1
|
Kagami M, Hara-Isono K, Sasaki A, Amita M. Association between imprinting disorders and assisted reproductive technologies. Epigenomics 2025; 17:397-410. [PMID: 40033833 PMCID: PMC11980493 DOI: 10.1080/17501911.2025.2471269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Aberrant expression of imprinted genes results in imprinting disorders (IDs). Differentially methylated regions (DMRs) reveal parental-origin-specific DNA methylation on CpGs and regulate the expression of the imprinted genes. One etiology of IDs is epimutation (epi-IDs) induced by some error in the establishment or maintenance of methylation imprint during the processes of gametogenesis, fertilization, or early embryonic development. Therefore, it has been a concern that assisted reproductive technologies (ART) increase the risk for the development of IDs, particularly epi-IDs. We review the effects of ART on DNA methylation of the genome, including DMRs in gametes, embryos, and offspring, and the risk of advanced parental age (a confounding factor of ART) and infertility itself for the development of IDs, particularly epi-IDs.
Collapse
Affiliation(s)
- Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kaori Hara-Isono
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Aiko Sasaki
- Division of Obstetrics, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Mitsuyoshi Amita
- Division of Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
2
|
Xia TJ, Xie FY, Chen J, Zhang XG, Li S, Sun QY, Zhang Q, Yin S, Ou XH, Ma JY. CDK1 mediates the metabolic regulation of DNA double-strand break repair in metaphase II oocytes. BMC Biol 2025; 23:37. [PMID: 39915808 PMCID: PMC11803938 DOI: 10.1186/s12915-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND During oocyte maturation, DNA double-strand breaks (DSBs) can decrease oocyte quality or cause mutations. How DSBs are repaired in dividing oocytes and which factors influence DSB repair are not well understood. RESULTS By analyzing DSB repair pathways in oocytes at different stages, we found that break-induced replication (BIR) and RAD51-mediated homology-directed repair (HDR) were highly active in germinal vesicle breakdown (GVBD) oocytes but suppressed in metaphase II (MII) oocytes and the BIR in oocytes was promoted by CDK1 activity. By culturing oocytes in different media, we found that high-energy media, such as DMEM, decreased CDK1 protein levels and suppressed BIR or HDR in MII oocytes. In contrast, 53BP1-mediated nonhomologous end joining (NHEJ) repair was inhibited in germinal vesicle (GV) and GVBD oocytes but promoted in MII oocytes, and NHEJ was not affected by DMEM medium and CDK1 activity. In addition, in DSB MII oocytes, polymerase theta-mediated end joining (TMEJ) was found to be suppressed by CDK1 activity and promoted by high-energy media. CONCLUSIONS In summary, MII oocytes exhibit high heterogeneity in DSB repair, which is regulated by both metabolic factors and CDK1 activity. These results not only expand our understanding of oocyte DSB repair but also contribute to the modification of in vitro maturation medium for oocytes.
Collapse
Affiliation(s)
- Tian-Jin Xia
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Feng-Yun Xie
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Juan Chen
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Xiao-Guohui Zhang
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sen Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qin Zhang
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Xiang-Hong Ou
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Jun-Yu Ma
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Morato ALC, Verruma CG, Furtado CLM, Dos Reis RM. In vitro maturation of oocytes: what is already known?†. Biol Reprod 2025; 112:18-30. [PMID: 39423281 DOI: 10.1093/biolre/ioae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024] Open
Abstract
Assisted reproductive technologies (ARTs) involve the laboratory manipulation of gametes and embryos to help couples with fertility problems become pregnant. One of these procedures, controlled ovarian stimulation, uses pharmacological agents to induce ovarian and follicular maturation in vivo. Despite the effectiveness in achieving pregnancy and live births, some patients may have complications due to over-response to gonadotropins and develop ovarian hyperstimulation syndrome. In vitro maturation (IVM) of oocytes has emerged as a technique to reduce the risk of ovarian hyperstimulation syndrome, particularly in women with polycystic ovary syndrome, and for fertility preservation in women undergoing oncological treatment. Although there are some limitations, primarily due to oocyte quality, recent advances have improved pregnancy success rates and neonatal and infant outcomes. Different terms have been coined to describe variations of IVM, and the technique has evolved with the introduction of hormones to optimize results. In this review, we provide a comprehensive overview of IVM relating hormonal priming, culture system and media, and clinical indications for IVM with its reproductive outcomes during ARTs.
Collapse
Affiliation(s)
- Ana Luiza Camargos Morato
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carolina Gennari Verruma
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Cristiana Libardi Miranda Furtado
- Graduate Program in Medical Science, Experimental Biology Center, University of Fortaleza, Fortaleza, Brazil
- Postgraduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
4
|
Xia Z, Zhou C, Hong Y, Li F, Zhang W, Ji H, Xiao Y, Li S, Li S, Lu X, Li S, Tan K, Xin H, Wang Z, Lian Z, Guo M. TFPI2 hypermethylation promotes diabetic atherosclerosis progression through the Ap2α/PPARγ axis. J Mol Cell Cardiol 2025; 198:45-59. [PMID: 39631358 DOI: 10.1016/j.yjmcc.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Diabetes mellitus significantly escalates the risk of accelerated atherosclerosis (AS), severely affecting cardiovascular health. Our research, leveraging Gene Expression Omnibus (GEO) database analysis (GSE118481), revealed diminished TFPI2 expression in diabetic patients' atherosclerotic plaques. Further validation in carotid artery plaques and an AS mouse model confirmed TFPI2's reduced expression in diabetes. Through TFPI2 knockdown in non-diabetic mice, we observed aggravated plaque burden and increased inflammatory M1 macrophage polarization. Conversely, TFPI2 overexpression in diabetic mice improved plaque stability and induced reparative M2 macrophage polarization, countering hyperglycemia's negative effects. Mechanistically, transcription factor activator protein 2α (AP-2α) is a repressor of PPPARg transcription, and the interaction of TFPI2 with the transcription factor AP-2α blocks AP-2α binding to the PPARγ gene promoter, which is essential for PPARγ-mediated transcription and the transition from M1 to M2 macrophages. Additionally, hyperglycemia-induced DNA methyltransferase 1 (DNMT1) upregulation heightens TFPI2 methylation, reducing its expression. Our findings spotlight the TFPI2/AP-2α/PPARγ axis as crucial in diabetic AS modulation, proposing its targeting as a new therapeutic strategy to halt diabetes-driven AS progression, highlighting TFPI2's therapeutic promise in addressing diabetes-related cardiovascular issues.
