treatment, contrast-enhanced and Doppler ultrasound analyses of placental blood flow were performed for a representative subset of animals from each treatment group during pregnancy, and placental architecture assessed with stereological analysis. Placental growth factors, cellular nutrient sensors, and angiogenic markers were measured with ELISA and Western blotting. WSD consumption was associated with a 30% increase in placental flux rate relative to that in animals receiving a normal diet. T and WSD treatments were each independently associated with increased villous volume, and T also was associated with an ∼ 40% decrease fetal capillary volume on stereological analysis. T treatment was associated with significantly increased mTOR and SOCS3 expression. WSD consumption was associated with decreased GLUT1 expression and microvillous membrane localization. Hyperandrogenemic and nonhyperandrogenemic phenotypes are associated with altered placental angiogenesis, nutrient sensing, and glucose transport. WSD and T appear to have distinct effects on vascular impedance and capillary angiogenesis.
Collapse
Affiliation(s)
- Kelly Kuo
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
- Correspondence: Kelly Kuo, MD, Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, SJH 2356, Portland, Oregon 97239. E-mail:
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Jessica Gaffney
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Diana L Takahashi
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Terry Morgan
- Department of Pathology, Oregon Health & Science University, Portland, Oregon
| | - Jamie O Lo
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Richard L Stouffer
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Antonio E Frias
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| |
Collapse
|
32
|
Bishop CV, Reiter TE, Erikson DW, Hanna CB, Daughtry BL, Chavez SL, Hennebold JD, Stouffer RL. Chronically elevated androgen and/or consumption of a Western-style diet impairs oocyte quality and granulosa cell function in the nonhuman primate periovulatory follicle. J Assist Reprod Genet 2019; 36:1497-1511. [PMID: 31187329 DOI: 10.1007/s10815-019-01497-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To investigate the impact of chronically elevated androgens in the presence and absence of an obesogenic diet on oocyte quality in the naturally selected primate periovulatory follicle. METHODS Rhesus macaques were treated using a 2-by-2 factorial design (n = 10/treatment) near the onset of menarche with implants containing either cholesterol (C) or testosterone (T, 4-5-fold increase above C) and a standard or "Western-style" diet alone (WSD) or in combination (T+WSD). Following ~ 3.5 years of treatment, females underwent controlled ovulation (COv, n = 7-10/treatment) cycles, and contents of the naturally selected periovulatory follicle were aspirated. Follicular fluid (FF) was analyzed for cytokines, chemokines, growth factors, and steroids. RNA was extracted from luteinizing granulosa cells (LGCs) and assessed by RNA-seq. RESULTS Only healthy, metaphase (M) I/II-stage oocytes (100%) were retrieved in the C group, whereas several degenerated oocytes were recovered in other groups (33-43% of T, WSD, and T+WSD samples). Levels of two chemokines and one growth factor were reduced (p < 0.04) in FF of follicles with a MI/MII oocyte in WSD+T (CCL11) or T and WSD+T groups (CCL2 and FGF2) compared to C and/or WSD. Intrafollicular cortisol was elevated in T compared to C follicles (p < 0.02). Changes in the expression pattern of 640+ gene products were detected in LGC samples from follicles with degenerated versus MI/MII-stage oocytes. Pathway analysis on RNAs altered by T and/or WSD found enrichment of genes mapping to steroidogenic and immune cell pathways. CONCLUSIONS Female primates experiencing hyperandrogenemia and/or consuming a WSD exhibit an altered intrafollicular microenvironment and reduced oocyte quality/competency, despite displaying menstrual cyclicity.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA. .,Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Taylor E Reiter
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA
| | - David W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Carol B Hanna
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA
| | - Brittany L Daughtry
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA.,Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA.,Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Richard L Stouffer
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
33
|
Ryu Y, Kim SW, Kim YY, Ku SY. Animal Models for Human Polycystic Ovary Syndrome (PCOS) Focused on the Use of Indirect Hormonal Perturbations: A Review of the Literature. Int J Mol Sci 2019; 20:2720. [PMID: 31163591 PMCID: PMC6600358 DOI: 10.3390/ijms20112720] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
Hormonal disturbances, such as hyperandrogenism, are considered important for developing polycystic ovary syndrome (PCOS) in humans. Accordingly, directly hormone-regulated animal models are widely used for studying PCOS, as they replicate several key PCOS features. However, the pathogenesis and treatment of PCOS are still unclear. In this review, we aimed to investigate animal PCOS models and PCOS-like phenotypes in animal experiments without direct hormonal interventions and determine the underlying mechanisms for a better understanding of PCOS. We summarized animal PCOS models that used indirect hormonal interventions and suggested or discussed pathogenesis of PCOS-like features in animals and PCOS-like phenotypes generated in other animals. We presented integrated physiological insights and shared cellular pathways underlying the pathogenesis of PCOS in reviewed animal models. Our review indicates that the hormonal and metabolic changes could be due to molecular dysregulations, such as upregulated PI3K-Akt and extracellular signal-regulated kinase (ERK) signalling, that potentially cause PCOS-like phenotypes in the animal models. This review will be helpful for considering alternative animal PCOS models to determine the cellular/molecular mechanisms underlying PCOS symptoms. The efforts to determine the specific cellular mechanisms of PCOS will contribute to novel treatments and control methods for this complex syndrome.