Collapse
Affiliation(s)
- Zongyi Xia
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Chi Zhou
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Yefeng Hong
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Fuhai Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Wenzhong Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Hongwei Ji
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Yu Xiao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Shifang Li
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Shufa Li
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Xiaohong Lu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Shaohua Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Kai Tan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhenxun Lian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China.
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China.
| |
Collapse
|
5
|
Zheng J, Wang L, Liu A, Shen H, Wang B, Jiang Y, Jing P, Guan D, Yu L, Zhang X. Predicting the therapeutic role and potential mechanisms of Indole-3-acetic acid in diminished ovarian reserve based on network pharmacology and molecular docking. Hereditas 2024; 161:47. [PMID: 39568012 PMCID: PMC11580193 DOI: 10.1186/s41065-024-00348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Indole-3-acetic acid (IAA), an indole analog produced by intestinal microorganisms metabolizing tryptophan, has anti-inflammatory and antioxidant properties and thus has potential applications in ovarian protection, although the exact mechanism is unknown. The present study preliminarily investigated the pharmacological mechanism of IAA in alleviating diminished ovarian reserve (DOR) by network pharmacology and molecular docking. METHODS Relevant target proteins of IAA were searched in SwissTargetPrediction, PharmMapper, TargetNet, BATMAN-TCM, and SuperPred databases. The potential targets of DOR were obtained from GeneCards, DisGenet, OMIM, and Drugbank databases. Both common targets were then imported into the String website to construct a PPI network, and these targets were analyzed for GO and KEGG enrichment. Finally, we utilized molecular docking to validate the possible binding conformations between IAA and the candidate targets. We used in vitro experiments to preliminarily investigate the effects of IAA on DOR. RESULTS We obtained 88 potential targets for IAA and DOR interaction. We received 16 pivotal targets by constructed protein interaction screening. KEGG enrichment analysis mainly included the AGE-RAGE signaling pathway, IL-17 signaling pathway, Chemical carcinogenesis-reactive oxygen species in diabetic complications, etc. GO functional analysis showed that IAA treatment of DOR may involve biological processes such as response to external stimuli, hypoxia, gene expression, and regulation of enzyme activity. Molecular docking and in vitro experiments further revealed the potential effects of IAA on MMP2, TNF-α, AKT1, HSP90AA1, and NF-κ B. CONCLUSION We preliminarily revealed the potential protective effects of IAA against DOR through multiple targets and pathways, which provides a new research strategy for the molecular mechanism of IAA to alleviate DOR in the future. However, further studies need to demonstrate whether IAA can be used as a compound to prevent and treat DOR.
Collapse
Affiliation(s)
- Jianxiu Zheng
- Lanzhou University, Chengguan District, No. 222 Tian Shui South Road, Lanzhou, Gansu, 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Liyan Wang
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
- Key Laboratory for Reproductive Medicine and Embryo, Gansu Province, Lanzhou, People's Republic of China
| | - Ahui Liu
- Lanzhou University, Chengguan District, No. 222 Tian Shui South Road, Lanzhou, Gansu, 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Haofei Shen
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Bin Wang
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Yanbiao Jiang
- Lanzhou University, Chengguan District, No. 222 Tian Shui South Road, Lanzhou, Gansu, 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Panpan Jing
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Defeng Guan
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Liulin Yu
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Xuehong Zhang
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China.
- Key Laboratory for Reproductive Medicine and Embryo, Gansu Province, Lanzhou, People's Republic of China.
| |
Collapse
|
6
|
Guo F, Wang L, Chen Y, Zhu H, Dai X, Zhang X. Nicotinamide Mononucleotide improves oocyte maturation of mice with type 1 diabetes. Nutr Diabetes 2024; 14:23. [PMID: 38653987 DOI: 10.1038/s41387-024-00280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The number of patients with type 1 diabetes rises rapidly around the world in recent years. Maternal diabetes has a detrimental effect on reproductive outcomes due to decreased oocyte quality. However, the strategies to improve the oocyte quality and artificial reproductive technology (ART) efficiency of infertile females suffering from diabetes have not been fully studied. In this study, we aimed to examine the effects of nicotinamide mononucleotide (NMN) on oocyte maturation of mouse with type 1 diabetes mouse and explore the underlying mechanisms of NMN's effect. METHODS Streptozotocin (STZ) was used to establish the mouse models with type 1 diabetes. The successful establishment of the models was confirmed by the results of body weight test, fasting blood glucose test and haematoxylin and eosin (H&E) staining. The in vitro maturation (IVM) rate of oocytes from diabetic mice was examined. Immunofluorescence staining (IF) was performed to examine the reactive oxygen species (ROS) level, spindle/chromosome structure, mitochondrial function, actin dynamics, DNA damage and histone modification of oocytes, which are potential factors affecting the oocyte quality. The quantitative reverse transcription PCR (RT-qPCR) was used to detect the mRNA levels of Sod1, Opa1, Mfn2, Drp1, Sirt1 and Sirt3 in oocytes. RESULTS The NMN supplementation increased the oocyte maturation rate of the mice with diabetes. Furthermore, NMN supplementation improved the oocyte quality by rescuing the actin dynamics, reversing meiotic defects, improving the mitochondrial function, reducing ROS level, suppressing DNA damage and restoring changes in histone modifications of oocytes collected from the mice with diabetes. CONCLUSION NMN could improve the maturation rate and quality of oocytes in STZ-induced diabetic mice, which provides a significant clue for the treatment of infertility of the patients with diabetes.
Collapse
Affiliation(s)
- Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Haibo Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
- Center of Reproductive Medicine & Center of Prenatal Diagnosis, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
Giordo R, Posadino AM, Mangoni AA, Pintus G. Metformin-mediated epigenetic modifications in diabetes and associated conditions: Biological and clinical relevance. Biochem Pharmacol 2023; 215:115732. [PMID: 37541452 DOI: 10.1016/j.bcp.2023.115732] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
An intricate interplay between genetic and environmental factors contributes to the development of type 2 diabetes (T2D) and its complications. Therefore, it is not surprising that the epigenome also plays a crucial role in the pathogenesis of T2D. Hyperglycemia can indeed trigger epigenetic modifications, thereby regulating different gene expression patterns. Such epigenetic changes can persist after normalizing serum glucose concentrations, suggesting the presence of a 'metabolic memory' of previous hyperglycemia which may also be epigenetically regulated. Metformin, a derivative of biguanide known to reduce serum glucose concentrations in patients with T2D, appears to exert additional pleiotropic effects that are mediated by multiple epigenetic modifications. Such modifications have been reported in various organs, tissues, and cellular compartments and appear to account for the effects of metformin on glycemic control as well as local and systemic inflammation, oxidant stress, and fibrosis. This review discusses the emerging evidence regarding the reported metformin-mediated epigenetic modifications, particularly on short and long non-coding RNAs, DNA methylation, and histone proteins post-translational modifications, their biological and clinical significance, potential therapeutic applications, and future research directions.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Arduino Aleksander Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, SA 5042, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
8
|
Hao J, Liu Y. Epigenetics of methylation modifications in diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1119765. [PMID: 37008904 PMCID: PMC10050754 DOI: 10.3389/fendo.2023.1119765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
Type 2 diabetes is one of the most common metabolic diseases with complications including diabetic cardiomyopathy and atherosclerotic cardiovascular disease. Recently, a growing body of research has revealed that the complex interplay between epigenetic changes and the environmental factors may significantly contribute to the pathogenesis of cardiovascular complications secondary to diabetes. Methylation modifications, including DNA methylation and histone methylation among others, are important in developing diabetic cardiomyopathy. Here we summarized the literatures of studies focusing on the role of DNA methylation, and histone modifications in microvascular complications of diabetes and discussed the mechanism underlying these disorders, to provide the guidance for future research toward an integrated pathophysiology and novel therapeutic strategies to treat or prevent this frequent pathological condition.
Collapse
Affiliation(s)
- Jing Hao
- Department of Emergency, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Liu
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yao Liu,
| |
Collapse
|
9
|
Mora-Ortiz M, Alcala-Diaz JF, Rangel-Zuñiga OA, Arenas-de Larriva AP, Abollo-Jimenez F, Luque-Cordoba D, Priego-Capote F, Malagon MM, Delgado-Lista J, Ordovas JM, Perez-Martinez P, Camargo A, Lopez-Miranda J. Metabolomics analysis of type 2 diabetes remission identifies 12 metabolites with predictive capacity: a CORDIOPREV clinical trial study. BMC Med 2022; 20:373. [PMID: 36289459 PMCID: PMC9609192 DOI: 10.1186/s12916-022-02566-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is one of the most widely spread diseases, affecting around 90% of the patients with diabetes. Metabolomics has proven useful in diabetes research discovering new biomarkers to assist in therapeutical studies and elucidating pathways of interest. However, this technique has not yet been applied to a cohort of patients that have remitted from T2DM. METHODS All patients with a newly diagnosed T2DM at baseline (n = 190) were included. An untargeted metabolomics approach was employed to identify metabolic differences between individuals who remitted (RE), and those who did not (non-RE) from T2DM, during a 5-year study of dietary intervention. The biostatistical pipeline consisted of an orthogonal projection on the latent structure discriminant analysis (O-PLS DA), a generalized linear model (GLM), a receiver operating characteristic (ROC), a DeLong test, a Cox regression, and pathway analyses. RESULTS The model identified a significant increase in 12 metabolites in the non-RE group compared to the RE group. Cox proportional hazard models, calculated using these 12 metabolites, showed that patients in the high-score tercile had significantly (p-value < 0.001) higher remission probabilities (Hazard Ratio, HR, high versus low = 2.70) than those in the lowest tercile. The predictive power of these metabolites was further studied using GLMs and ROCs. The area under the curve (AUC) of the clinical variables alone is 0.61, but this increases up to 0.72 if the 12 metabolites are considered. A DeLong test shows that this difference is statistically significant (p-value = 0.01). CONCLUSIONS Our study identified 12 endogenous metabolites with the potential to predict T2DM remission following a dietary intervention. These metabolites, combined with clinical variables, can be used to provide, in clinical practice, a more precise therapy. TRIAL REGISTRATION ClinicalTrials.gov, NCT00924937.
Collapse
Affiliation(s)
- Marina Mora-Ortiz
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan F Alcala-Diaz
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Oriol Alberto Rangel-Zuñiga
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Antonio Pablo Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Fernando Abollo-Jimenez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain
| | - Diego Luque-Cordoba
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain
- Department of Analytical Chemistry and Nanochemistry University Institute, Universidad de Cordoba, Cordoba, Spain
- CIBER de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Feliciano Priego-Capote
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain
- Department of Analytical Chemistry and Nanochemistry University Institute, Universidad de Cordoba, Cordoba, Spain
- CIBER de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria M Malagon
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, J.M.-US Department of Agriculture Human Nutrition Research Center On Aging at, Tufts University, Boston, MA, 02111, USA
- IMDEA Alimentacion, Madrid, Spain
- CNIC, 28049, Madrid, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Antonio Camargo
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain.
- Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain.
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain.
- Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain.
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
10
|
Yang H, Kolben T, Meister S, Paul C, van Dorp J, Eren S, Kuhn C, Rahmeh M, Mahner S, Jeschke U, von Schönfeldt V. Factors Influencing the In Vitro Maturation (IVM) of Human Oocyte. Biomedicines 2021; 9:1904. [PMID: 34944731 PMCID: PMC8698296 DOI: 10.3390/biomedicines9121904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
In vitro maturation (IVM) of oocytes is a promising assisted reproductive technology (ART) deemed as a simple and safe procedure. It is mainly used in patients with impaired oocyte maturation and in fertility preservation for women facing the risk of losing fertility. However, to date, it is still not widely used in clinical practice because of its underperformance. The influencing factors, such as biphasic IVM system, culture medium, and the supplementation, have a marked effect on the outcomes of oocyte IVM. However, the role of different culture media, supplements, and follicular priming regimens in oocyte IVM have yet to be fully clarified and deserve further investigation.