Collapse
Affiliation(s)
- Youngjae Ryu
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (Y.R.); (Y.Y.K.)
| | - Sung Woo Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea;
| | - Yoon Young Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (Y.R.); (Y.Y.K.)
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (Y.R.); (Y.Y.K.)
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea;
| |
Collapse
|
34
|
Bishop CV, Stouffer RL, Takahashi DL, Mishler EC, Wilcox MC, Slayden OD, True CA. Chronic hyperandrogenemia and western-style diet beginning at puberty reduces fertility and increases metabolic dysfunction during pregnancy in young adult, female macaques. Hum Reprod 2019; 33:694-705. [PMID: 29401269 DOI: 10.1093/humrep/dey013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/12/2018] [Indexed: 02/02/2023] Open
Abstract
STUDY QUESTION What are the impacts of elevated testosterone (T) and an obesogenic western-style diet (WSD), either independently or together, on fertility and metabolic adaptations of pregnancy in primates? SUMMARY ANSWER Testosterone increases the time to achieve pregnancy, while a WSD reduces overall fertility, and the combination of testosterone and WSD additionally impairs glucose tolerance and causes pregnancy loss. WHAT IS KNOWN ALREADY Both hyperandrogenemia and obesity are hallmarks of polycystic ovary syndrome, which is a leading cause of infertility among women worldwide. Female macaques receiving T and WSD beginning at puberty show increased metabolic, ovarian and uterine dysfunction in the non-pregnant state by 3 years of treatment. STUDY DESIGN, SIZE, DURATION The same cohort of female rhesus macaques continued treatments from the time of puberty (2.5 years) to 4 years, including this fertility trial. There were four groups (n = 9-10/group): controls (C), T-treated (T; average total serum level 1.35 ng/ml), WSD-treated, and combined T and WSD-treated (T + WSD) females. PARTICIPANTS/MATERIALS, SETTING, METHODS Females, which were typically having menstrual cycles, were paired for 4 days with a proven male breeder following the late follicular rise in circulating estradiol (≥100 pg/ml). The presence of sperm in the reproductive tract was used to confirm mating. Animals went through up to three successive rounds of mating until they became pregnant, as confirmed by a rise in circulating mCG during the late luteal phase and ultrasound evidence of a gestational sac at Day 30 post-mating (GD30). Placental vascular parameters were also measured at GD30. Metabolic measurements consisted of fasting levels of blood glucose and insulin at approximately GD30, 60, 90 and 115, as well as an intravenous (iv) glucose tolerance test (GTT) at GD115. MAIN RESULTS AND THE ROLE OF CHANCE While all animals in the C and T groups eventually became pregnant, T-treated females on average had a greater interval to achieve pregnancy (P < 0.05). However, only ~70% of animals in the WSD and T + WSD groups became pregnant (P < 0.004). One pregnancy in T + WSD group resulted in an anembryonic pregnancy which miscarried around GD60, while another T + WSD female conceived with a rare identical twin pregnancy which required cessation due to impending fetal loss at GD106. Thus, the number of viable fetuses was less in the T + WSD group, compared to C, T or WSD. Placental blood volume at GD30 was reduced in all treatments compared to the C group (P < 0.05). Maternal P4 levels were elevated in the WSD (P < 0.03) group and E2 levels were elevated in T + WSD animals (P < 0.05). An increase in serum A4 levels throughout gestation was observed in all groups (P < 0.03) except WSD (P = 0.3). All groups displayed increased insulin resistance with pregnancy, as measured from the ivGTT during pregnancy. However, only the T + WSD group had a significant increase in fasting glucose levels and glucose clearance during the GTT indicating a worsened glucose tolerance. WSD treatment decreased female fetuses third trimester weights, but there was an interaction between WSD and T to increase female fetal weight when normalized to maternal weight. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION The small number of pregnancies in the WSD and T + WSD groups hampers the ability to make definitive conclusions on effects during gestation. Also, the high fertility rate in the controls indicates the cohort was at their breeding prime age, which may impair the ability to observe subtle fertility defects. The low number of fetuses used for male and female analysis requires additional studies. WIDER IMPLICATIONS OF THE FINDINGS The current findings strongly suggest that both hyperandrogenemia and obesity have detrimental effects on fertility and gestation in primates, which may be directly relevant to women with polycystic ovary syndrome. STUDY FUNDING/COMPETING INTEREST(S) All ONPRC Cores and Units were supported by NIH Grant P51 OD011092 awarded to ONPRC. Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD) of the National Institutes of Health (NIH) under Award Number P50HD071836 (to R.L.S.). The authors have no competing conflict of interests to disclose.
Collapse
Affiliation(s)
- C V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - R L Stouffer
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - D L Takahashi
- Cardiometabolic Health Division, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - E C Mishler
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - M C Wilcox
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - O D Slayden
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - C A True
- Cardiometabolic Health Division, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA
| |
Collapse
|
35
|
Zhao H, Song X, Zhang L, Xu Y, Wang X. Comparison of Androgen Levels, Endocrine and Metabolic Indices, and Clinical Findings in Women with Polycystic Ovary Syndrome in Uygur and Han Ethnic Groups from Xinjiang Province in China. Med Sci Monit 2018; 24:6774-6780. [PMID: 30252834 PMCID: PMC6180942 DOI: 10.12659/msm.909715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of this study was to compare androgen levels, endocrine and metabolic indices, and clinical findings in women with polycystic ovary syndrome (PCOS) in Uygur and Han ethnic groups from Xinjiang Province, China. MATERIAL AND METHODS Between January 2016 to May 2017 clinical data were collected from Uygur (N=82) and Han (N=100) women diagnosed with PCOS, including age, body mass index (BMI), the Ferriman-Gallwey (mFG) hirsutism score, and waist-to-hip ratio (WHR). Blood samples obtained from all study participants were used to measure androgenic steroid levels, including androgen, androstenedione, dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), and the free androgen index (FAI). Endocrine indices measured included sex-hormone binding globulin (SHBG), luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol (E2), and prolactin (PL). Metabolic indices measured included insulin, glucose, total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), triglyceride (TG), and low-density lipoprotein (LDL). RESULTS The FAI in Uygur women with PCOS (4.89) was significantly increased compared with Han women with PCOS (2.78) (p<0.05); androgen levels were significantly correlated with the FAI, glucose, insulin, TC, HDL, and LDL (p<0.05); androstenedione levels were positively correlated with glucose and insulin levels (p<0.05). In Han women with PCOS, androgen levels were negatively correlated with TG levels and positively correlated with TC levels (p<0.05); the FAI was positively correlated with glucose and insulin levels (p<0.05). CONCLUSIONS There were significant differences in androgen levels, endocrine, and metabolic indices in women with PCOS between the Uygur and Han ethnic groups from Xinjiang Province in China.
Collapse
Affiliation(s)
- Hongli Zhao
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| | - Xiangxin Song
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| | - Li Zhang
- Department of Medicine, Xinjiang Altay Region People's Hospital, Altay, Xinjiang, China (mainland)
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Xinling Wang
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|