Collapse
Affiliation(s)
- Huixia Yang
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Corinna Paul
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Julia van Dorp
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Sibel Eren
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Martina Rahmeh
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Viktoria von Schönfeldt
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| |
Collapse
|
11
|
Chiaratti MR. Uncovering the important role of mitochondrial dynamics in oogenesis: impact on fertility and metabolic disorder transmission. Biophys Rev 2021; 13:967-981. [PMID: 35059021 PMCID: PMC8724343 DOI: 10.1007/s12551-021-00891-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Oocyte health is tightly tied to mitochondria given their role in energy production, metabolite supply, calcium (Ca2+) buffering, and cell death regulation, among others. In turn, mitochondrial function strongly relies on these organelle dynamics once cyclic events of fusion and fission (division) are required for mitochondrial turnover, positioning, content homogenization, metabolic flexibility, interaction with subcellular compartments, etc. Importantly, during oogenesis, mitochondria change their architecture from an "orthodox" elongated shape characterized by the presence of numerous transversely oriented cristae to a round-to-oval morphology containing arched and concentrically arranged cristae. This, along with evidence showing that mitochondrial function is kept quiescent during most part of oocyte development, suggests an important role of mitochondrial dynamics in oogenesis. To investigate this, recent works have downregulated/upregulated in oocytes the expression of key effectors of mitochondrial dynamics, including mitofusins 1 (MFN1) and 2 (MFN2) and the dynamin-related protein 1 (DRP1). As a result, both MFN1 and DRP1 were found to be essential to oogenesis and fertility, while MFN2 deletion led to offspring with increased weight gain and glucose intolerance. Curiously, neither MFN1/MFN2 deficiency nor DRP1 overexpression enhanced mitochondrial fragmentation, indicating that mitochondrial size is strictly regulated in oocytes. Therefore, the present work seeks to discuss the role of mitochondria in supporting oogenesis as well as recent findings connecting defective mitochondrial dynamics in oocytes with infertility and transmission of metabolic disorders.
Collapse
Affiliation(s)
- Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, 13565-905 Brazil
| |
Collapse
|
12
|
Embryo culture media differentially alter DNA methylating enzymes and global DNA methylation in embryos and oocytes. J Mol Histol 2021; 53:63-74. [PMID: 34741214 PMCID: PMC8570397 DOI: 10.1007/s10735-021-10038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/28/2021] [Indexed: 11/06/2022]
Abstract
The effects of culture media on DNA methylation process, which is one of the epigenetic mechanisms, have not been clearly elucidated although it is known that in vitro culture conditions alter epigenetic mechanisms. This study was designed to address the question: does embryo culture media approach, sequential or single step, differentially affect DNA methylating enzymes and global DNA methylation. Mouse zygotes were cultured either in single step or sequential culture media until the blastocyst stage and in vivo developed blastocyst were utilized as control. Similarly, GV stage oocytes were in vitro matured either in single step or first step of sequential culture media. In vivo matured MII oocytes were used as control. The expression levels and cellular localization of Dnmt1 and 3a enzymes were analyzed by immunofluorescence and western blot analysis while global DNA methylation was evaluated by immunofluorescence. We found that signal intensities of Dnmt1 and Dnmt3a enzymes were significantly low in embryos or oocytes cultured in sequential media compared to single step media and control, which were comparable amongst themself. Similarly, global DNA methylation level in single step media and control groups was comparable but both was higher than the sequential media. This study demonstrated that composition of culture media may differentially affect DNA methylation levels in mouse embryos and oocytes. Since abnormal DNA methylation may cause aberrant oocyte or embryo development, we think that further studies are needed to test human embryos and oocyte, and to explain molecular mechanisms.
Collapse
|
13
|
Abstract
Tea is the second most popular beverage in the world and beneficial to health. It has been demonstrated that tea polyphenols can reduce the risk of diseases, such as cancers, diabetes, obesity, Alzheimer's disease, etc. But the knowledge of tea extract on the female germline is limited. Folliculogenesis is a complicated process and prone to be affected by ROS. Tea polyphenols can reduce the accumulation of ROS in folliculogenesis and affect oocyte maturation. Tea extract also influences granulosa cell proliferation and expansion during oocyte growth and maturation. However, the studies about the benefits of tea extract on female germline are few, and the underlying mechanisms are obscure. In the present study, we will mainly discuss the effects of tea extract on ovarian function, oocyte maturation, and the underlying possible mechanisms, and according to the discussion, we suggest that tea extract may have benefits for oocytes at an appropriate dose.
Collapse
Affiliation(s)
- Lei Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qing-Yuan Sun
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P.R. China.
- Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P.R. China.
| |
Collapse
|
14
|
Arand J, Reijo Pera RA, Wossidlo M. Reprogramming of DNA methylation is linked to successful human preimplantation development. Histochem Cell Biol 2021; 156:197-207. [PMID: 34179999 PMCID: PMC8460514 DOI: 10.1007/s00418-021-02008-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Human preimplantation development is characterized by low developmental rates that are poorly understood. Early mammalian embryogenesis is characterized by a major phase of epigenetic reprogramming, which involves global DNA methylation changes and activity of TET enzymes; the importance of DNA methylation reprogramming for successful human preimplantation development has not been investigated. Here, we analyzed early human embryos for dynamic changes in 5-methylcytosine and its oxidized derivatives generated by TET enzymes. We observed that 5-methylcytosine and 5-hydroxymethylcytosine show similar, albeit less pronounced, asymmetry between the parental pronuclei of human zygotes relative to mouse zygotes. Notably, we detected low levels of 5-formylcytosine and 5-carboxylcytosine, with no apparent difference in maternal or paternal pronuclei of human zygotes. Analysis of later human preimplantation stages revealed a mosaic pattern of DNA 5C modifications similar to those of the mouse and other mammals. Strikingly, using noninvasive time-lapse imaging and well-defined cell cycle parameters, we analyzed normally and abnormally developing human four-cell embryos for global reprogramming of DNA methylation and detected lower 5-methylcytosine and 5-hydroxymethylcytosine levels in normal embryos compared to abnormal embryos. In conclusion, our results suggest that DNA methylation reprogramming is conserved in humans, with human-specific dynamics and extent. Furthermore, abnormalities in the four-cell-specific DNA methylome in early human embryogenesis are associated with abnormal development, highlighting an essential role of epigenetic reprogramming for successful human embryogenesis. Further research should identify the underlying genomic regions and cause of abnormal DNA methylation reprogramming in early human embryos.
Collapse
Affiliation(s)
- Julia Arand
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria.,Department of Genetics, Stanford University, Stanford, CA, 94305, USA.,Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Renee A Reijo Pera
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.,Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.,McLaughlin Research Institute, Great Falls, MT, 59405, USA
| | - Mark Wossidlo
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria. .,Department of Genetics, Stanford University, Stanford, CA, 94305, USA. .,Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, 94305, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
15
|
Garcia BM, Machado TS, Carvalho KF, Nolasco P, Nociti RP, Del Collado M, Capo Bianco MJD, Grejo MP, Augusto Neto JD, Sugiyama FHC, Tostes K, Pandey AK, Gonçalves LM, Perecin F, Meirelles FV, Ferraz JBS, Vanzela EC, Boschero AC, Guimarães FEG, Abdulkader F, Laurindo FRM, Kowaltowski AJ, Chiaratti MR. Mice born to females with oocyte-specific deletion of mitofusin 2 have increased weight gain and impaired glucose homeostasis. Mol Hum Reprod 2020; 26:938-952. [PMID: 33118034 DOI: 10.1093/molehr/gaaa071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/27/2020] [Indexed: 12/19/2022] Open
Abstract
Offspring born to obese and diabetic mothers are prone to metabolic diseases, a phenotype that has been linked to mitochondrial dysfunction and endoplasmic reticulum (ER) stress in oocytes. In addition, metabolic diseases impact the architecture and function of mitochondria-ER contact sites (MERCs), changes which associate with mitofusin 2 (MFN2) repression in muscle, liver and hypothalamic neurons. MFN2 is a potent modulator of mitochondrial metabolism and insulin signaling, with a key role in mitochondrial dynamics and tethering with the ER. Here, we investigated whether offspring born to mice with MFN2-deficient oocytes are prone to obesity and diabetes. Deletion of Mfn2 in oocytes resulted in a profound transcriptomic change, with evidence of impaired mitochondrial and ER function. Moreover, offspring born to females with oocyte-specific deletion of Mfn2 presented increased weight gain and glucose intolerance. This abnormal phenotype was linked to decreased insulinemia and defective insulin signaling, but not mitochondrial and ER defects in offspring liver and skeletal muscle. In conclusion, this study suggests a link between disrupted mitochondrial/ER function in oocytes and increased risk of metabolic diseases in the progeny. Future studies should determine whether MERC architecture and function are altered in oocytes from obese females, which might contribute toward transgenerational transmission of metabolic diseases.
Collapse
Affiliation(s)
- Bruna M Garcia
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Thiago S Machado
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.,Programa de Pós-Graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Karen F Carvalho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Patrícia Nolasco
- Translational Cardiovascular Biology Unit, Instituto do Coração, Universidade de São Paulo, São Paulo 05403-904, Brazil
| | - Ricardo P Nociti
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - Maite Del Collado
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - Maria J D Capo Bianco
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Mateus P Grejo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - José Djaci Augusto Neto
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Fabrícia H C Sugiyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Katiane Tostes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Anand K Pandey
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.,Departament of Veterinary Gynaecology and Obstetrics, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - Luciana M Gonçalves
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-865, Brazil
| | - Felipe Perecin
- Programa de Pós-Graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil.,Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - Flávio V Meirelles
- Programa de Pós-Graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil.,Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - José Bento S Ferraz
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - Emerielle C Vanzela
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-865, Brazil
| | - Antônio C Boschero
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-865, Brazil
| | - Francisco E G Guimarães
- Departamento de Física e Ciências dos Materiais, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13563-120, Brazil
| | - Fernando Abdulkader
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Francisco R M Laurindo
- Translational Cardiovascular Biology Unit, Instituto do Coração, Universidade de São Paulo, São Paulo 05403-904, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.,Programa de Pós-Graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
16
|
Guo J, Huang J, Zhang L, Li C, Qin Y, Liu W, Li J, Huang G. Benzo[b]fluoranthene Impairs Mouse Oocyte Maturation via Inducing the Apoptosis. Front Pharmacol 2020; 11:1226. [PMID: 32982721 PMCID: PMC7483922 DOI: 10.3389/fphar.2020.01226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
Benzo[b]fluoranthene (BbF) is one of the main pollutants of polycyclic aromatic hydrocarbons (PAHs), which are generated from organic materials combustion and diesel exhaust. It has been reported that after maternal exposure, BbF crosses the placental barrier, leading to offspring defects. However, the effect of BbF on the female reproductive system, especially on oocyte maturation has not been studied. To elucidate the effect and precise mechanism of BbF on oocyte maturation, nuclear, and cytoplasm maturation were evaluated after exposing mouse oocytes to different concentrations of BbF. Results showed that BbF exposure shows no effect on the meiotic progression, but it caused defects on nuclear maturation via impairment on chromosome alignment. In addition, the treatment of BbF displayed the defects on the cytoplasmic maturation by leading to the mitochondrial dysfunction, DNA damage accumulation, early apoptosis and the loss of H3K4me3. To investigate the mechanism, we found that BbF impaired the oocyte maturation via the AMPK pathway. BbF exposure caused the phosphorylation of AMPK, which cause the DNA damage accumulation and apoptotic incidence. Taken together, our results demonstrated that BbF exposure impaired the mouse oocyte maturation due to mitochondrial dysfunction and early apoptosis.
Collapse
Affiliation(s)
- Jing Guo
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jiayu Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liqun Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Chong Li
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yinhua Qin
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Weiwei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| |
Collapse
|
17
|
Orešković D, Raguž M, Predrijevac N, Rotim A, Romić D, Majić A, Sesar P, Živković M, Marinović T, Chudy D. Hemoglobin A1c in Patients with Glioblastoma-A Preliminary Study. World Neurosurg 2020; 141:e553-e558. [PMID: 32492547 DOI: 10.1016/j.wneu.2020.05.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Glioblastomas are among the most common primary brain tumors with an abysmal prognosis. The significance of glucose metabolism in glioblastoma cell metabolism and proliferation is well-known. However, a significant correlation between the systemic metabolic status of the patient and the cellular proliferation of the glioblastoma has not yet been established. METHODS Our aim was to observe and analyze for a possible correlation between glioblastoma cellular proliferation and patients' glycated hemoglobin (HbA1c) levels as a marker of chronic systemic glycemia. We analyzed the data from 25 patients and compared their Ki-67 values with their preoperative HbA1c values. RESULTS We observed a statistically significant correlation (P < 0.03) between chronic glycemia (measured using HbA1c) and the cellular proliferation of glioblastoma (measured by cellular Ki-67 expression). CONCLUSIONS These results imply a possible positive correlation between glioblastoma cell proliferation and chronic systemic glycemia, a correlation that, to the best of our knowledge, has not yet been reported. Further research in this area could not only lead to a better understanding of glioblastoma but also have significant clinical applications in treating this devastating disease.
Collapse
Affiliation(s)
- Darko Orešković
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia.
| | - Marina Raguž
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Nina Predrijevac
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Ante Rotim
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Dominik Romić
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Ana Majić
- Department of Endocrinology, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Patricija Sesar
- Department of Pathology, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Marcela Živković
- Department of Laboratory Diagnostics, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Tonko Marinović
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia; Department of Neurology and Neurosurgery, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Darko Chudy
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia; Department of Surgery, Zagreb University School of Medicine, Zagreb, Croatia
| |
Collapse
|
18
|
Wang Y, Chen L, Pandak WM, Heuman D, Hylemon PB, Ren S. High Glucose Induces Lipid Accumulation via 25-Hydroxycholesterol DNA-CpG Methylation. iScience 2020; 23:101102. [PMID: 32408171 PMCID: PMC7225732 DOI: 10.1016/j.isci.2020.101102] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
This work investigates the relationship between high-glucose (HG) culture, CpG methylation of genes involved in cell signaling pathways, and the regulation of carbohydrate and lipid metabolism in hepatocytes. The results indicate that HG leads to an increase in nuclear 25-hydroxycholesterol (25HC), which specifically activates DNA methyltransferase-1 (DNMT1), and regulates gene expression involved in intracellular lipid metabolism. The results show significant increases in 5mCpG levels in at least 2,225 genes involved in 57 signaling pathways. The hypermethylated genes directly involved in carbohydrate and lipid metabolism are of PI3K, cAMP, insulin, insulin secretion, diabetic, and NAFLD signaling pathways. The studies indicate a close relationship between the increase in nuclear 25HC levels and activation of DNMT1, which may regulate lipid metabolism via DNA CpG methylation. Our results indicate an epigenetic regulation of hepatic cell metabolism that has relevance to some common diseases such as non-alcoholic fatty liver disease and metabolic syndrome.
Collapse
Affiliation(s)
- Yaping Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China,Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA
| | - Lanming Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - William M. Pandak
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA
| | - Douglas Heuman
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA
| | - Phillip B. Hylemon
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA.
| |
Collapse
|
19
|
Orešković D, Almahariq F, Majić A, Sesar P, Živković M, Maraković J, Marčinković P, Predrijevac N, Vuković P, Chudy D. HbA1c in patients with intracranial meningiomas WHO grades I and II: A preliminary study. IUBMB Life 2020; 72:1426-1432. [PMID: 32134566 DOI: 10.1002/iub.2268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
Meningiomas are among the most common primary brain tumors. There is a growing need for novel ways of differentiating between benign (World Health Organization [WHO] grade I) and atypical (WHO grade II) meningiomas as well as for novel markers of the tumor's future behavior. A difference between glucose metabolism in atypical and benign meningiomas is well known. However, a significant correlation between the systemic metabolic status of the patient and the meningioma WHO grade has not yet been established. Our aim was to compare the WHO grades of intracranial meningiomas with the patient's HbA1c levels as a more reliable marker of the chronic systemic metabolic status than the fasting blood glucose value, which is usually looked at. We retrospectively analyzed 15 patients and compared their meningioma WHO grade with their preoperative HbA1c values. Our results show that patients with benign intracranial meningiomas have significantly lower HbA1c value. Conversely, patients with atypical intracranial meningiomas have higher HbA1c values. Furthermore, we showed that the proliferation factor Ki67 was statistically strongly correlated with the HbA1c value (p < .001. These results imply a possible positive correlation between meningioma cell proliferation and the chronic systemic glycemia. Further research in this area could not only lead to better understanding of meningiomas but could have significant clinical application.
Collapse
Affiliation(s)
- Darko Orešković
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Fadi Almahariq
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Ana Majić
- Department of Endocrinology, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Patricija Sesar
- Department of Pathology, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Marcela Živković
- Department of Laboratory Diagnostics, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Jurica Maraković
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Petar Marčinković
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Nina Predrijevac
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Petra Vuković
- Department of Clinical Oncology, Clinic for Tumors, University Hospital Center, Sestre Milosrdnice, Zagreb, Croatia
| | - Darko Chudy
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| |
Collapse
|
20
|
Chiaratti MR, Macabelli CH, Augusto Neto JD, Grejo MP, Pandey AK, Perecin F, Collado MD. Maternal transmission of mitochondrial diseases. Genet Mol Biol 2020; 43:e20190095. [PMID: 32141474 PMCID: PMC7197987 DOI: 10.1590/1678-4685-gmb-2019-0095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
Given the major role of the mitochondrion in cellular homeostasis, dysfunctions of this organelle may lead to several common diseases in humans. Among these, maternal diseases linked to mitochondrial DNA (mtDNA) mutations are of special interest due to the unclear pattern of mitochondrial inheritance. Multiple copies of mtDNA are present in a cell, each encoding for 37 genes essential for mitochondrial function. In cases of mtDNA mutations, mitochondrial malfunctioning relies on mutation load, as mutant and wild-type molecules may co-exist within the cell. Since the mutation load associated with disease manifestation varies for different mutations and tissues, it is hard to predict the progeny phenotype based on mutation load in the progenitor. In addition, poorly understood mechanisms act in the female germline to prevent the accumulation of deleterious mtDNA in the following generations. In this review, we outline basic aspects of mitochondrial inheritance in mammals and how they may lead to maternally-inherited diseases. Furthermore, we discuss potential therapeutic strategies for these diseases, which may be used in the future to prevent their transmission.
Collapse
Affiliation(s)
- Marcos R Chiaratti
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Genética e Biotecnologia, São Carlos, SP, Brazil
| | - Carolina H Macabelli
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Genética e Biotecnologia, São Carlos, SP, Brazil
| | - José Djaci Augusto Neto
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Genética e Biotecnologia, São Carlos, SP, Brazil
| | - Mateus Priolo Grejo
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Genética e Biotecnologia, São Carlos, SP, Brazil
| | - Anand Kumar Pandey
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Felipe Perecin
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Laboratório de Morfofisiologia Molecular e Desenvolvimento, Pirassununga, SP, Brazil
| | - Maite Del Collado
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Laboratório de Morfofisiologia Molecular e Desenvolvimento, Pirassununga, SP, Brazil
| |
Collapse
|
21
|
Li L, Jing Y, Dong MZ, Fan LH, Li QN, Wang ZB, Hou Y, Schatten H, Zhang CL, Sun QY. Type 1 diabetes affects zona pellucida and genome methylation in oocytes and granulosa cells. Mol Cell Endocrinol 2020; 500:110627. [PMID: 31639403 DOI: 10.1016/j.mce.2019.110627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022]
Abstract
Diabetes affects oocyte nuclear and cytoplasmic quality. In this study, we generated a type 1 diabetes (T1D) mouse model by STZ injection to study the effects of T1D on zona pellucida and genomic DNA methylation of oocytes and granulosa cells. T1D mice showed fewer ovulated oocytes, reduced ovarian reserve, disrupted estrus cycle, and significantly ruptured zona pellucida in 2-cell in vivo embryos compared to controls. Notably, diabetic oocytes displayed thinner zona pellucida and treatment of oocytes with high concentration glucose reduced the zona pellucida thickness. Differential methylation genes in oocytes and granulosa cells were analyzed by methylation sequencing. These genes were significantly enriched in GO terms by GO analysis, and these GO terms were involved in multiple aspects of growth and development. Most notably, the abnormal methylation genes in oocytes may be related to oocyte zona pellucida changes in diabetic mice. These findings provide novel basic data for further understanding and elucidating dysgenesis and epigenetic changes in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Jing
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan Province, PR China; Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, PR China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian-Nan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Cui-Lian Zhang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan Province, PR China; Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, PR China.
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
22
|
Yang Q, Zhu L, Jin L. Human Follicle in vitro Culture Including Activation, Growth, and Maturation: A Review of Research Progress. Front Endocrinol (Lausanne) 2020; 11:548. [PMID: 32849312 PMCID: PMC7431469 DOI: 10.3389/fendo.2020.00548] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/06/2020] [Indexed: 01/23/2023] Open
Abstract
Fertility preservation has received unprecedented attention nowadays. In addition to cryopreservation and re-implantation of embryos, oocytes, and ovarian tissue pieces, in vitro culture system for follicles/oocytes has been considered as an alternative strategy for fertility preservation. Since the metabolic dynamics and required nutrients are not entirely the same in different stages of follicular development, optimization of each culture step is needed. In this paper, literature regarding culture conditions in three steps were analyzed. Known additives in activation stage included 740Y-P, bpV(HOpic), follicle stimulating hormone (FSH), human serum albumin (HSA), ITS, growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and cyclic adenosine monophosphate (cAMP), with different degrees of activation promotion and potential detrimental effect on DNA integrity. For isolated follicles growth stage, actin A, FSH, basic fibroblast growth factor (bFGF), estradiol were proved to improve development or proliferation. As for maturation, addition of growth hormone, melatonin, C-type natriuretic peptide (CNP), GDF9, cilostamide, or forskolin helped to regulate maturation rate or improve oocyte quality. Based on previous sequential culture system for human follicles, optimization is needed to achieve higher maturation rate and better oocyte quality, pursuant to current review, which demonstrated the effects of various additives on different stages.
Collapse
|
23
|
Zhu Z, Cao F, Li X. Epigenetic Programming and Fetal Metabolic Programming. Front Endocrinol (Lausanne) 2019; 10:764. [PMID: 31849831 PMCID: PMC6901800 DOI: 10.3389/fendo.2019.00764] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
Fetal metabolic programming caused by the adverse intrauterine environment can induce metabolic syndrome in adult offspring. Adverse intrauterine environment introduces fetal long-term relatively irreversible changes in organs and metabolism, and thus causes fetal metabolic programming leading metabolic syndrome in adult offspring. Fetal metabolic programming of obesity and insulin resistance plays a key role in this process. The mechanism of fetal metabolic programming is still not very clear. It is suggested that epigenetic programming, also induced by the adverse intrauterine environment, is a critical underlying mechanism of fetal metabolic programming. Fetal epigenetic programming affects gene expression changes and cellular function through epigenetic modifications without DNA nucleotide sequence changes. Epigenetic modifications can be relatively stably retained and transmitted through mitosis and generations, and thereby induce the development of metabolic syndrome in adult offspring. This manuscript provides an overview of the critical role of epigenetic programming in fetal metabolic programming.
Collapse
Affiliation(s)
- Ziqiang Zhu
- Children's Hospital of Soochow University, Suzhou, China
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Fang Cao
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Xiaozhong Li
- Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Franzago M, La Rovere M, Guanciali Franchi P, Vitacolonna E, Stuppia L. Epigenetics and human reproduction: the primary prevention of the noncommunicable diseases. Epigenomics 2019; 11:1441-1460. [PMID: 31596147 DOI: 10.2217/epi-2019-0163] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epigenetic regulation of gene expression plays a key role in affecting human health and diseases with particular regard to human reproduction. The major concern in this field is represented by the epigenetic modifications in the embryo and the increased risk of long-life disorders induced by the use of assisted reproduction techniques, able to affect the epigenetic assessment in the first steps of embryo development. In this review, we analyze the correlation between epigenetic modifications and human reproduction, suggesting that the reversibility of the epigenetic processes could represent a novel resource for the treatment of the couple's infertility and that parental lifestyle in periconceptional period could be considered as an important issue of primary prevention.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine & Aging, School of Medicine & Health Sciences, 'G. d'Annunzio' University, Chieti-Pescara, Chieti, Italy.,Center for Aging Studies & Translational Medicine (CESI-MET), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Marina La Rovere
- Department of Psychological, Health & Territorial Sciences, School of Medicine & Health Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Paolo Guanciali Franchi
- Department of Medical, Oral & Biotechnological Sciences, School of Medicine & Health Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine & Aging, School of Medicine & Health Sciences, 'G. d'Annunzio' University, Chieti-Pescara, Chieti, Italy
| | - Liborio Stuppia
- Center for Aging Studies & Translational Medicine (CESI-MET), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Department of Psychological, Health & Territorial Sciences, School of Medicine & Health Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
25
|
Barbe A, Bongrani A, Mellouk N, Estienne A, Kurowska P, Grandhaye J, Elfassy Y, Levy R, Rak A, Froment P, Dupont J. Mechanisms of Adiponectin Action in Fertility: An Overview from Gametogenesis to Gestation in Humans and Animal Models in Normal and Pathological Conditions. Int J Mol Sci 2019; 20:ijms20071526. [PMID: 30934676 PMCID: PMC6479753 DOI: 10.3390/ijms20071526] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
Adiponectin is the most abundant plasma adipokine. It mainly derives from white adipose tissue and plays a key role in the control of energy metabolism thanks to its insulin-sensitising, anti-inflammatory, and antiatherogenic properties. In vitro and in vivo evidence shows that adiponectin could also be one of the hormones controlling the interaction between energy balance and fertility in several species, including humans. Indeed, its two receptors—AdipoR1 and AdipoR2—are expressed in hypothalamic–pituitary–gonadal axis and their activation regulates Kiss, GnRH and gonadotropin expression and/or secretion. In male gonads, adiponectin modulates several functions of both somatic and germ cells, such as steroidogenesis, proliferation, apoptosis, and oxidative stress. In females, it controls steroidogenesis of ovarian granulosa and theca cells, oocyte maturation, and embryo development. Adiponectin receptors were also found in placental and endometrial cells, suggesting that this adipokine might play a crucial role in embryo implantation, trophoblast invasion and foetal growth. The aim of this review is to characterise adiponectin expression and its mechanism of action in male and female reproductive tract. Further, since features of metabolic syndrome are associated with some reproductive diseases, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia, endometriosis, foetal growth restriction and ovarian and endometrial cancers, evidence regarding the emerging role of adiponectin in these disorders is also discussed.
Collapse
Affiliation(s)
- Alix Barbe
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
| | - Alice Bongrani
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
| | - Namya Mellouk
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
| | - Anthony Estienne
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
| | - Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Krakow, Poland.
| | - Jérémy Grandhaye
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
| | - Yaelle Elfassy
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Service de Biologie de la Reproduction, F-75020 Paris, France.
- Université Pierre et Marie Curie Paris 6, F-75005 Paris, France.
- INSERM UMRS_938, Centre de Recherche Saint-Antoine, F-75571 Paris, France.
| | - Rachel Levy
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Service de Biologie de la Reproduction, F-75020 Paris, France.
- Université Pierre et Marie Curie Paris 6, F-75005 Paris, France.
- INSERM UMRS_938, Centre de Recherche Saint-Antoine, F-75571 Paris, France.
| | - Agnieszka Rak
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | - Pascal Froment
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
| | - Joëlle Dupont
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
| |
Collapse
|
26
|
Franzago M, Fraticelli F, Stuppia L, Vitacolonna E. Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics 2019; 14:215-235. [PMID: 30865571 PMCID: PMC6557546 DOI: 10.1080/15592294.2019.1582277] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) is the most common metabolic condition during pregnancy and may result in short- and long-term complications for both mother and offspring. The complexity of phenotypic outcomes seems influenced by genetic susceptibility, nutrient-gene interactions and lifestyle interacting with clinical factors. There is strong evidence that not only the adverse genetic background but also the epigenetic modifications in response to nutritional and environmental factors could influence the maternal hyperglycemia in pregnancy and the foetal metabolic programming. In this view, the correlation between epigenetic modifications and their transgenerational effects represents a very interesting field of study. The present review gives insight into the role of gene variants and their interactions with nutrients in GDM. In addition, we provide an overview of the epigenetic changes and their role in the maternal-foetal transmission of chronic diseases. Overall, the knowledge of epigenetic modifications induced by an adverse intrauterine and perinatal environment could shed light on the potential pathophysiological mechanisms of long-term disease development in the offspring and provide useful tools for their prevention.
Collapse
Affiliation(s)
- Marica Franzago
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy.,b Molecular Genetics, Unit , CeSI-Met , Chieti , Italy
| | - Federica Fraticelli
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| | - Liborio Stuppia
- b Molecular Genetics, Unit , CeSI-Met , Chieti , Italy.,c Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| | - Ester Vitacolonna
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| |
Collapse
|
27
|
Zou K, Ding G, Huang H. Advances in research into gamete and embryo-fetal origins of adult diseases. SCIENCE CHINA-LIFE SCIENCES 2019; 62:360-368. [PMID: 30685828 DOI: 10.1007/s11427-018-9427-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
The fetal and infant origins of adult disease hypothesis proposed that the roots of adult chronic disease lie in the effects of adverse environments in fetal life and early infancy. In addition to the fetal period, fertilization and early embryonic stages, the critical time windows of epigenetic reprogramming, rapid cell differentiation and organogenesis, are the most sensitive stages to environmental disturbances. Compared with embryo and fetal development, gametogenesis and maturation take decades and are more vulnerable to potential damage for a longer exposure period. Therefore, we should shift the focus of adult disease occurrence and pathogenesis further back to gametogenesis and embryonic development events, which may result in intergenerational, even transgenerational, epigenetic re-programming with transmission of adverse traits and characteristics to offspring. Here, we focus on the research progress relating to diseases that originated from events in the gametes and early embryos and the potential epigenetic mechanisms involved.
Collapse
Affiliation(s)
- Kexin Zou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Guolian Ding
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
28
|
Ou X, Zhu C, Sun S. Effects of obesity and diabetes on the epigenetic modification of mammalian gametes. J Cell Physiol 2018; 234:7847-7855. [DOI: 10.1002/jcp.27847] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Xiang‐Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital Guangzhou China
| | - Cheng‐Cheng Zhu
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
- Nanjing Police Dog Institute of the Ministry of Public Security Nanjing China
| | - Shao‐Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| |
Collapse
|